linux/drivers/net/ethernet/sfc/falcon/efx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/pci.h>
  10#include <linux/netdevice.h>
  11#include <linux/etherdevice.h>
  12#include <linux/delay.h>
  13#include <linux/notifier.h>
  14#include <linux/ip.h>
  15#include <linux/tcp.h>
  16#include <linux/in.h>
  17#include <linux/ethtool.h>
  18#include <linux/topology.h>
  19#include <linux/gfp.h>
  20#include <linux/aer.h>
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include "efx.h"
  24#include "nic.h"
  25#include "selftest.h"
  26
  27#include "workarounds.h"
  28
  29/**************************************************************************
  30 *
  31 * Type name strings
  32 *
  33 **************************************************************************
  34 */
  35
  36/* Loopback mode names (see LOOPBACK_MODE()) */
  37const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
  38const char *const ef4_loopback_mode_names[] = {
  39        [LOOPBACK_NONE]         = "NONE",
  40        [LOOPBACK_DATA]         = "DATAPATH",
  41        [LOOPBACK_GMAC]         = "GMAC",
  42        [LOOPBACK_XGMII]        = "XGMII",
  43        [LOOPBACK_XGXS]         = "XGXS",
  44        [LOOPBACK_XAUI]         = "XAUI",
  45        [LOOPBACK_GMII]         = "GMII",
  46        [LOOPBACK_SGMII]        = "SGMII",
  47        [LOOPBACK_XGBR]         = "XGBR",
  48        [LOOPBACK_XFI]          = "XFI",
  49        [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
  50        [LOOPBACK_GMII_FAR]     = "GMII_FAR",
  51        [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
  52        [LOOPBACK_XFI_FAR]      = "XFI_FAR",
  53        [LOOPBACK_GPHY]         = "GPHY",
  54        [LOOPBACK_PHYXS]        = "PHYXS",
  55        [LOOPBACK_PCS]          = "PCS",
  56        [LOOPBACK_PMAPMD]       = "PMA/PMD",
  57        [LOOPBACK_XPORT]        = "XPORT",
  58        [LOOPBACK_XGMII_WS]     = "XGMII_WS",
  59        [LOOPBACK_XAUI_WS]      = "XAUI_WS",
  60        [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  61        [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  62        [LOOPBACK_GMII_WS]      = "GMII_WS",
  63        [LOOPBACK_XFI_WS]       = "XFI_WS",
  64        [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
  65        [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
  66};
  67
  68const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
  69const char *const ef4_reset_type_names[] = {
  70        [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  71        [RESET_TYPE_ALL]                = "ALL",
  72        [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  73        [RESET_TYPE_WORLD]              = "WORLD",
  74        [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  75        [RESET_TYPE_DATAPATH]           = "DATAPATH",
  76        [RESET_TYPE_DISABLE]            = "DISABLE",
  77        [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  78        [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  79        [RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
  80        [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  81        [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  82};
  83
  84/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  85 * queued onto this work queue. This is not a per-nic work queue, because
  86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  87 */
  88static struct workqueue_struct *reset_workqueue;
  89
  90/* How often and how many times to poll for a reset while waiting for a
  91 * BIST that another function started to complete.
  92 */
  93#define BIST_WAIT_DELAY_MS      100
  94#define BIST_WAIT_DELAY_COUNT   100
  95
  96/**************************************************************************
  97 *
  98 * Configurable values
  99 *
 100 *************************************************************************/
 101
 102/*
 103 * Use separate channels for TX and RX events
 104 *
 105 * Set this to 1 to use separate channels for TX and RX. It allows us
 106 * to control interrupt affinity separately for TX and RX.
 107 *
 108 * This is only used in MSI-X interrupt mode
 109 */
 110bool ef4_separate_tx_channels;
 111module_param(ef4_separate_tx_channels, bool, 0444);
 112MODULE_PARM_DESC(ef4_separate_tx_channels,
 113                 "Use separate channels for TX and RX");
 114
 115/* This is the weight assigned to each of the (per-channel) virtual
 116 * NAPI devices.
 117 */
 118static int napi_weight = 64;
 119
 120/* This is the time (in jiffies) between invocations of the hardware
 121 * monitor.
 122 * On Falcon-based NICs, this will:
 123 * - Check the on-board hardware monitor;
 124 * - Poll the link state and reconfigure the hardware as necessary.
 125 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 126 * chance to start.
 127 */
 128static unsigned int ef4_monitor_interval = 1 * HZ;
 129
 130/* Initial interrupt moderation settings.  They can be modified after
 131 * module load with ethtool.
 132 *
 133 * The default for RX should strike a balance between increasing the
 134 * round-trip latency and reducing overhead.
 135 */
 136static unsigned int rx_irq_mod_usec = 60;
 137
 138/* Initial interrupt moderation settings.  They can be modified after
 139 * module load with ethtool.
 140 *
 141 * This default is chosen to ensure that a 10G link does not go idle
 142 * while a TX queue is stopped after it has become full.  A queue is
 143 * restarted when it drops below half full.  The time this takes (assuming
 144 * worst case 3 descriptors per packet and 1024 descriptors) is
 145 *   512 / 3 * 1.2 = 205 usec.
 146 */
 147static unsigned int tx_irq_mod_usec = 150;
 148
 149/* This is the first interrupt mode to try out of:
 150 * 0 => MSI-X
 151 * 1 => MSI
 152 * 2 => legacy
 153 */
 154static unsigned int interrupt_mode;
 155
 156/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 157 * i.e. the number of CPUs among which we may distribute simultaneous
 158 * interrupt handling.
 159 *
 160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 161 * The default (0) means to assign an interrupt to each core.
 162 */
 163static unsigned int rss_cpus;
 164module_param(rss_cpus, uint, 0444);
 165MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 166
 167static bool phy_flash_cfg;
 168module_param(phy_flash_cfg, bool, 0644);
 169MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 170
 171static unsigned irq_adapt_low_thresh = 8000;
 172module_param(irq_adapt_low_thresh, uint, 0644);
 173MODULE_PARM_DESC(irq_adapt_low_thresh,
 174                 "Threshold score for reducing IRQ moderation");
 175
 176static unsigned irq_adapt_high_thresh = 16000;
 177module_param(irq_adapt_high_thresh, uint, 0644);
 178MODULE_PARM_DESC(irq_adapt_high_thresh,
 179                 "Threshold score for increasing IRQ moderation");
 180
 181static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 182                         NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 183                         NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 184                         NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 185module_param(debug, uint, 0);
 186MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 187
 188/**************************************************************************
 189 *
 190 * Utility functions and prototypes
 191 *
 192 *************************************************************************/
 193
 194static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
 195static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
 196static void ef4_remove_channel(struct ef4_channel *channel);
 197static void ef4_remove_channels(struct ef4_nic *efx);
 198static const struct ef4_channel_type ef4_default_channel_type;
 199static void ef4_remove_port(struct ef4_nic *efx);
 200static void ef4_init_napi_channel(struct ef4_channel *channel);
 201static void ef4_fini_napi(struct ef4_nic *efx);
 202static void ef4_fini_napi_channel(struct ef4_channel *channel);
 203static void ef4_fini_struct(struct ef4_nic *efx);
 204static void ef4_start_all(struct ef4_nic *efx);
 205static void ef4_stop_all(struct ef4_nic *efx);
 206
 207#define EF4_ASSERT_RESET_SERIALISED(efx)                \
 208        do {                                            \
 209                if ((efx->state == STATE_READY) ||      \
 210                    (efx->state == STATE_RECOVERY) ||   \
 211                    (efx->state == STATE_DISABLED))     \
 212                        ASSERT_RTNL();                  \
 213        } while (0)
 214
 215static int ef4_check_disabled(struct ef4_nic *efx)
 216{
 217        if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 218                netif_err(efx, drv, efx->net_dev,
 219                          "device is disabled due to earlier errors\n");
 220                return -EIO;
 221        }
 222        return 0;
 223}
 224
 225/**************************************************************************
 226 *
 227 * Event queue processing
 228 *
 229 *************************************************************************/
 230
 231/* Process channel's event queue
 232 *
 233 * This function is responsible for processing the event queue of a
 234 * single channel.  The caller must guarantee that this function will
 235 * never be concurrently called more than once on the same channel,
 236 * though different channels may be being processed concurrently.
 237 */
 238static int ef4_process_channel(struct ef4_channel *channel, int budget)
 239{
 240        struct ef4_tx_queue *tx_queue;
 241        int spent;
 242
 243        if (unlikely(!channel->enabled))
 244                return 0;
 245
 246        ef4_for_each_channel_tx_queue(tx_queue, channel) {
 247                tx_queue->pkts_compl = 0;
 248                tx_queue->bytes_compl = 0;
 249        }
 250
 251        spent = ef4_nic_process_eventq(channel, budget);
 252        if (spent && ef4_channel_has_rx_queue(channel)) {
 253                struct ef4_rx_queue *rx_queue =
 254                        ef4_channel_get_rx_queue(channel);
 255
 256                ef4_rx_flush_packet(channel);
 257                ef4_fast_push_rx_descriptors(rx_queue, true);
 258        }
 259
 260        /* Update BQL */
 261        ef4_for_each_channel_tx_queue(tx_queue, channel) {
 262                if (tx_queue->bytes_compl) {
 263                        netdev_tx_completed_queue(tx_queue->core_txq,
 264                                tx_queue->pkts_compl, tx_queue->bytes_compl);
 265                }
 266        }
 267
 268        return spent;
 269}
 270
 271/* NAPI poll handler
 272 *
 273 * NAPI guarantees serialisation of polls of the same device, which
 274 * provides the guarantee required by ef4_process_channel().
 275 */
 276static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
 277{
 278        int step = efx->irq_mod_step_us;
 279
 280        if (channel->irq_mod_score < irq_adapt_low_thresh) {
 281                if (channel->irq_moderation_us > step) {
 282                        channel->irq_moderation_us -= step;
 283                        efx->type->push_irq_moderation(channel);
 284                }
 285        } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
 286                if (channel->irq_moderation_us <
 287                    efx->irq_rx_moderation_us) {
 288                        channel->irq_moderation_us += step;
 289                        efx->type->push_irq_moderation(channel);
 290                }
 291        }
 292
 293        channel->irq_count = 0;
 294        channel->irq_mod_score = 0;
 295}
 296
 297static int ef4_poll(struct napi_struct *napi, int budget)
 298{
 299        struct ef4_channel *channel =
 300                container_of(napi, struct ef4_channel, napi_str);
 301        struct ef4_nic *efx = channel->efx;
 302        int spent;
 303
 304        netif_vdbg(efx, intr, efx->net_dev,
 305                   "channel %d NAPI poll executing on CPU %d\n",
 306                   channel->channel, raw_smp_processor_id());
 307
 308        spent = ef4_process_channel(channel, budget);
 309
 310        if (spent < budget) {
 311                if (ef4_channel_has_rx_queue(channel) &&
 312                    efx->irq_rx_adaptive &&
 313                    unlikely(++channel->irq_count == 1000)) {
 314                        ef4_update_irq_mod(efx, channel);
 315                }
 316
 317                ef4_filter_rfs_expire(channel);
 318
 319                /* There is no race here; although napi_disable() will
 320                 * only wait for napi_complete(), this isn't a problem
 321                 * since ef4_nic_eventq_read_ack() will have no effect if
 322                 * interrupts have already been disabled.
 323                 */
 324                napi_complete_done(napi, spent);
 325                ef4_nic_eventq_read_ack(channel);
 326        }
 327
 328        return spent;
 329}
 330
 331/* Create event queue
 332 * Event queue memory allocations are done only once.  If the channel
 333 * is reset, the memory buffer will be reused; this guards against
 334 * errors during channel reset and also simplifies interrupt handling.
