linux/drivers/net/ethernet/qualcomm/emac/emac-mac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
   3 */
   4
   5/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
   6 */
   7
   8#include <linux/tcp.h>
   9#include <linux/ip.h>
  10#include <linux/ipv6.h>
  11#include <linux/crc32.h>
  12#include <linux/if_vlan.h>
  13#include <linux/jiffies.h>
  14#include <linux/phy.h>
  15#include <linux/of.h>
  16#include <net/ip6_checksum.h>
  17#include "emac.h"
  18#include "emac-sgmii.h"
  19
  20/* EMAC_MAC_CTRL */
  21#define SINGLE_PAUSE_MODE               0x10000000
  22#define DEBUG_MODE                      0x08000000
  23#define BROAD_EN                        0x04000000
  24#define MULTI_ALL                       0x02000000
  25#define RX_CHKSUM_EN                    0x01000000
  26#define HUGE                            0x00800000
  27#define SPEED(x)                        (((x) & 0x3) << 20)
  28#define SPEED_MASK                      SPEED(0x3)
  29#define SIMR                            0x00080000
  30#define TPAUSE                          0x00010000
  31#define PROM_MODE                       0x00008000
  32#define VLAN_STRIP                      0x00004000
  33#define PRLEN_BMSK                      0x00003c00
  34#define PRLEN_SHFT                      10
  35#define HUGEN                           0x00000200
  36#define FLCHK                           0x00000100
  37#define PCRCE                           0x00000080
  38#define CRCE                            0x00000040
  39#define FULLD                           0x00000020
  40#define MAC_LP_EN                       0x00000010
  41#define RXFC                            0x00000008
  42#define TXFC                            0x00000004
  43#define RXEN                            0x00000002
  44#define TXEN                            0x00000001
  45
  46/* EMAC_DESC_CTRL_3 */
  47#define RFD_RING_SIZE_BMSK                                       0xfff
  48
  49/* EMAC_DESC_CTRL_4 */
  50#define RX_BUFFER_SIZE_BMSK                                     0xffff
  51
  52/* EMAC_DESC_CTRL_6 */
  53#define RRD_RING_SIZE_BMSK                                       0xfff
  54
  55/* EMAC_DESC_CTRL_9 */
  56#define TPD_RING_SIZE_BMSK                                      0xffff
  57
  58/* EMAC_TXQ_CTRL_0 */
  59#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
  60#define NUM_TXF_BURST_PREF_SHFT                                     16
  61#define LS_8023_SP                                                0x80
  62#define TXQ_MODE                                                  0x40
  63#define TXQ_EN                                                    0x20
  64#define IP_OP_SP                                                  0x10
  65#define NUM_TPD_BURST_PREF_BMSK                                    0xf
  66#define NUM_TPD_BURST_PREF_SHFT                                      0
  67
  68/* EMAC_TXQ_CTRL_1 */
  69#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
  70
  71/* EMAC_TXQ_CTRL_2 */
  72#define TXF_HWM_BMSK                                         0xfff0000
  73#define TXF_LWM_BMSK                                             0xfff
  74
  75/* EMAC_RXQ_CTRL_0 */
  76#define RXQ_EN                                                 BIT(31)
  77#define CUT_THRU_EN                                            BIT(30)
  78#define RSS_HASH_EN                                            BIT(29)
  79#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
  80#define NUM_RFD_BURST_PREF_SHFT                                     20
  81#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
  82#define IDT_TABLE_SIZE_SHFT                                          8
  83#define SP_IPV6                                                   0x80
  84
  85/* EMAC_RXQ_CTRL_1 */
  86#define JUMBO_1KAH_BMSK                                         0xf000
  87#define JUMBO_1KAH_SHFT                                             12
  88#define RFD_PREF_LOW_TH                                           0x10
  89#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
  90#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
  91#define RFD_PREF_UP_TH                                            0x10
  92#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
  93#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
  94
  95/* EMAC_RXQ_CTRL_2 */
  96#define RXF_DOF_THRESFHOLD                                       0x1a0
  97#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
  98#define RXF_DOF_THRESHOLD_SHFT                                      16
  99#define RXF_UOF_THRESFHOLD                                        0xbe
 100#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
 101#define RXF_UOF_THRESHOLD_SHFT                                       0
 102
 103/* EMAC_RXQ_CTRL_3 */
 104#define RXD_TIMER_BMSK                                      0xffff0000
 105#define RXD_THRESHOLD_BMSK                                       0xfff
 106#define RXD_THRESHOLD_SHFT                                           0
 107
 108/* EMAC_DMA_CTRL */
 109#define DMAW_DLY_CNT_BMSK                                      0xf0000
 110#define DMAW_DLY_CNT_SHFT                                           16
 111#define DMAR_DLY_CNT_BMSK                                       0xf800
 112#define DMAR_DLY_CNT_SHFT                                           11
 113#define DMAR_REQ_PRI                                             0x400
 114#define REGWRBLEN_BMSK                                           0x380
 115#define REGWRBLEN_SHFT                                               7
 116#define REGRDBLEN_BMSK                                            0x70
 117#define REGRDBLEN_SHFT                                               4
 118#define OUT_ORDER_MODE                                             0x4
 119#define ENH_ORDER_MODE                                             0x2
 120#define IN_ORDER_MODE                                              0x1
 121
 122/* EMAC_MAILBOX_13 */
 123#define RFD3_PROC_IDX_BMSK                                   0xfff0000
 124#define RFD3_PROC_IDX_SHFT                                          16
