linux/drivers/net/ethernet/sfc/efx_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include "net_driver.h"
  12#include <linux/module.h>
  13#include <linux/netdevice.h>
  14#include <net/gre.h>
  15#include "efx_common.h"
  16#include "efx_channels.h"
  17#include "efx.h"
  18#include "mcdi.h"
  19#include "selftest.h"
  20#include "rx_common.h"
  21#include "tx_common.h"
  22#include "nic.h"
  23#include "mcdi_port_common.h"
  24#include "io.h"
  25#include "mcdi_pcol.h"
  26
  27static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  28                             NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  29                             NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  30                             NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  31module_param(debug, uint, 0);
  32MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  33
  34/* This is the time (in jiffies) between invocations of the hardware
  35 * monitor.
  36 * On Falcon-based NICs, this will:
  37 * - Check the on-board hardware monitor;
  38 * - Poll the link state and reconfigure the hardware as necessary.
  39 * On Siena-based NICs for power systems with EEH support, this will give EEH a
  40 * chance to start.
  41 */
  42static unsigned int efx_monitor_interval = 1 * HZ;
  43
  44/* How often and how many times to poll for a reset while waiting for a
  45 * BIST that another function started to complete.
  46 */
  47#define BIST_WAIT_DELAY_MS      100
  48#define BIST_WAIT_DELAY_COUNT   100
  49
  50/* Default stats update time */
  51#define STATS_PERIOD_MS_DEFAULT 1000
  52
  53const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  54const char *const efx_reset_type_names[] = {
  55        [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  56        [RESET_TYPE_ALL]                = "ALL",
  57        [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  58        [RESET_TYPE_WORLD]              = "WORLD",
  59        [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  60        [RESET_TYPE_DATAPATH]           = "DATAPATH",
  61        [RESET_TYPE_MC_BIST]            = "MC_BIST",
  62        [RESET_TYPE_DISABLE]            = "DISABLE",
  63        [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  64        [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  65        [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  66        [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  67        [RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  68        [RESET_TYPE_MCDI_TIMEOUT]       = "MCDI_TIMEOUT (FLR)",
  69};
  70
  71#define RESET_TYPE(type) \
  72        STRING_TABLE_LOOKUP(type, efx_reset_type)
  73
  74/* Loopback mode names (see LOOPBACK_MODE()) */
  75const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  76const char *const efx_loopback_mode_names[] = {
  77        [LOOPBACK_NONE]         = "NONE",
  78        [LOOPBACK_DATA]         = "DATAPATH",
  79        [LOOPBACK_GMAC]         = "GMAC",
  80        [LOOPBACK_XGMII]        = "XGMII",
  81        [LOOPBACK_XGXS]         = "XGXS",
  82        [LOOPBACK_XAUI]         = "XAUI",
  83        [LOOPBACK_GMII]         = "GMII",
  84        [LOOPBACK_SGMII]        = "SGMII",
  85        [LOOPBACK_XGBR]         = "XGBR",
  86        [LOOPBACK_XFI]          = "XFI",
  87        [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
  88        [LOOPBACK_GMII_FAR]     = "GMII_FAR",
  89        [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
  90        [LOOPBACK_XFI_FAR]      = "XFI_FAR",
  91        [LOOPBACK_GPHY]         = "GPHY",
  92        [LOOPBACK_PHYXS]        = "PHYXS",
  93        [LOOPBACK_PCS]          = "PCS",
  94        [LOOPBACK_PMAPMD]       = "PMA/PMD",
  95        [LOOPBACK_XPORT]        = "XPORT",
  96        [LOOPBACK_XGMII_WS]     = "XGMII_WS",
  97        [LOOPBACK_XAUI_WS]      = "XAUI_WS",
  98        [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  99        [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
 100        [LOOPBACK_GMII_WS]      = "GMII_WS",
 101        [LOOPBACK_XFI_WS]       = "XFI_WS",
 102        [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
 103        [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
 104};
 105
 106/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 107 * queued onto this work queue. This is not a per-nic work queue, because
 108 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 109 */
 110static struct workqueue_struct *reset_workqueue;
 111
 112int efx_create_reset_workqueue(void)
 113{
 114        reset_workqueue = create_singlethread_workqueue("sfc_reset");
 115        if (!reset_workqueue) {
 116                printk(KERN_ERR "Failed to create reset workqueue\n");
 117                return -ENOMEM;
 118        }
 119
 120        return 0;
 121}
 122
 123void efx_queue_reset_work(struct efx_nic *efx)
 124{
 125        queue_work(reset_workqueue, &efx->reset_work);
 126}
 127
 128void efx_flush_reset_workqueue(struct efx_nic *efx)
 129{
 130        cancel_work_sync(&efx->reset_work);
 131}
 132
 133void efx_destroy_reset_workqueue(void)
 134{
 135        if (reset_workqueue) {
 136                destroy_workqueue(reset_workqueue);
 137                reset_workqueue = NULL;
 138        }
 139}
 140
 141/* We assume that efx->type->reconfigure_mac will always try to sync RX
 142 * filters and therefore needs to read-lock the filter table against freeing
 143 */
 144void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
 145{
 146        if (efx->type->reconfigure_mac) {
 147                down_read(&efx->filter_sem);
 148                efx->type->reconfigure_mac(efx, mtu_only);
 149                up_read(&efx->filter_sem);
 150        }
 151}
 152
 153/* Asynchronous work item for changing MAC promiscuity and multicast
 154 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 155 * MAC directly.