 335 */
 336static int ef4_probe_eventq(struct ef4_channel *channel)
 337{
 338        struct ef4_nic *efx = channel->efx;
 339        unsigned long entries;
 340
 341        netif_dbg(efx, probe, efx->net_dev,
 342                  "chan %d create event queue\n", channel->channel);
 343
 344        /* Build an event queue with room for one event per tx and rx buffer,
 345         * plus some extra for link state events and MCDI completions. */
 346        entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 347        EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
 348        channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
 349
 350        return ef4_nic_probe_eventq(channel);
 351}
 352
 353/* Prepare channel's event queue */
 354static int ef4_init_eventq(struct ef4_channel *channel)
 355{
 356        struct ef4_nic *efx = channel->efx;
 357        int rc;
 358
 359        EF4_WARN_ON_PARANOID(channel->eventq_init);
 360
 361        netif_dbg(efx, drv, efx->net_dev,
 362                  "chan %d init event queue\n", channel->channel);
 363
 364        rc = ef4_nic_init_eventq(channel);
 365        if (rc == 0) {
 366                efx->type->push_irq_moderation(channel);
 367                channel->eventq_read_ptr = 0;
 368                channel->eventq_init = true;
 369        }
 370        return rc;
 371}
 372
 373/* Enable event queue processing and NAPI */
 374void ef4_start_eventq(struct ef4_channel *channel)
 375{
 376        netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 377                  "chan %d start event queue\n", channel->channel);
 378
 379        /* Make sure the NAPI handler sees the enabled flag set */
 380        channel->enabled = true;
 381        smp_wmb();
 382
 383        napi_enable(&channel->napi_str);
 384        ef4_nic_eventq_read_ack(channel);
 385}
 386
 387/* Disable event queue processing and NAPI */
 388void ef4_stop_eventq(struct ef4_channel *channel)
 389{
 390        if (!channel->enabled)
 391                return;
 392
 393        napi_disable(&channel->napi_str);
 394        channel->enabled = false;
 395}
 396
 397static void ef4_fini_eventq(struct ef4_channel *channel)
 398{
 399        if (!channel->eventq_init)
 400                return;
 401
 402        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 403                  "chan %d fini event queue\n", channel->channel);
 404
 405        ef4_nic_fini_eventq(channel);
 406        channel->eventq_init = false;
 407}
 408
 409static void ef4_remove_eventq(struct ef4_channel *channel)
 410{
 411        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 412                  "chan %d remove event queue\n", channel->channel);
 413
 414        ef4_nic_remove_eventq(channel);
 415}
 416
 417/**************************************************************************
 418 *
 419 * Channel handling
 420 *
 421 *************************************************************************/
 422
 423/* Allocate and initialise a channel structure. */
 424static struct ef4_channel *
 425ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
 426{
 427        struct ef4_channel *channel;
 428        struct ef4_rx_queue *rx_queue;
 429        struct ef4_tx_queue *tx_queue;
 430        int j;
 431
 432        channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 433        if (!channel)
 434                return NULL;
 435
 436        channel->efx = efx;
 437        channel->channel = i;
 438        channel->type = &ef4_default_channel_type;
 439
 440        for (j = 0; j < EF4_TXQ_TYPES; j++) {
 441                tx_queue = &channel->tx_queue[j];
 442                tx_queue->efx = efx;
 443                tx_queue->queue = i * EF4_TXQ_TYPES + j;
 444                tx_queue->channel = channel;
 445        }
 446
 447        rx_queue = &channel->rx_queue;
 448        rx_queue->efx = efx;
 449        timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
 450
 451        return channel;
 452}
 453
 454/* Allocate and initialise a channel structure, copying parameters
 455 * (but not resources) from an old channel structure.
 456 */
 457static struct ef4_channel *
 458ef4_copy_channel(const struct ef4_channel *old_channel)
 459{
 460        struct ef4_channel *channel;
 461        struct ef4_rx_queue *rx_queue;
 462        struct ef4_tx_queue *tx_queue;
 463        int j;
 464
 465        channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 466        if (!channel)
 467                return NULL;
 468
 469        *channel = *old_channel;
 470
 471        channel->napi_dev = NULL;
 472        INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
 473        channel->napi_str.napi_id = 0;
 474        channel->napi_str.state = 0;
 475        memset(&channel->eventq, 0, sizeof(channel->eventq));
 476
 477        for (j = 0; j < EF4_TXQ_TYPES; j++) {
 478                tx_queue = &channel->tx_queue[j];
 479                if (tx_queue->channel)
 480                        tx_queue->channel = channel;
 481                tx_queue->buffer = NULL;
 482                memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 483        }
 484
 485        rx_queue = &channel->rx_queue;
 486        rx_queue->buffer = NULL;
 487        memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 488        timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
 489
 490        return channel;
 491}
 492
 493static int ef4_probe_channel(struct ef4_channel *channel)
 494{
 495        struct ef4_tx_queue *tx_queue;
 496        struct ef4_rx_queue *rx_queue;
 497        int rc;
 498
 499        netif_dbg(channel->efx, probe, channel->efx->net_dev,
 500                  "creating channel %d\n", channel->channel);
 501
 502        rc = channel->type->pre_probe(channel);
 503        if (rc)
 504                goto fail;
 505
 506        rc = ef4_probe_eventq(channel);
 507        if (rc)
 508                goto fail;
 509
 510        ef4_for_each_channel_tx_queue(tx_queue, channel) {
 511                rc = ef4_probe_tx_queue(tx_queue);
 512                if (rc)
 513                        goto fail;
 514        }
 515
 516        ef4_for_each_channel_rx_queue(rx_queue, channel) {
 517                rc = ef4_probe_rx_queue(rx_queue);
 518                if (rc)
 519                        goto fail;
 520        }
 521
 522        return 0;
 523
 524fail:
 525        ef4_remove_channel(channel);
 526        return rc;
 527}
 528
 529static void
 530ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
 531{
 532        struct ef4_nic *efx = channel->efx;
 533        const char *type;
 534        int number;
 535
 536        number = channel->channel;
 537        if (efx->tx_channel_offset == 0) {
 538                type = "";
 539        } else if (channel->channel < efx->tx_channel_offset) {
 540                type = "-rx";
 541        } else {
 542                type = "-tx";
 543                number -= efx->tx_channel_offset;
 544        }
 545        snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 546}
 547
 548static void ef4_set_channel_names(struct ef4_nic *efx)
 549{
 550        struct ef4_channel *channel;
 551
 552        ef4_for_each_channel(channel, efx)
 553                channel->type->get_name(channel,
 554                                        efx->msi_context[channel->channel].name,
 555                                        sizeof(efx->msi_context[0].name));
 556}
 557
 558static int ef4_probe_channels(struct ef4_nic *efx)
 559{
 560        struct ef4_channel *channel;
 561        int rc;
 562
 563        /* Restart special buffer allocation */
 564        efx->next_buffer_table = 0;
 565
 566        /* Probe channels in reverse, so that any 'extra' channels
 567         * use the start of the buffer table. This allows the traffic
 568         * channels to be resized without moving them or wasting the
 569         * entries before them.
 570         */
 571        ef4_for_each_channel_rev(channel, efx) {
 572                rc = ef4_probe_channel(channel);
 573                if (rc) {
 574                        netif_err(efx, probe, efx->net_dev,
 575                                  "failed to create channel %d\n",
 576                                  channel->channel);
 577                        goto fail;
 578                }
 579        }
 580        ef4_set_channel_names(efx);
 581
 582        return 0;
 583
 584fail:
 585        ef4_remove_channels(efx);
 586        return rc;
 587}
 588
 589/* Channels are shutdown and reinitialised whilst the NIC is running
 590 * to propagate configuration changes (mtu, checksum offload), or
 591 * to clear hardware error conditions
 592 */
 593static void ef4_start_datapath(struct ef4_nic *efx)
 594{
 595        netdev_features_t old_features = efx->net_dev->features;
 596        bool old_rx_scatter = efx->rx_scatter;
 597        struct ef4_tx_queue *tx_queue;
 598        struct ef4_rx_queue *rx_queue;
 599        struct ef4_channel *channel;
 600        size_t rx_buf_len;
 601
 602        /* Calculate the rx buffer allocation parameters required to
 603         * support the current MTU, including padding for header
 604         * alignment and overruns.
 605         */
 606        efx->rx_dma_len = (efx->rx_prefix_size +
 607                           EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
 608                           efx->type->rx_buffer_padding);
 609        rx_buf_len = (sizeof(struct ef4_rx_page_state) +
 610                      efx->rx_ip_align + efx->rx_dma_len);
 611        if (rx_buf_len <= PAGE_SIZE) {
 612                efx->rx_scatter = efx->type->always_rx_scatter;
 613                efx->rx_buffer_order = 0;
 614        } else if (efx->type->can_rx_scatter) {
 615                BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 616                BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
 617                             2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
 618                                       EF4_RX_BUF_ALIGNMENT) >
 619                             PAGE_SIZE);
 620                efx->rx_scatter = true;
 621                efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
 622                efx->rx_buffer_order = 0;
 623        } else {
 624                efx->rx_scatter = false;
 625                efx->rx_buffer_order = get_order(rx_buf_len);
 626        }
 627
 628        ef4_rx_config_page_split(efx);
 629        if (efx->rx_buffer_order)
 630                netif_dbg(efx, drv, efx->net_dev,
 631                          "RX buf len=%u; page order=%u batch=%u\n",
 632                          efx->rx_dma_len, efx->rx_buffer_order,
 633                          efx->rx_pages_per_batch);
 634        else
 635                netif_dbg(efx, drv, efx->net_dev,
 636                          "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 637                          efx->rx_dma_len, efx->rx_page_buf_step,
 638                          efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 639
 640        /* Restore previously fixed features in hw_features and remove
 641         * features which are fixed now
 642         */
 643        efx->net_dev->hw_features |= efx->net_dev->features;
 644        efx->net_dev->hw_features &= ~efx->fixed_features;
 645        efx->net_dev->features |= efx->fixed_features;
 646        if (efx->net_dev->features != old_features)
 647                netdev_features_change(efx->net_dev);
 648
 649        /* RX filters may also have scatter-enabled flags */
 650        if (efx->rx_scatter != old_rx_scatter)
 651                efx->type->filter_update_rx_scatter(efx);
 652
 653        /* We must keep at least one descriptor in a TX ring empty.
 654         * We could avoid this when the queue size does not exactly
 655         * match the hardware ring size, but it's not that important.
 656         * Therefore we stop the queue when one more skb might fill
 657         * the ring completely.  We wake it when half way back to
 658         * empty.
 659         */
 660        efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
 661        efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 662
 663        /* Initialise the channels */
 664        ef4_for_each_channel(channel, efx) {
 665                ef4_for_each_channel_tx_queue(tx_queue, channel) {
 666                        ef4_init_tx_queue(tx_queue);
 667                        atomic_inc(&efx->active_queues);
 668                }
 669
 670                ef4_for_each_channel_rx_queue(rx_queue, channel) {
 671                        ef4_init_rx_queue(rx_queue);
 672                        atomic_inc(&efx->active_queues);
 673                        ef4_stop_eventq(channel);
 674                        ef4_fast_push_rx_descriptors(rx_queue, false);
 675                        ef4_start_eventq(channel);
 676                }
 677
 678                WARN_ON(channel->rx_pkt_n_frags);
 679        }
 680
 681        if (netif_device_present(efx->net_dev))
 682                netif_tx_wake_all_queues(efx->net_dev);
 683}
 684
 685static void ef4_stop_datapath(struct ef4_nic *efx)
 686{
 687        struct ef4_channel *channel;
 688        struct ef4_tx_queue *tx_queue;
 689        struct ef4_rx_queue *rx_queue;
 690        int rc;
 691
 692        EF4_ASSERT_RESET_SERIALISED(efx);
 693        BUG_ON(efx->port_enabled);
 694
 695        /* Stop RX refill */
 696        ef4_for_each_channel(channel, efx) {
 697                ef4_for_each_channel_rx_queue(rx_queue, channel)
 698                        rx_queue->refill_enabled = false;
 699        }
 700
 701        ef4_for_each_channel(channel, efx) {
 702                /* RX packet processing is pipelined, so wait for the
 703                 * NAPI handler to complete.  At least event queue 0
 704                 * might be kept active by non-data events, so don't
 705                 * use napi_synchronize() but actually disable NAPI
 706                 * temporarily.
 707                 */
 708                if (ef4_channel_has_rx_queue(channel)) {
 709                        ef4_stop_eventq(channel);
 710                        ef4_start_eventq(channel);
 711                }
 712        }
 713
 714        rc = efx->type->fini_dmaq(efx);
 715        if (rc && EF4_WORKAROUND_7803(efx)) {
 716                /* Schedule a reset to recover from the flush failure. The
 717                 * descriptor caches reference memory we're about to free,
 718                 * but falcon_reconfigure_mac_wrapper() won't reconnect
 719                 * the MACs because of the pending reset.
 720                 */
 721                netif_err(efx, drv, efx->net_dev,
 722                          "Resetting to recover from flush failure\n");
 723                ef4_schedule_reset(efx, RESET_TYPE_ALL);
 724        } else if (rc) {
 725                netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 726        } else {
 727                netif_dbg(efx, drv, efx->net_dev,
 728                          "successfully flushed all queues\n");
 729        }
 730
 731        ef4_for_each_channel(channel, efx) {
 732                ef4_for_each_channel_rx_queue(rx_queue, channel)
 733                        ef4_fini_rx_queue(rx_queue);
 734                ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
 735                        ef4_fini_tx_queue(tx_queue);
 736        }
 737}
 738
 739static void ef4_remove_channel(struct ef4_channel *channel)
 740{
 741        struct ef4_tx_queue *tx_queue;
 742        struct ef4_rx_queue *rx_queue;
 743
 744        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 745                  "destroy chan %d\n", channel->channel);
 746
 747        ef4_for_each_channel_rx_queue(rx_queue, channel)
 748                ef4_remove_rx_queue(rx_queue);
 749        ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
 750                ef4_remove_tx_queue(tx_queue);
 751        ef4_remove_eventq(channel);
 752        channel->type->post_remove(channel);
 753}
 754
 755static void ef4_remove_channels(struct ef4_nic *efx)
 756{
 757        struct ef4_channel *channel;
 758
 759        ef4_for_each_channel(channel, efx)
 760                ef4_remove_channel(channel);
 761}
 762
 763int
 764ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
 765{
 766        struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
 767        u32 old_rxq_entries, old_txq_entries;
 768        unsigned i, next_buffer_table = 0;
 769        int rc, rc2;
 770
 771        rc = ef4_check_disabled(efx);
 772        if (rc)
 773                return rc;
 774
 775        /* Not all channels should be reallocated. We must avoid
 776         * reallocating their buffer table entries.
