linux/drivers/net/ethernet/sfc/falcon/falcon.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/delay.h>
  10#include <linux/pci.h>
  11#include <linux/module.h>
  12#include <linux/seq_file.h>
  13#include <linux/i2c.h>
  14#include <linux/mii.h>
  15#include <linux/slab.h>
  16#include <linux/sched/signal.h>
  17
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "io.h"
  24#include "phy.h"
  25#include "workarounds.h"
  26#include "selftest.h"
  27#include "mdio_10g.h"
  28
  29/* Hardware control for SFC4000 (aka Falcon). */
  30
  31/**************************************************************************
  32 *
  33 * NIC stats
  34 *
  35 **************************************************************************
  36 */
  37
  38#define FALCON_MAC_STATS_SIZE 0x100
  39
  40#define XgRxOctets_offset 0x0
  41#define XgRxOctets_WIDTH 48
  42#define XgRxOctetsOK_offset 0x8
  43#define XgRxOctetsOK_WIDTH 48
  44#define XgRxPkts_offset 0x10
  45#define XgRxPkts_WIDTH 32
  46#define XgRxPktsOK_offset 0x14
  47#define XgRxPktsOK_WIDTH 32
  48#define XgRxBroadcastPkts_offset 0x18
  49#define XgRxBroadcastPkts_WIDTH 32
  50#define XgRxMulticastPkts_offset 0x1C
  51#define XgRxMulticastPkts_WIDTH 32
  52#define XgRxUnicastPkts_offset 0x20
  53#define XgRxUnicastPkts_WIDTH 32
  54#define XgRxUndersizePkts_offset 0x24
  55#define XgRxUndersizePkts_WIDTH 32
  56#define XgRxOversizePkts_offset 0x28
  57#define XgRxOversizePkts_WIDTH 32
  58#define XgRxJabberPkts_offset 0x2C
  59#define XgRxJabberPkts_WIDTH 32
  60#define XgRxUndersizeFCSerrorPkts_offset 0x30
  61#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  62#define XgRxDropEvents_offset 0x34
  63#define XgRxDropEvents_WIDTH 32
  64#define XgRxFCSerrorPkts_offset 0x38
  65#define XgRxFCSerrorPkts_WIDTH 32
  66#define XgRxAlignError_offset 0x3C
  67#define XgRxAlignError_WIDTH 32
  68#define XgRxSymbolError_offset 0x40
  69#define XgRxSymbolError_WIDTH 32
  70#define XgRxInternalMACError_offset 0x44
  71#define XgRxInternalMACError_WIDTH 32
  72#define XgRxControlPkts_offset 0x48
  73#define XgRxControlPkts_WIDTH 32
  74#define XgRxPausePkts_offset 0x4C
  75#define XgRxPausePkts_WIDTH 32
  76#define XgRxPkts64Octets_offset 0x50
  77#define XgRxPkts64Octets_WIDTH 32
  78#define XgRxPkts65to127Octets_offset 0x54
  79#define XgRxPkts65to127Octets_WIDTH 32
  80#define XgRxPkts128to255Octets_offset 0x58
  81#define XgRxPkts128to255Octets_WIDTH 32
  82#define XgRxPkts256to511Octets_offset 0x5C
  83#define XgRxPkts256to511Octets_WIDTH 32
  84#define XgRxPkts512to1023Octets_offset 0x60
  85#define XgRxPkts512to1023Octets_WIDTH 32
  86#define XgRxPkts1024to15xxOctets_offset 0x64
  87#define XgRxPkts1024to15xxOctets_WIDTH 32
  88#define XgRxPkts15xxtoMaxOctets_offset 0x68
  89#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  90#define XgRxLengthError_offset 0x6C
  91#define XgRxLengthError_WIDTH 32
  92#define XgTxPkts_offset 0x80
  93#define XgTxPkts_WIDTH 32
  94#define XgTxOctets_offset 0x88
  95#define XgTxOctets_WIDTH 48
  96#define XgTxMulticastPkts_offset 0x90
  97#define XgTxMulticastPkts_WIDTH 32
  98#define XgTxBroadcastPkts_offset 0x94
  99#define XgTxBroadcastPkts_WIDTH 32
 100#define XgTxUnicastPkts_offset 0x98
 101#define XgTxUnicastPkts_WIDTH 32
 102#define XgTxControlPkts_offset 0x9C
 103#define XgTxControlPkts_WIDTH 32
 104#define XgTxPausePkts_offset 0xA0
 105#define XgTxPausePkts_WIDTH 32
 106#define XgTxPkts64Octets_offset 0xA4
 107#define XgTxPkts64Octets_WIDTH 32
 108#define XgTxPkts65to127Octets_offset 0xA8
 109#define XgTxPkts65to127Octets_WIDTH 32
 110#define XgTxPkts128to255Octets_offset 0xAC
 111#define XgTxPkts128to255Octets_WIDTH 32
 112#define XgTxPkts256to511Octets_offset 0xB0
 113#define XgTxPkts256to511Octets_WIDTH 32
 114#define XgTxPkts512to1023Octets_offset 0xB4
 115#define XgTxPkts512to1023Octets_WIDTH 32
 116#define XgTxPkts1024to15xxOctets_offset 0xB8
 117#define XgTxPkts1024to15xxOctets_WIDTH 32
 118#define XgTxPkts1519toMaxOctets_offset 0xBC
 119#define XgTxPkts1519toMaxOctets_WIDTH 32
 120#define XgTxUndersizePkts_offset 0xC0
 121#define XgTxUndersizePkts_WIDTH 32
 122#define XgTxOversizePkts_offset 0xC4
 123#define XgTxOversizePkts_WIDTH 32
 124#define XgTxNonTcpUdpPkt_offset 0xC8
 125#define XgTxNonTcpUdpPkt_WIDTH 16
 126#define XgTxMacSrcErrPkt_offset 0xCC
 127#define XgTxMacSrcErrPkt_WIDTH 16
 128#define XgTxIpSrcErrPkt_offset 0xD0
 129#define XgTxIpSrcErrPkt_WIDTH 16
 130#define XgDmaDone_offset 0xD4
 131#define XgDmaDone_WIDTH 32
 132
 133#define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
 134        (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 135
 136#define FALCON_DMA_STAT(ext_name, hw_name)                              \
 137        [FALCON_STAT_ ## ext_name] =                                    \
 138        { #ext_name,                                                    \
 139          /* 48-bit stats are zero-padded to 64 on DMA */               \
 140          hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
 141          hw_name ## _ ## offset }
 142#define FALCON_OTHER_STAT(ext_name)                                     \
 143        [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 144#define GENERIC_SW_STAT(ext_name)                               \
 145        [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 146
 147static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 148        FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 149        FALCON_DMA_STAT(tx_packets, XgTxPkts),
 150        FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 151        FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 152        FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 153        FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 154        FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 155        FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 156        FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 157        FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 158        FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 159        FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 160        FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 161        FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 162        FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 163        FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 164        FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 165        FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 166        FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 167        FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 168        FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 169        FALCON_OTHER_STAT(rx_bad_bytes),
 170        FALCON_DMA_STAT(rx_packets, XgRxPkts),
 171        FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 172        FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 173        FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 174        FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 175        FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 176        FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 177        FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 178        FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 179        FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 180        FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 181        FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 182        FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 183        FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 184        FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 185        FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 186        FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 187        FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 188        FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 189        FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 190        FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 191        FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 192        FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 193        FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 194        FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 195        GENERIC_SW_STAT(rx_nodesc_trunc),
 196        GENERIC_SW_STAT(rx_noskb_drops),
 197};
 198static const unsigned long falcon_stat_mask[] = {
 199        [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 200};
 201
 202/**************************************************************************
 203 *
 204 * Basic SPI command set and bit definitions
 205 *
 206 *************************************************************************/
 207
 208#define SPI_WRSR 0x01           /* Write status register */
 209#define SPI_WRITE 0x02          /* Write data to memory array */
 210#define SPI_READ 0x03           /* Read data from memory array */
 211#define SPI_WRDI 0x04           /* Reset write enable latch */
 212#define SPI_RDSR 0x05           /* Read status register */
 213#define SPI_WREN 0x06           /* Set write enable latch */
 214#define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
 215
 216#define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
 217#define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
 218#define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
 219#define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
 220#define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
 221#define SPI_STATUS_NRDY 0x01    /* Device busy flag */
 222
 223/**************************************************************************
 224 *
 225 * Non-volatile memory layout
 226 *
 227 **************************************************************************
 228 */
 229
 230/* SFC4000 flash is partitioned into:
 231 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 232 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 233 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 234 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 235 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 236 *     0-0x400       chip and board config
 237 *     configurable  VPD
 238 *     0x800-0x1800  boot config
 239 * Aside from the chip and board config, all of these are optional and may
 240 * be absent or truncated depending on the devices used.