 156 */
 157static void efx_mac_work(struct work_struct *data)
 158{
 159        struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 160
 161        mutex_lock(&efx->mac_lock);
 162        if (efx->port_enabled)
 163                efx_mac_reconfigure(efx, false);
 164        mutex_unlock(&efx->mac_lock);
 165}
 166
 167int efx_set_mac_address(struct net_device *net_dev, void *data)
 168{
 169        struct efx_nic *efx = netdev_priv(net_dev);
 170        struct sockaddr *addr = data;
 171        u8 *new_addr = addr->sa_data;
 172        u8 old_addr[6];
 173        int rc;
 174
 175        if (!is_valid_ether_addr(new_addr)) {
 176                netif_err(efx, drv, efx->net_dev,
 177                          "invalid ethernet MAC address requested: %pM\n",
 178                          new_addr);
 179                return -EADDRNOTAVAIL;
 180        }
 181
 182        /* save old address */
 183        ether_addr_copy(old_addr, net_dev->dev_addr);
 184        ether_addr_copy(net_dev->dev_addr, new_addr);
 185        if (efx->type->set_mac_address) {
 186                rc = efx->type->set_mac_address(efx);
 187                if (rc) {
 188                        ether_addr_copy(net_dev->dev_addr, old_addr);
 189                        return rc;
 190                }
 191        }
 192
 193        /* Reconfigure the MAC */
 194        mutex_lock(&efx->mac_lock);
 195        efx_mac_reconfigure(efx, false);
 196        mutex_unlock(&efx->mac_lock);
 197
 198        return 0;
 199}
 200
 201/* Context: netif_addr_lock held, BHs disabled. */
 202void efx_set_rx_mode(struct net_device *net_dev)
 203{
 204        struct efx_nic *efx = netdev_priv(net_dev);
 205
 206        if (efx->port_enabled)
 207                queue_work(efx->workqueue, &efx->mac_work);
 208        /* Otherwise efx_start_port() will do this */
 209}
 210
 211int efx_set_features(struct net_device *net_dev, netdev_features_t data)
 212{
 213        struct efx_nic *efx = netdev_priv(net_dev);
 214        int rc;
 215
 216        /* If disabling RX n-tuple filtering, clear existing filters */
 217        if (net_dev->features & ~data & NETIF_F_NTUPLE) {
 218                rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
 219                if (rc)
 220                        return rc;
 221        }
 222
 223        /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
 224         * If rx-fcs is changed, mac_reconfigure updates that too.
 225         */
 226        if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
 227                                          NETIF_F_RXFCS)) {
 228                /* efx_set_rx_mode() will schedule MAC work to update filters
 229                 * when a new features are finally set in net_dev.
 230                 */
 231                efx_set_rx_mode(net_dev);
 232        }
 233
 234        return 0;
 235}
 236
 237/* This ensures that the kernel is kept informed (via
 238 * netif_carrier_on/off) of the link status, and also maintains the
 239 * link status's stop on the port's TX queue.
 240 */
 241void efx_link_status_changed(struct efx_nic *efx)
 242{
 243        struct efx_link_state *link_state = &efx->link_state;
 244
 245        /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 246         * that no events are triggered between unregister_netdev() and the
 247         * driver unloading. A more general condition is that NETDEV_CHANGE
 248         * can only be generated between NETDEV_UP and NETDEV_DOWN
 249         */
 250        if (!netif_running(efx->net_dev))
 251                return;
 252
 253        if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 254                efx->n_link_state_changes++;
 255
 256                if (link_state->up)
 257                        netif_carrier_on(efx->net_dev);
 258                else
 259                        netif_carrier_off(efx->net_dev);
 260        }
 261
 262        /* Status message for kernel log */
 263        if (link_state->up)
 264                netif_info(efx, link, efx->net_dev,
 265                           "link up at %uMbps %s-duplex (MTU %d)\n",
 266                           link_state->speed, link_state->fd ? "full" : "half",
 267                           efx->net_dev->mtu);
 268        else
 269                netif_info(efx, link, efx->net_dev, "link down\n");
 270}
 271
 272unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
 273{
 274        /* The maximum MTU that we can fit in a single page, allowing for
 275         * framing, overhead and XDP headroom + tailroom.
 276         */
 277        int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
 278                       efx->rx_prefix_size + efx->type->rx_buffer_padding +
 279                       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
 280
 281        return PAGE_SIZE - overhead;
 282}
 283
 284/* Context: process, rtnl_lock() held. */
 285int efx_change_mtu(struct net_device *net_dev, int new_mtu)
 286{
 287        struct efx_nic *efx = netdev_priv(net_dev);
 288        int rc;
 289
 290        rc = efx_check_disabled(efx);
 291        if (rc)
 292                return rc;
 293
 294        if (rtnl_dereference(efx->xdp_prog) &&
 295            new_mtu > efx_xdp_max_mtu(efx)) {
 296                netif_err(efx, drv, efx->net_dev,
 297                          "Requested MTU of %d too big for XDP (max: %d)\n",
 298                          new_mtu, efx_xdp_max_mtu(efx));
 299                return -EINVAL;
 300        }
 301
 302        netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
 303
 304        efx_device_detach_sync(efx);
 305        efx_stop_all(efx);
 306
 307        mutex_lock(&efx->mac_lock);
 308        net_dev->mtu = new_mtu;
 309        efx_mac_reconfigure(efx, true);
 310        mutex_unlock(&efx->mac_lock);
 311
 312        efx_start_all(efx);
 313        efx_device_attach_if_not_resetting(efx);
 314        return 0;
 315}
 316
 317/**************************************************************************
 318 *
 319 * Hardware monitor
 320 *
 321 **************************************************************************/
 322
 323/* Run periodically off the general workqueue */
 324static void efx_monitor(struct work_struct *data)
 325{
 326        struct efx_nic *efx = container_of(data, struct efx_nic,
 327                                           monitor_work.work);
 328
 329        netif_vdbg(efx, timer, efx->net_dev,
 330                   "hardware monitor executing on CPU %d\n",
 331                   raw_smp_processor_id());
 332        BUG_ON(efx->type->monitor == NULL);
 333
 334        /* If the mac_lock is already held then it is likely a port
 335         * reconfiguration is already in place, which will likely do
 336         * most of the work of monitor() anyway.