 777         */
 778        ef4_for_each_channel(channel, efx) {
 779                struct ef4_rx_queue *rx_queue;
 780                struct ef4_tx_queue *tx_queue;
 781
 782                if (channel->type->copy)
 783                        continue;
 784                next_buffer_table = max(next_buffer_table,
 785                                        channel->eventq.index +
 786                                        channel->eventq.entries);
 787                ef4_for_each_channel_rx_queue(rx_queue, channel)
 788                        next_buffer_table = max(next_buffer_table,
 789                                                rx_queue->rxd.index +
 790                                                rx_queue->rxd.entries);
 791                ef4_for_each_channel_tx_queue(tx_queue, channel)
 792                        next_buffer_table = max(next_buffer_table,
 793                                                tx_queue->txd.index +
 794                                                tx_queue->txd.entries);
 795        }
 796
 797        ef4_device_detach_sync(efx);
 798        ef4_stop_all(efx);
 799        ef4_soft_disable_interrupts(efx);
 800
 801        /* Clone channels (where possible) */
 802        memset(other_channel, 0, sizeof(other_channel));
 803        for (i = 0; i < efx->n_channels; i++) {
 804                channel = efx->channel[i];
 805                if (channel->type->copy)
 806                        channel = channel->type->copy(channel);
 807                if (!channel) {
 808                        rc = -ENOMEM;
 809                        goto out;
 810                }
 811                other_channel[i] = channel;
 812        }
 813
 814        /* Swap entry counts and channel pointers */
 815        old_rxq_entries = efx->rxq_entries;
 816        old_txq_entries = efx->txq_entries;
 817        efx->rxq_entries = rxq_entries;
 818        efx->txq_entries = txq_entries;
 819        for (i = 0; i < efx->n_channels; i++) {
 820                channel = efx->channel[i];
 821                efx->channel[i] = other_channel[i];
 822                other_channel[i] = channel;
 823        }
 824
 825        /* Restart buffer table allocation */
 826        efx->next_buffer_table = next_buffer_table;
 827
 828        for (i = 0; i < efx->n_channels; i++) {
 829                channel = efx->channel[i];
 830                if (!channel->type->copy)
 831                        continue;
 832                rc = ef4_probe_channel(channel);
 833                if (rc)
 834                        goto rollback;
 835                ef4_init_napi_channel(efx->channel[i]);
 836        }
 837
 838out:
 839        /* Destroy unused channel structures */
 840        for (i = 0; i < efx->n_channels; i++) {
 841                channel = other_channel[i];
 842                if (channel && channel->type->copy) {
 843                        ef4_fini_napi_channel(channel);
 844                        ef4_remove_channel(channel);
 845                        kfree(channel);
 846                }
 847        }
 848
 849        rc2 = ef4_soft_enable_interrupts(efx);
 850        if (rc2) {
 851                rc = rc ? rc : rc2;
 852                netif_err(efx, drv, efx->net_dev,
 853                          "unable to restart interrupts on channel reallocation\n");
 854                ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
 855        } else {
 856                ef4_start_all(efx);
 857                netif_device_attach(efx->net_dev);
 858        }
 859        return rc;
 860
 861rollback:
 862        /* Swap back */
 863        efx->rxq_entries = old_rxq_entries;
 864        efx->txq_entries = old_txq_entries;
 865        for (i = 0; i < efx->n_channels; i++) {
 866                channel = efx->channel[i];
 867                efx->channel[i] = other_channel[i];
 868                other_channel[i] = channel;
 869        }
 870        goto out;
 871}
 872
 873void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
 874{
 875        mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 876}
 877
 878static const struct ef4_channel_type ef4_default_channel_type = {
 879        .pre_probe              = ef4_channel_dummy_op_int,
 880        .post_remove            = ef4_channel_dummy_op_void,
 881        .get_name               = ef4_get_channel_name,
 882        .copy                   = ef4_copy_channel,
 883        .keep_eventq            = false,
 884};
 885
 886int ef4_channel_dummy_op_int(struct ef4_channel *channel)
 887{
 888        return 0;
 889}
 890
 891void ef4_channel_dummy_op_void(struct ef4_channel *channel)
 892{
 893}
 894
 895/**************************************************************************
 896 *
 897 * Port handling
 898 *
 899 **************************************************************************/
 900
 901/* This ensures that the kernel is kept informed (via
 902 * netif_carrier_on/off) of the link status, and also maintains the
 903 * link status's stop on the port's TX queue.
 904 */
 905void ef4_link_status_changed(struct ef4_nic *efx)
 906{
 907        struct ef4_link_state *link_state = &efx->link_state;
 908
 909        /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 910         * that no events are triggered between unregister_netdev() and the
 911         * driver unloading. A more general condition is that NETDEV_CHANGE
 912         * can only be generated between NETDEV_UP and NETDEV_DOWN */
 913        if (!netif_running(efx->net_dev))
 914                return;
 915
 916        if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 917                efx->n_link_state_changes++;
 918
 919                if (link_state->up)
 920                        netif_carrier_on(efx->net_dev);
 921                else
 922                        netif_carrier_off(efx->net_dev);
 923        }
 924
 925        /* Status message for kernel log */
 926        if (link_state->up)
 927                netif_info(efx, link, efx->net_dev,
 928                           "link up at %uMbps %s-duplex (MTU %d)\n",
 929                           link_state->speed, link_state->fd ? "full" : "half",
 930                           efx->net_dev->mtu);
 931        else
 932                netif_info(efx, link, efx->net_dev, "link down\n");
 933}
 934
 935void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
 936{
 937        efx->link_advertising = advertising;
 938        if (advertising) {
 939                if (advertising & ADVERTISED_Pause)
 940                        efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
 941                else
 942                        efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
 943                if (advertising & ADVERTISED_Asym_Pause)
 944                        efx->wanted_fc ^= EF4_FC_TX;
 945        }
 946}
 947
 948void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
 949{
 950        efx->wanted_fc = wanted_fc;
 951        if (efx->link_advertising) {
 952                if (wanted_fc & EF4_FC_RX)
 953                        efx->link_advertising |= (ADVERTISED_Pause |
 954                                                  ADVERTISED_Asym_Pause);
 955                else
 956                        efx->link_advertising &= ~(ADVERTISED_Pause |
 957                                                   ADVERTISED_Asym_Pause);
 958                if (wanted_fc & EF4_FC_TX)
 959                        efx->link_advertising ^= ADVERTISED_Asym_Pause;
 960        }
 961}
 962
 963static void ef4_fini_port(struct ef4_nic *efx);
 964
 965/* We assume that efx->type->reconfigure_mac will always try to sync RX
 966 * filters and therefore needs to read-lock the filter table against freeing
 967 */
 968void ef4_mac_reconfigure(struct ef4_nic *efx)
 969{
 970        down_read(&efx->filter_sem);
 971        efx->type->reconfigure_mac(efx);
 972        up_read(&efx->filter_sem);
 973}
 974
 975/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 976 * the MAC appropriately. All other PHY configuration changes are pushed
 977 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
 978 * through ef4_monitor().
 979 *
 980 * Callers must hold the mac_lock
 981 */
 982int __ef4_reconfigure_port(struct ef4_nic *efx)
 983{
 984        enum ef4_phy_mode phy_mode;
 985        int rc;
 986
 987        WARN_ON(!mutex_is_locked(&efx->mac_lock));
 988
 989        /* Disable PHY transmit in mac level loopbacks */
 990        phy_mode = efx->phy_mode;
 991        if (LOOPBACK_INTERNAL(efx))
 992                efx->phy_mode |= PHY_MODE_TX_DISABLED;
 993        else
 994                efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 995
 996        rc = efx->type->reconfigure_port(efx);
 997
 998        if (rc)
 999                efx->phy_mode = phy_mode;
1000
1001        return rc;
1002}
1003
1004/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1005 * disabled. */
1006int ef4_reconfigure_port(struct ef4_nic *efx)
1007{
1008        int rc;
1009
1010        EF4_ASSERT_RESET_SERIALISED(efx);
1011
1012        mutex_lock(&efx->mac_lock);
1013        rc = __ef4_reconfigure_port(efx);
1014        mutex_unlock(&efx->mac_lock);
1015
1016        return rc;
1017}
1018
1019/* Asynchronous work item for changing MAC promiscuity and multicast
1020 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1021 * MAC directly. */
1022static void ef4_mac_work(struct work_struct *data)
1023{
1024        struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1025
1026        mutex_lock(&efx->mac_lock);
1027        if (efx->port_enabled)
1028                ef4_mac_reconfigure(efx);
1029        mutex_unlock(&efx->mac_lock);
1030}
1031
1032static int ef4_probe_port(struct ef4_nic *efx)
1033{
1034        int rc;
1035
1036        netif_dbg(efx, probe, efx->net_dev, "create port\n");
1037
1038        if (phy_flash_cfg)
1039                efx->phy_mode = PHY_MODE_SPECIAL;
1040
1041        /* Connect up MAC/PHY operations table */
1042        rc = efx->type->probe_port(efx);
1043        if (rc)
1044                return rc;
1045
1046        /* Initialise MAC address to permanent address */
1047        ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1048
1049        return 0;
1050}
1051
1052static int ef4_init_port(struct ef4_nic *efx)
1053{
1054        int rc;
1055
1056        netif_dbg(efx, drv, efx->net_dev, "init port\n");
1057
1058        mutex_lock(&efx->mac_lock);
1059
1060        rc = efx->phy_op->init(efx);
1061        if (rc)
1062                goto fail1;
1063
1064        efx->port_initialized = true;
1065
1066        /* Reconfigure the MAC before creating dma queues (required for
1067         * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1068        ef4_mac_reconfigure(efx);
1069
1070        /* Ensure the PHY advertises the correct flow control settings */
1071        rc = efx->phy_op->reconfigure(efx);
1072        if (rc && rc != -EPERM)
1073                goto fail2;
1074
1075        mutex_unlock(&efx->mac_lock);
1076        return 0;
1077
1078fail2:
1079        efx->phy_op->fini(efx);
1080fail1:
1081        mutex_unlock(&efx->mac_lock);
1082        return rc;
1083}
1084
1085static void ef4_start_port(struct ef4_nic *efx)
1086{
1087        netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1088        BUG_ON(efx->port_enabled);
1089
1090        mutex_lock(&efx->mac_lock);
1091        efx->port_enabled = true;
1092
1093        /* Ensure MAC ingress/egress is enabled */
1094        ef4_mac_reconfigure(efx);
1095
1096        mutex_unlock(&efx->mac_lock);
1097}
1098
1099/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1100 * and the async self-test, wait for them to finish and prevent them
1101 * being scheduled again.  This doesn't cover online resets, which
1102 * should only be cancelled when removing the device.