 125#define RFD3_PROD_IDX_BMSK                                       0xfff
 126#define RFD3_PROD_IDX_SHFT                                           0
 127
 128/* EMAC_MAILBOX_2 */
 129#define NTPD_CONS_IDX_BMSK                                  0xffff0000
 130#define NTPD_CONS_IDX_SHFT                                          16
 131
 132/* EMAC_MAILBOX_3 */
 133#define RFD0_CONS_IDX_BMSK                                       0xfff
 134#define RFD0_CONS_IDX_SHFT                                           0
 135
 136/* EMAC_MAILBOX_11 */
 137#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
 138#define H3TPD_PROD_IDX_SHFT                                         16
 139
 140/* EMAC_AXI_MAST_CTRL */
 141#define DATA_BYTE_SWAP                                             0x8
 142#define MAX_BOUND                                                  0x2
 143#define MAX_BTYPE                                                  0x1
 144
 145/* EMAC_MAILBOX_12 */
 146#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
 147#define H3TPD_CONS_IDX_SHFT                                         16
 148
 149/* EMAC_MAILBOX_9 */
 150#define H2TPD_PROD_IDX_BMSK                                     0xffff
 151#define H2TPD_PROD_IDX_SHFT                                          0
 152
 153/* EMAC_MAILBOX_10 */
 154#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
 155#define H1TPD_CONS_IDX_SHFT                                         16
 156#define H2TPD_CONS_IDX_BMSK                                     0xffff
 157#define H2TPD_CONS_IDX_SHFT                                          0
 158
 159/* EMAC_ATHR_HEADER_CTRL */
 160#define HEADER_CNT_EN                                              0x2
 161#define HEADER_ENABLE                                              0x1
 162
 163/* EMAC_MAILBOX_0 */
 164#define RFD0_PROC_IDX_BMSK                                   0xfff0000
 165#define RFD0_PROC_IDX_SHFT                                          16
 166#define RFD0_PROD_IDX_BMSK                                       0xfff
 167#define RFD0_PROD_IDX_SHFT                                           0
 168
 169/* EMAC_MAILBOX_5 */
 170#define RFD1_PROC_IDX_BMSK                                   0xfff0000
 171#define RFD1_PROC_IDX_SHFT                                          16
 172#define RFD1_PROD_IDX_BMSK                                       0xfff
 173#define RFD1_PROD_IDX_SHFT                                           0
 174
 175/* EMAC_MISC_CTRL */
 176#define RX_UNCPL_INT_EN                                            0x1
 177
 178/* EMAC_MAILBOX_7 */
 179#define RFD2_CONS_IDX_BMSK                                   0xfff0000
 180#define RFD2_CONS_IDX_SHFT                                          16
 181#define RFD1_CONS_IDX_BMSK                                       0xfff
 182#define RFD1_CONS_IDX_SHFT                                           0
 183
 184/* EMAC_MAILBOX_8 */
 185#define RFD3_CONS_IDX_BMSK                                       0xfff
 186#define RFD3_CONS_IDX_SHFT                                           0
 187
 188/* EMAC_MAILBOX_15 */
 189#define NTPD_PROD_IDX_BMSK                                      0xffff
 190#define NTPD_PROD_IDX_SHFT                                           0
 191
 192/* EMAC_MAILBOX_16 */
 193#define H1TPD_PROD_IDX_BMSK                                     0xffff
 194#define H1TPD_PROD_IDX_SHFT                                          0
 195
 196#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
 197#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
 198#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
 199#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
 200
 201/* EMAC_EMAC_WRAPPER_TX_TS_INX */
 202#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
 203#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
 204
 205struct emac_skb_cb {
 206        u32           tpd_idx;
 207        unsigned long jiffies;
 208};
 209
 210#define EMAC_SKB_CB(skb)        ((struct emac_skb_cb *)(skb)->cb)
 211#define EMAC_RSS_IDT_SIZE       256
 212#define JUMBO_1KAH              0x4
 213#define RXD_TH                  0x100
 214#define EMAC_TPD_LAST_FRAGMENT  0x80000000
 215#define EMAC_TPD_TSTAMP_SAVE    0x80000000
 216
 217/* EMAC Errors in emac_rrd.word[3] */
 218#define EMAC_RRD_L4F            BIT(14)
 219#define EMAC_RRD_IPF            BIT(15)
 220#define EMAC_RRD_CRC            BIT(21)
 221#define EMAC_RRD_FAE            BIT(22)
 222#define EMAC_RRD_TRN            BIT(23)
 223#define EMAC_RRD_RNT            BIT(24)
 224#define EMAC_RRD_INC            BIT(25)
 225#define EMAC_RRD_FOV            BIT(29)
 226#define EMAC_RRD_LEN            BIT(30)
 227
 228/* Error bits that will result in a received frame being discarded */
 229#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
 230                        EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
 231                        EMAC_RRD_FOV | EMAC_RRD_LEN)
 232#define EMAC_RRD_STATS_DW_IDX 3
 233
 234#define EMAC_RRD(RXQ, SIZE, IDX)        ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
 235#define EMAC_RFD(RXQ, SIZE, IDX)        ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
 236#define EMAC_TPD(TXQ, SIZE, IDX)        ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
 237
 238#define GET_RFD_BUFFER(RXQ, IDX)        (&((RXQ)->rfd.rfbuff[(IDX)]))
 239#define GET_TPD_BUFFER(RTQ, IDX)        (&((RTQ)->tpd.tpbuff[(IDX)]))
 240
 241#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD       8
 242
 243#define ISR_RX_PKT      (\
 244        RX_PKT_INT0     |\
 245        RX_PKT_INT1     |\
 246        RX_PKT_INT2     |\
 247        RX_PKT_INT3)
 248
 249void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
 250{
 251        u32 crc32, bit, reg, mta;
 252
 253        /* Calculate the CRC of the MAC address */
 254        crc32 = ether_crc(ETH_ALEN, addr);
 255
 256        /* The HASH Table is an array of 2 32-bit registers. It is
 257         * treated like an array of 64 bits (BitArray[hash_value]).
 258         * Use the upper 6 bits of the above CRC as the hash value.
