linux/drivers/net/ethernet/sfc/falcon/nic.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2006-2013 Solarflare Communications Inc.
   6 */
   7
   8#ifndef EF4_NIC_H
   9#define EF4_NIC_H
  10
  11#include <linux/net_tstamp.h>
  12#include <linux/i2c-algo-bit.h>
  13#include "net_driver.h"
  14#include "efx.h"
  15
  16enum {
  17        EF4_REV_FALCON_A0 = 0,
  18        EF4_REV_FALCON_A1 = 1,
  19        EF4_REV_FALCON_B0 = 2,
  20};
  21
  22static inline int ef4_nic_rev(struct ef4_nic *efx)
  23{
  24        return efx->type->revision;
  25}
  26
  27u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
  28
  29/* NIC has two interlinked PCI functions for the same port. */
  30static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
  31{
  32        return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
  33}
  34
  35/* Read the current event from the event queue */
  36static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
  37                                     unsigned int index)
  38{
  39        return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
  40                (index & channel->eventq_mask);
  41}
  42
  43/* See if an event is present
  44 *
  45 * We check both the high and low dword of the event for all ones.  We
  46 * wrote all ones when we cleared the event, and no valid event can
  47 * have all ones in either its high or low dwords.  This approach is
  48 * robust against reordering.
  49 *
  50 * Note that using a single 64-bit comparison is incorrect; even
  51 * though the CPU read will be atomic, the DMA write may not be.
  52 */
  53static inline int ef4_event_present(ef4_qword_t *event)
  54{
  55        return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
  56                  EF4_DWORD_IS_ALL_ONES(event->dword[1]));
  57}
  58
  59/* Returns a pointer to the specified transmit descriptor in the TX
  60 * descriptor queue belonging to the specified channel.
  61 */
  62static inline ef4_qword_t *
  63ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
  64{
  65        return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
  66}
  67
  68/* Get partner of a TX queue, seen as part of the same net core queue */
  69static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
  70{
  71        if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
  72                return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
  73        else
  74                return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
  75}
  76
  77/* Report whether this TX queue would be empty for the given write_count.
  78 * May return false negative.
  79 */
  80static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
  81                                         unsigned int write_count)
  82{
  83        unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
  84
  85        if (empty_read_count == 0)
  86                return false;
  87
  88        return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
  89}
  90
  91/* Decide whether to push a TX descriptor to the NIC vs merely writing
  92 * the doorbell.  This can reduce latency when we are adding a single
  93 * descriptor to an empty queue, but is otherwise pointless.  Further,
  94 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
  95 * triggered if we don't check this.
  96 * We use the write_count used for the last doorbell push, to get the
  97 * NIC's view of the tx queue.
  98 */
  99static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
 100                                            unsigned int write_count)
 101{
 102        bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
 103
 104        tx_queue->empty_read_count = 0;
 105        return was_empty && tx_queue->write_count - write_count == 1;
 106}
 107
 108/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 109static inline ef4_qword_t *
 110ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
 111{
 112        return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 113}
 114
 115enum {
 116        PHY_TYPE_NONE = 0,
 117        PHY_TYPE_TXC43128 = 1,
 118        PHY_TYPE_88E1111 = 2,
 119        PHY_TYPE_SFX7101 = 3,
 120        PHY_TYPE_QT2022C2 = 4,
 121        PHY_TYPE_PM8358 = 6,
 122        PHY_TYPE_SFT9001A = 8,
 123        PHY_TYPE_QT2025C = 9,
 124        PHY_TYPE_SFT9001B = 10,
 125};
 126
 127#define FALCON_XMAC_LOOPBACKS                   \
 128        ((1 << LOOPBACK_XGMII) |                \
 129         (1 << LOOPBACK_XGXS) |                 \
 130         (1 << LOOPBACK_XAUI))
 131
 132/* Alignment of PCIe DMA boundaries (4KB) */
 133#define EF4_PAGE_SIZE   4096
 134/* Size and alignment of buffer table entries (same) */
 135#define EF4_BUF_SIZE    EF4_PAGE_SIZE
 136
 137/* NIC-generic software stats */
 138enum {
 139        GENERIC_STAT_rx_noskb_drops,
 140        GENERIC_STAT_rx_nodesc_trunc,
 141        GENERIC_STAT_COUNT
 142};
 143
 144/**
 145 * struct falcon_board_type - board operations and type information
 146 * @id: Board type id, as found in NVRAM
 147 * @init: Allocate resources and initialise peripheral hardware
 148 * @init_phy: Do board-specific PHY initialisation
 149 * @fini: Shut down hardware and free resources
 150 * @set_id_led: Set state of identifying LED or revert to automatic function
 151 * @monitor: Board-specific health check function
 152 */
 153struct falcon_board_type {
 154        u8 id;
 155        int (*init) (struct ef4_nic *nic);
 156        void (*init_phy) (struct ef4_nic *efx);
 157        void (*fini) (struct ef4_nic *nic);
 158        void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
 159        int (*monitor) (struct ef4_nic *nic);
 160};
 161
 162/**
 163 * struct falcon_board - board information
 164 * @type: Type of board
 165 * @major: Major rev. ('A', 'B' ...)