1103 */
1104static void ef4_stop_port(struct ef4_nic *efx)
1105{
1106        netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1107
1108        EF4_ASSERT_RESET_SERIALISED(efx);
1109
1110        mutex_lock(&efx->mac_lock);
1111        efx->port_enabled = false;
1112        mutex_unlock(&efx->mac_lock);
1113
1114        /* Serialise against ef4_set_multicast_list() */
1115        netif_addr_lock_bh(efx->net_dev);
1116        netif_addr_unlock_bh(efx->net_dev);
1117
1118        cancel_delayed_work_sync(&efx->monitor_work);
1119        ef4_selftest_async_cancel(efx);
1120        cancel_work_sync(&efx->mac_work);
1121}
1122
1123static void ef4_fini_port(struct ef4_nic *efx)
1124{
1125        netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1126
1127        if (!efx->port_initialized)
1128                return;
1129
1130        efx->phy_op->fini(efx);
1131        efx->port_initialized = false;
1132
1133        efx->link_state.up = false;
1134        ef4_link_status_changed(efx);
1135}
1136
1137static void ef4_remove_port(struct ef4_nic *efx)
1138{
1139        netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1140
1141        efx->type->remove_port(efx);
1142}
1143
1144/**************************************************************************
1145 *
1146 * NIC handling
1147 *
1148 **************************************************************************/
1149
1150static LIST_HEAD(ef4_primary_list);
1151static LIST_HEAD(ef4_unassociated_list);
1152
1153static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1154{
1155        return left->type == right->type &&
1156                left->vpd_sn && right->vpd_sn &&
1157                !strcmp(left->vpd_sn, right->vpd_sn);
1158}
1159
1160static void ef4_associate(struct ef4_nic *efx)
1161{
1162        struct ef4_nic *other, *next;
1163
1164        if (efx->primary == efx) {
1165                /* Adding primary function; look for secondaries */
1166
1167                netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1168                list_add_tail(&efx->node, &ef4_primary_list);
1169
1170                list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1171                                         node) {
1172                        if (ef4_same_controller(efx, other)) {
1173                                list_del(&other->node);
1174                                netif_dbg(other, probe, other->net_dev,
1175                                          "moving to secondary list of %s %s\n",
1176                                          pci_name(efx->pci_dev),
1177                                          efx->net_dev->name);
1178                                list_add_tail(&other->node,
1179                                              &efx->secondary_list);
1180                                other->primary = efx;
1181                        }
1182                }
1183        } else {
1184                /* Adding secondary function; look for primary */
1185
1186                list_for_each_entry(other, &ef4_primary_list, node) {
1187                        if (ef4_same_controller(efx, other)) {
1188                                netif_dbg(efx, probe, efx->net_dev,
1189                                          "adding to secondary list of %s %s\n",
1190                                          pci_name(other->pci_dev),
1191                                          other->net_dev->name);
1192                                list_add_tail(&efx->node,
1193                                              &other->secondary_list);
1194                                efx->primary = other;
1195                                return;
1196                        }
1197                }
1198
1199                netif_dbg(efx, probe, efx->net_dev,
1200                          "adding to unassociated list\n");
1201                list_add_tail(&efx->node, &ef4_unassociated_list);
1202        }
1203}
1204
1205static void ef4_dissociate(struct ef4_nic *efx)
1206{
1207        struct ef4_nic *other, *next;
1208
1209        list_del(&efx->node);
1210        efx->primary = NULL;
1211
1212        list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1213                list_del(&other->node);
1214                netif_dbg(other, probe, other->net_dev,
1215                          "moving to unassociated list\n");
1216                list_add_tail(&other->node, &ef4_unassociated_list);
1217                other->primary = NULL;
1218        }
1219}
1220
1221/* This configures the PCI device to enable I/O and DMA. */
1222static int ef4_init_io(struct ef4_nic *efx)
1223{
1224        struct pci_dev *pci_dev = efx->pci_dev;
1225        dma_addr_t dma_mask = efx->type->max_dma_mask;
1226        unsigned int mem_map_size = efx->type->mem_map_size(efx);
1227        int rc, bar;
1228
1229        netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1230
1231        bar = efx->type->mem_bar;
1232
1233        rc = pci_enable_device(pci_dev);
1234        if (rc) {
1235                netif_err(efx, probe, efx->net_dev,
1236                          "failed to enable PCI device\n");
1237                goto fail1;
1238        }
1239
1240        pci_set_master(pci_dev);
1241
1242        /* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1243         * down to 32 bits, because some architectures will allow 40 bit
1244         * masks event though they reject 46 bit masks.
1245         */
1246        while (dma_mask > 0x7fffffffUL) {
1247                rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1248                if (rc == 0)
1249                        break;
1250                dma_mask >>= 1;
1251        }
1252        if (rc) {
1253                netif_err(efx, probe, efx->net_dev,
1254                          "could not find a suitable DMA mask\n");
1255                goto fail2;
1256        }
1257        netif_dbg(efx, probe, efx->net_dev,
1258                  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1259
1260        efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1261        rc = pci_request_region(pci_dev, bar, "sfc");
1262        if (rc) {
1263                netif_err(efx, probe, efx->net_dev,
1264                          "request for memory BAR failed\n");
1265                rc = -EIO;
1266                goto fail3;
1267        }
1268        efx->membase = ioremap(efx->membase_phys, mem_map_size);
1269        if (!efx->membase) {
1270                netif_err(efx, probe, efx->net_dev,
1271                          "could not map memory BAR at %llx+%x\n",
1272                          (unsigned long long)efx->membase_phys, mem_map_size);
1273                rc = -ENOMEM;
1274                goto fail4;
1275        }
1276        netif_dbg(efx, probe, efx->net_dev,
1277                  "memory BAR at %llx+%x (virtual %p)\n",
1278                  (unsigned long long)efx->membase_phys, mem_map_size,
1279                  efx->membase);
1280
1281        return 0;
1282
1283 fail4:
1284        pci_release_region(efx->pci_dev, bar);
1285 fail3:
1286        efx->membase_phys = 0;
1287 fail2:
1288        pci_disable_device(efx->pci_dev);
1289 fail1:
1290        return rc;
1291}
1292
1293static void ef4_fini_io(struct ef4_nic *efx)
1294{
1295        int bar;
1296
1297        netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1298
1299        if (efx->membase) {
1300                iounmap(efx->membase);
1301                efx->membase = NULL;
1302        }
1303
1304        if (efx->membase_phys) {
1305                bar = efx->type->mem_bar;
1306                pci_release_region(efx->pci_dev, bar);
1307                efx->membase_phys = 0;
1308        }
1309
1310        /* Don't disable bus-mastering if VFs are assigned */
1311        if (!pci_vfs_assigned(efx->pci_dev))
1312                pci_disable_device(efx->pci_dev);
1313}
1314
1315void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1316{
1317        size_t i;
1318
1319        for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1320                efx->rx_indir_table[i] =
1321                        ethtool_rxfh_indir_default(i, efx->rss_spread);
1322}
1323
1324static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1325{
1326        cpumask_var_t thread_mask;
1327        unsigned int count;
1328        int cpu;
1329
1330        if (rss_cpus) {
1331                count = rss_cpus;
1332        } else {
1333                if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1334                        netif_warn(efx, probe, efx->net_dev,
1335                                   "RSS disabled due to allocation failure\n");
1336                        return 1;
1337                }
1338
1339                count = 0;
1340                for_each_online_cpu(cpu) {
1341                        if (!cpumask_test_cpu(cpu, thread_mask)) {
1342                                ++count;
1343                                cpumask_or(thread_mask, thread_mask,
1344                                           topology_sibling_cpumask(cpu));
1345                        }
1346                }
1347
1348                free_cpumask_var(thread_mask);
1349        }
1350
1351        if (count > EF4_MAX_RX_QUEUES) {
1352                netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1353                               "Reducing number of rx queues from %u to %u.\n",
1354                               count, EF4_MAX_RX_QUEUES);
1355                count = EF4_MAX_RX_QUEUES;
1356        }
1357
1358        return count;
1359}
1360
1361/* Probe the number and type of interrupts we are able to obtain, and
1362 * the resulting numbers of channels and RX queues.
1363 */
1364static int ef4_probe_interrupts(struct ef4_nic *efx)
1365{
1366        unsigned int extra_channels = 0;
1367        unsigned int i, j;
1368        int rc;
1369
1370        for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1371                if (efx->extra_channel_type[i])
1372                        ++extra_channels;
1373
1374        if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1375                struct msix_entry xentries[EF4_MAX_CHANNELS];
1376                unsigned int n_channels;
1377
1378                n_channels = ef4_wanted_parallelism(efx);
1379                if (ef4_separate_tx_channels)
1380                        n_channels *= 2;
1381                n_channels += extra_channels;
1382                n_channels = min(n_channels, efx->max_channels);
1383
1384                for (i = 0; i < n_channels; i++)
1385                        xentries[i].entry = i;
1386                rc = pci_enable_msix_range(efx->pci_dev,
1387                                           xentries, 1, n_channels);
1388                if (rc < 0) {
1389                        /* Fall back to single channel MSI */
1390                        efx->interrupt_mode = EF4_INT_MODE_MSI;
1391                        netif_err(efx, drv, efx->net_dev,
1392                                  "could not enable MSI-X\n");
1393                } else if (rc < n_channels) {
1394                        netif_err(efx, drv, efx->net_dev,
1395                                  "WARNING: Insufficient MSI-X vectors"
1396                                  " available (%d < %u).\n", rc, n_channels);
1397                        netif_err(efx, drv, efx->net_dev,
1398                                  "WARNING: Performance may be reduced.\n");
1399                        n_channels = rc;
1400                }
1401
1402                if (rc > 0) {
1403                        efx->n_channels = n_channels;
1404                        if (n_channels > extra_channels)
1405                                n_channels -= extra_channels;
1406                        if (ef4_separate_tx_channels) {
1407                                efx->n_tx_channels = min(max(n_channels / 2,
1408                                                             1U),
1409                                                         efx->max_tx_channels);
1410                                efx->n_rx_channels = max(n_channels -
1411                                                         efx->n_tx_channels,
1412                                                         1U);
1413                        } else {
1414                                efx->n_tx_channels = min(n_channels,
1415                                                         efx->max_tx_channels);
1416                                efx->n_rx_channels = n_channels;
1417                        }
1418                        for (i = 0; i < efx->n_channels; i++)
1419                                ef4_get_channel(efx, i)->irq =
1420                                        xentries[i].vector;
1421                }
1422        }
1423
1424        /* Try single interrupt MSI */
1425        if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1426                efx->n_channels = 1;
1427                efx->n_rx_channels = 1;
1428                efx->n_tx_channels = 1;
1429                rc = pci_enable_msi(efx->pci_dev);
1430                if (rc == 0) {
1431                        ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1432                } else {
1433                        netif_err(efx, drv, efx->net_dev,
1434                                  "could not enable MSI\n");
1435                        efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1436                }
1437        }
1438
1439        /* Assume legacy interrupts */
1440        if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1441                efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1442                efx->n_rx_channels = 1;
1443                efx->n_tx_channels = 1;
1444                efx->legacy_irq = efx->pci_dev->irq;
1445        }
1446
1447        /* Assign extra channels if possible */
1448        j = efx->n_channels;
1449        for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1450                if (!efx->extra_channel_type[i])
1451                        continue;
1452                if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1453                    efx->n_channels <= extra_channels) {
1454                        efx->extra_channel_type[i]->handle_no_channel(efx);
1455                } else {
1456                        --j;
1457                        ef4_get_channel(efx, j)->type =
1458                                efx->extra_channel_type[i];
1459                }
1460        }
1461
1462        efx->rss_spread = efx->n_rx_channels;
1463
1464        return 0;
1465}
1466
1467static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1468{
1469        struct ef4_channel *channel, *end_channel;
1470        int rc;
1471
1472        BUG_ON(efx->state == STATE_DISABLED);
1473
1474        efx->irq_soft_enabled = true;
1475        smp_wmb();
1476
1477        ef4_for_each_channel(channel, efx) {
1478                if (!channel->type->keep_eventq) {
1479                        rc = ef4_init_eventq(channel);
1480                        if (rc)
1481                                goto fail;
1482                }
1483                ef4_start_eventq(channel);
1484        }
1485
1486        return 0;
1487fail:
1488        end_channel = channel;
1489        ef4_for_each_channel(channel, efx) {
1490                if (channel == end_channel)
1491                        break;
1492                ef4_stop_eventq(channel);
1493                if (!channel->type->keep_eventq)
1494                        ef4_fini_eventq(channel);
1495        }
1496
1497        return rc;
1498}
1499
1500static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1501{
1502        struct ef4_channel *channel;
1503
1504        if (efx->state == STATE_DISABLED)
1505                return;
1506
1507        efx->irq_soft_enabled = false;
1508        smp_wmb();
1509
1510        if (efx->legacy_irq)
1511                synchronize_irq(efx->legacy_irq);
1512
1513        ef4_for_each_channel(channel, efx) {
1514                if (channel->irq)
1515                        synchronize_irq(channel->irq);
1516
1517                ef4_stop_eventq(channel);
1518                if (!channel->type->keep_eventq)
1519                        ef4_fini_eventq(channel);
1520        }
1521}
1522
1523static int ef4_enable_interrupts(struct ef4_nic *efx)
1524{
1525        struct ef4_channel *channel, *end_channel;
1526        int rc;
1527
1528        BUG_ON(efx->state == STATE_DISABLED);
1529
1530        if (efx->eeh_disabled_legacy_irq) {
1531                enable_irq(efx->legacy_irq);
1532                efx->eeh_disabled_legacy_irq = false;
1533        }
1534
1535        efx->type->irq_enable_master(efx);
1536
1537        ef4_for_each_channel(channel, efx) {
1538                if (channel->type->keep_eventq) {
1539                        rc = ef4_init_eventq(channel);
1540                        if (rc)
1541                                goto fail;
1542                }
1543        }
1544
1545        rc = ef4_soft_enable_interrupts(efx);
1546        if (rc)
1547                goto fail;
1548
1549        return 0;
1550
1551fail:
1552        end_channel = channel;
1553        ef4_for_each_channel(channel, efx) {
1554                if (channel == end_channel)
1555                        break;
1556                if (channel->type->keep_eventq)
1557                        ef4_fini_eventq(channel);
1558        }
1559
1560        efx->type->irq_disable_non_ev(efx);
1561
1562        return rc;
1563}
1564
1565static void ef4_disable_interrupts(struct ef4_nic *efx)
1566{
1567        struct ef4_channel *channel;
1568
1569        ef4_soft_disable_interrupts(efx);
1570
1571        ef4_for_each_channel(channel, efx) {
1572                if (channel->type->keep_eventq)
1573                        ef4_fini_eventq(channel);
1574        }
1575
1576        efx->type->irq_disable_non_ev(efx);
1577}
1578
1579static void ef4_remove_interrupts(struct ef4_nic *efx)
1580{
1581        struct ef4_channel *channel;
1582
1583        /* Remove MSI/MSI-X interrupts */
1584        ef4_for_each_channel(channel, efx)
1585                channel->irq = 0;
1586        pci_disable_msi(efx->pci_dev);
1587        pci_disable_msix(efx->pci_dev);
1588
1589        /* Remove legacy interrupt */
1590        efx->legacy_irq = 0;
1591}
1592
1593static void ef4_set_channels(struct ef4_nic *efx)
1594{
1595        struct ef4_channel *channel;
1596        struct ef4_tx_queue *tx_queue;
1597
1598        efx->tx_channel_offset =
1599                ef4_separate_tx_channels ?