 241 */
 242#define FALCON_NVCONFIG_END 0x400U
 243#define FALCON_FLASH_BOOTCODE_START 0x8000U
 244#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 245#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 246
 247/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 248struct falcon_nvconfig_board_v2 {
 249        __le16 nports;
 250        u8 port0_phy_addr;
 251        u8 port0_phy_type;
 252        u8 port1_phy_addr;
 253        u8 port1_phy_type;
 254        __le16 asic_sub_revision;
 255        __le16 board_revision;
 256} __packed;
 257
 258/* Board configuration v3 extra information */
 259struct falcon_nvconfig_board_v3 {
 260        __le32 spi_device_type[2];
 261} __packed;
 262
 263/* Bit numbers for spi_device_type */
 264#define SPI_DEV_TYPE_SIZE_LBN 0
 265#define SPI_DEV_TYPE_SIZE_WIDTH 5
 266#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 267#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 268#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 269#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 270#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 271#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 272#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 273#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 274#define SPI_DEV_TYPE_FIELD(type, field)                                 \
 275        (((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
 276
 277#define FALCON_NVCONFIG_OFFSET 0x300
 278
 279#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 280struct falcon_nvconfig {
 281        ef4_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
 282        u8 mac_address[2][8];                   /* 0x310 */
 283        ef4_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
 284        ef4_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
 285        ef4_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
 286        ef4_oword_t hw_init_reg;                        /* 0x350 */
 287        ef4_oword_t nic_stat_reg;                       /* 0x360 */
 288        ef4_oword_t glb_ctl_reg;                        /* 0x370 */
 289        ef4_oword_t srm_cfg_reg;                        /* 0x380 */
 290        ef4_oword_t spare_reg;                          /* 0x390 */
 291        __le16 board_magic_num;                 /* 0x3A0 */
 292        __le16 board_struct_ver;
 293        __le16 board_checksum;
 294        struct falcon_nvconfig_board_v2 board_v2;
 295        ef4_oword_t ee_base_page_reg;                   /* 0x3B0 */
 296        struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
 297} __packed;
 298
 299/*************************************************************************/
 300
 301static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
 302static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
 303
 304static const unsigned int
 305/* "Large" EEPROM device: Atmel AT25640 or similar
 306 * 8 KB, 16-bit address, 32 B write block */
 307large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 308                     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 309                     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 310/* Default flash device: Atmel AT25F1024
 311 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 312default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 313                      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 314                      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 315                      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 316                      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 317
 318/**************************************************************************
 319 *
 320 * I2C bus - this is a bit-bashing interface using GPIO pins
 321 * Note that it uses the output enables to tristate the outputs
 322 * SDA is the data pin and SCL is the clock
 323 *
 324 **************************************************************************
 325 */
 326static void falcon_setsda(void *data, int state)
 327{
 328        struct ef4_nic *efx = (struct ef4_nic *)data;
 329        ef4_oword_t reg;
 330
 331        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 332        EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 333        ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
 334}
 335
 336static void falcon_setscl(void *data, int state)
 337{
 338        struct ef4_nic *efx = (struct ef4_nic *)data;
 339        ef4_oword_t reg;
 340
 341        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 342        EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 343        ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
 344}
 345
 346static int falcon_getsda(void *data)
 347{
 348        struct ef4_nic *efx = (struct ef4_nic *)data;
 349        ef4_oword_t reg;
 350
 351        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 352        return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 353}
 354
 355static int falcon_getscl(void *data)
 356{
 357        struct ef4_nic *efx = (struct ef4_nic *)data;
 358        ef4_oword_t reg;
 359
 360        ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
 361        return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 362}
 363
 364static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 365        .setsda         = falcon_setsda,
 366        .setscl         = falcon_setscl,
 367        .getsda         = falcon_getsda,
 368        .getscl         = falcon_getscl,
 369        .udelay         = 5,
 370        /* Wait up to 50 ms for slave to let us pull SCL high */
 371        .timeout        = DIV_ROUND_UP(HZ, 20),
 372};
 373
 374static void falcon_push_irq_moderation(struct ef4_channel *channel)
 375{
 376        ef4_dword_t timer_cmd;
 377        struct ef4_nic *efx = channel->efx;
 378
 379        /* Set timer register */
 380        if (channel->irq_moderation_us) {
 381                unsigned int ticks;
 382
 383                ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
 384                EF4_POPULATE_DWORD_2(timer_cmd,
 385                                     FRF_AB_TC_TIMER_MODE,
 386                                     FFE_BB_TIMER_MODE_INT_HLDOFF,
 387                                     FRF_AB_TC_TIMER_VAL,
 388                                     ticks - 1);
 389        } else {
 390                EF4_POPULATE_DWORD_2(timer_cmd,
 391                                     FRF_AB_TC_TIMER_MODE,
 392                                     FFE_BB_TIMER_MODE_DIS,
 393                                     FRF_AB_TC_TIMER_VAL, 0);
 394        }
 395        BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 396        ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 397                               channel->channel);
 398}
 399
 400static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
 401
 402static void falcon_prepare_flush(struct ef4_nic *efx)
 403{
 404        falcon_deconfigure_mac_wrapper(efx);
 405
 406        /* Wait for the tx and rx fifo's to get to the next packet boundary
 407         * (~1ms without back-pressure), then to drain the remainder of the
 408         * fifo's at data path speeds (negligible), with a healthy margin. */
 409        msleep(10);
 410}
 411
 412/* Acknowledge a legacy interrupt from Falcon
 413 *
 414 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 415 *
 416 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 417 * BIU. Interrupt acknowledge is read sensitive so must write instead
 418 * (then read to ensure the BIU collector is flushed)
 419 *
 420 * NB most hardware supports MSI interrupts
 421 */
 422static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
 423{
 424        ef4_dword_t reg;
 425
 426        EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 427        ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
 428        ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 429}
 430
 431static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 432{
 433        struct ef4_nic *efx = dev_id;
 434        ef4_oword_t *int_ker = efx->irq_status.addr;
 435        int syserr;
 436        int queues;
 437
 438        /* Check to see if this is our interrupt.  If it isn't, we
 439         * exit without having touched the hardware.
 440         */
 441        if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
 442                netif_vdbg(efx, intr, efx->net_dev,
 443                           "IRQ %d on CPU %d not for me\n", irq,
 444                           raw_smp_processor_id());
 445                return IRQ_NONE;
 446        }
 447        efx->last_irq_cpu = raw_smp_processor_id();
 448        netif_vdbg(efx, intr, efx->net_dev,
 449                   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
 450                   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
 451
 452        if (!likely(READ_ONCE(efx->irq_soft_enabled)))
 453                return IRQ_HANDLED;
 454
 455        /* Check to see if we have a serious error condition */
 456        syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 457        if (unlikely(syserr))
 458                return ef4_farch_fatal_interrupt(efx);
 459
 460        /* Determine interrupting queues, clear interrupt status
 461         * register and acknowledge the device interrupt.
 462         */
 463        BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
 464        queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 465        EF4_ZERO_OWORD(*int_ker);
 466        wmb(); /* Ensure the vector is cleared before interrupt ack */
 467        falcon_irq_ack_a1(efx);
 468
 469        if (queues & 1)
 470                ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
 471        if (queues & 2)
 472                ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
 473        return IRQ_HANDLED;
 474}
 475
 476/**************************************************************************
 477 *
 478 * RSS
 479 *
 480 **************************************************************************
 481 */
 482static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
 483                                    const u32 *rx_indir_table)
 484{
 485        (void) efx;
 486        (void) user;
 487        (void) rx_indir_table;
 488        return -ENOSYS;
 489}
 490
 491static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
 492                                        const u32 *rx_indir_table)
 493{
 494        ef4_oword_t temp;
 495
 496        (void) user;
 497        /* Set hash key for IPv4 */
 498        memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 499        ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 500
 501        memcpy(efx->rx_indir_table, rx_indir_table,
 502               sizeof(efx->rx_indir_table));
 503        ef4_farch_rx_push_indir_table(efx);
 504        return 0;
 505}
 506
 507/**************************************************************************
 508 *
 509 * EEPROM/flash
 510 *
 511 **************************************************************************
 512 */
 513
 514#define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
 515
 516static int falcon_spi_poll(struct ef4_nic *efx)
 517{
 518        ef4_oword_t reg;
 519        ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 520        return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 521}
 522
 523/* Wait for SPI command completion */
 524static int falcon_spi_wait(struct ef4_nic *efx)
 525{
 526        /* Most commands will finish quickly, so we start polling at
 527         * very short intervals.  Sometimes the command may have to
 528         * wait for VPD or expansion ROM access outside of our
 529         * control, so we allow up to 100 ms. */
 530        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 531        int i;
 532
 533        for (i = 0; i < 10; i++) {
 534                if (!falcon_spi_poll(efx))
 535                        return 0;
 536                udelay(10);
 537        }
 538
 539        for (;;) {
 540                if (!falcon_spi_poll(efx))
 541                        return 0;
 542                if (time_after_eq(jiffies, timeout)) {
 543                        netif_err(efx, hw, efx->net_dev,
 544                                  "timed out waiting for SPI\n");
 545                        return -ETIMEDOUT;
 546                }
 547                schedule_timeout_uninterruptible(1);
 548        }
 549}
 550
 551static int
 552falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
 553               unsigned int command, int address,
 554               const void *in, void *out, size_t len)
 555{
 556        bool addressed = (address >= 0);
 557        bool reading = (out != NULL);
 558        ef4_oword_t reg;
 559        int rc;
 560
 561        /* Input validation */
 562        if (len > FALCON_SPI_MAX_LEN)
 563                return -EINVAL;
 564
 565        /* Check that previous command is not still running */
 566        rc = falcon_spi_poll(efx);
 567        if (rc)
 568                return rc;
 569
 570        /* Program address register, if we have an address */
 571        if (addressed) {
 572                EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 573                ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 574        }
 575
 576        /* Program data register, if we have data */
 577        if (in != NULL) {
 578                memcpy(&reg, in, len);
 579                ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 580        }
 581
 582        /* Issue read/write command */
 583        EF4_POPULATE_OWORD_7(reg,
 584                             FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 585                             FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 586                             FRF_AB_EE_SPI_HCMD_DABCNT, len,
 587                             FRF_AB_EE_SPI_HCMD_READ, reading,
 588                             FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 589                             FRF_AB_EE_SPI_HCMD_ADBCNT,
 590                             (addressed ? spi->addr_len : 0),
 591                             FRF_AB_EE_SPI_HCMD_ENC, command);
 592        ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 593
 594        /* Wait for read/write to complete */
 595        rc = falcon_spi_wait(efx);
 596        if (rc)
 597                return rc;
 598
 599        /* Read data */
 600        if (out != NULL) {
 601                ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 602                memcpy(out, &reg, len);
 603        }
 604
 605        return 0;
 606}
 607
 608static inline u8
 609falcon_spi_munge_command(const struct falcon_spi_device *spi,
 610                         const u8 command, const unsigned int address)
 611{
 612        return command | (((address >> 8) & spi->munge_address) << 3);
 613}
 614
 615static int
 616falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
 617                loff_t start, size_t len, size_t *retlen, u8 *buffer)
 618{
 619        size_t block_len, pos = 0;
 620        unsigned int command;
 621        int rc = 0;
 622
 623        while (pos < len) {
 624                block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 625
 626                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 627                rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 628                                    buffer + pos, block_len);
 629                if (rc)
 630                        break;
 631                pos += block_len;
 632
 633                /* Avoid locking up the system */
 634                cond_resched();
 635                if (signal_pending(current)) {
 636                        rc = -EINTR;
 637                        break;
 638                }
 639        }
 640
 641        if (retlen)
 642                *retlen = pos;
 643        return rc;
 644}
 645
 646#ifdef CONFIG_SFC_FALCON_MTD
 647
 648struct falcon_mtd_partition {
 649        struct ef4_mtd_partition common;
 650        const struct falcon_spi_device *spi;
 651        size_t offset;
 652};
 653
 654#define to_falcon_mtd_partition(mtd)                            \
 655        container_of(mtd, struct falcon_mtd_partition, common.mtd)
 656
 657static size_t
 658falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 659{
 660        return min(FALCON_SPI_MAX_LEN,
 661                   (spi->block_size - (start & (spi->block_size - 1))));
 662}
 663
 664/* Wait up to 10 ms for buffered write completion */
 665static int
 666falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
 667{
 668        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 669        u8 status;
 670        int rc;
 671
 672        for (;;) {
 673                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 674                                    &status, sizeof(status));
 675                if (rc)
 676                        return rc;
 677                if (!(status & SPI_STATUS_NRDY))
 678                        return 0;
 679                if (time_after_eq(jiffies, timeout)) {
 680                        netif_err(efx, hw, efx->net_dev,
 681                                  "SPI write timeout on device %d"
 682                                  " last status=0x%02x\n",
 683                                  spi->device_id, status);
 684                        return -ETIMEDOUT;
 685                }
 686                schedule_timeout_uninterruptible(1);
 687        }
 688}
 689
 690static int
 691falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
 692                 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 693{
 694        u8 verify_buffer[FALCON_SPI_MAX_LEN];
 695        size_t block_len, pos = 0;
 696        unsigned int command;
 697        int rc = 0;
 698
 699        while (pos < len) {
 700                rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 701                if (rc)
 702                        break;
 703
 704                block_len = min(len - pos,
 705                                falcon_spi_write_limit(spi, start + pos));
 706                command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 707                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 708                                    buffer + pos, NULL, block_len);
 709                if (rc)
 710                        break;
 711
 712                rc = falcon_spi_wait_write(efx, spi);
 713                if (rc)
 714                        break;
 715
 716                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 717                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 718                                    NULL, verify_buffer, block_len);
 719                if (memcmp(verify_buffer, buffer + pos, block_len)) {
 720                        rc = -EIO;
 721                        break;
 722                }
 723
 724                pos += block_len;
 725
 726                /* Avoid locking up the system */
 727                cond_resched();
 728                if (signal_pending(current)) {
 729                        rc = -EINTR;
 730                        break;
 731                }
 732        }
 733
 734        if (retlen)
 735                *retlen = pos;
 736        return rc;
 737}
 738
 739static int
 740falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 741{
 742        const struct falcon_spi_device *spi = part->spi;
 743        struct ef4_nic *efx = part->common.mtd.priv;
 744        u8 status;
 745        int rc, i;
 746
 747        /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 748        for (i = 0; i < 40; i++) {
 749                __set_current_state(uninterruptible ?