 337         */
 338        if (mutex_trylock(&efx->mac_lock)) {
 339                if (efx->port_enabled && efx->type->monitor)
 340                        efx->type->monitor(efx);
 341                mutex_unlock(&efx->mac_lock);
 342        }
 343
 344        efx_start_monitor(efx);
 345}
 346
 347void efx_start_monitor(struct efx_nic *efx)
 348{
 349        if (efx->type->monitor)
 350                queue_delayed_work(efx->workqueue, &efx->monitor_work,
 351                                   efx_monitor_interval);
 352}
 353
 354/**************************************************************************
 355 *
 356 * Event queue processing
 357 *
 358 *************************************************************************/
 359
 360/* Channels are shutdown and reinitialised whilst the NIC is running
 361 * to propagate configuration changes (mtu, checksum offload), or
 362 * to clear hardware error conditions
 363 */
 364static void efx_start_datapath(struct efx_nic *efx)
 365{
 366        netdev_features_t old_features = efx->net_dev->features;
 367        bool old_rx_scatter = efx->rx_scatter;
 368        size_t rx_buf_len;
 369
 370        /* Calculate the rx buffer allocation parameters required to
 371         * support the current MTU, including padding for header
 372         * alignment and overruns.
 373         */
 374        efx->rx_dma_len = (efx->rx_prefix_size +
 375                           EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 376                           efx->type->rx_buffer_padding);
 377        rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
 378                      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
 379
 380        if (rx_buf_len <= PAGE_SIZE) {
 381                efx->rx_scatter = efx->type->always_rx_scatter;
 382                efx->rx_buffer_order = 0;
 383        } else if (efx->type->can_rx_scatter) {
 384                BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 385                BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 386                             2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 387                                       EFX_RX_BUF_ALIGNMENT) >
 388                             PAGE_SIZE);
 389                efx->rx_scatter = true;
 390                efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 391                efx->rx_buffer_order = 0;
 392        } else {
 393                efx->rx_scatter = false;
 394                efx->rx_buffer_order = get_order(rx_buf_len);
 395        }
 396
 397        efx_rx_config_page_split(efx);
 398        if (efx->rx_buffer_order)
 399                netif_dbg(efx, drv, efx->net_dev,
 400                          "RX buf len=%u; page order=%u batch=%u\n",
 401                          efx->rx_dma_len, efx->rx_buffer_order,
 402                          efx->rx_pages_per_batch);
 403        else
 404                netif_dbg(efx, drv, efx->net_dev,
 405                          "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 406                          efx->rx_dma_len, efx->rx_page_buf_step,
 407                          efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 408
 409        /* Restore previously fixed features in hw_features and remove
 410         * features which are fixed now
 411         */
 412        efx->net_dev->hw_features |= efx->net_dev->features;
 413        efx->net_dev->hw_features &= ~efx->fixed_features;
 414        efx->net_dev->features |= efx->fixed_features;
 415        if (efx->net_dev->features != old_features)
 416                netdev_features_change(efx->net_dev);
 417
 418        /* RX filters may also have scatter-enabled flags */
 419        if ((efx->rx_scatter != old_rx_scatter) &&
 420            efx->type->filter_update_rx_scatter)
 421                efx->type->filter_update_rx_scatter(efx);
 422
 423        /* We must keep at least one descriptor in a TX ring empty.
 424         * We could avoid this when the queue size does not exactly
 425         * match the hardware ring size, but it's not that important.
 426         * Therefore we stop the queue when one more skb might fill
 427         * the ring completely.  We wake it when half way back to
 428         * empty.
 429         */
 430        efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 431        efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 432
 433        /* Initialise the channels */
 434        efx_start_channels(efx);
 435
 436        efx_ptp_start_datapath(efx);
 437
 438        if (netif_device_present(efx->net_dev))
 439                netif_tx_wake_all_queues(efx->net_dev);
 440}
 441
 442static void efx_stop_datapath(struct efx_nic *efx)
 443{
 444        EFX_ASSERT_RESET_SERIALISED(efx);
 445        BUG_ON(efx->port_enabled);
 446
 447        efx_ptp_stop_datapath(efx);
 448
 449        efx_stop_channels(efx);
 450}
 451
 452/**************************************************************************
 453 *
 454 * Port handling
 455 *
 456 **************************************************************************/
 457
 458/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
 459 * force the Autoneg bit on.
 460 */
 461void efx_link_clear_advertising(struct efx_nic *efx)
 462{
 463        bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
 464        efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 465}
 466
 467void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 468{
 469        efx->wanted_fc = wanted_fc;
 470        if (efx->link_advertising[0]) {
 471                if (wanted_fc & EFX_FC_RX)
 472                        efx->link_advertising[0] |= (ADVERTISED_Pause |
 473                                                     ADVERTISED_Asym_Pause);
 474                else
 475                        efx->link_advertising[0] &= ~(ADVERTISED_Pause |
 476                                                      ADVERTISED_Asym_Pause);
 477                if (wanted_fc & EFX_FC_TX)
 478                        efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
 479        }
 480}
 481
 482static void efx_start_port(struct efx_nic *efx)
 483{
 484        netif_dbg(efx, ifup, efx->net_dev, "start port\n");
 485        BUG_ON(efx->port_enabled);
 486
 487        mutex_lock(&efx->mac_lock);
 488        efx->port_enabled = true;
 489
 490        /* Ensure MAC ingress/egress is enabled */
 491        efx_mac_reconfigure(efx, false);
 492
 493        mutex_unlock(&efx->mac_lock);
 494}
 495
 496/* Cancel work for MAC reconfiguration, periodic hardware monitoring
 497 * and the async self-test, wait for them to finish and prevent them
 498 * being scheduled again.  This doesn't cover online resets, which
 499 * should only be cancelled when removing the device.