1600                efx->n_channels - efx->n_tx_channels : 0;
1601
1602        /* We need to mark which channels really have RX and TX
1603         * queues, and adjust the TX queue numbers if we have separate
1604         * RX-only and TX-only channels.
1605         */
1606        ef4_for_each_channel(channel, efx) {
1607                if (channel->channel < efx->n_rx_channels)
1608                        channel->rx_queue.core_index = channel->channel;
1609                else
1610                        channel->rx_queue.core_index = -1;
1611
1612                ef4_for_each_channel_tx_queue(tx_queue, channel)
1613                        tx_queue->queue -= (efx->tx_channel_offset *
1614                                            EF4_TXQ_TYPES);
1615        }
1616}
1617
1618static int ef4_probe_nic(struct ef4_nic *efx)
1619{
1620        int rc;
1621
1622        netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1623
1624        /* Carry out hardware-type specific initialisation */
1625        rc = efx->type->probe(efx);
1626        if (rc)
1627                return rc;
1628
1629        do {
1630                if (!efx->max_channels || !efx->max_tx_channels) {
1631                        netif_err(efx, drv, efx->net_dev,
1632                                  "Insufficient resources to allocate"
1633                                  " any channels\n");
1634                        rc = -ENOSPC;
1635                        goto fail1;
1636                }
1637
1638                /* Determine the number of channels and queues by trying
1639                 * to hook in MSI-X interrupts.
1640                 */
1641                rc = ef4_probe_interrupts(efx);
1642                if (rc)
1643                        goto fail1;
1644
1645                ef4_set_channels(efx);
1646
1647                /* dimension_resources can fail with EAGAIN */
1648                rc = efx->type->dimension_resources(efx);
1649                if (rc != 0 && rc != -EAGAIN)
1650                        goto fail2;
1651
1652                if (rc == -EAGAIN)
1653                        /* try again with new max_channels */
1654                        ef4_remove_interrupts(efx);
1655
1656        } while (rc == -EAGAIN);
1657
1658        if (efx->n_channels > 1)
1659                netdev_rss_key_fill(&efx->rx_hash_key,
1660                                    sizeof(efx->rx_hash_key));
1661        ef4_set_default_rx_indir_table(efx);
1662
1663        netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1664        netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1665
1666        /* Initialise the interrupt moderation settings */
1667        efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1668        ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1669                                true);
1670
1671        return 0;
1672
1673fail2:
1674        ef4_remove_interrupts(efx);
1675fail1:
1676        efx->type->remove(efx);
1677        return rc;
1678}
1679
1680static void ef4_remove_nic(struct ef4_nic *efx)
1681{
1682        netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1683
1684        ef4_remove_interrupts(efx);
1685        efx->type->remove(efx);
1686}
1687
1688static int ef4_probe_filters(struct ef4_nic *efx)
1689{
1690        int rc;
1691
1692        spin_lock_init(&efx->filter_lock);
1693        init_rwsem(&efx->filter_sem);
1694        mutex_lock(&efx->mac_lock);
1695        down_write(&efx->filter_sem);
1696        rc = efx->type->filter_table_probe(efx);
1697        if (rc)
1698                goto out_unlock;
1699
1700#ifdef CONFIG_RFS_ACCEL
1701        if (efx->type->offload_features & NETIF_F_NTUPLE) {
1702                struct ef4_channel *channel;
1703                int i, success = 1;
1704
1705                ef4_for_each_channel(channel, efx) {
1706                        channel->rps_flow_id =
1707                                kcalloc(efx->type->max_rx_ip_filters,
1708                                        sizeof(*channel->rps_flow_id),
1709                                        GFP_KERNEL);
1710                        if (!channel->rps_flow_id)
1711                                success = 0;
1712                        else
1713                                for (i = 0;
1714                                     i < efx->type->max_rx_ip_filters;
1715                                     ++i)
1716                                        channel->rps_flow_id[i] =
1717                                                RPS_FLOW_ID_INVALID;
1718                }
1719
1720                if (!success) {
1721                        ef4_for_each_channel(channel, efx)
1722                                kfree(channel->rps_flow_id);
1723                        efx->type->filter_table_remove(efx);
1724                        rc = -ENOMEM;
1725                        goto out_unlock;
1726                }
1727
1728                efx->rps_expire_index = efx->rps_expire_channel = 0;
1729        }
1730#endif
1731out_unlock:
1732        up_write(&efx->filter_sem);
1733        mutex_unlock(&efx->mac_lock);
1734        return rc;
1735}
1736
1737static void ef4_remove_filters(struct ef4_nic *efx)
1738{
1739#ifdef CONFIG_RFS_ACCEL
1740        struct ef4_channel *channel;
1741
1742        ef4_for_each_channel(channel, efx)
1743                kfree(channel->rps_flow_id);
1744#endif
1745        down_write(&efx->filter_sem);
1746        efx->type->filter_table_remove(efx);
1747        up_write(&efx->filter_sem);
1748}
1749
1750static void ef4_restore_filters(struct ef4_nic *efx)
1751{
1752        down_read(&efx->filter_sem);
1753        efx->type->filter_table_restore(efx);
1754        up_read(&efx->filter_sem);
1755}
1756
1757/**************************************************************************
1758 *
1759 * NIC startup/shutdown
1760 *
1761 *************************************************************************/
1762
1763static int ef4_probe_all(struct ef4_nic *efx)
1764{
1765        int rc;
1766
1767        rc = ef4_probe_nic(efx);
1768        if (rc) {
1769                netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1770                goto fail1;
1771        }
1772
1773        rc = ef4_probe_port(efx);
1774        if (rc) {
1775                netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1776                goto fail2;
1777        }
1778
1779        BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1780        if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1781                rc = -EINVAL;
1782                goto fail3;
1783        }
1784        efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1785
1786        rc = ef4_probe_filters(efx);
1787        if (rc) {
1788                netif_err(efx, probe, efx->net_dev,
1789                          "failed to create filter tables\n");
1790                goto fail4;
1791        }
1792
1793        rc = ef4_probe_channels(efx);
1794        if (rc)
1795                goto fail5;
1796
1797        return 0;
1798
1799 fail5:
1800        ef4_remove_filters(efx);
1801 fail4:
1802 fail3:
1803        ef4_remove_port(efx);
1804 fail2:
1805        ef4_remove_nic(efx);
1806 fail1:
1807        return rc;
1808}
1809
1810/* If the interface is supposed to be running but is not, start
1811 * the hardware and software data path, regular activity for the port
1812 * (MAC statistics, link polling, etc.) and schedule the port to be
1813 * reconfigured.  Interrupts must already be enabled.  This function
1814 * is safe to call multiple times, so long as the NIC is not disabled.
1815 * Requires the RTNL lock.
1816 */
1817static void ef4_start_all(struct ef4_nic *efx)
1818{
1819        EF4_ASSERT_RESET_SERIALISED(efx);
1820        BUG_ON(efx->state == STATE_DISABLED);
1821
1822        /* Check that it is appropriate to restart the interface. All
1823         * of these flags are safe to read under just the rtnl lock */
1824        if (efx->port_enabled || !netif_running(efx->net_dev) ||
1825            efx->reset_pending)
1826                return;
1827
1828        ef4_start_port(efx);
1829        ef4_start_datapath(efx);
1830
1831        /* Start the hardware monitor if there is one */
1832        if (efx->type->monitor != NULL)
1833                queue_delayed_work(efx->workqueue, &efx->monitor_work,
1834                                   ef4_monitor_interval);
1835
1836        efx->type->start_stats(efx);
1837        efx->type->pull_stats(efx);
1838        spin_lock_bh(&efx->stats_lock);
1839        efx->type->update_stats(efx, NULL, NULL);
1840        spin_unlock_bh(&efx->stats_lock);
1841}
1842
1843/* Quiesce the hardware and software data path, and regular activity
1844 * for the port without bringing the link down.  Safe to call multiple
1845 * times with the NIC in almost any state, but interrupts should be
1846 * enabled.  Requires the RTNL lock.
1847 */
1848static void ef4_stop_all(struct ef4_nic *efx)
1849{
1850        EF4_ASSERT_RESET_SERIALISED(efx);
1851
1852        /* port_enabled can be read safely under the rtnl lock */
1853        if (!efx->port_enabled)
1854                return;
1855
1856        /* update stats before we go down so we can accurately count
1857         * rx_nodesc_drops
1858         */
1859        efx->type->pull_stats(efx);
1860        spin_lock_bh(&efx->stats_lock);
1861        efx->type->update_stats(efx, NULL, NULL);
1862        spin_unlock_bh(&efx->stats_lock);
1863        efx->type->stop_stats(efx);
1864        ef4_stop_port(efx);
1865
1866        /* Stop the kernel transmit interface.  This is only valid if
1867         * the device is stopped or detached; otherwise the watchdog
1868         * may fire immediately.
1869         */
1870        WARN_ON(netif_running(efx->net_dev) &&
1871                netif_device_present(efx->net_dev));
1872        netif_tx_disable(efx->net_dev);
1873
1874        ef4_stop_datapath(efx);
1875}
1876
1877static void ef4_remove_all(struct ef4_nic *efx)
1878{
1879        ef4_remove_channels(efx);
1880        ef4_remove_filters(efx);
1881        ef4_remove_port(efx);
1882        ef4_remove_nic(efx);
1883}
1884
1885/**************************************************************************
1886 *
1887 * Interrupt moderation
1888 *
1889 **************************************************************************/
1890unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1891{
1892        if (usecs == 0)
1893                return 0;
1894        if (usecs * 1000 < efx->timer_quantum_ns)
1895                return 1; /* never round down to 0 */
1896        return usecs * 1000 / efx->timer_quantum_ns;
1897}
1898
1899unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1900{
1901        /* We must round up when converting ticks to microseconds
1902         * because we round down when converting the other way.
1903         */
1904        return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1905}
1906
1907/* Set interrupt moderation parameters */
1908int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1909                            unsigned int rx_usecs, bool rx_adaptive,
1910                            bool rx_may_override_tx)
1911{
1912        struct ef4_channel *channel;
1913        unsigned int timer_max_us;
1914
1915        EF4_ASSERT_RESET_SERIALISED(efx);
1916
1917        timer_max_us = efx->timer_max_ns / 1000;
1918
1919        if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1920                return -EINVAL;
1921
1922        if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1923            !rx_may_override_tx) {
1924                netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1925                          "RX and TX IRQ moderation must be equal\n");
1926                return -EINVAL;
1927        }
1928
1929        efx->irq_rx_adaptive = rx_adaptive;
1930        efx->irq_rx_moderation_us = rx_usecs;
1931        ef4_for_each_channel(channel, efx) {
1932                if (ef4_channel_has_rx_queue(channel))
1933                        channel->irq_moderation_us = rx_usecs;
1934                else if (ef4_channel_has_tx_queues(channel))
1935                        channel->irq_moderation_us = tx_usecs;
1936        }
1937
1938        return 0;
1939}
1940
1941void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1942                            unsigned int *rx_usecs, bool *rx_adaptive)
1943{
1944        *rx_adaptive = efx->irq_rx_adaptive;
1945        *rx_usecs = efx->irq_rx_moderation_us;
1946
1947        /* If channels are shared between RX and TX, so is IRQ
1948         * moderation.  Otherwise, IRQ moderation is the same for all
1949         * TX channels and is not adaptive.
1950         */
1951        if (efx->tx_channel_offset == 0) {
1952                *tx_usecs = *rx_usecs;
1953        } else {
1954                struct ef4_channel *tx_channel;
1955
1956                tx_channel = efx->channel[efx->tx_channel_offset];
1957                *tx_usecs = tx_channel->irq_moderation_us;
1958        }
1959}
1960
1961/**************************************************************************
1962 *
1963 * Hardware monitor
1964 *
1965 **************************************************************************/
1966
1967/* Run periodically off the general workqueue */
1968static void ef4_monitor(struct work_struct *data)
1969{
1970        struct ef4_nic *efx = container_of(data, struct ef4_nic,
1971                                           monitor_work.work);
1972
1973        netif_vdbg(efx, timer, efx->net_dev,
1974                   "hardware monitor executing on CPU %d\n",
1975                   raw_smp_processor_id());
1976        BUG_ON(efx->type->monitor == NULL);
1977
1978        /* If the mac_lock is already held then it is likely a port
1979         * reconfiguration is already in place, which will likely do
1980         * most of the work of monitor() anyway. */
1981        if (mutex_trylock(&efx->mac_lock)) {
1982                if (efx->port_enabled)
1983                        efx->type->monitor(efx);
1984                mutex_unlock(&efx->mac_lock);
1985        }
1986
1987        queue_delayed_work(efx->workqueue, &efx->monitor_work,
1988                           ef4_monitor_interval);
1989}
1990
1991/**************************************************************************
1992 *
1993 * ioctls
1994 *
1995 *************************************************************************/
1996
1997/* Net device ioctl
1998 * Context: process, rtnl_lock() held.