 750                                    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 751                schedule_timeout(HZ / 10);
 752                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 753                                    &status, sizeof(status));
 754                if (rc)
 755                        return rc;
 756                if (!(status & SPI_STATUS_NRDY))
 757                        return 0;
 758                if (signal_pending(current))
 759                        return -EINTR;
 760        }
 761        pr_err("%s: timed out waiting for %s\n",
 762               part->common.name, part->common.dev_type_name);
 763        return -ETIMEDOUT;
 764}
 765
 766static int
 767falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
 768{
 769        const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 770                                SPI_STATUS_BP0);
 771        u8 status;
 772        int rc;
 773
 774        rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 775                            &status, sizeof(status));
 776        if (rc)
 777                return rc;
 778
 779        if (!(status & unlock_mask))
 780                return 0; /* already unlocked */
 781
 782        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 783        if (rc)
 784                return rc;
 785        rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 786        if (rc)
 787                return rc;
 788
 789        status &= ~unlock_mask;
 790        rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 791                            NULL, sizeof(status));
 792        if (rc)
 793                return rc;
 794        rc = falcon_spi_wait_write(efx, spi);
 795        if (rc)
 796                return rc;
 797
 798        return 0;
 799}
 800
 801#define FALCON_SPI_VERIFY_BUF_LEN 16
 802
 803static int
 804falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 805{
 806        const struct falcon_spi_device *spi = part->spi;
 807        struct ef4_nic *efx = part->common.mtd.priv;
 808        unsigned pos, block_len;
 809        u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 810        u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 811        int rc;
 812
 813        if (len != spi->erase_size)
 814                return -EINVAL;
 815
 816        if (spi->erase_command == 0)
 817                return -EOPNOTSUPP;
 818
 819        rc = falcon_spi_unlock(efx, spi);
 820        if (rc)
 821                return rc;
 822        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 823        if (rc)
 824                return rc;
 825        rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 826                            NULL, 0);
 827        if (rc)
 828                return rc;
 829        rc = falcon_spi_slow_wait(part, false);
 830
 831        /* Verify the entire region has been wiped */
 832        memset(empty, 0xff, sizeof(empty));
 833        for (pos = 0; pos < len; pos += block_len) {
 834                block_len = min(len - pos, sizeof(buffer));
 835                rc = falcon_spi_read(efx, spi, start + pos, block_len,
 836                                     NULL, buffer);
 837                if (rc)
 838                        return rc;
 839                if (memcmp(empty, buffer, block_len))
 840                        return -EIO;
 841
 842                /* Avoid locking up the system */
 843                cond_resched();
 844                if (signal_pending(current))
 845                        return -EINTR;
 846        }
 847
 848        return rc;
 849}
 850
 851static void falcon_mtd_rename(struct ef4_mtd_partition *part)
 852{
 853        struct ef4_nic *efx = part->mtd.priv;
 854
 855        snprintf(part->name, sizeof(part->name), "%s %s",
 856                 efx->name, part->type_name);
 857}
 858
 859static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 860                           size_t len, size_t *retlen, u8 *buffer)
 861{
 862        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 863        struct ef4_nic *efx = mtd->priv;
 864        struct falcon_nic_data *nic_data = efx->nic_data;
 865        int rc;
 866
 867        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 868        if (rc)
 869                return rc;
 870        rc = falcon_spi_read(efx, part->spi, part->offset + start,
 871                             len, retlen, buffer);
 872        mutex_unlock(&nic_data->spi_lock);
 873        return rc;
 874}
 875
 876static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 877{
 878        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 879        struct ef4_nic *efx = mtd->priv;
 880        struct falcon_nic_data *nic_data = efx->nic_data;
 881        int rc;
 882
 883        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 884        if (rc)
 885                return rc;
 886        rc = falcon_spi_erase(part, part->offset + start, len);
 887        mutex_unlock(&nic_data->spi_lock);
 888        return rc;
 889}
 890
 891static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 892                            size_t len, size_t *retlen, const u8 *buffer)
 893{
 894        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 895        struct ef4_nic *efx = mtd->priv;
 896        struct falcon_nic_data *nic_data = efx->nic_data;
 897        int rc;
 898
 899        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 900        if (rc)
 901                return rc;
 902        rc = falcon_spi_write(efx, part->spi, part->offset + start,
 903                              len, retlen, buffer);
 904        mutex_unlock(&nic_data->spi_lock);
 905        return rc;
 906}
 907
 908static int falcon_mtd_sync(struct mtd_info *mtd)
 909{
 910        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 911        struct ef4_nic *efx = mtd->priv;
 912        struct falcon_nic_data *nic_data = efx->nic_data;
 913        int rc;
 914
 915        mutex_lock(&nic_data->spi_lock);
 916        rc = falcon_spi_slow_wait(part, true);
 917        mutex_unlock(&nic_data->spi_lock);
 918        return rc;
 919}
 920
 921static int falcon_mtd_probe(struct ef4_nic *efx)
 922{
 923        struct falcon_nic_data *nic_data = efx->nic_data;
 924        struct falcon_mtd_partition *parts;
 925        struct falcon_spi_device *spi;
 926        size_t n_parts;
 927        int rc = -ENODEV;
 928
 929        ASSERT_RTNL();
 930
 931        /* Allocate space for maximum number of partitions */
 932        parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 933        if (!parts)
 934                return -ENOMEM;
 935        n_parts = 0;
 936
 937        spi = &nic_data->spi_flash;
 938        if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 939                parts[n_parts].spi = spi;
 940                parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 941                parts[n_parts].common.dev_type_name = "flash";
 942                parts[n_parts].common.type_name = "sfc_flash_bootrom";
 943                parts[n_parts].common.mtd.type = MTD_NORFLASH;
 944                parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 945                parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 946                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 947                n_parts++;
 948        }
 949
 950        spi = &nic_data->spi_eeprom;
 951        if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 952                parts[n_parts].spi = spi;
 953                parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 954                parts[n_parts].common.dev_type_name = "EEPROM";
 955                parts[n_parts].common.type_name = "sfc_bootconfig";
 956                parts[n_parts].common.mtd.type = MTD_RAM;
 957                parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 958                parts[n_parts].common.mtd.size =
 959                        min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 960                        FALCON_EEPROM_BOOTCONFIG_START;
 961                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 962                n_parts++;
 963        }
 964
 965        rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 966        if (rc)
 967                kfree(parts);
 968        return rc;
 969}
 970
 971#endif /* CONFIG_SFC_FALCON_MTD */
 972
 973/**************************************************************************
 974 *
 975 * XMAC operations
 976 *
 977 **************************************************************************
 978 */
 979
 980/* Configure the XAUI driver that is an output from Falcon */
 981static void falcon_setup_xaui(struct ef4_nic *efx)
 982{
 983        ef4_oword_t sdctl, txdrv;
 984
 985        /* Move the XAUI into low power, unless there is no PHY, in
 986         * which case the XAUI will have to drive a cable. */
 987        if (efx->phy_type == PHY_TYPE_NONE)
 988                return;
 989
 990        ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 991        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 992        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 993        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 994        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 995        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 996        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 997        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 998        EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 999        ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1000
1001        EF4_POPULATE_OWORD_8(txdrv,
1002                             FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1003                             FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1004                             FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1005                             FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1006                             FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1007                             FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1008                             FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1009                             FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1010        ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1011}
1012
1013int falcon_reset_xaui(struct ef4_nic *efx)
1014{
1015        struct falcon_nic_data *nic_data = efx->nic_data;
1016        ef4_oword_t reg;
1017        int count;
1018
1019        /* Don't fetch MAC statistics over an XMAC reset */
1020        WARN_ON(nic_data->stats_disable_count == 0);
1021
1022        /* Start reset sequence */
1023        EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1024        ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1025
1026        /* Wait up to 10 ms for completion, then reinitialise */
1027        for (count = 0; count < 1000; count++) {
1028                ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1029                if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1030                    EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1031                        falcon_setup_xaui(efx);
1032                        return 0;
1033                }
1034                udelay(10);
1035        }
1036        netif_err(efx, hw, efx->net_dev,
1037                  "timed out waiting for XAUI/XGXS reset\n");
1038        return -ETIMEDOUT;
1039}
1040
1041static void falcon_ack_status_intr(struct ef4_nic *efx)
1042{
1043        struct falcon_nic_data *nic_data = efx->nic_data;
1044        ef4_oword_t reg;
1045
1046        if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1047                return;
1048
1049        /* We expect xgmii faults if the wireside link is down */
1050        if (!efx->link_state.up)
1051                return;
1052
1053        /* We can only use this interrupt to signal the negative edge of
1054         * xaui_align [we have to poll the positive edge]. */
1055        if (nic_data->xmac_poll_required)
1056                return;
1057
1058        ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1059}
1060
1061static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1062{
1063        ef4_oword_t reg;
1064        bool align_done, link_ok = false;
1065        int sync_status;
1066
1067        /* Read link status */
1068        ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1069
1070        align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1071        sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1072        if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1073                link_ok = true;
1074
1075        /* Clear link status ready for next read */
1076        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1077        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1078        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1079        ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1080
1081        return link_ok;
1082}
1083
1084static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1085{
1086        /*
1087         * Check MAC's XGXS link status except when using XGMII loopback
1088         * which bypasses the XGXS block.
1089         * If possible, check PHY's XGXS link status except when using
1090         * MAC loopback.