 500 */
 501static void efx_stop_port(struct efx_nic *efx)
 502{
 503        netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
 504
 505        EFX_ASSERT_RESET_SERIALISED(efx);
 506
 507        mutex_lock(&efx->mac_lock);
 508        efx->port_enabled = false;
 509        mutex_unlock(&efx->mac_lock);
 510
 511        /* Serialise against efx_set_multicast_list() */
 512        netif_addr_lock_bh(efx->net_dev);
 513        netif_addr_unlock_bh(efx->net_dev);
 514
 515        cancel_delayed_work_sync(&efx->monitor_work);
 516        efx_selftest_async_cancel(efx);
 517        cancel_work_sync(&efx->mac_work);
 518}
 519
 520/* If the interface is supposed to be running but is not, start
 521 * the hardware and software data path, regular activity for the port
 522 * (MAC statistics, link polling, etc.) and schedule the port to be
 523 * reconfigured.  Interrupts must already be enabled.  This function
 524 * is safe to call multiple times, so long as the NIC is not disabled.
 525 * Requires the RTNL lock.
 526 */
 527void efx_start_all(struct efx_nic *efx)
 528{
 529        EFX_ASSERT_RESET_SERIALISED(efx);
 530        BUG_ON(efx->state == STATE_DISABLED);
 531
 532        /* Check that it is appropriate to restart the interface. All
 533         * of these flags are safe to read under just the rtnl lock
 534         */
 535        if (efx->port_enabled || !netif_running(efx->net_dev) ||
 536            efx->reset_pending)
 537                return;
 538
 539        efx_start_port(efx);
 540        efx_start_datapath(efx);
 541
 542        /* Start the hardware monitor if there is one */
 543        efx_start_monitor(efx);
 544
 545        /* Link state detection is normally event-driven; we have
 546         * to poll now because we could have missed a change
 547         */
 548        mutex_lock(&efx->mac_lock);
 549        if (efx_mcdi_phy_poll(efx))
 550                efx_link_status_changed(efx);
 551        mutex_unlock(&efx->mac_lock);
 552
 553        if (efx->type->start_stats) {
 554                efx->type->start_stats(efx);
 555                efx->type->pull_stats(efx);
 556                spin_lock_bh(&efx->stats_lock);
 557                efx->type->update_stats(efx, NULL, NULL);
 558                spin_unlock_bh(&efx->stats_lock);
 559        }
 560}
 561
 562/* Quiesce the hardware and software data path, and regular activity
 563 * for the port without bringing the link down.  Safe to call multiple
 564 * times with the NIC in almost any state, but interrupts should be
 565 * enabled.  Requires the RTNL lock.
 566 */
 567void efx_stop_all(struct efx_nic *efx)
 568{
 569        EFX_ASSERT_RESET_SERIALISED(efx);
 570
 571        /* port_enabled can be read safely under the rtnl lock */
 572        if (!efx->port_enabled)
 573                return;
 574
 575        if (efx->type->update_stats) {
 576                /* update stats before we go down so we can accurately count
 577                 * rx_nodesc_drops
 578                 */
 579                efx->type->pull_stats(efx);
 580                spin_lock_bh(&efx->stats_lock);
 581                efx->type->update_stats(efx, NULL, NULL);
 582                spin_unlock_bh(&efx->stats_lock);
 583                efx->type->stop_stats(efx);
 584        }
 585
 586        efx_stop_port(efx);
 587
 588        /* Stop the kernel transmit interface.  This is only valid if
 589         * the device is stopped or detached; otherwise the watchdog
 590         * may fire immediately.
 591         */
 592        WARN_ON(netif_running(efx->net_dev) &&
 593                netif_device_present(efx->net_dev));
 594        netif_tx_disable(efx->net_dev);
 595
 596        efx_stop_datapath(efx);
 597}
 598
 599/* Context: process, dev_base_lock or RTNL held, non-blocking. */
 600void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
 601{
 602        struct efx_nic *efx = netdev_priv(net_dev);
 603
 604        spin_lock_bh(&efx->stats_lock);
 605        efx_nic_update_stats_atomic(efx, NULL, stats);
 606        spin_unlock_bh(&efx->stats_lock);
 607}
 608
 609/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 610 * the MAC appropriately. All other PHY configuration changes are pushed
 611 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 612 * through efx_monitor().
 613 *
 614 * Callers must hold the mac_lock
 615 */
 616int __efx_reconfigure_port(struct efx_nic *efx)
 617{
 618        enum efx_phy_mode phy_mode;
 619        int rc = 0;
 620
 621        WARN_ON(!mutex_is_locked(&efx->mac_lock));
 622
 623        /* Disable PHY transmit in mac level loopbacks */
 624        phy_mode = efx->phy_mode;
 625        if (LOOPBACK_INTERNAL(efx))
 626                efx->phy_mode |= PHY_MODE_TX_DISABLED;
 627        else
 628                efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 629
 630        if (efx->type->reconfigure_port)
 631                rc = efx->type->reconfigure_port(efx);
 632
 633        if (rc)
 634                efx->phy_mode = phy_mode;
 635
 636        return rc;
 637}
 638
 639/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 640 * disabled.
 641 */
 642int efx_reconfigure_port(struct efx_nic *efx)
 643{
 644        int rc;
 645
 646        EFX_ASSERT_RESET_SERIALISED(efx);
 647
 648        mutex_lock(&efx->mac_lock);
 649        rc = __efx_reconfigure_port(efx);
 650        mutex_unlock(&efx->mac_lock);
 651
 652        return rc;
 653}
 654
 655/**************************************************************************
 656 *
 657 * Device reset and suspend
 658 *
 659 **************************************************************************/
 660
 661static void efx_wait_for_bist_end(struct efx_nic *efx)
 662{
 663        int i;
 664
 665        for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
 666                if (efx_mcdi_poll_reboot(efx))
 667                        goto out;
 668                msleep(BIST_WAIT_DELAY_MS);
 669        }
 670
 671        netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
 672out:
 673        /* Either way unset the BIST flag. If we found no reboot we probably
 674         * won't recover, but we should try.
 675         */
 676        efx->mc_bist_for_other_fn = false;
 677}
 678
 679/* Try recovery mechanisms.
 680 * For now only EEH is supported.
 681 * Returns 0 if the recovery mechanisms are unsuccessful.
 682 * Returns a non-zero value otherwise.