 259         */
 260        reg = (crc32 >> 31) & 0x1;
 261        bit = (crc32 >> 26) & 0x1F;
 262
 263        mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 264        mta |= BIT(bit);
 265        writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
 266}
 267
 268void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
 269{
 270        writel(0, adpt->base + EMAC_HASH_TAB_REG0);
 271        writel(0, adpt->base + EMAC_HASH_TAB_REG1);
 272}
 273
 274/* definitions for RSS */
 275#define EMAC_RSS_KEY(_i, _type) \
 276                (EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
 277#define EMAC_RSS_TBL(_i, _type) \
 278                (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
 279
 280/* Config MAC modes */
 281void emac_mac_mode_config(struct emac_adapter *adpt)
 282{
 283        struct net_device *netdev = adpt->netdev;
 284        u32 mac;
 285
 286        mac = readl(adpt->base + EMAC_MAC_CTRL);
 287        mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
 288
 289        if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
 290                mac |= VLAN_STRIP;
 291
 292        if (netdev->flags & IFF_PROMISC)
 293                mac |= PROM_MODE;
 294
 295        if (netdev->flags & IFF_ALLMULTI)
 296                mac |= MULTI_ALL;
 297
 298        writel(mac, adpt->base + EMAC_MAC_CTRL);
 299}
 300
 301/* Config descriptor rings */
 302static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
 303{
 304        /* TPD (Transmit Packet Descriptor) */
 305        writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
 306               adpt->base + EMAC_DESC_CTRL_1);
 307
 308        writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
 309               adpt->base + EMAC_DESC_CTRL_8);
 310
 311        writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
 312               adpt->base + EMAC_DESC_CTRL_9);
 313
 314        /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
 315        writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
 316               adpt->base + EMAC_DESC_CTRL_0);
 317
 318        writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
 319               adpt->base + EMAC_DESC_CTRL_2);
 320        writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
 321               adpt->base + EMAC_DESC_CTRL_5);
 322
 323        writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
 324               adpt->base + EMAC_DESC_CTRL_3);
 325        writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
 326               adpt->base + EMAC_DESC_CTRL_6);
 327
 328        writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
 329               adpt->base + EMAC_DESC_CTRL_4);
 330
 331        writel(0, adpt->base + EMAC_DESC_CTRL_11);
 332
 333        /* Load all of the base addresses above and ensure that triggering HW to
 334         * read ring pointers is flushed
 335         */
 336        writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
 337}
 338
 339/* Config transmit parameters */
 340static void emac_mac_tx_config(struct emac_adapter *adpt)
 341{
 342        u32 val;
 343
 344        writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
 345               JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
 346
 347        val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
 348               NUM_TPD_BURST_PREF_BMSK;
 349
 350        val |= TXQ_MODE | LS_8023_SP;
 351        val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
 352                NUM_TXF_BURST_PREF_BMSK;
 353
 354        writel(val, adpt->base + EMAC_TXQ_CTRL_0);
 355        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
 356                          (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
 357}
 358
 359/* Config receive parameters */
 360static void emac_mac_rx_config(struct emac_adapter *adpt)
 361{
 362        u32 val;
 363
 364        val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
 365               NUM_RFD_BURST_PREF_BMSK;
 366        val |= (SP_IPV6 | CUT_THRU_EN);
 367
 368        writel(val, adpt->base + EMAC_RXQ_CTRL_0);
 369
 370        val = readl(adpt->base + EMAC_RXQ_CTRL_1);
 371        val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
 372                 RFD_PREF_UP_THRESHOLD_BMSK);
 373        val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
 374                (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
 375                (RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
 376        writel(val, adpt->base + EMAC_RXQ_CTRL_1);
 377
 378        val = readl(adpt->base + EMAC_RXQ_CTRL_2);
 379        val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
 380        val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
 381                (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
 382        writel(val, adpt->base + EMAC_RXQ_CTRL_2);
 383
 384        val = readl(adpt->base + EMAC_RXQ_CTRL_3);
 385        val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
 386        val |= RXD_TH << RXD_THRESHOLD_SHFT;
 387        writel(val, adpt->base + EMAC_RXQ_CTRL_3);
 388}
 389
 390/* Config dma */
 391static void emac_mac_dma_config(struct emac_adapter *adpt)
 392{
 393        u32 dma_ctrl = DMAR_REQ_PRI;
 394
 395        switch (adpt->dma_order) {
 396        case emac_dma_ord_in:
 397                dma_ctrl |= IN_ORDER_MODE;
 398                break;
 399        case emac_dma_ord_enh:
 400                dma_ctrl |= ENH_ORDER_MODE;
 401                break;
 402        case emac_dma_ord_out:
 403                dma_ctrl |= OUT_ORDER_MODE;
 404                break;
 405        default:
 406                break;
 407        }
 408
 409        dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
 410                                                REGRDBLEN_BMSK;
 411        dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
 412                                                REGWRBLEN_BMSK;
 413        dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
 414                                                DMAR_DLY_CNT_BMSK;
 415        dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
 416                                                DMAW_DLY_CNT_BMSK;
 417
 418        /* config DMA and ensure that configuration is flushed to HW */
 419        writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
 420}
 421
 422/* set MAC address */
 423static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
 424{
 425        u32 sta;
 426
 427        /* for example: 00-A0-C6-11-22-33
 428         * 0<-->C6112233, 1<-->00A0.
 429         */
 430
 431        /* low 32bit word */
 432        sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
 433              (((u32)addr[4]) << 8)  | (((u32)addr[5]));
 434        writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
 435
 436        /* hight 32bit word */
 437        sta = (((u32)addr[0]) << 8) | (u32)addr[1];
 438        writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
 439}
 440
 441static void emac_mac_config(struct emac_adapter *adpt)
 442{
 443        struct net_device *netdev = adpt->netdev;
 444        unsigned int max_frame;
 445        u32 val;
 446
 447        emac_set_mac_address(adpt, netdev->dev_addr);
 448
 449        max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 450        adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
 451                ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
 452
 453        emac_mac_dma_rings_config(adpt);
 454
 455        writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
 456               adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
 457
 458        emac_mac_tx_config(adpt);
 459        emac_mac_rx_config(adpt);
 460        emac_mac_dma_config(adpt);
 461
 462        val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
 463        val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
 464        val |= MAX_BTYPE;
 465        writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
 466        writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
 467        writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
 468}
 469
 470void emac_mac_reset(struct emac_adapter *adpt)
 471{
 472        emac_mac_stop(adpt);
 473
 474        emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
 475        usleep_range(100, 150); /* reset may take up to 100usec */
 476
 477        /* interrupt clear-on-read */
 478        emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
 479}
 480
 481static void emac_mac_start(struct emac_adapter *adpt)
 482{
 483        struct phy_device *phydev = adpt->phydev;
 484        u32 mac, csr1;
 485
 486        /* enable tx queue */
 487        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
 488
 489        /* enable rx queue */
 490        emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
 491
 492        /* enable mac control */
 493        mac = readl(adpt->base + EMAC_MAC_CTRL);
 494        csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 495
 496        mac |= TXEN | RXEN;     /* enable RX/TX */
 497
 498        /* Configure MAC flow control. If set to automatic, then match
 499         * whatever the PHY does. Otherwise, enable or disable it, depending
 500         * on what the user configured via ethtool.