1999 */
2000static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2001{
2002        struct ef4_nic *efx = netdev_priv(net_dev);
2003        struct mii_ioctl_data *data = if_mii(ifr);
2004
2005        /* Convert phy_id from older PRTAD/DEVAD format */
2006        if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2007            (data->phy_id & 0xfc00) == 0x0400)
2008                data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2009
2010        return mdio_mii_ioctl(&efx->mdio, data, cmd);
2011}
2012
2013/**************************************************************************
2014 *
2015 * NAPI interface
2016 *
2017 **************************************************************************/
2018
2019static void ef4_init_napi_channel(struct ef4_channel *channel)
2020{
2021        struct ef4_nic *efx = channel->efx;
2022
2023        channel->napi_dev = efx->net_dev;
2024        netif_napi_add(channel->napi_dev, &channel->napi_str,
2025                       ef4_poll, napi_weight);
2026}
2027
2028static void ef4_init_napi(struct ef4_nic *efx)
2029{
2030        struct ef4_channel *channel;
2031
2032        ef4_for_each_channel(channel, efx)
2033                ef4_init_napi_channel(channel);
2034}
2035
2036static void ef4_fini_napi_channel(struct ef4_channel *channel)
2037{
2038        if (channel->napi_dev)
2039                netif_napi_del(&channel->napi_str);
2040
2041        channel->napi_dev = NULL;
2042}
2043
2044static void ef4_fini_napi(struct ef4_nic *efx)
2045{
2046        struct ef4_channel *channel;
2047
2048        ef4_for_each_channel(channel, efx)
2049                ef4_fini_napi_channel(channel);
2050}
2051
2052/**************************************************************************
2053 *
2054 * Kernel net device interface
2055 *
2056 *************************************************************************/
2057
2058/* Context: process, rtnl_lock() held. */
2059int ef4_net_open(struct net_device *net_dev)
2060{
2061        struct ef4_nic *efx = netdev_priv(net_dev);
2062        int rc;
2063
2064        netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2065                  raw_smp_processor_id());
2066
2067        rc = ef4_check_disabled(efx);
2068        if (rc)
2069                return rc;
2070        if (efx->phy_mode & PHY_MODE_SPECIAL)
2071                return -EBUSY;
2072
2073        /* Notify the kernel of the link state polled during driver load,
2074         * before the monitor starts running */
2075        ef4_link_status_changed(efx);
2076
2077        ef4_start_all(efx);
2078        ef4_selftest_async_start(efx);
2079        return 0;
2080}
2081
2082/* Context: process, rtnl_lock() held.
2083 * Note that the kernel will ignore our return code; this method
2084 * should really be a void.
2085 */
2086int ef4_net_stop(struct net_device *net_dev)
2087{
2088        struct ef4_nic *efx = netdev_priv(net_dev);
2089
2090        netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2091                  raw_smp_processor_id());
2092
2093        /* Stop the device and flush all the channels */
2094        ef4_stop_all(efx);
2095
2096        return 0;
2097}
2098
2099/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2100static void ef4_net_stats(struct net_device *net_dev,
2101                          struct rtnl_link_stats64 *stats)
2102{
2103        struct ef4_nic *efx = netdev_priv(net_dev);
2104
2105        spin_lock_bh(&efx->stats_lock);
2106        efx->type->update_stats(efx, NULL, stats);
2107        spin_unlock_bh(&efx->stats_lock);
2108}
2109
2110/* Context: netif_tx_lock held, BHs disabled. */
2111static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2112{
2113        struct ef4_nic *efx = netdev_priv(net_dev);
2114
2115        netif_err(efx, tx_err, efx->net_dev,
2116                  "TX stuck with port_enabled=%d: resetting channels\n",
2117                  efx->port_enabled);
2118
2119        ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2120}
2121
2122
2123/* Context: process, rtnl_lock() held. */
2124static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2125{
2126        struct ef4_nic *efx = netdev_priv(net_dev);
2127        int rc;
2128
2129        rc = ef4_check_disabled(efx);
2130        if (rc)
2131                return rc;
2132
2133        netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2134
2135        ef4_device_detach_sync(efx);
2136        ef4_stop_all(efx);
2137
2138        mutex_lock(&efx->mac_lock);
2139        net_dev->mtu = new_mtu;
2140        ef4_mac_reconfigure(efx);
2141        mutex_unlock(&efx->mac_lock);
2142
2143        ef4_start_all(efx);
2144        netif_device_attach(efx->net_dev);
2145        return 0;
2146}
2147
2148static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2149{
2150        struct ef4_nic *efx = netdev_priv(net_dev);
2151        struct sockaddr *addr = data;
2152        u8 *new_addr = addr->sa_data;
2153        u8 old_addr[6];
2154        int rc;
2155
2156        if (!is_valid_ether_addr(new_addr)) {
2157                netif_err(efx, drv, efx->net_dev,
2158                          "invalid ethernet MAC address requested: %pM\n",
2159                          new_addr);
2160                return -EADDRNOTAVAIL;
2161        }
2162
2163        /* save old address */
2164        ether_addr_copy(old_addr, net_dev->dev_addr);
2165        ether_addr_copy(net_dev->dev_addr, new_addr);
2166        if (efx->type->set_mac_address) {
2167                rc = efx->type->set_mac_address(efx);
2168                if (rc) {
2169                        ether_addr_copy(net_dev->dev_addr, old_addr);
2170                        return rc;
2171                }
2172        }
2173
2174        /* Reconfigure the MAC */
2175        mutex_lock(&efx->mac_lock);
2176        ef4_mac_reconfigure(efx);
2177        mutex_unlock(&efx->mac_lock);
2178
2179        return 0;
2180}
2181
2182/* Context: netif_addr_lock held, BHs disabled. */
2183static void ef4_set_rx_mode(struct net_device *net_dev)
2184{
2185        struct ef4_nic *efx = netdev_priv(net_dev);
2186
2187        if (efx->port_enabled)
2188                queue_work(efx->workqueue, &efx->mac_work);
2189        /* Otherwise ef4_start_port() will do this */
2190}
2191
2192static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2193{
2194        struct ef4_nic *efx = netdev_priv(net_dev);
2195        int rc;
2196
2197        /* If disabling RX n-tuple filtering, clear existing filters */
2198        if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2199                rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2200                if (rc)
2201                        return rc;
2202        }
2203
2204        /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2205        if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2206                /* ef4_set_rx_mode() will schedule MAC work to update filters
2207                 * when a new features are finally set in net_dev.
2208                 */
2209                ef4_set_rx_mode(net_dev);
2210        }
2211
2212        return 0;
2213}
2214
2215static const struct net_device_ops ef4_netdev_ops = {
2216        .ndo_open               = ef4_net_open,
2217        .ndo_stop               = ef4_net_stop,
2218        .ndo_get_stats64        = ef4_net_stats,
2219        .ndo_tx_timeout         = ef4_watchdog,
2220        .ndo_start_xmit         = ef4_hard_start_xmit,
2221        .ndo_validate_addr      = eth_validate_addr,
2222        .ndo_eth_ioctl          = ef4_ioctl,
2223        .ndo_change_mtu         = ef4_change_mtu,
2224        .ndo_set_mac_address    = ef4_set_mac_address,
2225        .ndo_set_rx_mode        = ef4_set_rx_mode,
2226        .ndo_set_features       = ef4_set_features,
2227        .ndo_setup_tc           = ef4_setup_tc,
2228#ifdef CONFIG_RFS_ACCEL
2229        .ndo_rx_flow_steer      = ef4_filter_rfs,
2230#endif
2231};
2232
2233static void ef4_update_name(struct ef4_nic *efx)
2234{
2235        strcpy(efx->name, efx->net_dev->name);
2236        ef4_mtd_rename(efx);
2237        ef4_set_channel_names(efx);
2238}
2239
2240static int ef4_netdev_event(struct notifier_block *this,
2241                            unsigned long event, void *ptr)
2242{
2243        struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2244
2245        if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2246            event == NETDEV_CHANGENAME)
2247                ef4_update_name(netdev_priv(net_dev));
2248
2249        return NOTIFY_DONE;
2250}
2251
2252static struct notifier_block ef4_netdev_notifier = {
2253        .notifier_call = ef4_netdev_event,
2254};
2255
2256static ssize_t
2257phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2258{
2259        struct ef4_nic *efx = dev_get_drvdata(dev);
2260        return sprintf(buf, "%d\n", efx->phy_type);
2261}
2262static DEVICE_ATTR_RO(phy_type);
2263
2264static int ef4_register_netdev(struct ef4_nic *efx)
2265{
2266        struct net_device *net_dev = efx->net_dev;
2267        struct ef4_channel *channel;
2268        int rc;
2269
2270        net_dev->watchdog_timeo = 5 * HZ;
2271        net_dev->irq = efx->pci_dev->irq;
2272        net_dev->netdev_ops = &ef4_netdev_ops;
2273        net_dev->ethtool_ops = &ef4_ethtool_ops;
2274        net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2275        net_dev->min_mtu = EF4_MIN_MTU;
2276        net_dev->max_mtu = EF4_MAX_MTU;
2277
2278        rtnl_lock();
2279
2280        /* Enable resets to be scheduled and check whether any were
2281         * already requested.  If so, the NIC is probably hosed so we
2282         * abort.
2283         */
2284        efx->state = STATE_READY;
2285        smp_mb(); /* ensure we change state before checking reset_pending */
2286        if (efx->reset_pending) {
2287                netif_err(efx, probe, efx->net_dev,
2288                          "aborting probe due to scheduled reset\n");
2289                rc = -EIO;
2290                goto fail_locked;
2291        }
2292
2293        rc = dev_alloc_name(net_dev, net_dev->name);
2294        if (rc < 0)
2295                goto fail_locked;
2296        ef4_update_name(efx);
2297
2298        /* Always start with carrier off; PHY events will detect the link */
2299        netif_carrier_off(net_dev);
2300
2301        rc = register_netdevice(net_dev);
2302        if (rc)
2303                goto fail_locked;
2304
2305        ef4_for_each_channel(channel, efx) {
2306                struct ef4_tx_queue *tx_queue;
2307                ef4_for_each_channel_tx_queue(tx_queue, channel)
2308                        ef4_init_tx_queue_core_txq(tx_queue);
2309        }
2310
2311        ef4_associate(efx);
2312
2313        rtnl_unlock();
2314
2315        rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2316        if (rc) {
2317                netif_err(efx, drv, efx->net_dev,
2318                          "failed to init net dev attributes\n");
2319                goto fail_registered;
2320        }
2321        return 0;
2322
2323fail_registered:
2324        rtnl_lock();
2325        ef4_dissociate(efx);
2326        unregister_netdevice(net_dev);
2327fail_locked:
2328        efx->state = STATE_UNINIT;
2329        rtnl_unlock();
2330        netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2331        return rc;
2332}
2333
2334static void ef4_unregister_netdev(struct ef4_nic *efx)
2335{
2336        if (!efx->net_dev)
2337                return;
2338
2339        BUG_ON(netdev_priv(efx->net_dev) != efx);
2340
2341        if (ef4_dev_registered(efx)) {
2342                strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2343                device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2344                unregister_netdev(efx->net_dev);
2345        }
2346}
2347
2348/**************************************************************************
2349 *
2350 * Device reset and suspend
2351 *
2352 **************************************************************************/
2353
2354/* Tears down the entire software state and most of the hardware state
2355 * before reset.  */
2356void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2357{
2358        EF4_ASSERT_RESET_SERIALISED(efx);
2359
2360        ef4_stop_all(efx);
2361        ef4_disable_interrupts(efx);
2362
2363        mutex_lock(&efx->mac_lock);
2364        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2365            method != RESET_TYPE_DATAPATH)
2366                efx->phy_op->fini(efx);
2367        efx->type->fini(efx);
2368}
2369
2370/* This function will always ensure that the locks acquired in
2371 * ef4_reset_down() are released. A failure return code indicates
2372 * that we were unable to reinitialise the hardware, and the
2373 * driver should be disabled. If ok is false, then the rx and tx
2374 * engines are not restarted, pending a RESET_DISABLE. */
2375int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2376{
2377        int rc;
2378
2379        EF4_ASSERT_RESET_SERIALISED(efx);
2380
2381        /* Ensure that SRAM is initialised even if we're disabling the device */
2382        rc = efx->type->init(efx);
2383        if (rc) {
2384                netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2385                goto fail;
2386        }
2387
2388        if (!ok)
2389                goto fail;
2390
2391        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2392            method != RESET_TYPE_DATAPATH) {
2393                rc = efx->phy_op->init(efx);
2394                if (rc)
2395                        goto fail;
2396                rc = efx->phy_op->reconfigure(efx);
2397                if (rc && rc != -EPERM)
2398                        netif_err(efx, drv, efx->net_dev,
2399                                  "could not restore PHY settings\n");
2400        }
2401
2402        rc = ef4_enable_interrupts(efx);
2403        if (rc)
2404                goto fail;
2405
2406        down_read(&efx->filter_sem);
2407        ef4_restore_filters(efx);
2408        up_read(&efx->filter_sem);
2409
2410        mutex_unlock(&efx->mac_lock);
2411
2412        ef4_start_all(efx);
2413
2414        return 0;
2415
2416fail:
2417        efx->port_initialized = false;
2418
2419        mutex_unlock(&efx->mac_lock);
2420
2421        return rc;
2422}
2423
2424/* Reset the NIC using the specified method.  Note that the reset may
2425 * fail, in which case the card will be left in an unusable state.