 683 */
 684int efx_try_recovery(struct efx_nic *efx)
 685{
 686#ifdef CONFIG_EEH
 687        /* A PCI error can occur and not be seen by EEH because nothing
 688         * happens on the PCI bus. In this case the driver may fail and
 689         * schedule a 'recover or reset', leading to this recovery handler.
 690         * Manually call the eeh failure check function.
 691         */
 692        struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
 693        if (eeh_dev_check_failure(eehdev)) {
 694                /* The EEH mechanisms will handle the error and reset the
 695                 * device if necessary.
 696                 */
 697                return 1;
 698        }
 699#endif
 700        return 0;
 701}
 702
 703/* Tears down the entire software state and most of the hardware state
 704 * before reset.
 705 */
 706void efx_reset_down(struct efx_nic *efx, enum reset_type method)
 707{
 708        EFX_ASSERT_RESET_SERIALISED(efx);
 709
 710        if (method == RESET_TYPE_MCDI_TIMEOUT)
 711                efx->type->prepare_flr(efx);
 712
 713        efx_stop_all(efx);
 714        efx_disable_interrupts(efx);
 715
 716        mutex_lock(&efx->mac_lock);
 717        down_write(&efx->filter_sem);
 718        mutex_lock(&efx->rss_lock);
 719        efx->type->fini(efx);
 720}
 721
 722/* Context: netif_tx_lock held, BHs disabled. */
 723void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
 724{
 725        struct efx_nic *efx = netdev_priv(net_dev);
 726
 727        netif_err(efx, tx_err, efx->net_dev,
 728                  "TX stuck with port_enabled=%d: resetting channels\n",
 729                  efx->port_enabled);
 730
 731        efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
 732}
 733
 734/* This function will always ensure that the locks acquired in
 735 * efx_reset_down() are released. A failure return code indicates
 736 * that we were unable to reinitialise the hardware, and the
 737 * driver should be disabled. If ok is false, then the rx and tx
 738 * engines are not restarted, pending a RESET_DISABLE.
 739 */
 740int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
 741{
 742        int rc;
 743
 744        EFX_ASSERT_RESET_SERIALISED(efx);
 745
 746        if (method == RESET_TYPE_MCDI_TIMEOUT)
 747                efx->type->finish_flr(efx);
 748
 749        /* Ensure that SRAM is initialised even if we're disabling the device */
 750        rc = efx->type->init(efx);
 751        if (rc) {
 752                netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
 753                goto fail;
 754        }
 755
 756        if (!ok)
 757                goto fail;
 758
 759        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
 760            method != RESET_TYPE_DATAPATH) {
 761                rc = efx_mcdi_port_reconfigure(efx);
 762                if (rc && rc != -EPERM)
 763                        netif_err(efx, drv, efx->net_dev,
 764                                  "could not restore PHY settings\n");
 765        }
 766
 767        rc = efx_enable_interrupts(efx);
 768        if (rc)
 769                goto fail;
 770
 771#ifdef CONFIG_SFC_SRIOV
 772        rc = efx->type->vswitching_restore(efx);
 773        if (rc) /* not fatal; the PF will still work fine */
 774                netif_warn(efx, probe, efx->net_dev,
 775                           "failed to restore vswitching rc=%d;"
 776                           " VFs may not function\n", rc);
 777#endif
 778
 779        if (efx->type->rx_restore_rss_contexts)
 780                efx->type->rx_restore_rss_contexts(efx);
 781        mutex_unlock(&efx->rss_lock);
 782        efx->type->filter_table_restore(efx);
 783        up_write(&efx->filter_sem);
 784        if (efx->type->sriov_reset)
 785                efx->type->sriov_reset(efx);
 786
 787        mutex_unlock(&efx->mac_lock);
 788
 789        efx_start_all(efx);
 790
 791        if (efx->type->udp_tnl_push_ports)
 792                efx->type->udp_tnl_push_ports(efx);
 793
 794        return 0;
 795
 796fail:
 797        efx->port_initialized = false;
 798
 799        mutex_unlock(&efx->rss_lock);
 800        up_write(&efx->filter_sem);
 801        mutex_unlock(&efx->mac_lock);
 802
 803        return rc;
 804}
 805
 806/* Reset the NIC using the specified method.  Note that the reset may
 807 * fail, in which case the card will be left in an unusable state.
 808 *
 809 * Caller must hold the rtnl_lock.
 810 */
 811int efx_reset(struct efx_nic *efx, enum reset_type method)
 812{
 813        int rc, rc2 = 0;
 814        bool disabled;
 815
 816        netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
 817                   RESET_TYPE(method));
 818
 819        efx_device_detach_sync(efx);
 820        /* efx_reset_down() grabs locks that prevent recovery on EF100.
 821         * EF100 reset is handled in the efx_nic_type callback below.
 822         */
 823        if (efx_nic_rev(efx) != EFX_REV_EF100)
 824                efx_reset_down(efx, method);
 825
 826        rc = efx->type->reset(efx, method);
 827        if (rc) {
 828                netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
 829                goto out;
 830        }
 831
 832        /* Clear flags for the scopes we covered.  We assume the NIC and
 833         * driver are now quiescent so that there is no race here.
 834         */
 835        if (method < RESET_TYPE_MAX_METHOD)
 836                efx->reset_pending &= -(1 << (method + 1));
 837        else /* it doesn't fit into the well-ordered scope hierarchy */
 838                __clear_bit(method, &efx->reset_pending);
 839
 840        /* Reinitialise bus-mastering, which may have been turned off before
 841         * the reset was scheduled. This is still appropriate, even in the
 842         * RESET_TYPE_DISABLE since this driver generally assumes the hardware
 843         * can respond to requests.