 166 * @minor: Minor rev. (0, 1, ...)
 167 * @i2c_adap: I2C adapter for on-board peripherals
 168 * @i2c_data: Data for bit-banging algorithm
 169 * @hwmon_client: I2C client for hardware monitor
 170 * @ioexp_client: I2C client for power/port control
 171 */
 172struct falcon_board {
 173        const struct falcon_board_type *type;
 174        int major;
 175        int minor;
 176        struct i2c_adapter i2c_adap;
 177        struct i2c_algo_bit_data i2c_data;
 178        struct i2c_client *hwmon_client, *ioexp_client;
 179};
 180
 181/**
 182 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
 183 * @device_id:          Controller's id for the device
 184 * @size:               Size (in bytes)
 185 * @addr_len:           Number of address bytes in read/write commands
 186 * @munge_address:      Flag whether addresses should be munged.
 187 *      Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
 188 *      use bit 3 of the command byte as address bit A8, rather
 189 *      than having a two-byte address.  If this flag is set, then
 190 *      commands should be munged in this way.
 191 * @erase_command:      Erase command (or 0 if sector erase not needed).
 192 * @erase_size:         Erase sector size (in bytes)
 193 *      Erase commands affect sectors with this size and alignment.
 194 *      This must be a power of two.
 195 * @block_size:         Write block size (in bytes).
 196 *      Write commands are limited to blocks with this size and alignment.
 197 */
 198struct falcon_spi_device {
 199        int device_id;
 200        unsigned int size;
 201        unsigned int addr_len;
 202        unsigned int munge_address:1;
 203        u8 erase_command;
 204        unsigned int erase_size;
 205        unsigned int block_size;
 206};
 207
 208static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
 209{
 210        return spi->size != 0;
 211}
 212
 213enum {
 214        FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
 215        FALCON_STAT_tx_packets,
 216        FALCON_STAT_tx_pause,
 217        FALCON_STAT_tx_control,
 218        FALCON_STAT_tx_unicast,
 219        FALCON_STAT_tx_multicast,
 220        FALCON_STAT_tx_broadcast,
 221        FALCON_STAT_tx_lt64,
 222        FALCON_STAT_tx_64,
 223        FALCON_STAT_tx_65_to_127,
 224        FALCON_STAT_tx_128_to_255,
 225        FALCON_STAT_tx_256_to_511,
 226        FALCON_STAT_tx_512_to_1023,
 227        FALCON_STAT_tx_1024_to_15xx,
 228        FALCON_STAT_tx_15xx_to_jumbo,
 229        FALCON_STAT_tx_gtjumbo,
 230        FALCON_STAT_tx_non_tcpudp,
 231        FALCON_STAT_tx_mac_src_error,
 232        FALCON_STAT_tx_ip_src_error,
 233        FALCON_STAT_rx_bytes,
 234        FALCON_STAT_rx_good_bytes,
 235        FALCON_STAT_rx_bad_bytes,
 236        FALCON_STAT_rx_packets,
 237        FALCON_STAT_rx_good,
 238        FALCON_STAT_rx_bad,
 239        FALCON_STAT_rx_pause,
 240        FALCON_STAT_rx_control,
 241        FALCON_STAT_rx_unicast,
 242        FALCON_STAT_rx_multicast,
 243        FALCON_STAT_rx_broadcast,
 244        FALCON_STAT_rx_lt64,
 245        FALCON_STAT_rx_64,
 246        FALCON_STAT_rx_65_to_127,
 247        FALCON_STAT_rx_128_to_255,
 248        FALCON_STAT_rx_256_to_511,
 249        FALCON_STAT_rx_512_to_1023,
 250        FALCON_STAT_rx_1024_to_15xx,
 251        FALCON_STAT_rx_15xx_to_jumbo,
 252        FALCON_STAT_rx_gtjumbo,
 253        FALCON_STAT_rx_bad_lt64,
 254        FALCON_STAT_rx_bad_gtjumbo,
 255        FALCON_STAT_rx_overflow,
 256        FALCON_STAT_rx_symbol_error,
 257        FALCON_STAT_rx_align_error,
 258        FALCON_STAT_rx_length_error,
 259        FALCON_STAT_rx_internal_error,
 260        FALCON_STAT_rx_nodesc_drop_cnt,
 261        FALCON_STAT_COUNT
 262};
 263
 264/**
 265 * struct falcon_nic_data - Falcon NIC state
 266 * @pci_dev2: Secondary function of Falcon A
 267 * @efx: ef4_nic pointer
 268 * @board: Board state and functions
 269 * @stats: Hardware statistics
 270 * @stats_disable_count: Nest count for disabling statistics fetches
 271 * @stats_pending: Is there a pending DMA of MAC statistics.