1091         */
1092        return (efx->loopback_mode == LOOPBACK_XGMII ||
1093                falcon_xgxs_link_ok(efx)) &&
1094                (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1095                 LOOPBACK_INTERNAL(efx) ||
1096                 ef4_mdio_phyxgxs_lane_sync(efx));
1097}
1098
1099static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1100{
1101        unsigned int max_frame_len;
1102        ef4_oword_t reg;
1103        bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1104        bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1105
1106        /* Configure MAC  - cut-thru mode is hard wired on */
1107        EF4_POPULATE_OWORD_3(reg,
1108                             FRF_AB_XM_RX_JUMBO_MODE, 1,
1109                             FRF_AB_XM_TX_STAT_EN, 1,
1110                             FRF_AB_XM_RX_STAT_EN, 1);
1111        ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1112
1113        /* Configure TX */
1114        EF4_POPULATE_OWORD_6(reg,
1115                             FRF_AB_XM_TXEN, 1,
1116                             FRF_AB_XM_TX_PRMBL, 1,
1117                             FRF_AB_XM_AUTO_PAD, 1,
1118                             FRF_AB_XM_TXCRC, 1,
1119                             FRF_AB_XM_FCNTL, tx_fc,
1120                             FRF_AB_XM_IPG, 0x3);
1121        ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1122
1123        /* Configure RX */
1124        EF4_POPULATE_OWORD_5(reg,
1125                             FRF_AB_XM_RXEN, 1,
1126                             FRF_AB_XM_AUTO_DEPAD, 0,
1127                             FRF_AB_XM_ACPT_ALL_MCAST, 1,
1128                             FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1129                             FRF_AB_XM_PASS_CRC_ERR, 1);
1130        ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1131
1132        /* Set frame length */
1133        max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1134        EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1135        ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1136        EF4_POPULATE_OWORD_2(reg,
1137                             FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1138                             FRF_AB_XM_TX_JUMBO_MODE, 1);
1139        ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1140
1141        EF4_POPULATE_OWORD_2(reg,
1142                             FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1143                             FRF_AB_XM_DIS_FCNTL, !rx_fc);
1144        ef4_writeo(efx, &reg, FR_AB_XM_FC);
1145
1146        /* Set MAC address */
1147        memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1148        ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1149        memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1150        ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1151}
1152
1153static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1154{
1155        ef4_oword_t reg;
1156        bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1157        bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1158        bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1159        bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1160
1161        /* XGXS block is flaky and will need to be reset if moving
1162         * into our out of XGMII, XGXS or XAUI loopbacks. */
1163        ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1164        old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1165        old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1166
1167        ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1168        old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1169
1170        /* The PHY driver may have turned XAUI off */
1171        if ((xgxs_loopback != old_xgxs_loopback) ||
1172            (xaui_loopback != old_xaui_loopback) ||
1173            (xgmii_loopback != old_xgmii_loopback))
1174                falcon_reset_xaui(efx);
1175
1176        ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1177        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1178                            (xgxs_loopback || xaui_loopback) ?
1179                            FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1180        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1181        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1182        ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1183
1184        ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1185        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1186        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1187        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1188        EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1189        ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1190}
1191
1192
1193/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1194static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1195{
1196        bool mac_up = falcon_xmac_link_ok(efx);
1197
1198        if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1199            ef4_phy_mode_disabled(efx->phy_mode))
1200                /* XAUI link is expected to be down */
1201                return mac_up;
1202
1203        falcon_stop_nic_stats(efx);
1204
1205        while (!mac_up && tries) {
1206                netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1207                falcon_reset_xaui(efx);
1208                udelay(200);
1209
1210                mac_up = falcon_xmac_link_ok(efx);
1211                --tries;
1212        }
1213
1214        falcon_start_nic_stats(efx);
1215
1216        return mac_up;
1217}
1218
1219static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1220{
1221        return !falcon_xmac_link_ok_retry(efx, 5);
1222}
1223
1224static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1225{
1226        struct falcon_nic_data *nic_data = efx->nic_data;
1227
1228        ef4_farch_filter_sync_rx_mode(efx);
1229
1230        falcon_reconfigure_xgxs_core(efx);
1231        falcon_reconfigure_xmac_core(efx);
1232
1233        falcon_reconfigure_mac_wrapper(efx);
1234
1235        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1236        falcon_ack_status_intr(efx);
1237
1238        return 0;
1239}
1240
1241static void falcon_poll_xmac(struct ef4_nic *efx)
1242{
1243        struct falcon_nic_data *nic_data = efx->nic_data;
1244
1245        /* We expect xgmii faults if the wireside link is down */
1246        if (!efx->link_state.up || !nic_data->xmac_poll_required)
1247                return;
1248
1249        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1250        falcon_ack_status_intr(efx);
1251}
1252
1253/**************************************************************************
1254 *
1255 * MAC wrapper
1256 *
1257 **************************************************************************
1258 */
1259
1260static void falcon_push_multicast_hash(struct ef4_nic *efx)
1261{
1262        union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1263
1264        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1265
1266        ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1267        ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1268}
1269
1270static void falcon_reset_macs(struct ef4_nic *efx)
1271{
1272        struct falcon_nic_data *nic_data = efx->nic_data;
1273        ef4_oword_t reg, mac_ctrl;
1274        int count;
1275
1276        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1277                /* It's not safe to use GLB_CTL_REG to reset the
1278                 * macs, so instead use the internal MAC resets
1279                 */
1280                EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1281                ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1282
1283                for (count = 0; count < 10000; count++) {
1284                        ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1285                        if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1286                            0)
1287                                return;
1288                        udelay(10);
1289                }
1290
1291                netif_err(efx, hw, efx->net_dev,
1292                          "timed out waiting for XMAC core reset\n");
1293        }
1294
1295        /* Mac stats will fail whist the TX fifo is draining */
1296        WARN_ON(nic_data->stats_disable_count == 0);
1297
1298        ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299        EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1300        ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1301
1302        ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1303        EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1304        EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1305        EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1306        ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1307
1308        count = 0;
1309        while (1) {
1310                ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1311                if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1312                    !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1313                    !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1314                        netif_dbg(efx, hw, efx->net_dev,
1315                                  "Completed MAC reset after %d loops\n",
1316                                  count);
1317                        break;
1318                }
1319                if (count > 20) {
1320                        netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1321                        break;
1322                }
1323                count++;
1324                udelay(10);
1325        }
1326
1327        /* Ensure the correct MAC is selected before statistics
1328         * are re-enabled by the caller */
1329        ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1330
1331        falcon_setup_xaui(efx);
1332}
1333
1334static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1335{
1336        ef4_oword_t reg;
1337
1338        if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1339            (efx->loopback_mode != LOOPBACK_NONE))
1340                return;
1341
1342        ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1343        /* There is no point in draining more than once */
1344        if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1345                return;
1346
1347        falcon_reset_macs(efx);
1348}
1349
1350static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1351{
1352        ef4_oword_t reg;
1353
1354        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1355                return;
1356
1357        /* Isolate the MAC -> RX */
1358        ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1359        EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1360        ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1361
1362        /* Isolate TX -> MAC */
1363        falcon_drain_tx_fifo(efx);
1364}
1365
1366static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1367{
1368        struct ef4_link_state *link_state = &efx->link_state;
1369        ef4_oword_t reg;
1370        int link_speed, isolate;
1371
1372        isolate = !!READ_ONCE(efx->reset_pending);
1373
1374        switch (link_state->speed) {
1375        case 10000: link_speed = 3; break;
1376        case 1000:  link_speed = 2; break;
1377        case 100:   link_speed = 1; break;
1378        default:    link_speed = 0; break;
1379        }
1380
1381        /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1382         * as advertised.  Disable to ensure packets are not
1383         * indefinitely held and TX queue can be flushed at any point
1384         * while the link is down. */
1385        EF4_POPULATE_OWORD_5(reg,
1386                             FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1387                             FRF_AB_MAC_BCAD_ACPT, 1,
1388                             FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1389                             FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1390                             FRF_AB_MAC_SPEED, link_speed);
1391        /* On B0, MAC backpressure can be disabled and packets get
1392         * discarded. */
1393        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1394                EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1395                                    !link_state->up || isolate);
1396        }
1397
1398        ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1399
1400        /* Restore the multicast hash registers. */
1401        falcon_push_multicast_hash(efx);
1402
1403        ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1404        /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1405         * initialisation but it may read back as 0) */
1406        EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1407        /* Unisolate the MAC -> RX */
1408        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1409                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1410        ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1411}
1412
1413static void falcon_stats_request(struct ef4_nic *efx)
1414{
1415        struct falcon_nic_data *nic_data = efx->nic_data;
1416        ef4_oword_t reg;
1417
1418        WARN_ON(nic_data->stats_pending);
1419        WARN_ON(nic_data->stats_disable_count);
1420
1421        FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1422        nic_data->stats_pending = true;
1423        wmb(); /* ensure done flag is clear */
1424
1425        /* Initiate DMA transfer of stats */
1426        EF4_POPULATE_OWORD_2(reg,
1427                             FRF_AB_MAC_STAT_DMA_CMD, 1,
1428                             FRF_AB_MAC_STAT_DMA_ADR,
1429                             efx->stats_buffer.dma_addr);
1430        ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1431
1432        mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1433}
1434
1435static void falcon_stats_complete(struct ef4_nic *efx)
1436{
1437        struct falcon_nic_data *nic_data = efx->nic_data;
1438
1439        if (!nic_data->stats_pending)
1440                return;
1441
1442        nic_data->stats_pending = false;
1443        if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1444                rmb(); /* read the done flag before the stats */
1445                ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1446                                     falcon_stat_mask, nic_data->stats,
1447                                     efx->stats_buffer.addr, true);
1448        } else {
1449                netif_err(efx, hw, efx->net_dev,
1450                          "timed out waiting for statistics\n");
1451        }
1452}
1453
1454static void falcon_stats_timer_func(struct timer_list *t)
1455{
1456        struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1457                                                      stats_timer);
1458        struct ef4_nic *efx = nic_data->efx;
1459
1460        spin_lock(&efx->stats_lock);
1461
1462        falcon_stats_complete(efx);
1463        if (nic_data->stats_disable_count == 0)
1464                falcon_stats_request(efx);
1465
1466        spin_unlock(&efx->stats_lock);
1467}
1468
1469static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1470{
1471        struct ef4_link_state old_state = efx->link_state;
1472
1473        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474        WARN_ON(!LOOPBACK_INTERNAL(efx));
1475
1476        efx->link_state.fd = true;
1477        efx->link_state.fc = efx->wanted_fc;
1478        efx->link_state.up = true;
1479        efx->link_state.speed = 10000;
1480
1481        return !ef4_link_state_equal(&efx->link_state, &old_state);
1482}
1483
1484static int falcon_reconfigure_port(struct ef4_nic *efx)
1485{
1486        int rc;
1487
1488        WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1489
1490        /* Poll the PHY link state *before* reconfiguring it. This means we
1491         * will pick up the correct speed (in loopback) to select the correct
1492         * MAC.
1493         */
1494        if (LOOPBACK_INTERNAL(efx))
1495                falcon_loopback_link_poll(efx);
1496        else
1497                efx->phy_op->poll(efx);
1498
1499        falcon_stop_nic_stats(efx);
1500        falcon_deconfigure_mac_wrapper(efx);
1501
1502        falcon_reset_macs(efx);
1503
1504        efx->phy_op->reconfigure(efx);
1505        rc = falcon_reconfigure_xmac(efx);
1506        BUG_ON(rc);
1507
1508        falcon_start_nic_stats(efx);
1509
1510        /* Synchronise efx->link_state with the kernel */
1511        ef4_link_status_changed(efx);
1512
1513        return 0;
1514}
1515
1516/* TX flow control may automatically turn itself off if the link
1517 * partner (intermittently) stops responding to pause frames. There
1518 * isn't any indication that this has happened, so the best we do is
1519 * leave it up to the user to spot this and fix it by cycling transmit
1520 * flow control on this end.