 844         */
 845        pci_set_master(efx->pci_dev);
 846
 847out:
 848        /* Leave device stopped if necessary */
 849        disabled = rc ||
 850                method == RESET_TYPE_DISABLE ||
 851                method == RESET_TYPE_RECOVER_OR_DISABLE;
 852        if (efx_nic_rev(efx) != EFX_REV_EF100)
 853                rc2 = efx_reset_up(efx, method, !disabled);
 854        if (rc2) {
 855                disabled = true;
 856                if (!rc)
 857                        rc = rc2;
 858        }
 859
 860        if (disabled) {
 861                dev_close(efx->net_dev);
 862                netif_err(efx, drv, efx->net_dev, "has been disabled\n");
 863                efx->state = STATE_DISABLED;
 864        } else {
 865                netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
 866                efx_device_attach_if_not_resetting(efx);
 867        }
 868        return rc;
 869}
 870
 871/* The worker thread exists so that code that cannot sleep can
 872 * schedule a reset for later.
 873 */
 874static void efx_reset_work(struct work_struct *data)
 875{
 876        struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
 877        unsigned long pending;
 878        enum reset_type method;
 879
 880        pending = READ_ONCE(efx->reset_pending);
 881        method = fls(pending) - 1;
 882
 883        if (method == RESET_TYPE_MC_BIST)
 884                efx_wait_for_bist_end(efx);
 885
 886        if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
 887             method == RESET_TYPE_RECOVER_OR_ALL) &&
 888            efx_try_recovery(efx))
 889                return;
 890
 891        if (!pending)
 892                return;
 893
 894        rtnl_lock();
 895
 896        /* We checked the state in efx_schedule_reset() but it may
 897         * have changed by now.  Now that we have the RTNL lock,
 898         * it cannot change again.
 899         */
 900        if (efx->state == STATE_READY)
 901                (void)efx_reset(efx, method);
 902
 903        rtnl_unlock();
 904}
 905
 906void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
 907{
 908        enum reset_type method;
 909
 910        if (efx->state == STATE_RECOVERY) {
 911                netif_dbg(efx, drv, efx->net_dev,
 912                          "recovering: skip scheduling %s reset\n",
 913                          RESET_TYPE(type));
 914                return;
 915        }
 916
 917        switch (type) {
 918        case RESET_TYPE_INVISIBLE:
 919        case RESET_TYPE_ALL:
 920        case RESET_TYPE_RECOVER_OR_ALL:
 921        case RESET_TYPE_WORLD:
 922        case RESET_TYPE_DISABLE:
 923        case RESET_TYPE_RECOVER_OR_DISABLE:
 924        case RESET_TYPE_DATAPATH:
 925        case RESET_TYPE_MC_BIST:
 926        case RESET_TYPE_MCDI_TIMEOUT:
 927                method = type;
 928                netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
 929                          RESET_TYPE(method));
 930                break;
 931        default:
 932                method = efx->type->map_reset_reason(type);
 933                netif_dbg(efx, drv, efx->net_dev,
 934                          "scheduling %s reset for %s\n",
 935                          RESET_TYPE(method), RESET_TYPE(type));
 936                break;
 937        }
 938
 939        set_bit(method, &efx->reset_pending);
 940        smp_mb(); /* ensure we change reset_pending before checking state */
 941
 942        /* If we're not READY then just leave the flags set as the cue
 943         * to abort probing or reschedule the reset later.
 944         */
 945        if (READ_ONCE(efx->state) != STATE_READY)
 946                return;
 947
 948        /* efx_process_channel() will no longer read events once a
 949         * reset is scheduled. So switch back to poll'd MCDI completions.
 950         */
 951        efx_mcdi_mode_poll(efx);
 952
 953        efx_queue_reset_work(efx);
 954}
 955
 956/**************************************************************************
 957 *
 958 * Dummy NIC operations
 959 *
 960 * Can be used for some unimplemented operations
 961 * Needed so all function pointers are valid and do not have to be tested
 962 * before use
 963 *
 964 **************************************************************************/
 965int efx_port_dummy_op_int(struct efx_nic *efx)
 966{
 967        return 0;
 968}
 969void efx_port_dummy_op_void(struct efx_nic *efx) {}
 970
 971/**************************************************************************
 972 *
 973 * Data housekeeping
 974 *
 975 **************************************************************************/
 976
 977/* This zeroes out and then fills in the invariants in a struct
 978 * efx_nic (including all sub-structures).
 979 */
 980int efx_init_struct(struct efx_nic *efx,
 981                    struct pci_dev *pci_dev, struct net_device *net_dev)
 982{
 983        int rc = -ENOMEM;
 984
 985        /* Initialise common structures */
 986        INIT_LIST_HEAD(&efx->node);
 987        INIT_LIST_HEAD(&efx->secondary_list);
 988        spin_lock_init(&efx->biu_lock);
 989#ifdef CONFIG_SFC_MTD
 990        INIT_LIST_HEAD(&efx->mtd_list);
 991#endif
 992        INIT_WORK(&efx->reset_work, efx_reset_work);
 993        INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
 994        efx_selftest_async_init(efx);
 995        efx->pci_dev = pci_dev;
 996        efx->msg_enable = debug;
 997        efx->state = STATE_UNINIT;
 998        strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
 999
1000        efx->net_dev = net_dev;
1001        efx->rx_prefix_size = efx->type->rx_prefix_size;
1002        efx->rx_ip_align =
1003                NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
1004        efx->rx_packet_hash_offset =
1005                efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1006        efx->rx_packet_ts_offset =
1007                efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1008        INIT_LIST_HEAD(&efx->rss_context.list);
1009        efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1010        mutex_init(&efx->rss_lock);
1011        efx->vport_id = EVB_PORT_ID_ASSIGNED;
1012        spin_lock_init(&efx->stats_lock);
1013        efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1014        efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1015        BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1016        mutex_init(&efx->mac_lock);
1017        init_rwsem(&efx->filter_sem);
1018#ifdef CONFIG_RFS_ACCEL
1019        mutex_init(&efx->rps_mutex);
1020        spin_lock_init(&efx->rps_hash_lock);
1021        /* Failure to allocate is not fatal, but may degrade ARFS performance */
1022        efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1023                                      sizeof(*efx->rps_hash_table), GFP_KERNEL);
1024#endif
1025        efx->mdio.dev = net_dev;
1026        INIT_WORK(&efx->mac_work, efx_mac_work);