 272 * @stats_timer: A timer for regularly fetching MAC statistics.
 273 * @spi_flash: SPI flash device
 274 * @spi_eeprom: SPI EEPROM device
 275 * @spi_lock: SPI bus lock
 276 * @mdio_lock: MDIO bus lock
 277 * @xmac_poll_required: XMAC link state needs polling
 278 */
 279struct falcon_nic_data {
 280        struct pci_dev *pci_dev2;
 281        struct ef4_nic *efx;
 282        struct falcon_board board;
 283        u64 stats[FALCON_STAT_COUNT];
 284        unsigned int stats_disable_count;
 285        bool stats_pending;
 286        struct timer_list stats_timer;
 287        struct falcon_spi_device spi_flash;
 288        struct falcon_spi_device spi_eeprom;
 289        struct mutex spi_lock;
 290        struct mutex mdio_lock;
 291        bool xmac_poll_required;
 292};
 293
 294static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
 295{
 296        struct falcon_nic_data *data = efx->nic_data;
 297        return &data->board;
 298}
 299
 300struct ethtool_ts_info;
 301
 302extern const struct ef4_nic_type falcon_a1_nic_type;
 303extern const struct ef4_nic_type falcon_b0_nic_type;
 304
 305/**************************************************************************
 306 *
 307 * Externs
 308 *
 309 **************************************************************************
 310 */
 311
 312int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
 313
 314/* TX data path */
 315static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
 316{
 317        return tx_queue->efx->type->tx_probe(tx_queue);
 318}
 319static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
 320{
 321        tx_queue->efx->type->tx_init(tx_queue);
 322}
 323static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
 324{
 325        tx_queue->efx->type->tx_remove(tx_queue);
 326}
 327static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
 328{
 329        tx_queue->efx->type->tx_write(tx_queue);
 330}
 331
 332/* RX data path */
 333static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
 334{
 335        return rx_queue->efx->type->rx_probe(rx_queue);
 336}
 337static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
 338{
 339        rx_queue->efx->type->rx_init(rx_queue);
 340}
 341static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
 342{
 343        rx_queue->efx->type->rx_remove(rx_queue);
 344}
 345static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
 346{
 347        rx_queue->efx->type->rx_write(rx_queue);
 348}
 349static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
 350{
 351        rx_queue->efx->type->rx_defer_refill(rx_queue);
 352}
 353
 354/* Event data path */
 355static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
 356{
 357        return channel->efx->type->ev_probe(channel);
 358}
 359static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
 360{
 361        return channel->efx->type->ev_init(channel);
 362}
 363static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
 364{
 365        channel->efx->type->ev_fini(channel);
 366}
 367static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
 368{
 369        channel->efx->type->ev_remove(channel);
 370}
 371static inline int
 372ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
 373{
 374        return channel->efx->type->ev_process(channel, quota);
 375}
 376static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
 377{
 378        channel->efx->type->ev_read_ack(channel);
 379}
 380void ef4_nic_event_test_start(struct ef4_channel *channel);
 381
 382/* queue operations */
 383int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
 384void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
 385void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
 386void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
 387void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
 388unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
 389                                    dma_addr_t dma_addr, unsigned int len);
 390int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
 391void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
 392void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
 393void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
 394void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
 395void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
 396int ef4_farch_ev_probe(struct ef4_channel *channel);
 397int ef4_farch_ev_init(struct ef4_channel *channel);
 398void ef4_farch_ev_fini(struct ef4_channel *channel);
 399void ef4_farch_ev_remove(struct ef4_channel *channel);
 400int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
 401void ef4_farch_ev_read_ack(struct ef4_channel *channel);
 402void ef4_farch_ev_test_generate(struct ef4_channel *channel);
 403
 404/* filter operations */
 405int ef4_farch_filter_table_probe(struct ef4_nic *efx);
 406void ef4_farch_filter_table_restore(struct ef4_nic *efx);