2426 *
2427 * Caller must hold the rtnl_lock.
2428 */
2429int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2430{
2431        int rc, rc2;
2432        bool disabled;
2433
2434        netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2435                   RESET_TYPE(method));
2436
2437        ef4_device_detach_sync(efx);
2438        ef4_reset_down(efx, method);
2439
2440        rc = efx->type->reset(efx, method);
2441        if (rc) {
2442                netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2443                goto out;
2444        }
2445
2446        /* Clear flags for the scopes we covered.  We assume the NIC and
2447         * driver are now quiescent so that there is no race here.
2448         */
2449        if (method < RESET_TYPE_MAX_METHOD)
2450                efx->reset_pending &= -(1 << (method + 1));
2451        else /* it doesn't fit into the well-ordered scope hierarchy */
2452                __clear_bit(method, &efx->reset_pending);
2453
2454        /* Reinitialise bus-mastering, which may have been turned off before
2455         * the reset was scheduled. This is still appropriate, even in the
2456         * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2457         * can respond to requests. */
2458        pci_set_master(efx->pci_dev);
2459
2460out:
2461        /* Leave device stopped if necessary */
2462        disabled = rc ||
2463                method == RESET_TYPE_DISABLE ||
2464                method == RESET_TYPE_RECOVER_OR_DISABLE;
2465        rc2 = ef4_reset_up(efx, method, !disabled);
2466        if (rc2) {
2467                disabled = true;
2468                if (!rc)
2469                        rc = rc2;
2470        }
2471
2472        if (disabled) {
2473                dev_close(efx->net_dev);
2474                netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2475                efx->state = STATE_DISABLED;
2476        } else {
2477                netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2478                netif_device_attach(efx->net_dev);
2479        }
2480        return rc;
2481}
2482
2483/* Try recovery mechanisms.
2484 * For now only EEH is supported.
2485 * Returns 0 if the recovery mechanisms are unsuccessful.
2486 * Returns a non-zero value otherwise.
2487 */
2488int ef4_try_recovery(struct ef4_nic *efx)
2489{
2490#ifdef CONFIG_EEH
2491        /* A PCI error can occur and not be seen by EEH because nothing
2492         * happens on the PCI bus. In this case the driver may fail and
2493         * schedule a 'recover or reset', leading to this recovery handler.
2494         * Manually call the eeh failure check function.
2495         */
2496        struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2497        if (eeh_dev_check_failure(eehdev)) {
2498                /* The EEH mechanisms will handle the error and reset the
2499                 * device if necessary.
2500                 */
2501                return 1;
2502        }
2503#endif
2504        return 0;
2505}
2506
2507/* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2509 */
2510static void ef4_reset_work(struct work_struct *data)
2511{
2512        struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2513        unsigned long pending;
2514        enum reset_type method;
2515
2516        pending = READ_ONCE(efx->reset_pending);
2517        method = fls(pending) - 1;
2518
2519        if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2520             method == RESET_TYPE_RECOVER_OR_ALL) &&
2521            ef4_try_recovery(efx))
2522                return;
2523
2524        if (!pending)
2525                return;
2526
2527        rtnl_lock();
2528
2529        /* We checked the state in ef4_schedule_reset() but it may
2530         * have changed by now.  Now that we have the RTNL lock,
2531         * it cannot change again.
2532         */
2533        if (efx->state == STATE_READY)
2534                (void)ef4_reset(efx, method);
2535
2536        rtnl_unlock();
2537}
2538
2539void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2540{
2541        enum reset_type method;
2542
2543        if (efx->state == STATE_RECOVERY) {
2544                netif_dbg(efx, drv, efx->net_dev,
2545                          "recovering: skip scheduling %s reset\n",
2546                          RESET_TYPE(type));
2547                return;
2548        }
2549
2550        switch (type) {
2551        case RESET_TYPE_INVISIBLE:
2552        case RESET_TYPE_ALL:
2553        case RESET_TYPE_RECOVER_OR_ALL:
2554        case RESET_TYPE_WORLD:
2555        case RESET_TYPE_DISABLE:
2556        case RESET_TYPE_RECOVER_OR_DISABLE:
2557        case RESET_TYPE_DATAPATH:
2558                method = type;
2559                netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2560                          RESET_TYPE(method));
2561                break;
2562        default:
2563                method = efx->type->map_reset_reason(type);
2564                netif_dbg(efx, drv, efx->net_dev,
2565                          "scheduling %s reset for %s\n",
2566                          RESET_TYPE(method), RESET_TYPE(type));
2567                break;
2568        }
2569
2570        set_bit(method, &efx->reset_pending);
2571        smp_mb(); /* ensure we change reset_pending before checking state */
2572
2573        /* If we're not READY then just leave the flags set as the cue
2574         * to abort probing or reschedule the reset later.
2575         */
2576        if (READ_ONCE(efx->state) != STATE_READY)
2577                return;
2578
2579        queue_work(reset_workqueue, &efx->reset_work);
2580}
2581
2582/**************************************************************************
2583 *
2584 * List of NICs we support
2585 *
2586 **************************************************************************/
2587
2588/* PCI device ID table */
2589static const struct pci_device_id ef4_pci_table[] = {
2590        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2591                    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2592         .driver_data = (unsigned long) &falcon_a1_nic_type},
2593        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2594                    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2595         .driver_data = (unsigned long) &falcon_b0_nic_type},
2596        {0}                     /* end of list */
2597};
2598
2599/**************************************************************************
2600 *
2601 * Dummy PHY/MAC operations
2602 *
2603 * Can be used for some unimplemented operations
2604 * Needed so all function pointers are valid and do not have to be tested
2605 * before use
2606 *
2607 **************************************************************************/
2608int ef4_port_dummy_op_int(struct ef4_nic *efx)
2609{
2610        return 0;
2611}
2612void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2613
2614static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2615{
2616        return false;
2617}
2618
2619static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2620        .init            = ef4_port_dummy_op_int,
2621        .reconfigure     = ef4_port_dummy_op_int,
2622        .poll            = ef4_port_dummy_op_poll,
2623        .fini            = ef4_port_dummy_op_void,
2624};
2625
2626/**************************************************************************
2627 *
2628 * Data housekeeping
2629 *
2630 **************************************************************************/
2631
2632/* This zeroes out and then fills in the invariants in a struct
2633 * ef4_nic (including all sub-structures).
2634 */
2635static int ef4_init_struct(struct ef4_nic *efx,
2636                           struct pci_dev *pci_dev, struct net_device *net_dev)
2637{
2638        int i;
2639
2640        /* Initialise common structures */
2641        INIT_LIST_HEAD(&efx->node);
2642        INIT_LIST_HEAD(&efx->secondary_list);
2643        spin_lock_init(&efx->biu_lock);
2644#ifdef CONFIG_SFC_FALCON_MTD
2645        INIT_LIST_HEAD(&efx->mtd_list);
2646#endif
2647        INIT_WORK(&efx->reset_work, ef4_reset_work);
2648        INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2649        INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2650        efx->pci_dev = pci_dev;
2651        efx->msg_enable = debug;
2652        efx->state = STATE_UNINIT;
2653        strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2654
2655        efx->net_dev = net_dev;
2656        efx->rx_prefix_size = efx->type->rx_prefix_size;
2657        efx->rx_ip_align =
2658                NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2659        efx->rx_packet_hash_offset =
2660                efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2661        efx->rx_packet_ts_offset =
2662                efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2663        spin_lock_init(&efx->stats_lock);
2664        mutex_init(&efx->mac_lock);
2665        efx->phy_op = &ef4_dummy_phy_operations;
2666        efx->mdio.dev = net_dev;
2667        INIT_WORK(&efx->mac_work, ef4_mac_work);
2668        init_waitqueue_head(&efx->flush_wq);
2669
2670        for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2671                efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2672                if (!efx->channel[i])
2673                        goto fail;
2674                efx->msi_context[i].efx = efx;
2675                efx->msi_context[i].index = i;
2676        }
2677
2678        /* Higher numbered interrupt modes are less capable! */
2679        efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2680                                  interrupt_mode);
2681
2682        /* Would be good to use the net_dev name, but we're too early */
2683        snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2684                 pci_name(pci_dev));
2685        efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2686        if (!efx->workqueue)
2687                goto fail;
2688
2689        return 0;
2690
2691fail:
2692        ef4_fini_struct(efx);
2693        return -ENOMEM;
2694}
2695
2696static void ef4_fini_struct(struct ef4_nic *efx)
2697{
2698        int i;
2699
2700        for (i = 0; i < EF4_MAX_CHANNELS; i++)
2701                kfree(efx->channel[i]);
2702
2703        kfree(efx->vpd_sn);
2704
2705        if (efx->workqueue) {
2706                destroy_workqueue(efx->workqueue);
2707                efx->workqueue = NULL;
2708        }
2709}
2710
2711void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2712{
2713        u64 n_rx_nodesc_trunc = 0;
2714        struct ef4_channel *channel;
2715
2716        ef4_for_each_channel(channel, efx)
2717                n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2718        stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2719        stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2720}
2721
2722/**************************************************************************
2723 *
2724 * PCI interface
2725 *
2726 **************************************************************************/
2727
2728/* Main body of final NIC shutdown code
2729 * This is called only at module unload (or hotplug removal).
2730 */
2731static void ef4_pci_remove_main(struct ef4_nic *efx)
2732{
2733        /* Flush reset_work. It can no longer be scheduled since we
2734         * are not READY.
2735         */
2736        BUG_ON(efx->state == STATE_READY);
2737        cancel_work_sync(&efx->reset_work);
2738
2739        ef4_disable_interrupts(efx);
2740        ef4_nic_fini_interrupt(efx);
2741        ef4_fini_port(efx);
2742        efx->type->fini(efx);
2743        ef4_fini_napi(efx);
2744        ef4_remove_all(efx);
2745}
2746
2747/* Final NIC shutdown
2748 * This is called only at module unload (or hotplug removal).  A PF can call
2749 * this on its VFs to ensure they are unbound first.
2750 */
2751static void ef4_pci_remove(struct pci_dev *pci_dev)
2752{
2753        struct ef4_nic *efx;
2754
2755        efx = pci_get_drvdata(pci_dev);
2756        if (!efx)
2757                return;
2758
2759        /* Mark the NIC as fini, then stop the interface */
2760        rtnl_lock();
2761        ef4_dissociate(efx);
2762        dev_close(efx->net_dev);
2763        ef4_disable_interrupts(efx);
2764        efx->state = STATE_UNINIT;
2765        rtnl_unlock();
2766
2767        ef4_unregister_netdev(efx);
2768
2769        ef4_mtd_remove(efx);
2770
2771        ef4_pci_remove_main(efx);
2772
2773        ef4_fini_io(efx);
2774        netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2775
2776        ef4_fini_struct(efx);
2777        free_netdev(efx->net_dev);
2778
2779        pci_disable_pcie_error_reporting(pci_dev);
2780};
2781
2782/* NIC VPD information
2783 * Called during probe to display the part number of the installed NIC.
2784 */
2785static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2786{
2787        struct pci_dev *dev = efx->pci_dev;
2788        unsigned int vpd_size, kw_len;
2789        u8 *vpd_data;
2790        int start;
2791
2792        vpd_data = pci_vpd_alloc(dev, &vpd_size);
2793        if (IS_ERR(vpd_data)) {
2794                pci_warn(dev, "Unable to read VPD\n");
2795                return;
2796        }
2797
2798        start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2799                                             PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2800        if (start < 0)
2801                pci_warn(dev, "Part number not found or incomplete\n");
2802        else
2803                pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2804
2805        start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2806                                             PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2807        if (start < 0)
2808                pci_warn(dev, "Serial number not found or incomplete\n");
2809        else
2810                efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2811
2812        kfree(vpd_data);
2813}
2814
2815
2816/* Main body of NIC initialisation
2817 * This is called at module load (or hotplug insertion, theoretically).