1521 */
1522
1523static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1524{
1525        /* Schedule a reset to recover */
1526        ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527}
1528
1529static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1530{
1531        /* Recover by resetting the EM block */
1532        falcon_stop_nic_stats(efx);
1533        falcon_drain_tx_fifo(efx);
1534        falcon_reconfigure_xmac(efx);
1535        falcon_start_nic_stats(efx);
1536}
1537
1538/**************************************************************************
1539 *
1540 * PHY access via GMII
1541 *
1542 **************************************************************************
1543 */
1544
1545/* Wait for GMII access to complete */
1546static int falcon_gmii_wait(struct ef4_nic *efx)
1547{
1548        ef4_oword_t md_stat;
1549        int count;
1550
1551        /* wait up to 50ms - taken max from datasheet */
1552        for (count = 0; count < 5000; count++) {
1553                ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1554                if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555                        if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556                            EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557                                netif_err(efx, hw, efx->net_dev,
1558                                          "error from GMII access "
1559                                          EF4_OWORD_FMT"\n",
1560                                          EF4_OWORD_VAL(md_stat));
1561                                return -EIO;
1562                        }
1563                        return 0;
1564                }
1565                udelay(10);
1566        }
1567        netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568        return -ETIMEDOUT;
1569}
1570
1571/* Write an MDIO register of a PHY connected to Falcon. */
1572static int falcon_mdio_write(struct net_device *net_dev,
1573                             int prtad, int devad, u16 addr, u16 value)
1574{
1575        struct ef4_nic *efx = netdev_priv(net_dev);
1576        struct falcon_nic_data *nic_data = efx->nic_data;
1577        ef4_oword_t reg;
1578        int rc;
1579
1580        netif_vdbg(efx, hw, efx->net_dev,
1581                   "writing MDIO %d register %d.%d with 0x%04x\n",
1582                    prtad, devad, addr, value);
1583
1584        mutex_lock(&nic_data->mdio_lock);
1585
1586        /* Check MDIO not currently being accessed */
1587        rc = falcon_gmii_wait(efx);
1588        if (rc)
1589                goto out;
1590
1591        /* Write the address/ID register */
1592        EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593        ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594
1595        EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596                             FRF_AB_MD_DEV_ADR, devad);
1597        ef4_writeo(efx, &reg, FR_AB_MD_ID);
1598
1599        /* Write data */
1600        EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601        ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1602
1603        EF4_POPULATE_OWORD_2(reg,
1604                             FRF_AB_MD_WRC, 1,
1605                             FRF_AB_MD_GC, 0);
1606        ef4_writeo(efx, &reg, FR_AB_MD_CS);
1607
1608        /* Wait for data to be written */
1609        rc = falcon_gmii_wait(efx);
1610        if (rc) {
1611                /* Abort the write operation */
1612                EF4_POPULATE_OWORD_2(reg,
1613                                     FRF_AB_MD_WRC, 0,
1614                                     FRF_AB_MD_GC, 1);
1615                ef4_writeo(efx, &reg, FR_AB_MD_CS);
1616                udelay(10);
1617        }
1618
1619out:
1620        mutex_unlock(&nic_data->mdio_lock);
1621        return rc;
1622}
1623
1624/* Read an MDIO register of a PHY connected to Falcon. */
1625static int falcon_mdio_read(struct net_device *net_dev,
1626                            int prtad, int devad, u16 addr)
1627{
1628        struct ef4_nic *efx = netdev_priv(net_dev);
1629        struct falcon_nic_data *nic_data = efx->nic_data;
1630        ef4_oword_t reg;
1631        int rc;
1632
1633        mutex_lock(&nic_data->mdio_lock);
1634
1635        /* Check MDIO not currently being accessed */
1636        rc = falcon_gmii_wait(efx);
1637        if (rc)
1638                goto out;
1639
1640        EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641        ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642
1643        EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644                             FRF_AB_MD_DEV_ADR, devad);
1645        ef4_writeo(efx, &reg, FR_AB_MD_ID);
1646
1647        /* Request data to be read */
1648        EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649        ef4_writeo(efx, &reg, FR_AB_MD_CS);
1650
1651        /* Wait for data to become available */
1652        rc = falcon_gmii_wait(efx);
1653        if (rc == 0) {
1654                ef4_reado(efx, &reg, FR_AB_MD_RXD);
1655                rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656                netif_vdbg(efx, hw, efx->net_dev,
1657                           "read from MDIO %d register %d.%d, got %04x\n",
1658                           prtad, devad, addr, rc);
1659        } else {
1660                /* Abort the read operation */
1661                EF4_POPULATE_OWORD_2(reg,
1662                                     FRF_AB_MD_RIC, 0,
1663                                     FRF_AB_MD_GC, 1);
1664                ef4_writeo(efx, &reg, FR_AB_MD_CS);
1665
1666                netif_dbg(efx, hw, efx->net_dev,
1667                          "read from MDIO %d register %d.%d, got error %d\n",
1668                          prtad, devad, addr, rc);
1669        }
1670
1671out:
1672        mutex_unlock(&nic_data->mdio_lock);
1673        return rc;
1674}
1675
1676/* This call is responsible for hooking in the MAC and PHY operations */
1677static int falcon_probe_port(struct ef4_nic *efx)
1678{
1679        struct falcon_nic_data *nic_data = efx->nic_data;
1680        int rc;
1681
1682        switch (efx->phy_type) {
1683        case PHY_TYPE_SFX7101:
1684                efx->phy_op = &falcon_sfx7101_phy_ops;
1685                break;
1686        case PHY_TYPE_QT2022C2:
1687        case PHY_TYPE_QT2025C:
1688                efx->phy_op = &falcon_qt202x_phy_ops;
1689                break;
1690        case PHY_TYPE_TXC43128:
1691                efx->phy_op = &falcon_txc_phy_ops;
1692                break;
1693        default:
1694                netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695                          efx->phy_type);
1696                return -ENODEV;
1697        }
1698
1699        /* Fill out MDIO structure and loopback modes */
1700        mutex_init(&nic_data->mdio_lock);
1701        efx->mdio.mdio_read = falcon_mdio_read;
1702        efx->mdio.mdio_write = falcon_mdio_write;
1703        rc = efx->phy_op->probe(efx);
1704        if (rc != 0)
1705                return rc;
1706
1707        /* Initial assumption */
1708        efx->link_state.speed = 10000;
1709        efx->link_state.fd = true;
1710
1711        /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1713                efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1714        else
1715                efx->wanted_fc = EF4_FC_RX;
1716        if (efx->mdio.mmds & MDIO_DEVS_AN)
1717                efx->wanted_fc |= EF4_FC_AUTO;
1718
1719        /* Allocate buffer for stats */
1720        rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1721                                  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722        if (rc)
1723                return rc;
1724        netif_dbg(efx, probe, efx->net_dev,
1725                  "stats buffer at %llx (virt %p phys %llx)\n",
1726                  (u64)efx->stats_buffer.dma_addr,
1727                  efx->stats_buffer.addr,
1728                  (u64)virt_to_phys(efx->stats_buffer.addr));
1729
1730        return 0;
1731}
1732
1733static void falcon_remove_port(struct ef4_nic *efx)
1734{
1735        efx->phy_op->remove(efx);
1736        ef4_nic_free_buffer(efx, &efx->stats_buffer);
1737}
1738
1739/* Global events are basically PHY events */
1740static bool
1741falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1742{
1743        struct ef4_nic *efx = channel->efx;
1744        struct falcon_nic_data *nic_data = efx->nic_data;
1745
1746        if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747            EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748            EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749                /* Ignored */
1750                return true;
1751
1752        if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1753            EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754                nic_data->xmac_poll_required = true;
1755                return true;
1756        }
1757
1758        if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1759            EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760            EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761                netif_err(efx, rx_err, efx->net_dev,
1762                          "channel %d seen global RX_RESET event. Resetting.\n",
1763                          channel->channel);
1764
1765                atomic_inc(&efx->rx_reset);
1766                ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1767                                   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768                return true;
1769        }
1770
1771        return false;
1772}
1773
1774/**************************************************************************
1775 *
1776 * Falcon test code
1777 *
1778 **************************************************************************/
1779
1780static int
1781falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782{
1783        struct falcon_nic_data *nic_data = efx->nic_data;
1784        struct falcon_nvconfig *nvconfig;
1785        struct falcon_spi_device *spi;
1786        void *region;
1787        int rc, magic_num, struct_ver;
1788        __le16 *word, *limit;
1789        u32 csum;
1790
1791        if (falcon_spi_present(&nic_data->spi_flash))
1792                spi = &nic_data->spi_flash;
1793        else if (falcon_spi_present(&nic_data->spi_eeprom))
1794                spi = &nic_data->spi_eeprom;
1795        else
1796                return -EINVAL;
1797
1798        region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799        if (!region)
1800                return -ENOMEM;
1801        nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802
1803        mutex_lock(&nic_data->spi_lock);
1804        rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805        mutex_unlock(&nic_data->spi_lock);
1806        if (rc) {
1807                netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808                          falcon_spi_present(&nic_data->spi_flash) ?
1809                          "flash" : "EEPROM");
1810                rc = -EIO;
1811                goto out;
1812        }
1813
1814        magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815        struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816
1817        rc = -EINVAL;
1818        if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819                netif_err(efx, hw, efx->net_dev,
1820                          "NVRAM bad magic 0x%x\n", magic_num);
1821                goto out;
1822        }
1823        if (struct_ver < 2) {
1824                netif_err(efx, hw, efx->net_dev,
1825                          "NVRAM has ancient version 0x%x\n", struct_ver);
1826                goto out;
1827        } else if (struct_ver < 4) {
1828                word = &nvconfig->board_magic_num;
1829                limit = (__le16 *) (nvconfig + 1);
1830        } else {
1831                word = region;
1832                limit = region + FALCON_NVCONFIG_END;
1833        }
1834        for (csum = 0; word < limit; ++word)
1835                csum += le16_to_cpu(*word);
1836
1837        if (~csum & 0xffff) {
1838                netif_err(efx, hw, efx->net_dev,
1839                          "NVRAM has incorrect checksum\n");
1840                goto out;
1841        }
1842
1843        rc = 0;
1844        if (nvconfig_out)
1845                memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846
1847 out:
1848        kfree(region);
1849        return rc;
1850}
1851
1852static int falcon_test_nvram(struct ef4_nic *efx)
1853{
1854        return falcon_read_nvram(efx, NULL);
1855}
1856
1857static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1858        { FR_AZ_ADR_REGION,
1859          EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860        { FR_AZ_RX_CFG,
1861          EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862        { FR_AZ_TX_CFG,
1863          EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864        { FR_AZ_TX_RESERVED,
1865          EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866        { FR_AB_MAC_CTRL,
1867          EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868        { FR_AZ_SRM_TX_DC_CFG,
1869          EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870        { FR_AZ_RX_DC_CFG,
1871          EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872        { FR_AZ_RX_DC_PF_WM,
1873          EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874        { FR_BZ_DP_CTRL,
1875          EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876        { FR_AB_GM_CFG2,
1877          EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878        { FR_AB_GMF_CFG0,
1879          EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880        { FR_AB_XM_GLB_CFG,
1881          EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882        { FR_AB_XM_TX_CFG,
1883          EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884        { FR_AB_XM_RX_CFG,
1885          EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886        { FR_AB_XM_RX_PARAM,
1887          EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888        { FR_AB_XM_FC,
1889          EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890        { FR_AB_XM_ADR_LO,
1891          EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892        { FR_AB_XX_SD_CTL,
1893          EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894};
1895
1896static int
1897falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1898{
1899        enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900        int rc, rc2;
1901
1902        mutex_lock(&efx->mac_lock);
1903        if (efx->loopback_modes) {
1904                /* We need the 312 clock from the PHY to test the XMAC
1905                 * registers, so move into XGMII loopback if available */
1906                if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907                        efx->loopback_mode = LOOPBACK_XGMII;
1908                else
1909                        efx->loopback_mode = __ffs(efx->loopback_modes);
1910        }
1911        __ef4_reconfigure_port(efx);
1912        mutex_unlock(&efx->mac_lock);
1913
1914        ef4_reset_down(efx, reset_method);
1915
1916        tests->registers =
1917                ef4_farch_test_registers(efx, falcon_b0_register_tests,
1918                                         ARRAY_SIZE(falcon_b0_register_tests))
1919                ? -1 : 1;
1920
1921        rc = falcon_reset_hw(efx, reset_method);
1922        rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1923        return rc ? rc : rc2;
1924}
1925
1926/**************************************************************************
1927 *
1928 * Device reset
1929 *
1930 **************************************************************************
1931 */
1932
1933static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934{
1935        switch (reason) {
1936        case RESET_TYPE_RX_RECOVERY:
1937        case RESET_TYPE_DMA_ERROR:
1938        case RESET_TYPE_TX_SKIP:
1939                /* These can occasionally occur due to hardware bugs.