 501         */
 502        mac &= ~(RXFC | TXFC);
 503
 504        if (adpt->automatic) {
 505                /* If it's set to automatic, then update our local values */
 506                adpt->rx_flow_control = phydev->pause;
 507                adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
 508        }
 509        mac |= adpt->rx_flow_control ? RXFC : 0;
 510        mac |= adpt->tx_flow_control ? TXFC : 0;
 511
 512        /* setup link speed */
 513        mac &= ~SPEED_MASK;
 514        if (phydev->speed == SPEED_1000) {
 515                mac |= SPEED(2);
 516                csr1 |= FREQ_MODE;
 517        } else {
 518                mac |= SPEED(1);
 519                csr1 &= ~FREQ_MODE;
 520        }
 521
 522        if (phydev->duplex == DUPLEX_FULL)
 523                mac |= FULLD;
 524        else
 525                mac &= ~FULLD;
 526
 527        /* other parameters */
 528        mac |= (CRCE | PCRCE);
 529        mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
 530        mac |= BROAD_EN;
 531        mac |= FLCHK;
 532        mac &= ~RX_CHKSUM_EN;
 533        mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
 534                 DEBUG_MODE | SINGLE_PAUSE_MODE);
 535
 536        /* Enable single-pause-frame mode if requested.
 537         *
 538         * If enabled, the EMAC will send a single pause frame when the RX
 539         * queue is full.  This normally leads to packet loss because
 540         * the pause frame disables the remote MAC only for 33ms (the quanta),
 541         * and then the remote MAC continues sending packets even though
 542         * the RX queue is still full.
 543         *
 544         * If disabled, the EMAC sends a pause frame every 31ms until the RX
 545         * queue is no longer full.  Normally, this is the preferred
 546         * method of operation.  However, when the system is hung (e.g.
 547         * cores are halted), the EMAC interrupt handler is never called
 548         * and so the RX queue fills up quickly and stays full.  The resuling
 549         * non-stop "flood" of pause frames sometimes has the effect of
 550         * disabling nearby switches.  In some cases, other nearby switches
 551         * are also affected, shutting down the entire network.
 552         *
 553         * The user can enable or disable single-pause-frame mode
 554         * via ethtool.
 555         */
 556        mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
 557
 558        writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
 559
 560        writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
 561
 562        /* enable interrupt read clear, low power sleep mode and
 563         * the irq moderators
 564         */
 565
 566        writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
 567        writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
 568                        IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
 569
 570        emac_mac_mode_config(adpt);
 571
 572        emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
 573                          (HEADER_ENABLE | HEADER_CNT_EN), 0);
 574}
 575
 576void emac_mac_stop(struct emac_adapter *adpt)
 577{
 578        emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
 579        emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
 580        emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
 581        usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
 582}
 583
 584/* Free all descriptors of given transmit queue */
 585static void emac_tx_q_descs_free(struct emac_adapter *adpt)
 586{
 587        struct emac_tx_queue *tx_q = &adpt->tx_q;
 588        unsigned int i;
 589        size_t size;
 590
 591        /* ring already cleared, nothing to do */
 592        if (!tx_q->tpd.tpbuff)
 593                return;
 594
 595        for (i = 0; i < tx_q->tpd.count; i++) {
 596                struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
 597
 598                if (tpbuf->dma_addr) {
 599                        dma_unmap_single(adpt->netdev->dev.parent,
 600                                         tpbuf->dma_addr, tpbuf->length,
 601                                         DMA_TO_DEVICE);
 602                        tpbuf->dma_addr = 0;
 603                }
 604                if (tpbuf->skb) {
 605                        dev_kfree_skb_any(tpbuf->skb);
 606                        tpbuf->skb = NULL;
 607                }
 608        }
 609
 610        size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 611        memset(tx_q->tpd.tpbuff, 0, size);
 612
 613        /* clear the descriptor ring */
 614        memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
 615
 616        tx_q->tpd.consume_idx = 0;
 617        tx_q->tpd.produce_idx = 0;
 618}
 619
 620/* Free all descriptors of given receive queue */
 621static void emac_rx_q_free_descs(struct emac_adapter *adpt)
 622{
 623        struct device *dev = adpt->netdev->dev.parent;
 624        struct emac_rx_queue *rx_q = &adpt->rx_q;
 625        unsigned int i;
 626        size_t size;
 627
 628        /* ring already cleared, nothing to do */
 629        if (!rx_q->rfd.rfbuff)
 630                return;
 631
 632        for (i = 0; i < rx_q->rfd.count; i++) {
 633                struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
 634
 635                if (rfbuf->dma_addr) {
 636                        dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
 637                                         DMA_FROM_DEVICE);
 638                        rfbuf->dma_addr = 0;
 639                }
 640                if (rfbuf->skb) {
 641                        dev_kfree_skb(rfbuf->skb);
 642                        rfbuf->skb = NULL;
 643                }
 644        }
 645
 646        size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
 647        memset(rx_q->rfd.rfbuff, 0, size);
 648
 649        /* clear the descriptor rings */
 650        memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
 651        rx_q->rrd.produce_idx = 0;
 652        rx_q->rrd.consume_idx = 0;
 653
 654        memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
 655        rx_q->rfd.produce_idx = 0;
 656        rx_q->rfd.consume_idx = 0;
 657}
 658
 659/* Free all buffers associated with given transmit queue */
 660static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
 661{
 662        struct emac_tx_queue *tx_q = &adpt->tx_q;
 663
 664        emac_tx_q_descs_free(adpt);
 665
 666        kfree(tx_q->tpd.tpbuff);
 667        tx_q->tpd.tpbuff = NULL;
 668        tx_q->tpd.v_addr = NULL;
 669        tx_q->tpd.dma_addr = 0;
 670        tx_q->tpd.size = 0;
 671}
 672
 673/* Allocate TX descriptor ring for the given transmit queue */
 674static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
 675                                struct emac_tx_queue *tx_q)
 676{
 677        struct emac_ring_header *ring_header = &adpt->ring_header;
 678        int node = dev_to_node(adpt->netdev->dev.parent);
 679        size_t size;
 680
 681        size = sizeof(struct emac_buffer) * tx_q->tpd.count;
 682        tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
 683        if (!tx_q->tpd.tpbuff)
 684                return -ENOMEM;
 685
 686        tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
 687        tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
 688        tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
 689        ring_header->used += ALIGN(tx_q->tpd.size, 8);
 690        tx_q->tpd.produce_idx = 0;
 691        tx_q->tpd.consume_idx = 0;
 692
 693        return 0;
 694}
 695
 696/* Free all buffers associated with given transmit queue */
 697static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