1027        init_waitqueue_head(&efx->flush_wq);
1028
1029        efx->tx_queues_per_channel = 1;
1030        efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1031        efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1032
1033        efx->mem_bar = UINT_MAX;
1034
1035        rc = efx_init_channels(efx);
1036        if (rc)
1037                goto fail;
1038
1039        /* Would be good to use the net_dev name, but we're too early */
1040        snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1041                 pci_name(pci_dev));
1042        efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1043        if (!efx->workqueue) {
1044                rc = -ENOMEM;
1045                goto fail;
1046        }
1047
1048        return 0;
1049
1050fail:
1051        efx_fini_struct(efx);
1052        return rc;
1053}
1054
1055void efx_fini_struct(struct efx_nic *efx)
1056{
1057#ifdef CONFIG_RFS_ACCEL
1058        kfree(efx->rps_hash_table);
1059#endif
1060
1061        efx_fini_channels(efx);
1062
1063        kfree(efx->vpd_sn);
1064
1065        if (efx->workqueue) {
1066                destroy_workqueue(efx->workqueue);
1067                efx->workqueue = NULL;
1068        }
1069}
1070
1071/* This configures the PCI device to enable I/O and DMA. */
1072int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1073                unsigned int mem_map_size)
1074{
1075        struct pci_dev *pci_dev = efx->pci_dev;
1076        int rc;
1077
1078        efx->mem_bar = UINT_MAX;
1079
1080        netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
1081
1082        rc = pci_enable_device(pci_dev);
1083        if (rc) {
1084                netif_err(efx, probe, efx->net_dev,
1085                          "failed to enable PCI device\n");
1086                goto fail1;
1087        }
1088
1089        pci_set_master(pci_dev);
1090
1091        rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1092        if (rc) {
1093                netif_err(efx, probe, efx->net_dev,
1094                          "could not find a suitable DMA mask\n");
1095                goto fail2;
1096        }
1097        netif_dbg(efx, probe, efx->net_dev,
1098                  "using DMA mask %llx\n", (unsigned long long)dma_mask);
1099
1100        efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1101        if (!efx->membase_phys) {
1102                netif_err(efx, probe, efx->net_dev,
1103                          "ERROR: No BAR%d mapping from the BIOS. "
1104                          "Try pci=realloc on the kernel command line\n", bar);
1105                rc = -ENODEV;
1106                goto fail3;
1107        }
1108
1109        rc = pci_request_region(pci_dev, bar, "sfc");
1110        if (rc) {
1111                netif_err(efx, probe, efx->net_dev,
1112                          "request for memory BAR[%d] failed\n", bar);
1113                rc = -EIO;
1114                goto fail3;
1115        }
1116        efx->mem_bar = bar;
1117        efx->membase = ioremap(efx->membase_phys, mem_map_size);
1118        if (!efx->membase) {
1119                netif_err(efx, probe, efx->net_dev,
1120                          "could not map memory BAR[%d] at %llx+%x\n", bar,
1121                          (unsigned long long)efx->membase_phys, mem_map_size);
1122                rc = -ENOMEM;
1123                goto fail4;
1124        }
1125        netif_dbg(efx, probe, efx->net_dev,
1126                  "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1127                  (unsigned long long)efx->membase_phys, mem_map_size,
1128                  efx->membase);
1129
1130        return 0;
1131
1132fail4:
1133        pci_release_region(efx->pci_dev, bar);
1134fail3:
1135        efx->membase_phys = 0;
1136fail2:
1137        pci_disable_device(efx->pci_dev);
1138fail1:
1139        return rc;
1140}
1141
1142void efx_fini_io(struct efx_nic *efx)
1143{
1144        netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1145
1146        if (efx->membase) {
1147                iounmap(efx->membase);
1148                efx->membase = NULL;
1149        }
1150
1151        if (efx->membase_phys) {
1152                pci_release_region(efx->pci_dev, efx->mem_bar);
1153                efx->membase_phys = 0;
1154                efx->mem_bar = UINT_MAX;
1155        }
1156
1157        /* Don't disable bus-mastering if VFs are assigned */
1158        if (!pci_vfs_assigned(efx->pci_dev))
1159                pci_disable_device(efx->pci_dev);
1160}
1161
1162#ifdef CONFIG_SFC_MCDI_LOGGING
1163static ssize_t mcdi_logging_show(struct device *dev,
1164                                 struct device_attribute *attr,
1165                                 char *buf)
1166{
1167        struct efx_nic *efx = dev_get_drvdata(dev);
1168        struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1169
1170        return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
1171}
1172
1173static ssize_t mcdi_logging_store(struct device *dev,
1174                                  struct device_attribute *attr,
1175                                  const char *buf, size_t count)
1176{
1177        struct efx_nic *efx = dev_get_drvdata(dev);
1178        struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1179        bool enable = count > 0 && *buf != '0';
1180
1181        mcdi->logging_enabled = enable;
1182        return count;
1183}
1184
1185static DEVICE_ATTR_RW(mcdi_logging);
1186
1187void efx_init_mcdi_logging(struct efx_nic *efx)
1188{
1189        int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1190
1191        if (rc) {
1192                netif_warn(efx, drv, efx->net_dev,
1193                           "failed to init net dev attributes\n");
1194        }
1195}
1196
1197void efx_fini_mcdi_logging(struct efx_nic *efx)
1198{
1199        device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1200}
1201#endif
1202
1203/* A PCI error affecting this device was detected.
1204 * At this point MMIO and DMA may be disabled.
1205 * Stop the software path and request a slot reset.
1206 */
1207static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1208                                              pci_channel_state_t state)
1209{
1210        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1211        struct efx_nic *efx = pci_get_drvdata(pdev);
1212
1213        if (state == pci_channel_io_perm_failure)
1214                return PCI_ERS_RESULT_DISCONNECT;
1215
1216        rtnl_lock();
1217
1218        if (efx->state != STATE_DISABLED) {
1219                efx->state = STATE_RECOVERY;
1220                efx->reset_pending = 0;
1221
1222                efx_device_detach_sync(efx);
1223
1224                efx_stop_all(efx);
1225                efx_disable_interrupts(efx);
1226
1227                status = PCI_ERS_RESULT_NEED_RESET;
1228        } else {
1229                /* If the interface is disabled we don't want to do anything
1230                 * with it.