1940                 * We try to reset without disrupting the link.
1941                 */
1942                return RESET_TYPE_INVISIBLE;
1943        default:
1944                return RESET_TYPE_ALL;
1945        }
1946}
1947
1948static int falcon_map_reset_flags(u32 *flags)
1949{
1950        enum {
1951                FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952                                          ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953                FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954                FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955        };
1956
1957        if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958                *flags &= ~FALCON_RESET_WORLD;
1959                return RESET_TYPE_WORLD;
1960        }
1961
1962        if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963                *flags &= ~FALCON_RESET_ALL;
1964                return RESET_TYPE_ALL;
1965        }
1966
1967        if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968                *flags &= ~FALCON_RESET_INVISIBLE;
1969                return RESET_TYPE_INVISIBLE;
1970        }
1971
1972        return -EINVAL;
1973}
1974
1975/* Resets NIC to known state.  This routine must be called in process
1976 * context and is allowed to sleep. */
1977static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1978{
1979        struct falcon_nic_data *nic_data = efx->nic_data;
1980        ef4_oword_t glb_ctl_reg_ker;
1981        int rc;
1982
1983        netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984                  RESET_TYPE(method));
1985
1986        /* Initiate device reset */
1987        if (method == RESET_TYPE_WORLD) {
1988                rc = pci_save_state(efx->pci_dev);
1989                if (rc) {
1990                        netif_err(efx, drv, efx->net_dev,
1991                                  "failed to backup PCI state of primary "
1992                                  "function prior to hardware reset\n");
1993                        goto fail1;
1994                }
1995                if (ef4_nic_is_dual_func(efx)) {
1996                        rc = pci_save_state(nic_data->pci_dev2);
1997                        if (rc) {
1998                                netif_err(efx, drv, efx->net_dev,
1999                                          "failed to backup PCI state of "
2000                                          "secondary function prior to "
2001                                          "hardware reset\n");
2002                                goto fail2;
2003                        }
2004                }
2005
2006                EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007                                     FRF_AB_EXT_PHY_RST_DUR,
2008                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2009                                     FRF_AB_SWRST, 1);
2010        } else {
2011                EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012                                     /* exclude PHY from "invisible" reset */
2013                                     FRF_AB_EXT_PHY_RST_CTL,
2014                                     method == RESET_TYPE_INVISIBLE,
2015                                     /* exclude EEPROM/flash and PCIe */
2016                                     FRF_AB_PCIE_CORE_RST_CTL, 1,
2017                                     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018                                     FRF_AB_PCIE_SD_RST_CTL, 1,
2019                                     FRF_AB_EE_RST_CTL, 1,
2020                                     FRF_AB_EXT_PHY_RST_DUR,
2021                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2022                                     FRF_AB_SWRST, 1);
2023        }
2024        ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025
2026        netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027        schedule_timeout_uninterruptible(HZ / 20);
2028
2029        /* Restore PCI configuration if needed */
2030        if (method == RESET_TYPE_WORLD) {
2031                if (ef4_nic_is_dual_func(efx))
2032                        pci_restore_state(nic_data->pci_dev2);
2033                pci_restore_state(efx->pci_dev);
2034                netif_dbg(efx, drv, efx->net_dev,
2035                          "successfully restored PCI config\n");
2036        }
2037
2038        /* Assert that reset complete */
2039        ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040        if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041                rc = -ETIMEDOUT;
2042                netif_err(efx, hw, efx->net_dev,
2043                          "timed out waiting for hardware reset\n");
2044                goto fail3;
2045        }
2046        netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047
2048        return 0;
2049
2050        /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051fail2:
2052        pci_restore_state(efx->pci_dev);
2053fail1:
2054fail3:
2055        return rc;
2056}
2057
2058static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2059{
2060        struct falcon_nic_data *nic_data = efx->nic_data;
2061        int rc;
2062
2063        mutex_lock(&nic_data->spi_lock);
2064        rc = __falcon_reset_hw(efx, method);
2065        mutex_unlock(&nic_data->spi_lock);
2066
2067        return rc;
2068}
2069
2070static void falcon_monitor(struct ef4_nic *efx)
2071{
2072        bool link_changed;
2073        int rc;
2074
2075        BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076
2077        rc = falcon_board(efx)->type->monitor(efx);
2078        if (rc) {
2079                netif_err(efx, hw, efx->net_dev,
2080                          "Board sensor %s; shutting down PHY\n",
2081                          (rc == -ERANGE) ? "reported fault" : "failed");
2082                efx->phy_mode |= PHY_MODE_LOW_POWER;
2083                rc = __ef4_reconfigure_port(efx);
2084                WARN_ON(rc);
2085        }
2086
2087        if (LOOPBACK_INTERNAL(efx))
2088                link_changed = falcon_loopback_link_poll(efx);
2089        else
2090                link_changed = efx->phy_op->poll(efx);
2091
2092        if (link_changed) {
2093                falcon_stop_nic_stats(efx);
2094                falcon_deconfigure_mac_wrapper(efx);
2095
2096                falcon_reset_macs(efx);
2097                rc = falcon_reconfigure_xmac(efx);
2098                BUG_ON(rc);
2099
2100                falcon_start_nic_stats(efx);
2101
2102                ef4_link_status_changed(efx);
2103        }
2104
2105        falcon_poll_xmac(efx);
2106}
2107
2108/* Zeroes out the SRAM contents.  This routine must be called in
2109 * process context and is allowed to sleep.
2110 */
2111static int falcon_reset_sram(struct ef4_nic *efx)
2112{
2113        ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114        int count;
2115
2116        /* Set the SRAM wake/sleep GPIO appropriately. */
2117        ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118        EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119        EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120        ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121
2122        /* Initiate SRAM reset */
2123        EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124                             FRF_AZ_SRM_INIT_EN, 1,
2125                             FRF_AZ_SRM_NB_SZ, 0);
2126        ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127
2128        /* Wait for SRAM reset to complete */
2129        count = 0;
2130        do {
2131                netif_dbg(efx, hw, efx->net_dev,
2132                          "waiting for SRAM reset (attempt %d)...\n", count);
2133
2134                /* SRAM reset is slow; expect around 16ms */
2135                schedule_timeout_uninterruptible(HZ / 50);
2136
2137                /* Check for reset complete */
2138                ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139                if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140                        netif_dbg(efx, hw, efx->net_dev,
2141                                  "SRAM reset complete\n");
2142
2143                        return 0;
2144                }
2145        } while (++count < 20); /* wait up to 0.4 sec */
2146
2147        netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148        return -ETIMEDOUT;
2149}
2150
2151static void falcon_spi_device_init(struct ef4_nic *efx,
2152                                  struct falcon_spi_device *spi_device,
2153                                  unsigned int device_id, u32 device_type)
2154{
2155        if (device_type != 0) {
2156                spi_device->device_id = device_id;
2157                spi_device->size =
2158                        1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159                spi_device->addr_len =
2160                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161                spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162                                             spi_device->addr_len == 1);
2163                spi_device->erase_command =
2164                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165                spi_device->erase_size =
2166                        1 << SPI_DEV_TYPE_FIELD(device_type,
2167                                                SPI_DEV_TYPE_ERASE_SIZE);
2168                spi_device->block_size =
2169                        1 << SPI_DEV_TYPE_FIELD(device_type,
2170                                                SPI_DEV_TYPE_BLOCK_SIZE);
2171        } else {
2172                spi_device->size = 0;
2173        }
2174}
2175
2176/* Extract non-volatile configuration */
2177static int falcon_probe_nvconfig(struct ef4_nic *efx)
2178{
2179        struct falcon_nic_data *nic_data = efx->nic_data;
2180        struct falcon_nvconfig *nvconfig;
2181        int rc;
2182
2183        nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184        if (!nvconfig)
2185                return -ENOMEM;
2186
2187        rc = falcon_read_nvram(efx, nvconfig);
2188        if (rc)
2189                goto out;
2190
2191        efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192        efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193
2194        if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195                falcon_spi_device_init(
2196                        efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197                        le32_to_cpu(nvconfig->board_v3
2198                                    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199                falcon_spi_device_init(
2200                        efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201                        le32_to_cpu(nvconfig->board_v3
2202                                    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203        }
2204
2205        /* Read the MAC addresses */
2206        ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207
2208        netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209                  efx->phy_type, efx->mdio.prtad);
2210
2211        rc = falcon_probe_board(efx,
2212                                le16_to_cpu(nvconfig->board_v2.board_revision));
2213out:
2214        kfree(nvconfig);
2215        return rc;
2216}
2217
2218static int falcon_dimension_resources(struct ef4_nic *efx)
2219{
2220        efx->rx_dc_base = 0x20000;
2221        efx->tx_dc_base = 0x26000;
2222        return 0;
2223}
2224
2225/* Probe all SPI devices on the NIC */
2226static void falcon_probe_spi_devices(struct ef4_nic *efx)
2227{
2228        struct falcon_nic_data *nic_data = efx->nic_data;
2229        ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230        int boot_dev;
2231
2232        ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233        ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234        ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235
2236        if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237                boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238                            FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239                netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240                          boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241                          "flash" : "EEPROM");
2242        } else {
2243                /* Disable VPD and set clock dividers to safe
2244                 * values for initial programming. */
2245                boot_dev = -1;
2246                netif_dbg(efx, probe, efx->net_dev,
2247                          "Booted from internal ASIC settings;"
2248                          " setting SPI config\n");
2249                EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250                                     /* 125 MHz / 7 ~= 20 MHz */
2251                                     FRF_AB_EE_SF_CLOCK_DIV, 7,
2252                                     /* 125 MHz / 63 ~= 2 MHz */
2253                                     FRF_AB_EE_EE_CLOCK_DIV, 63);
2254                ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255        }
2256
2257        mutex_init(&nic_data->spi_lock);
2258
2259        if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260                falcon_spi_device_init(efx, &nic_data->spi_flash,
2261                                       FFE_AB_SPI_DEVICE_FLASH,
2262                                       default_flash_type);
2263        if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264                falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265                                       FFE_AB_SPI_DEVICE_EEPROM,
2266                                       large_eeprom_type);
2267}
2268
2269static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2270{
2271        return 0x20000;
2272}
2273
2274static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2275{
2276        /* Map everything up to and including the RSS indirection table.