 698{
 699        struct emac_rx_queue *rx_q = &adpt->rx_q;
 700
 701        emac_rx_q_free_descs(adpt);
 702
 703        kfree(rx_q->rfd.rfbuff);
 704        rx_q->rfd.rfbuff   = NULL;
 705
 706        rx_q->rfd.v_addr   = NULL;
 707        rx_q->rfd.dma_addr = 0;
 708        rx_q->rfd.size     = 0;
 709
 710        rx_q->rrd.v_addr   = NULL;
 711        rx_q->rrd.dma_addr = 0;
 712        rx_q->rrd.size     = 0;
 713}
 714
 715/* Allocate RX descriptor rings for the given receive queue */
 716static int emac_rx_descs_alloc(struct emac_adapter *adpt)
 717{
 718        struct emac_ring_header *ring_header = &adpt->ring_header;
 719        int node = dev_to_node(adpt->netdev->dev.parent);
 720        struct emac_rx_queue *rx_q = &adpt->rx_q;
 721        size_t size;
 722
 723        size = sizeof(struct emac_buffer) * rx_q->rfd.count;
 724        rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
 725        if (!rx_q->rfd.rfbuff)
 726                return -ENOMEM;
 727
 728        rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
 729        rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
 730
 731        rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
 732        rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
 733        ring_header->used += ALIGN(rx_q->rrd.size, 8);
 734
 735        rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
 736        rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
 737        ring_header->used += ALIGN(rx_q->rfd.size, 8);
 738
 739        rx_q->rrd.produce_idx = 0;
 740        rx_q->rrd.consume_idx = 0;
 741
 742        rx_q->rfd.produce_idx = 0;
 743        rx_q->rfd.consume_idx = 0;
 744
 745        return 0;
 746}
 747
 748/* Allocate all TX and RX descriptor rings */
 749int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
 750{
 751        struct emac_ring_header *ring_header = &adpt->ring_header;
 752        struct device *dev = adpt->netdev->dev.parent;
 753        unsigned int num_tx_descs = adpt->tx_desc_cnt;
 754        unsigned int num_rx_descs = adpt->rx_desc_cnt;
 755        int ret;
 756
 757        adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
 758
 759        adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
 760        adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
 761
 762        /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
 763         * hence the additional padding bytes are allocated.
 764         */
 765        ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
 766                            num_rx_descs * (adpt->rfd_size * 4) +
 767                            num_rx_descs * (adpt->rrd_size * 4) +
 768                            8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
 769
 770        ring_header->used = 0;
 771        ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
 772                                                 &ring_header->dma_addr,
 773                                                 GFP_KERNEL);
 774        if (!ring_header->v_addr)
 775                return -ENOMEM;
 776
 777        ring_header->used = ALIGN(ring_header->dma_addr, 8) -
 778                                                        ring_header->dma_addr;
 779
 780        ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
 781        if (ret) {
 782                netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
 783                goto err_alloc_tx;
 784        }
 785
 786        ret = emac_rx_descs_alloc(adpt);
 787        if (ret) {
 788                netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
 789                goto err_alloc_rx;
 790        }
 791
 792        return 0;
 793
 794err_alloc_rx:
 795        emac_tx_q_bufs_free(adpt);
 796err_alloc_tx:
 797        dma_free_coherent(dev, ring_header->size,
 798                          ring_header->v_addr, ring_header->dma_addr);
 799
 800        ring_header->v_addr   = NULL;
 801        ring_header->dma_addr = 0;
 802        ring_header->size     = 0;
 803        ring_header->used     = 0;
 804
 805        return ret;
 806}
 807
 808/* Free all TX and RX descriptor rings */
 809void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
 810{
 811        struct emac_ring_header *ring_header = &adpt->ring_header;
 812        struct device *dev = adpt->netdev->dev.parent;
 813
 814        emac_tx_q_bufs_free(adpt);
 815        emac_rx_q_bufs_free(adpt);
 816
 817        dma_free_coherent(dev, ring_header->size,
 818                          ring_header->v_addr, ring_header->dma_addr);
 819
 820        ring_header->v_addr   = NULL;
 821        ring_header->dma_addr = 0;
 822        ring_header->size     = 0;
 823        ring_header->used     = 0;
 824}
 825
 826/* Initialize descriptor rings */
 827static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
 828{
 829        unsigned int i;
 830
 831        adpt->tx_q.tpd.produce_idx = 0;
 832        adpt->tx_q.tpd.consume_idx = 0;
 833        for (i = 0; i < adpt->tx_q.tpd.count; i++)
 834                adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
 835
 836        adpt->rx_q.rrd.produce_idx = 0;
 837        adpt->rx_q.rrd.consume_idx = 0;
 838        adpt->rx_q.rfd.produce_idx = 0;
 839        adpt->rx_q.rfd.consume_idx = 0;
 840        for (i = 0; i < adpt->rx_q.rfd.count; i++)
 841                adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
 842}
 843
 844/* Produce new receive free descriptor */
 845static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
 846                                   struct emac_rx_queue *rx_q,
 847                                   dma_addr_t addr)
 848{
 849        u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
 850
 851        *(hw_rfd++) = lower_32_bits(addr);
 852        *hw_rfd = upper_32_bits(addr);
 853
 854        if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
 855                rx_q->rfd.produce_idx = 0;
 856}
 857
 858/* Fill up receive queue's RFD with preallocated receive buffers */
 859static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
 860                                    struct emac_rx_queue *rx_q)
 861{
 862        struct emac_buffer *curr_rxbuf;
 863        struct emac_buffer *next_rxbuf;
 864        unsigned int count = 0;
 865        u32 next_produce_idx;
 866
 867        next_produce_idx = rx_q->rfd.produce_idx + 1;
 868        if (next_produce_idx == rx_q->rfd.count)
 869                next_produce_idx = 0;
 870
 871        curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 872        next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 873
 874        /* this always has a blank rx_buffer*/
 875        while (!next_rxbuf->dma_addr) {
 876                struct sk_buff *skb;
 877                int ret;
 878
 879                skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
 880                if (!skb)
 881                        break;
 882
 883                curr_rxbuf->dma_addr =
 884                        dma_map_single(adpt->netdev->dev.parent, skb->data,
 885                                       adpt->rxbuf_size, DMA_FROM_DEVICE);
 886
 887                ret = dma_mapping_error(adpt->netdev->dev.parent,
 888                                        curr_rxbuf->dma_addr);
 889                if (ret) {
 890                        dev_kfree_skb(skb);
 891                        break;
 892                }
 893                curr_rxbuf->skb = skb;
 894                curr_rxbuf->length = adpt->rxbuf_size;
 895
 896                emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
 897                next_produce_idx = rx_q->rfd.produce_idx + 1;
 898                if (next_produce_idx == rx_q->rfd.count)
 899                        next_produce_idx = 0;
 900