2818 */
2819static int ef4_pci_probe_main(struct ef4_nic *efx)
2820{
2821        int rc;
2822
2823        /* Do start-of-day initialisation */
2824        rc = ef4_probe_all(efx);
2825        if (rc)
2826                goto fail1;
2827
2828        ef4_init_napi(efx);
2829
2830        rc = efx->type->init(efx);
2831        if (rc) {
2832                netif_err(efx, probe, efx->net_dev,
2833                          "failed to initialise NIC\n");
2834                goto fail3;
2835        }
2836
2837        rc = ef4_init_port(efx);
2838        if (rc) {
2839                netif_err(efx, probe, efx->net_dev,
2840                          "failed to initialise port\n");
2841                goto fail4;
2842        }
2843
2844        rc = ef4_nic_init_interrupt(efx);
2845        if (rc)
2846                goto fail5;
2847        rc = ef4_enable_interrupts(efx);
2848        if (rc)
2849                goto fail6;
2850
2851        return 0;
2852
2853 fail6:
2854        ef4_nic_fini_interrupt(efx);
2855 fail5:
2856        ef4_fini_port(efx);
2857 fail4:
2858        efx->type->fini(efx);
2859 fail3:
2860        ef4_fini_napi(efx);
2861        ef4_remove_all(efx);
2862 fail1:
2863        return rc;
2864}
2865
2866/* NIC initialisation
2867 *
2868 * This is called at module load (or hotplug insertion,
2869 * theoretically).  It sets up PCI mappings, resets the NIC,
2870 * sets up and registers the network devices with the kernel and hooks
2871 * the interrupt service routine.  It does not prepare the device for
2872 * transmission; this is left to the first time one of the network
2873 * interfaces is brought up (i.e. ef4_net_open).
2874 */
2875static int ef4_pci_probe(struct pci_dev *pci_dev,
2876                         const struct pci_device_id *entry)
2877{
2878        struct net_device *net_dev;
2879        struct ef4_nic *efx;
2880        int rc;
2881
2882        /* Allocate and initialise a struct net_device and struct ef4_nic */
2883        net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2884                                     EF4_MAX_RX_QUEUES);
2885        if (!net_dev)
2886                return -ENOMEM;
2887        efx = netdev_priv(net_dev);
2888        efx->type = (const struct ef4_nic_type *) entry->driver_data;
2889        efx->fixed_features |= NETIF_F_HIGHDMA;
2890
2891        pci_set_drvdata(pci_dev, efx);
2892        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2893        rc = ef4_init_struct(efx, pci_dev, net_dev);
2894        if (rc)
2895                goto fail1;
2896
2897        netif_info(efx, probe, efx->net_dev,
2898                   "Solarflare NIC detected\n");
2899
2900        ef4_probe_vpd_strings(efx);
2901
2902        /* Set up basic I/O (BAR mappings etc) */
2903        rc = ef4_init_io(efx);
2904        if (rc)
2905                goto fail2;
2906
2907        rc = ef4_pci_probe_main(efx);
2908        if (rc)
2909                goto fail3;
2910
2911        net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2912                              NETIF_F_RXCSUM);
2913        /* Mask for features that also apply to VLAN devices */
2914        net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2915                                   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2916
2917        net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2918
2919        /* Disable VLAN filtering by default.  It may be enforced if
2920         * the feature is fixed (i.e. VLAN filters are required to
2921         * receive VLAN tagged packets due to vPort restrictions).
2922         */
2923        net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2924        net_dev->features |= efx->fixed_features;
2925
2926        rc = ef4_register_netdev(efx);
2927        if (rc)
2928                goto fail4;
2929
2930        netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2931
2932        /* Try to create MTDs, but allow this to fail */
2933        rtnl_lock();
2934        rc = ef4_mtd_probe(efx);
2935        rtnl_unlock();
2936        if (rc && rc != -EPERM)
2937                netif_warn(efx, probe, efx->net_dev,
2938                           "failed to create MTDs (%d)\n", rc);
2939
2940        rc = pci_enable_pcie_error_reporting(pci_dev);
2941        if (rc && rc != -EINVAL)
2942                netif_notice(efx, probe, efx->net_dev,
2943                             "PCIE error reporting unavailable (%d).\n",
2944                             rc);
2945
2946        return 0;
2947
2948 fail4:
2949        ef4_pci_remove_main(efx);
2950 fail3:
2951        ef4_fini_io(efx);
2952 fail2:
2953        ef4_fini_struct(efx);
2954 fail1:
2955        WARN_ON(rc > 0);
2956        netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2957        free_netdev(net_dev);
2958        return rc;
2959}
2960
2961static int ef4_pm_freeze(struct device *dev)
2962{
2963        struct ef4_nic *efx = dev_get_drvdata(dev);
2964
2965        rtnl_lock();
2966
2967        if (efx->state != STATE_DISABLED) {
2968                efx->state = STATE_UNINIT;
2969
2970                ef4_device_detach_sync(efx);
2971
2972                ef4_stop_all(efx);
2973                ef4_disable_interrupts(efx);
2974        }
2975
2976        rtnl_unlock();
2977
2978        return 0;
2979}
2980
2981static int ef4_pm_thaw(struct device *dev)
2982{
2983        int rc;
2984        struct ef4_nic *efx = dev_get_drvdata(dev);
2985
2986        rtnl_lock();
2987
2988        if (efx->state != STATE_DISABLED) {
2989                rc = ef4_enable_interrupts(efx);
2990                if (rc)
2991                        goto fail;
2992
2993                mutex_lock(&efx->mac_lock);
2994                efx->phy_op->reconfigure(efx);
2995                mutex_unlock(&efx->mac_lock);
2996
2997                ef4_start_all(efx);
2998
2999                netif_device_attach(efx->net_dev);
3000
3001                efx->state = STATE_READY;
3002
3003                efx->type->resume_wol(efx);
3004        }
3005
3006        rtnl_unlock();
3007
3008        /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3009        queue_work(reset_workqueue, &efx->reset_work);
3010
3011        return 0;
3012
3013fail:
3014        rtnl_unlock();
3015
3016        return rc;
3017}
3018
3019static int ef4_pm_poweroff(struct device *dev)
3020{
3021        struct pci_dev *pci_dev = to_pci_dev(dev);
3022        struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3023
3024        efx->type->fini(efx);
3025
3026        efx->reset_pending = 0;
3027
3028        pci_save_state(pci_dev);
3029        return pci_set_power_state(pci_dev, PCI_D3hot);
3030}
3031
3032/* Used for both resume and restore */
3033static int ef4_pm_resume(struct device *dev)
3034{
3035        struct pci_dev *pci_dev = to_pci_dev(dev);
3036        struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3037        int rc;
3038
3039        rc = pci_set_power_state(pci_dev, PCI_D0);
3040        if (rc)
3041                return rc;
3042        pci_restore_state(pci_dev);
3043        rc = pci_enable_device(pci_dev);
3044        if (rc)
3045                return rc;
3046        pci_set_master(efx->pci_dev);
3047        rc = efx->type->reset(efx, RESET_TYPE_ALL);
3048        if (rc)
3049                return rc;
3050        rc = efx->type->init(efx);
3051        if (rc)
3052                return rc;
3053        rc = ef4_pm_thaw(dev);
3054        return rc;
3055}
3056
3057static int ef4_pm_suspend(struct device *dev)
3058{
3059        int rc;
3060
3061        ef4_pm_freeze(dev);
3062        rc = ef4_pm_poweroff(dev);
3063        if (rc)
3064                ef4_pm_resume(dev);
3065        return rc;
3066}
3067
3068static const struct dev_pm_ops ef4_pm_ops = {
3069        .suspend        = ef4_pm_suspend,
3070        .resume         = ef4_pm_resume,
3071        .freeze         = ef4_pm_freeze,
3072        .thaw           = ef4_pm_thaw,
3073        .poweroff       = ef4_pm_poweroff,
3074        .restore        = ef4_pm_resume,
3075};
3076
3077/* A PCI error affecting this device was detected.
3078 * At this point MMIO and DMA may be disabled.
3079 * Stop the software path and request a slot reset.
3080 */
3081static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3082                                              pci_channel_state_t state)
3083{
3084        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3085        struct ef4_nic *efx = pci_get_drvdata(pdev);
3086
3087        if (state == pci_channel_io_perm_failure)
3088                return PCI_ERS_RESULT_DISCONNECT;
3089
3090        rtnl_lock();
3091
3092        if (efx->state != STATE_DISABLED) {
3093                efx->state = STATE_RECOVERY;
3094                efx->reset_pending = 0;
3095
3096                ef4_device_detach_sync(efx);
3097
3098                ef4_stop_all(efx);
3099                ef4_disable_interrupts(efx);
3100
3101                status = PCI_ERS_RESULT_NEED_RESET;
3102        } else {
3103                /* If the interface is disabled we don't want to do anything
3104                 * with it.
3105                 */
3106                status = PCI_ERS_RESULT_RECOVERED;
3107        }
3108
3109        rtnl_unlock();
3110
3111        pci_disable_device(pdev);
3112
3113        return status;
3114}
3115
3116/* Fake a successful reset, which will be performed later in ef4_io_resume. */
3117static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3118{
3119        struct ef4_nic *efx = pci_get_drvdata(pdev);
3120        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3121
3122        if (pci_enable_device(pdev)) {
3123                netif_err(efx, hw, efx->net_dev,
3124                          "Cannot re-enable PCI device after reset.\n");
3125                status =  PCI_ERS_RESULT_DISCONNECT;
3126        }
3127
3128        return status;
3129}
3130
3131/* Perform the actual reset and resume I/O operations. */
3132static void ef4_io_resume(struct pci_dev *pdev)
3133{
3134        struct ef4_nic *efx = pci_get_drvdata(pdev);
3135        int rc;
3136
3137        rtnl_lock();
3138
3139        if (efx->state == STATE_DISABLED)
3140                goto out;
3141
3142        rc = ef4_reset(efx, RESET_TYPE_ALL);
3143        if (rc) {
3144                netif_err(efx, hw, efx->net_dev,
3145                          "ef4_reset failed after PCI error (%d)\n", rc);
3146        } else {
3147                efx->state = STATE_READY;
3148                netif_dbg(efx, hw, efx->net_dev,
3149                          "Done resetting and resuming IO after PCI error.\n");
3150        }
3151
3152out:
3153        rtnl_unlock();
3154}
3155
3156/* For simplicity and reliability, we always require a slot reset and try to
3157 * reset the hardware when a pci error affecting the device is detected.
3158 * We leave both the link_reset and mmio_enabled callback unimplemented:
3159 * with our request for slot reset the mmio_enabled callback will never be
3160 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3161 */
3162static const struct pci_error_handlers ef4_err_handlers = {
3163        .error_detected = ef4_io_error_detected,
3164        .slot_reset     = ef4_io_slot_reset,
3165        .resume         = ef4_io_resume,
3166};
3167
3168static struct pci_driver ef4_pci_driver = {
3169        .name           = KBUILD_MODNAME,
3170        .id_table       = ef4_pci_table,
3171        .probe          = ef4_pci_probe,
3172        .remove         = ef4_pci_remove,
3173        .driver.pm      = &ef4_pm_ops,
3174        .err_handler    = &ef4_err_handlers,
3175};
3176
3177/**************************************************************************
3178 *
3179 * Kernel module interface
3180 *
3181 *************************************************************************/
3182
3183module_param(interrupt_mode, uint, 0444);
3184MODULE_PARM_DESC(interrupt_mode,
3185                 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3186
3187static int __init ef4_init_module(void)
3188{
3189        int rc;
3190
3191        printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3192
3193        rc = register_netdevice_notifier(&ef4_netdev_notifier);
3194        if (rc)
3195                goto err_notifier;
3196
3197        reset_workqueue = create_singlethread_workqueue("sfc_reset");
3198        if (!reset_workqueue) {
3199                rc = -ENOMEM;
3200                goto err_reset;
3201        }
3202
3203        rc = pci_register_driver(&ef4_pci_driver);
3204        if (rc < 0)
3205                goto err_pci;
3206
3207        return 0;
3208
3209 err_pci:
3210        destroy_workqueue(reset_workqueue);
3211 err_reset:
3212        unregister_netdevice_notifier(&ef4_netdev_notifier);
3213 err_notifier:
3214        return rc;
3215}
3216
3217static void __exit ef4_exit_module(void)
3218{
3219        printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3220
3221        pci_unregister_driver(&ef4_pci_driver);
3222        destroy_workqueue(reset_workqueue);
3223        unregister_netdevice_notifier(&ef4_netdev_notifier);
3224
3225}
3226
3227module_init(ef4_init_module);
3228module_exit(ef4_exit_module);
3229
3230MODULE_AUTHOR("Solarflare Communications and "
3231              "Michael Brown <mbrown@fensystems.co.uk>");
3232MODULE_DESCRIPTION("Solarflare Falcon network driver");
3233MODULE_LICENSE("GPL");
3234MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3235MODULE_VERSION(EF4_DRIVER_VERSION);
3236