2277         * The PCI core takes care of mapping the MSI-X tables.
2278         */
2279        return FR_BZ_RX_INDIRECTION_TBL +
2280                FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281}
2282
2283static int falcon_probe_nic(struct ef4_nic *efx)
2284{
2285        struct falcon_nic_data *nic_data;
2286        struct falcon_board *board;
2287        int rc;
2288
2289        efx->primary = efx; /* only one usable function per controller */
2290
2291        /* Allocate storage for hardware specific data */
2292        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293        if (!nic_data)
2294                return -ENOMEM;
2295        efx->nic_data = nic_data;
2296        nic_data->efx = efx;
2297
2298        rc = -ENODEV;
2299
2300        if (ef4_farch_fpga_ver(efx) != 0) {
2301                netif_err(efx, probe, efx->net_dev,
2302                          "Falcon FPGA not supported\n");
2303                goto fail1;
2304        }
2305
2306        if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2307                ef4_oword_t nic_stat;
2308                struct pci_dev *dev;
2309                u8 pci_rev = efx->pci_dev->revision;
2310
2311                if ((pci_rev == 0xff) || (pci_rev == 0)) {
2312                        netif_err(efx, probe, efx->net_dev,
2313                                  "Falcon rev A0 not supported\n");
2314                        goto fail1;
2315                }
2316                ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2317                if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2318                        netif_err(efx, probe, efx->net_dev,
2319                                  "Falcon rev A1 1G not supported\n");
2320                        goto fail1;
2321                }
2322                if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2323                        netif_err(efx, probe, efx->net_dev,
2324                                  "Falcon rev A1 PCI-X not supported\n");
2325                        goto fail1;
2326                }
2327
2328                dev = pci_dev_get(efx->pci_dev);
2329                while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2330                                             PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2331                                             dev))) {
2332                        if (dev->bus == efx->pci_dev->bus &&
2333                            dev->devfn == efx->pci_dev->devfn + 1) {
2334                                nic_data->pci_dev2 = dev;
2335                                break;
2336                        }
2337                }
2338                if (!nic_data->pci_dev2) {
2339                        netif_err(efx, probe, efx->net_dev,
2340                                  "failed to find secondary function\n");
2341                        rc = -ENODEV;
2342                        goto fail2;
2343                }
2344        }
2345
2346        /* Now we can reset the NIC */
2347        rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2348        if (rc) {
2349                netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2350                goto fail3;
2351        }
2352
2353        /* Allocate memory for INT_KER */
2354        rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2355                                  GFP_KERNEL);
2356        if (rc)
2357                goto fail4;
2358        BUG_ON(efx->irq_status.dma_addr & 0x0f);
2359
2360        netif_dbg(efx, probe, efx->net_dev,
2361                  "INT_KER at %llx (virt %p phys %llx)\n",
2362                  (u64)efx->irq_status.dma_addr,
2363                  efx->irq_status.addr,
2364                  (u64)virt_to_phys(efx->irq_status.addr));
2365
2366        falcon_probe_spi_devices(efx);
2367
2368        /* Read in the non-volatile configuration */
2369        rc = falcon_probe_nvconfig(efx);
2370        if (rc) {
2371                if (rc == -EINVAL)
2372                        netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2373                goto fail5;
2374        }
2375
2376        efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2377                             EF4_MAX_CHANNELS);
2378        efx->max_tx_channels = efx->max_channels;
2379        efx->timer_quantum_ns = 4968; /* 621 cycles */
2380        efx->timer_max_ns = efx->type->timer_period_max *
2381                            efx->timer_quantum_ns;
2382
2383        /* Initialise I2C adapter */
2384        board = falcon_board(efx);
2385        board->i2c_adap.owner = THIS_MODULE;
2386        board->i2c_data = falcon_i2c_bit_operations;
2387        board->i2c_data.data = efx;
2388        board->i2c_adap.algo_data = &board->i2c_data;
2389        board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2390        strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2391                sizeof(board->i2c_adap.name));
2392        rc = i2c_bit_add_bus(&board->i2c_adap);
2393        if (rc)
2394                goto fail5;
2395
2396        rc = falcon_board(efx)->type->init(efx);
2397        if (rc) {
2398                netif_err(efx, probe, efx->net_dev,
2399                          "failed to initialise board\n");
2400                goto fail6;
2401        }
2402
2403        nic_data->stats_disable_count = 1;
2404        timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2405
2406        return 0;
2407
2408 fail6:
2409        i2c_del_adapter(&board->i2c_adap);
2410        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411 fail5:
2412        ef4_nic_free_buffer(efx, &efx->irq_status);
2413 fail4:
2414 fail3:
2415        if (nic_data->pci_dev2) {
2416                pci_dev_put(nic_data->pci_dev2);
2417                nic_data->pci_dev2 = NULL;
2418        }
2419 fail2:
2420 fail1:
2421        kfree(efx->nic_data);
2422        return rc;
2423}
2424
2425static void falcon_init_rx_cfg(struct ef4_nic *efx)
2426{
2427        /* RX control FIFO thresholds (32 entries) */
2428        const unsigned ctrl_xon_thr = 20;
2429        const unsigned ctrl_xoff_thr = 25;
2430        ef4_oword_t reg;
2431
2432        ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2433        if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2434                /* Data FIFO size is 5.5K.  The RX DMA engine only
2435                 * supports scattering for user-mode queues, but will
2436                 * split DMA writes at intervals of RX_USR_BUF_SIZE
2437                 * (32-byte units) even for kernel-mode queues.  We
2438                 * set it to be so large that that never happens.
2439                 */
2440                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442                                    (3 * 4096) >> 5);
2443                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446                EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447        } else {
2448                /* Data FIFO size is 80K; register fields moved */
2449                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451                                    EF4_RX_USR_BUF_SIZE >> 5);
2452                /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458
2459                /* Enable hash insertion. This is broken for the
2460                 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461                 * IPv4 hashes. */
2462                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464                EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465        }
2466        /* Always enable XOFF signal from RX FIFO.  We enable
2467         * or disable transmission of pause frames at the MAC. */
2468        EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469        ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2470}
2471
2472/* This call performs hardware-specific global initialisation, such as
2473 * defining the descriptor cache sizes and number of RSS channels.
2474 * It does not set up any buffers, descriptor rings or event queues.
2475 */
2476static int falcon_init_nic(struct ef4_nic *efx)
2477{
2478        ef4_oword_t temp;
2479        int rc;
2480
2481        /* Use on-chip SRAM */
2482        ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2483        EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484        ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2485
2486        rc = falcon_reset_sram(efx);
2487        if (rc)
2488                return rc;
2489
2490        /* Clear the parity enables on the TX data fifos as
2491         * they produce false parity errors because of timing issues
2492         */
2493        if (EF4_WORKAROUND_5129(efx)) {
2494                ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495                EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496                ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497        }
2498
2499        if (EF4_WORKAROUND_7244(efx)) {
2500                ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501                EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502                EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503                EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504                EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505                ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506        }
2507
2508        /* XXX This is documented only for Falcon A0/A1 */
2509        /* Setup RX.  Wait for descriptor is broken and must
2510         * be disabled.  RXDP recovery shouldn't be needed, but is.
2511         */
2512        ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513        EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514        EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515        if (EF4_WORKAROUND_5583(efx))
2516                EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517        ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518
2519        /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520         * descriptors (which is bad).
2521         */
2522        ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2523        EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524        ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2525
2526        falcon_init_rx_cfg(efx);
2527
2528        if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2529                falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530
2531                /* Set destination of both TX and RX Flush events */
2532                EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533                ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534        }
2535
2536        ef4_farch_init_common(efx);
2537
2538        return 0;
2539}
2540
2541static void falcon_remove_nic(struct ef4_nic *efx)
2542{
2543        struct falcon_nic_data *nic_data = efx->nic_data;
2544        struct falcon_board *board = falcon_board(efx);
2545
2546        board->type->fini(efx);
2547
2548        /* Remove I2C adapter and clear it in preparation for a retry */
2549        i2c_del_adapter(&board->i2c_adap);
2550        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551
2552        ef4_nic_free_buffer(efx, &efx->irq_status);
2553
2554        __falcon_reset_hw(efx, RESET_TYPE_ALL);
2555
2556        /* Release the second function after the reset */
2557        if (nic_data->pci_dev2) {
2558                pci_dev_put(nic_data->pci_dev2);
2559                nic_data->pci_dev2 = NULL;
2560        }
2561
2562        /* Tear down the private nic state */
2563        kfree(efx->nic_data);
2564        efx->nic_data = NULL;
2565}
2566
2567static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2568{
2569        return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570                                      falcon_stat_mask, names);
2571}
2572
2573static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2574                                      struct rtnl_link_stats64 *core_stats)
2575{
2576        struct falcon_nic_data *nic_data = efx->nic_data;
2577        u64 *stats = nic_data->stats;
2578        ef4_oword_t cnt;
2579
2580        if (!nic_data->stats_disable_count) {
2581                ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582                stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583                        EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584
2585                if (nic_data->stats_pending &&
2586                    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587                        nic_data->stats_pending = false;
2588                        rmb(); /* read the done flag before the stats */
2589                        ef4_nic_update_stats(
2590                                falcon_stat_desc, FALCON_STAT_COUNT,
2591                                falcon_stat_mask,
2592                                stats, efx->stats_buffer.addr, true);
2593                }
2594
2595                /* Update derived statistic */
2596                ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597                                     stats[FALCON_STAT_rx_bytes] -
2598                                     stats[FALCON_STAT_rx_good_bytes] -
2599                                     stats[FALCON_STAT_rx_control] * 64);
2600                ef4_update_sw_stats(efx, stats);
2601        }
2602
2603        if (full_stats)