 901                curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
 902                next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
 903                count++;
 904        }
 905
 906        if (count) {
 907                u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
 908                                rx_q->produce_mask;
 909                emac_reg_update32(adpt->base + rx_q->produce_reg,
 910                                  rx_q->produce_mask, prod_idx);
 911        }
 912}
 913
 914static void emac_adjust_link(struct net_device *netdev)
 915{
 916        struct emac_adapter *adpt = netdev_priv(netdev);
 917        struct phy_device *phydev = netdev->phydev;
 918
 919        if (phydev->link) {
 920                emac_mac_start(adpt);
 921                emac_sgmii_link_change(adpt, true);
 922        } else {
 923                emac_sgmii_link_change(adpt, false);
 924                emac_mac_stop(adpt);
 925        }
 926
 927        phy_print_status(phydev);
 928}
 929
 930/* Bringup the interface/HW */
 931int emac_mac_up(struct emac_adapter *adpt)
 932{
 933        struct net_device *netdev = adpt->netdev;
 934        int ret;
 935
 936        emac_mac_rx_tx_ring_reset_all(adpt);
 937        emac_mac_config(adpt);
 938        emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
 939
 940        adpt->phydev->irq = PHY_POLL;
 941        ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
 942                                 PHY_INTERFACE_MODE_SGMII);
 943        if (ret) {
 944                netdev_err(adpt->netdev, "could not connect phy\n");
 945                return ret;
 946        }
 947
 948        phy_attached_print(adpt->phydev, NULL);
 949
 950        /* enable mac irq */
 951        writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
 952        writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
 953
 954        phy_start(adpt->phydev);
 955
 956        napi_enable(&adpt->rx_q.napi);
 957        netif_start_queue(netdev);
 958
 959        return 0;
 960}
 961
 962/* Bring down the interface/HW */
 963void emac_mac_down(struct emac_adapter *adpt)
 964{
 965        struct net_device *netdev = adpt->netdev;
 966
 967        netif_stop_queue(netdev);
 968        napi_disable(&adpt->rx_q.napi);
 969
 970        phy_stop(adpt->phydev);
 971
 972        /* Interrupts must be disabled before the PHY is disconnected, to
 973         * avoid a race condition where adjust_link is null when we get
 974         * an interrupt.
 975         */
 976        writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
 977        writel(0, adpt->base + EMAC_INT_MASK);
 978        synchronize_irq(adpt->irq.irq);
 979
 980        phy_disconnect(adpt->phydev);
 981
 982        emac_mac_reset(adpt);
 983
 984        emac_tx_q_descs_free(adpt);
 985        netdev_reset_queue(adpt->netdev);
 986        emac_rx_q_free_descs(adpt);
 987}
 988
 989/* Consume next received packet descriptor */
 990static bool emac_rx_process_rrd(struct emac_adapter *adpt,
 991                                struct emac_rx_queue *rx_q,
 992                                struct emac_rrd *rrd)
 993{
 994        u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
 995
 996        rrd->word[3] = *(hw_rrd + 3);
 997
 998        if (!RRD_UPDT(rrd))
 999                return false;
1000
1001        rrd->word[4] = 0;
1002        rrd->word[5] = 0;
1003
1004        rrd->word[0] = *(hw_rrd++);
1005        rrd->word[1] = *(hw_rrd++);
1006        rrd->word[2] = *(hw_rrd++);
1007
1008        if (unlikely(RRD_NOR(rrd) != 1)) {
1009                netdev_err(adpt->netdev,
1010                           "error: multi-RFD not support yet! nor:%lu\n",
1011                           RRD_NOR(rrd));
1012        }
1013
1014        /* mark rrd as processed */
1015        RRD_UPDT_SET(rrd, 0);
1016        *hw_rrd = rrd->word[3];
1017
1018        if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
1019                rx_q->rrd.consume_idx = 0;
1020
1021        return true;
1022}
1023
1024/* Produce new transmit descriptor */
1025static void emac_tx_tpd_create(struct emac_adapter *adpt,
1026                               struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
1027{
1028        u32 *hw_tpd;
1029
1030        tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
1031        hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
1032
1033        if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
1034                tx_q->tpd.produce_idx = 0;
1035
1036        *(hw_tpd++) = tpd->word[0];
1037        *(hw_tpd++) = tpd->word[1];
1038        *(hw_tpd++) = tpd->word[2];
1039        *hw_tpd = tpd->word[3];
1040}
1041
1042/* Mark the last transmit descriptor as such (for the transmit packet) */
1043static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
1044                                  struct emac_tx_queue *tx_q)
1045{
1046        u32 *hw_tpd =
1047                EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
1048        u32 tmp_tpd;
1049
1050        tmp_tpd = *(hw_tpd + 1);
1051        tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
1052        *(hw_tpd + 1) = tmp_tpd;
1053}
1054
1055static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
1056{
1057        struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
1058        u32 consume_idx = RRD_SI(rrd);
1059        unsigned int i;
1060
1061        for (i = 0; i < RRD_NOR(rrd); i++) {
1062                rfbuf[consume_idx].skb = NULL;
1063                if (++consume_idx == rx_q->rfd.count)
1064                        consume_idx = 0;
1065        }
1066
1067        rx_q->rfd.consume_idx = consume_idx;
1068        rx_q->rfd.process_idx = consume_idx;
1069}
1070
1071/* Push the received skb to upper layers */
1072static void emac_receive_skb(struct emac_rx_queue *rx_q,
1073                             struct sk_buff *skb,
1074                             u16 vlan_tag, bool vlan_flag)
1075{
1076        if (vlan_flag) {
1077                u16 vlan;
1078
1079                EMAC_TAG_TO_VLAN(vlan_tag, vlan);
1080                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
1081        }
1082
1083        napi_gro_receive(&rx_q->napi, skb);
1084}
1085
1086/* Process receive event */
1087void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
1088                         int *num_pkts, int max_pkts)
1089{
1090        u32 proc_idx, hw_consume_idx, num_consume_pkts;
1091        struct net_device *netdev  = adpt->netdev;
1092        struct emac_buffer *rfbuf;
1093        unsigned int count = 0;
1094        struct emac_rrd rrd;
1095        struct sk_buff *skb;
1096        u32 reg;
1097
1098        reg = readl_relaxed(adpt->base + rx_q->consume_reg);
1099
1100        hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
1101        num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
1102                (hw_consume_idx -  rx_q->rrd.consume_idx) :
1103                (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
1104
1105        do {
1106                if (!num_consume_pkts)
1107                        break;
1108
1109                if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
1110                        break;
1111
1112                if (likely(RRD_NOR(&rrd) == 1)) {
1113                        /* good receive */
1114                        rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
1115                        dma_unmap_single(adpt->netdev->dev.parent,
1116                                         rfbuf->dma_addr, rfbuf->length,
1117                                         DMA_FROM_DEVICE);
1118                        rfbuf->dma_addr = 0;
1119                        skb = rfbuf->skb;
1120                } else {
1121                        netdev_err(adpt->netdev,