1231                 */
1232                status = PCI_ERS_RESULT_RECOVERED;
1233        }
1234
1235        rtnl_unlock();
1236
1237        pci_disable_device(pdev);
1238
1239        return status;
1240}
1241
1242/* Fake a successful reset, which will be performed later in efx_io_resume. */
1243static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1244{
1245        struct efx_nic *efx = pci_get_drvdata(pdev);
1246        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1247
1248        if (pci_enable_device(pdev)) {
1249                netif_err(efx, hw, efx->net_dev,
1250                          "Cannot re-enable PCI device after reset.\n");
1251                status =  PCI_ERS_RESULT_DISCONNECT;
1252        }
1253
1254        return status;
1255}
1256
1257/* Perform the actual reset and resume I/O operations. */
1258static void efx_io_resume(struct pci_dev *pdev)
1259{
1260        struct efx_nic *efx = pci_get_drvdata(pdev);
1261        int rc;
1262
1263        rtnl_lock();
1264
1265        if (efx->state == STATE_DISABLED)
1266                goto out;
1267
1268        rc = efx_reset(efx, RESET_TYPE_ALL);
1269        if (rc) {
1270                netif_err(efx, hw, efx->net_dev,
1271                          "efx_reset failed after PCI error (%d)\n", rc);
1272        } else {
1273                efx->state = STATE_READY;
1274                netif_dbg(efx, hw, efx->net_dev,
1275                          "Done resetting and resuming IO after PCI error.\n");
1276        }
1277
1278out:
1279        rtnl_unlock();
1280}
1281
1282/* For simplicity and reliability, we always require a slot reset and try to
1283 * reset the hardware when a pci error affecting the device is detected.
1284 * We leave both the link_reset and mmio_enabled callback unimplemented:
1285 * with our request for slot reset the mmio_enabled callback will never be
1286 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1287 */
1288const struct pci_error_handlers efx_err_handlers = {
1289        .error_detected = efx_io_error_detected,
1290        .slot_reset     = efx_io_slot_reset,
1291        .resume         = efx_io_resume,
1292};
1293
1294/* Determine whether the NIC will be able to handle TX offloads for a given
1295 * encapsulated packet.
1296 */
1297static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1298{
1299        struct gre_base_hdr *greh;
1300        __be16 dst_port;
1301        u8 ipproto;
1302
1303        /* Does the NIC support encap offloads?
1304         * If not, we should never get here, because we shouldn't have
1305         * advertised encap offload feature flags in the first place.
1306         */
1307        if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1308                return false;
1309
1310        /* Determine encapsulation protocol in use */
1311        switch (skb->protocol) {
1312        case htons(ETH_P_IP):
1313                ipproto = ip_hdr(skb)->protocol;
1314                break;
1315        case htons(ETH_P_IPV6):
1316                /* If there are extension headers, this will cause us to
1317                 * think we can't offload something that we maybe could have.
1318                 */
1319                ipproto = ipv6_hdr(skb)->nexthdr;
1320                break;
1321        default:
1322                /* Not IP, so can't offload it */
1323                return false;
1324        }
1325        switch (ipproto) {
1326        case IPPROTO_GRE:
1327                /* We support NVGRE but not IP over GRE or random gretaps.
1328                 * Specifically, the NIC will accept GRE as encapsulated if
1329                 * the inner protocol is Ethernet, but only handle it
1330                 * correctly if the GRE header is 8 bytes long.  Moreover,
1331                 * it will not update the Checksum or Sequence Number fields
1332                 * if they are present.  (The Routing Present flag,
1333                 * GRE_ROUTING, cannot be set else the header would be more
1334                 * than 8 bytes long; so we don't have to worry about it.)
1335                 */
1336                if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1337                        return false;
1338                if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1339                        return false;
1340                if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1341                        return false;
1342                greh = (struct gre_base_hdr *)skb_transport_header(skb);
1343                return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1344        case IPPROTO_UDP:
1345                /* If the port is registered for a UDP tunnel, we assume the
1346                 * packet is for that tunnel, and the NIC will handle it as
1347                 * such.  If not, the NIC won't know what to do with it.
1348                 */
1349                dst_port = udp_hdr(skb)->dest;
1350                return efx->type->udp_tnl_has_port(efx, dst_port);
1351        default:
1352                return false;
1353        }
1354}
1355
1356netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1357                                     netdev_features_t features)
1358{
1359        struct efx_nic *efx = netdev_priv(dev);
1360
1361        if (skb->encapsulation) {
1362                if (features & NETIF_F_GSO_MASK)
1363                        /* Hardware can only do TSO with at most 208 bytes
1364                         * of headers.
1365                         */
1366                        if (skb_inner_transport_offset(skb) >
1367                            EFX_TSO2_MAX_HDRLEN)
1368                                features &= ~(NETIF_F_GSO_MASK);
1369                if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1370                        if (!efx_can_encap_offloads(efx, skb))
1371                                features &= ~(NETIF_F_GSO_MASK |
1372                                              NETIF_F_CSUM_MASK);
1373        }
1374        return features;
1375}
1376
1377int efx_get_phys_port_id(struct net_device *net_dev,
1378                         struct netdev_phys_item_id *ppid)
1379{
1380        struct efx_nic *efx = netdev_priv(net_dev);
1381
1382        if (efx->type->get_phys_port_id)
1383                return efx->type->get_phys_port_id(efx, ppid);
1384        else
1385                return -EOPNOTSUPP;
1386}
1387
1388int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1389{
1390        struct efx_nic *efx = netdev_priv(net_dev);
1391
1392        if (snprintf(name, len, "p%u", efx->port_num) >= len)
1393                return -EINVAL;
1394        return 0;
1395}
1396