2604                memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605
2606        if (core_stats) {
2607                core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608                core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609                core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610                core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611                core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612                                         stats[GENERIC_STAT_rx_nodesc_trunc] +
2613                                         stats[GENERIC_STAT_rx_noskb_drops];
2614                core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615                core_stats->rx_length_errors =
2616                        stats[FALCON_STAT_rx_gtjumbo] +
2617                        stats[FALCON_STAT_rx_length_error];
2618                core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619                core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620                core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621
2622                core_stats->rx_errors = (core_stats->rx_length_errors +
2623                                         core_stats->rx_crc_errors +
2624                                         core_stats->rx_frame_errors +
2625                                         stats[FALCON_STAT_rx_symbol_error]);
2626        }
2627
2628        return FALCON_STAT_COUNT;
2629}
2630
2631void falcon_start_nic_stats(struct ef4_nic *efx)
2632{
2633        struct falcon_nic_data *nic_data = efx->nic_data;
2634
2635        spin_lock_bh(&efx->stats_lock);
2636        if (--nic_data->stats_disable_count == 0)
2637                falcon_stats_request(efx);
2638        spin_unlock_bh(&efx->stats_lock);
2639}
2640
2641/* We don't acutally pull stats on falcon. Wait 10ms so that
2642 * they arrive when we call this just after start_stats
2643 */
2644static void falcon_pull_nic_stats(struct ef4_nic *efx)
2645{
2646        msleep(10);
2647}
2648
2649void falcon_stop_nic_stats(struct ef4_nic *efx)
2650{
2651        struct falcon_nic_data *nic_data = efx->nic_data;
2652        int i;
2653
2654        might_sleep();
2655
2656        spin_lock_bh(&efx->stats_lock);
2657        ++nic_data->stats_disable_count;
2658        spin_unlock_bh(&efx->stats_lock);
2659
2660        del_timer_sync(&nic_data->stats_timer);
2661
2662        /* Wait enough time for the most recent transfer to
2663         * complete. */
2664        for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665                if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666                        break;
2667                msleep(1);
2668        }
2669
2670        spin_lock_bh(&efx->stats_lock);
2671        falcon_stats_complete(efx);
2672        spin_unlock_bh(&efx->stats_lock);
2673}
2674
2675static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2676{
2677        falcon_board(efx)->type->set_id_led(efx, mode);
2678}
2679
2680/**************************************************************************
2681 *
2682 * Wake on LAN
2683 *
2684 **************************************************************************
2685 */
2686
2687static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2688{
2689        wol->supported = 0;
2690        wol->wolopts = 0;
2691        memset(&wol->sopass, 0, sizeof(wol->sopass));
2692}
2693
2694static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2695{
2696        if (type != 0)
2697                return -EINVAL;
2698        return 0;
2699}
2700
2701/**************************************************************************
2702 *
2703 * Revision-dependent attributes used by efx.c and nic.c
2704 *
2705 **************************************************************************
2706 */
2707
2708const struct ef4_nic_type falcon_a1_nic_type = {
2709        .mem_bar = EF4_MEM_BAR,
2710        .mem_map_size = falcon_a1_mem_map_size,
2711        .probe = falcon_probe_nic,
2712        .remove = falcon_remove_nic,
2713        .init = falcon_init_nic,
2714        .dimension_resources = falcon_dimension_resources,
2715        .fini = falcon_irq_ack_a1,
2716        .monitor = falcon_monitor,
2717        .map_reset_reason = falcon_map_reset_reason,
2718        .map_reset_flags = falcon_map_reset_flags,
2719        .reset = falcon_reset_hw,
2720        .probe_port = falcon_probe_port,
2721        .remove_port = falcon_remove_port,
2722        .handle_global_event = falcon_handle_global_event,
2723        .fini_dmaq = ef4_farch_fini_dmaq,
2724        .prepare_flush = falcon_prepare_flush,
2725        .finish_flush = ef4_port_dummy_op_void,
2726        .prepare_flr = ef4_port_dummy_op_void,
2727        .finish_flr = ef4_farch_finish_flr,
2728        .describe_stats = falcon_describe_nic_stats,
2729        .update_stats = falcon_update_nic_stats,
2730        .start_stats = falcon_start_nic_stats,
2731        .pull_stats = falcon_pull_nic_stats,
2732        .stop_stats = falcon_stop_nic_stats,
2733        .set_id_led = falcon_set_id_led,
2734        .push_irq_moderation = falcon_push_irq_moderation,
2735        .reconfigure_port = falcon_reconfigure_port,
2736        .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2737        .reconfigure_mac = falcon_reconfigure_xmac,
2738        .check_mac_fault = falcon_xmac_check_fault,
2739        .get_wol = falcon_get_wol,
2740        .set_wol = falcon_set_wol,
2741        .resume_wol = ef4_port_dummy_op_void,
2742        .test_nvram = falcon_test_nvram,
2743        .irq_enable_master = ef4_farch_irq_enable_master,
2744        .irq_test_generate = ef4_farch_irq_test_generate,
2745        .irq_disable_non_ev = ef4_farch_irq_disable_master,
2746        .irq_handle_msi = ef4_farch_msi_interrupt,
2747        .irq_handle_legacy = falcon_legacy_interrupt_a1,
2748        .tx_probe = ef4_farch_tx_probe,
2749        .tx_init = ef4_farch_tx_init,
2750        .tx_remove = ef4_farch_tx_remove,
2751        .tx_write = ef4_farch_tx_write,
2752        .tx_limit_len = ef4_farch_tx_limit_len,
2753        .rx_push_rss_config = dummy_rx_push_rss_config,
2754        .rx_probe = ef4_farch_rx_probe,
2755        .rx_init = ef4_farch_rx_init,
2756        .rx_remove = ef4_farch_rx_remove,
2757        .rx_write = ef4_farch_rx_write,
2758        .rx_defer_refill = ef4_farch_rx_defer_refill,
2759        .ev_probe = ef4_farch_ev_probe,
2760        .ev_init = ef4_farch_ev_init,
2761        .ev_fini = ef4_farch_ev_fini,
2762        .ev_remove = ef4_farch_ev_remove,
2763        .ev_process = ef4_farch_ev_process,
2764        .ev_read_ack = ef4_farch_ev_read_ack,
2765        .ev_test_generate = ef4_farch_ev_test_generate,
2766
2767        /* We don't expose the filter table on Falcon A1 as it is not
2768         * mapped into function 0, but these implementations still
2769         * work with a degenerate case of all tables set to size 0.
2770         */
2771        .filter_table_probe = ef4_farch_filter_table_probe,
2772        .filter_table_restore = ef4_farch_filter_table_restore,
2773        .filter_table_remove = ef4_farch_filter_table_remove,
2774        .filter_insert = ef4_farch_filter_insert,
2775        .filter_remove_safe = ef4_farch_filter_remove_safe,
2776        .filter_get_safe = ef4_farch_filter_get_safe,
2777        .filter_clear_rx = ef4_farch_filter_clear_rx,
2778        .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2779        .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2780        .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2781
2782#ifdef CONFIG_SFC_FALCON_MTD
2783        .mtd_probe = falcon_mtd_probe,
2784        .mtd_rename = falcon_mtd_rename,
2785        .mtd_read = falcon_mtd_read,
2786        .mtd_erase = falcon_mtd_erase,
2787        .mtd_write = falcon_mtd_write,
2788        .mtd_sync = falcon_mtd_sync,
2789#endif
2790
2791        .revision = EF4_REV_FALCON_A1,
2792        .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793        .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794        .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795        .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796        .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798        .rx_buffer_padding = 0x24,
2799        .can_rx_scatter = false,
2800        .max_interrupt_mode = EF4_INT_MODE_MSI,
2801        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802        .offload_features = NETIF_F_IP_CSUM,
2803};
2804
2805const struct ef4_nic_type falcon_b0_nic_type = {
2806        .mem_bar = EF4_MEM_BAR,
2807        .mem_map_size = falcon_b0_mem_map_size,
2808        .probe = falcon_probe_nic,
2809        .remove = falcon_remove_nic,
2810        .init = falcon_init_nic,
2811        .dimension_resources = falcon_dimension_resources,
2812        .fini = ef4_port_dummy_op_void,
2813        .monitor = falcon_monitor,
2814        .map_reset_reason = falcon_map_reset_reason,
2815        .map_reset_flags = falcon_map_reset_flags,
2816        .reset = falcon_reset_hw,
2817        .probe_port = falcon_probe_port,
2818        .remove_port = falcon_remove_port,
2819        .handle_global_event = falcon_handle_global_event,
2820        .fini_dmaq = ef4_farch_fini_dmaq,
2821        .prepare_flush = falcon_prepare_flush,
2822        .finish_flush = ef4_port_dummy_op_void,
2823        .prepare_flr = ef4_port_dummy_op_void,
2824        .finish_flr = ef4_farch_finish_flr,
2825        .describe_stats = falcon_describe_nic_stats,
2826        .update_stats = falcon_update_nic_stats,
2827        .start_stats = falcon_start_nic_stats,
2828        .pull_stats = falcon_pull_nic_stats,
2829        .stop_stats = falcon_stop_nic_stats,
2830        .set_id_led = falcon_set_id_led,
2831        .push_irq_moderation = falcon_push_irq_moderation,
2832        .reconfigure_port = falcon_reconfigure_port,
2833        .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2834        .reconfigure_mac = falcon_reconfigure_xmac,
2835        .check_mac_fault = falcon_xmac_check_fault,
2836        .get_wol = falcon_get_wol,
2837        .set_wol = falcon_set_wol,
2838        .resume_wol = ef4_port_dummy_op_void,
2839        .test_chip = falcon_b0_test_chip,
2840        .test_nvram = falcon_test_nvram,
2841        .irq_enable_master = ef4_farch_irq_enable_master,
2842        .irq_test_generate = ef4_farch_irq_test_generate,
2843        .irq_disable_non_ev = ef4_farch_irq_disable_master,
2844        .irq_handle_msi = ef4_farch_msi_interrupt,
2845        .irq_handle_legacy = ef4_farch_legacy_interrupt,
2846        .tx_probe = ef4_farch_tx_probe,
2847        .tx_init = ef4_farch_tx_init,
2848        .tx_remove = ef4_farch_tx_remove,
2849        .tx_write = ef4_farch_tx_write,
2850        .tx_limit_len = ef4_farch_tx_limit_len,
2851        .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2852        .rx_probe = ef4_farch_rx_probe,
2853        .rx_init = ef4_farch_rx_init,
2854        .rx_remove = ef4_farch_rx_remove,
2855        .rx_write = ef4_farch_rx_write,
2856        .rx_defer_refill = ef4_farch_rx_defer_refill,
2857        .ev_probe = ef4_farch_ev_probe,
2858        .ev_init = ef4_farch_ev_init,
2859        .ev_fini = ef4_farch_ev_fini,
2860        .ev_remove = ef4_farch_ev_remove,
2861        .ev_process = ef4_farch_ev_process,
2862        .ev_read_ack = ef4_farch_ev_read_ack,
2863        .ev_test_generate = ef4_farch_ev_test_generate,
2864        .filter_table_probe = ef4_farch_filter_table_probe,
2865        .filter_table_restore = ef4_farch_filter_table_restore,
2866        .filter_table_remove = ef4_farch_filter_table_remove,
2867        .filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2868        .filter_insert = ef4_farch_filter_insert,
2869        .filter_remove_safe = ef4_farch_filter_remove_safe,
2870        .filter_get_safe = ef4_farch_filter_get_safe,
2871        .filter_clear_rx = ef4_farch_filter_clear_rx,
2872        .filter_count_rx_used = ef4_farch_filter_count_rx_used,
2873        .filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2874        .filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2875#ifdef CONFIG_RFS_ACCEL
2876        .filter_rfs_insert = ef4_farch_filter_rfs_insert,
2877        .filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2878#endif
2879#ifdef CONFIG_SFC_FALCON_MTD
2880        .mtd_probe = falcon_mtd_probe,
2881        .mtd_rename = falcon_mtd_rename,
2882        .mtd_read = falcon_mtd_read,
2883        .mtd_erase = falcon_mtd_erase,
2884        .mtd_write = falcon_mtd_write,
2885        .mtd_sync = falcon_mtd_sync,
2886#endif
2887
2888        .revision = EF4_REV_FALCON_B0,
2889        .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2890        .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2891        .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2892        .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2893        .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2894        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2895        .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2896        .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2897        .rx_buffer_padding = 0,
2898        .can_rx_scatter = true,
2899        .max_interrupt_mode = EF4_INT_MODE_MSIX,
2900        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2901        .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2902        .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2903};
2904