1122                                   "error: multi-RFD not support yet!\n");
1123                        break;
1124                }
1125                emac_rx_rfd_clean(rx_q, &rrd);
1126                num_consume_pkts--;
1127                count++;
1128
1129                /* Due to a HW issue in L4 check sum detection (UDP/TCP frags
1130                 * with DF set are marked as error), drop packets based on the
1131                 * error mask rather than the summary bit (ignoring L4F errors)
1132                 */
1133                if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
1134                        netif_dbg(adpt, rx_status, adpt->netdev,
1135                                  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
1136                                  rrd.word[0], rrd.word[1],
1137                                  rrd.word[2], rrd.word[3]);
1138
1139                        dev_kfree_skb(skb);
1140                        continue;
1141                }
1142
1143                skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
1144                skb->dev = netdev;
1145                skb->protocol = eth_type_trans(skb, skb->dev);
1146                if (netdev->features & NETIF_F_RXCSUM)
1147                        skb->ip_summed = RRD_L4F(&rrd) ?
1148                                          CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
1149                else
1150                        skb_checksum_none_assert(skb);
1151
1152                emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
1153                                 (bool)RRD_CVTAG(&rrd));
1154
1155                (*num_pkts)++;
1156        } while (*num_pkts < max_pkts);
1157
1158        if (count) {
1159                proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
1160                                rx_q->process_mask;
1161                emac_reg_update32(adpt->base + rx_q->process_reg,
1162                                  rx_q->process_mask, proc_idx);
1163                emac_mac_rx_descs_refill(adpt, rx_q);
1164        }
1165}
1166
1167/* get the number of free transmit descriptors */
1168static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
1169{
1170        u32 produce_idx = tx_q->tpd.produce_idx;
1171        u32 consume_idx = tx_q->tpd.consume_idx;
1172
1173        return (consume_idx > produce_idx) ?
1174                (consume_idx - produce_idx - 1) :
1175                (tx_q->tpd.count + consume_idx - produce_idx - 1);
1176}
1177
1178/* Process transmit event */
1179void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
1180{
1181        u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
1182        u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
1183        struct emac_buffer *tpbuf;
1184
1185        hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
1186
1187        while (tx_q->tpd.consume_idx != hw_consume_idx) {
1188                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
1189                if (tpbuf->dma_addr) {
1190                        dma_unmap_page(adpt->netdev->dev.parent,
1191                                       tpbuf->dma_addr, tpbuf->length,
1192                                       DMA_TO_DEVICE);
1193                        tpbuf->dma_addr = 0;
1194                }
1195
1196                if (tpbuf->skb) {
1197                        pkts_compl++;
1198                        bytes_compl += tpbuf->skb->len;
1199                        dev_consume_skb_irq(tpbuf->skb);
1200                        tpbuf->skb = NULL;
1201                }
1202
1203                if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
1204                        tx_q->tpd.consume_idx = 0;
1205        }
1206
1207        netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
1208
1209        if (netif_queue_stopped(adpt->netdev))
1210                if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
1211                        netif_wake_queue(adpt->netdev);
1212}
1213
1214/* Initialize all queue data structures */
1215void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
1216                                  struct emac_adapter *adpt)
1217{
1218        adpt->rx_q.netdev = adpt->netdev;
1219
1220        adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
1221        adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
1222        adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
1223
1224        adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
1225        adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
1226        adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
1227
1228        adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
1229        adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
1230        adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
1231
1232        adpt->rx_q.irq          = &adpt->irq;
1233        adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
1234
1235        adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
1236        adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
1237        adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
1238
1239        adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
1240        adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
1241        adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
1242}
1243
1244/* Fill up transmit descriptors with TSO and Checksum offload information */
1245static int emac_tso_csum(struct emac_adapter *adpt,
1246                         struct emac_tx_queue *tx_q,
1247                         struct sk_buff *skb,
1248                         struct emac_tpd *tpd)
1249{
1250        unsigned int hdr_len;
1251        int ret;
1252
1253        if (skb_is_gso(skb)) {
1254                if (skb_header_cloned(skb)) {
1255                        ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256                        if (unlikely(ret))
1257                                return ret;
1258                }
1259
1260                if (skb->protocol == htons(ETH_P_IP)) {
1261                        u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
1262                                       + ntohs(ip_hdr(skb)->tot_len);
1263                        if (skb->len > pkt_len)
1264                                pskb_trim(skb, pkt_len);
1265                }
1266
1267                hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1268                if (unlikely(skb->len == hdr_len)) {
1269                        /* we only need to do csum */
1270                        netif_warn(adpt, tx_err, adpt->netdev,
1271                                   "tso not needed for packet with 0 data\n");
1272                        goto do_csum;
1273                }
1274
1275                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1276                        ip_hdr(skb)->check = 0;
1277                        tcp_hdr(skb)->check =
1278                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
1279                                                   ip_hdr(skb)->daddr,
1280                                                   0, IPPROTO_TCP, 0);
1281                        TPD_IPV4_SET(tpd, 1);
1282                }
1283
1284                if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
1285                        /* ipv6 tso need an extra tpd */
1286                        struct emac_tpd extra_tpd;
1287
1288                        memset(tpd, 0, sizeof(*tpd));
1289                        memset(&extra_tpd, 0, sizeof(extra_tpd));
1290
1291                        tcp_v6_gso_csum_prep(skb);
1292
1293                        TPD_PKT_LEN_SET(&extra_tpd, skb->len);
1294                        TPD_LSO_SET(&extra_tpd, 1);