 407void ef4_farch_filter_table_remove(struct ef4_nic *efx);
 408void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
 409s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
 410                            bool replace);
 411int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
 412                                 enum ef4_filter_priority priority,
 413                                 u32 filter_id);
 414int ef4_farch_filter_get_safe(struct ef4_nic *efx,
 415                              enum ef4_filter_priority priority, u32 filter_id,
 416                              struct ef4_filter_spec *);
 417int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
 418                              enum ef4_filter_priority priority);
 419u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
 420                                   enum ef4_filter_priority priority);
 421u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
 422s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
 423                                enum ef4_filter_priority priority, u32 *buf,
 424                                u32 size);
 425#ifdef CONFIG_RFS_ACCEL
 426s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
 427                                struct ef4_filter_spec *spec);
 428bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
 429                                     unsigned int index);
 430#endif
 431void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
 432
 433bool ef4_nic_event_present(struct ef4_channel *channel);
 434
 435/* Some statistics are computed as A - B where A and B each increase
 436 * linearly with some hardware counter(s) and the counters are read
 437 * asynchronously.  If the counters contributing to B are always read
 438 * after those contributing to A, the computed value may be lower than
 439 * the true value by some variable amount, and may decrease between
 440 * subsequent computations.
 441 *
 442 * We should never allow statistics to decrease or to exceed the true
 443 * value.  Since the computed value will never be greater than the
 444 * true value, we can achieve this by only storing the computed value
 445 * when it increases.
 446 */
 447static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
 448{
 449        if ((s64)(diff - *stat) > 0)
 450                *stat = diff;
 451}
 452
 453/* Interrupts */
 454int ef4_nic_init_interrupt(struct ef4_nic *efx);
 455int ef4_nic_irq_test_start(struct ef4_nic *efx);
 456void ef4_nic_fini_interrupt(struct ef4_nic *efx);
 457void ef4_farch_irq_enable_master(struct ef4_nic *efx);
 458int ef4_farch_irq_test_generate(struct ef4_nic *efx);
 459void ef4_farch_irq_disable_master(struct ef4_nic *efx);
 460irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
 461irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
 462irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
 463
 464static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
 465{
 466        return READ_ONCE(channel->event_test_cpu);
 467}
 468static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
 469{
 470        return READ_ONCE(efx->last_irq_cpu);
 471}
 472
 473/* Global Resources */
 474int ef4_nic_flush_queues(struct ef4_nic *efx);
 475int ef4_farch_fini_dmaq(struct ef4_nic *efx);
 476void ef4_farch_finish_flr(struct ef4_nic *efx);
 477void falcon_start_nic_stats(struct ef4_nic *efx);
 478void falcon_stop_nic_stats(struct ef4_nic *efx);
 479int falcon_reset_xaui(struct ef4_nic *efx);
 480void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
 481void ef4_farch_init_common(struct ef4_nic *efx);
 482void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
 483
 484int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
 485                         unsigned int len, gfp_t gfp_flags);
 486void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
 487
 488/* Tests */
 489struct ef4_farch_register_test {
 490        unsigned address;
 491        ef4_oword_t mask;
 492};
 493int ef4_farch_test_registers(struct ef4_nic *efx,
 494                             const struct ef4_farch_register_test *regs,
 495                             size_t n_regs);
 496
 497size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
 498void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
 499
 500size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
 501                              const unsigned long *mask, u8 *names);
 502void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
 503                          const unsigned long *mask, u64 *stats,
 504                          const void *dma_buf, bool accumulate);
 505void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
 506
 507#define EF4_MAX_FLUSH_TIME 5000
 508
 509void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
 510                              ef4_qword_t *event);
 511
 512#endif /* EF4_NIC_H */
 513