1295                        TPD_LSOV_SET(&extra_tpd, 1);
1296                        emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
1297                        TPD_LSOV_SET(tpd, 1);
1298                }
1299
1300                TPD_LSO_SET(tpd, 1);
1301                TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
1302                TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
1303                return 0;
1304        }
1305
1306do_csum:
1307        if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1308                unsigned int css, cso;
1309
1310                cso = skb_transport_offset(skb);
1311                if (unlikely(cso & 0x1)) {
1312                        netdev_err(adpt->netdev,
1313                                   "error: payload offset should be even\n");
1314                        return -EINVAL;
1315                }
1316                css = cso + skb->csum_offset;
1317
1318                TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
1319                TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
1320                TPD_CSX_SET(tpd, 1);
1321        }
1322
1323        return 0;
1324}
1325
1326/* Fill up transmit descriptors */
1327static void emac_tx_fill_tpd(struct emac_adapter *adpt,
1328                             struct emac_tx_queue *tx_q, struct sk_buff *skb,
1329                             struct emac_tpd *tpd)
1330{
1331        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1332        unsigned int first = tx_q->tpd.produce_idx;
1333        unsigned int len = skb_headlen(skb);
1334        struct emac_buffer *tpbuf = NULL;
1335        unsigned int mapped_len = 0;
1336        unsigned int i;
1337        int count = 0;
1338        int ret;
1339
1340        /* if Large Segment Offload is (in TCP Segmentation Offload struct) */
1341        if (TPD_LSO(tpd)) {
1342                mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1343
1344                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1345                tpbuf->length = mapped_len;
1346                tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1347                                               virt_to_page(skb->data),
1348                                               offset_in_page(skb->data),
1349                                               tpbuf->length,
1350                                               DMA_TO_DEVICE);
1351                ret = dma_mapping_error(adpt->netdev->dev.parent,
1352                                        tpbuf->dma_addr);
1353                if (ret)
1354                        goto error;
1355
1356                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1357                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1358                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1359                emac_tx_tpd_create(adpt, tx_q, tpd);
1360                count++;
1361        }
1362
1363        if (mapped_len < len) {
1364                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1365                tpbuf->length = len - mapped_len;
1366                tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
1367                                               virt_to_page(skb->data +
1368                                                            mapped_len),
1369                                               offset_in_page(skb->data +
1370                                                              mapped_len),
1371                                               tpbuf->length, DMA_TO_DEVICE);
1372                ret = dma_mapping_error(adpt->netdev->dev.parent,
1373                                        tpbuf->dma_addr);
1374                if (ret)
1375                        goto error;
1376
1377                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1378                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1379                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1380                emac_tx_tpd_create(adpt, tx_q, tpd);
1381                count++;
1382        }
1383
1384        for (i = 0; i < nr_frags; i++) {
1385                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1386
1387                tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
1388                tpbuf->length = skb_frag_size(frag);
1389                tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
1390                                                   frag, 0, tpbuf->length,
1391                                                   DMA_TO_DEVICE);
1392                ret = dma_mapping_error(adpt->netdev->dev.parent,
1393                                        tpbuf->dma_addr);
1394                if (ret)
1395                        goto error;
1396
1397                TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
1398                TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
1399                TPD_BUF_LEN_SET(tpd, tpbuf->length);
1400                emac_tx_tpd_create(adpt, tx_q, tpd);
1401                count++;
1402        }
1403
1404        /* The last tpd */
1405        wmb();
1406        emac_tx_tpd_mark_last(adpt, tx_q);
1407
1408        /* The last buffer info contain the skb address,
1409         * so it will be freed after unmap
1410         */
1411        tpbuf->skb = skb;
1412
1413        return;
1414
1415error:
1416        /* One of the memory mappings failed, so undo everything */
1417        tx_q->tpd.produce_idx = first;
1418
1419        while (count--) {
1420                tpbuf = GET_TPD_BUFFER(tx_q, first);
1421                dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
1422                               tpbuf->length, DMA_TO_DEVICE);
1423                tpbuf->dma_addr = 0;
1424                tpbuf->length = 0;
1425
1426                if (++first == tx_q->tpd.count)
1427                        first = 0;
1428        }
1429
1430        dev_kfree_skb(skb);
1431}
1432
1433/* Transmit the packet using specified transmit queue */
1434netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
1435                                 struct emac_tx_queue *tx_q,
1436                                 struct sk_buff *skb)
1437{
1438        struct emac_tpd tpd;
1439        u32 prod_idx;
1440        int len;
1441
1442        memset(&tpd, 0, sizeof(tpd));
1443
1444        if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
1445                dev_kfree_skb_any(skb);
1446                return NETDEV_TX_OK;
1447        }
1448
1449        if (skb_vlan_tag_present(skb)) {
1450                u16 tag;
1451
1452                EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
1453                TPD_CVLAN_TAG_SET(&tpd, tag);
1454                TPD_INSTC_SET(&tpd, 1);
1455        }
1456
1457        if (skb_network_offset(skb) != ETH_HLEN)
1458                TPD_TYP_SET(&tpd, 1);
1459
1460        len = skb->len;
1461        emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
1462
1463        netdev_sent_queue(adpt->netdev, len);
1464
1465        /* Make sure the are enough free descriptors to hold one
1466         * maximum-sized SKB.  We need one desc for each fragment,
1467         * one for the checksum (emac_tso_csum), one for TSO, and
1468         * and one for the SKB header.
1469         */
1470        if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
1471                netif_stop_queue(adpt->netdev);
1472
1473        /* update produce idx */
1474        prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
1475                    tx_q->produce_mask;
1476        emac_reg_update32(adpt->base + tx_q->produce_reg,
1477                          tx_q->produce_mask, prod_idx);
1478
1479        return NETDEV_TX_OK;
1480}
1481