linux/drivers/net/ethernet/sfc/falcon/tx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/pci.h>
   9#include <linux/tcp.h>
  10#include <linux/ip.h>
  11#include <linux/in.h>
  12#include <linux/ipv6.h>
  13#include <linux/slab.h>
  14#include <net/ipv6.h>
  15#include <linux/if_ether.h>
  16#include <linux/highmem.h>
  17#include <linux/cache.h>
  18#include "net_driver.h"
  19#include "efx.h"
  20#include "io.h"
  21#include "nic.h"
  22#include "tx.h"
  23#include "workarounds.h"
  24
  25static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
  26                                         struct ef4_tx_buffer *buffer)
  27{
  28        unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
  29        struct ef4_buffer *page_buf =
  30                &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
  31        unsigned int offset =
  32                ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
  33
  34        if (unlikely(!page_buf->addr) &&
  35            ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
  36                                 GFP_ATOMIC))
  37                return NULL;
  38        buffer->dma_addr = page_buf->dma_addr + offset;
  39        buffer->unmap_len = 0;
  40        return (u8 *)page_buf->addr + offset;
  41}
  42
  43u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
  44                                   struct ef4_tx_buffer *buffer, size_t len)
  45{
  46        if (len > EF4_TX_CB_SIZE)
  47                return NULL;
  48        return ef4_tx_get_copy_buffer(tx_queue, buffer);
  49}
  50
  51static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
  52                               struct ef4_tx_buffer *buffer,
  53                               unsigned int *pkts_compl,
  54                               unsigned int *bytes_compl)
  55{
  56        if (buffer->unmap_len) {
  57                struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  58                dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  59                if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
  60                        dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  61                                         DMA_TO_DEVICE);
  62                else
  63                        dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  64                                       DMA_TO_DEVICE);
  65                buffer->unmap_len = 0;
  66        }
  67
  68        if (buffer->flags & EF4_TX_BUF_SKB) {
  69                (*pkts_compl)++;
  70                (*bytes_compl) += buffer->skb->len;
  71                dev_consume_skb_any((struct sk_buff *)buffer->skb);
  72                netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  73                           "TX queue %d transmission id %x complete\n",
  74                           tx_queue->queue, tx_queue->read_count);
  75        }
  76
  77        buffer->len = 0;
  78        buffer->flags = 0;
  79}
  80
  81unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
  82{
  83        /* This is probably too much since we don't have any TSO support;
  84         * it's a left-over from when we had Software TSO.  But it's safer
  85         * to leave it as-is than try to determine a new bound.
  86         */
  87        /* Header and payload descriptor for each output segment, plus
  88         * one for every input fragment boundary within a segment
  89         */
  90        unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
  91
  92        /* Possibly one more per segment for the alignment workaround,
  93         * or for option descriptors
  94         */
  95        if (EF4_WORKAROUND_5391(efx))
  96                max_descs += EF4_TSO_MAX_SEGS;
  97
  98        /* Possibly more for PCIe page boundaries within input fragments */
  99        if (PAGE_SIZE > EF4_PAGE_SIZE)
 100                max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 101                                   DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE));
 102
 103        return max_descs;
 104}
 105
 106static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
 107{
 108        /* We need to consider both queues that the net core sees as one */
 109        struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
 110        struct ef4_nic *efx = txq1->efx;
 111        unsigned int fill_level;
 112
 113        fill_level = max(txq1->insert_count - txq1->old_read_count,
 114                         txq2->insert_count - txq2->old_read_count);
 115        if (likely(fill_level < efx->txq_stop_thresh))
 116                return;
 117
 118        /* We used the stale old_read_count above, which gives us a
 119         * pessimistic estimate of the fill level (which may even
 120         * validly be >= efx->txq_entries).  Now try again using
 121         * read_count (more likely to be a cache miss).
 122         *
 123         * If we read read_count and then conditionally stop the
 124         * queue, it is possible for the completion path to race with
 125         * us and complete all outstanding descriptors in the middle,
 126         * after which there will be no more completions to wake it.
 127         * Therefore we stop the queue first, then read read_count
 128         * (with a memory barrier to ensure the ordering), then
 129         * restart the queue if the fill level turns out to be low
 130         * enough.
 131         */
 132        netif_tx_stop_queue(txq1->core_txq);
 133        smp_mb();
 134        txq1->old_read_count = READ_ONCE(txq1->read_count);
 135        txq2->old_read_count = READ_ONCE(txq2->read_count);
 136
 137        fill_level = max(txq1->insert_count - txq1->old_read_count,
 138                         txq2->insert_count - txq2->old_read_count);
 139        EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
 140        if (likely(fill_level < efx->txq_stop_thresh)) {
 141                smp_mb();
 142                if (likely(!efx->loopback_selftest))
 143                        netif_tx_start_queue(txq1->core_txq);
 144        }
 145}
 146
 147static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
 148                                struct sk_buff *skb)
 149{
 150        unsigned int min_len = tx_queue->tx_min_size;
 151        unsigned int copy_len = skb->len;
 152        struct ef4_tx_buffer *buffer;
 153        u8 *copy_buffer;
 154        int rc;
 155
 156        EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
 157
 158        buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
 159
 160        copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
 161        if (unlikely(!copy_buffer))
 162                return -ENOMEM;
 163
 164        rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
 165        EF4_WARN_ON_PARANOID(rc);
 166        if (unlikely(copy_len < min_len)) {
 167                memset(copy_buffer + copy_len, 0, min_len - copy_len);
 168                buffer->len = min_len;
 169        } else {
 170                buffer->len = copy_len;
 171        }
 172
 173        buffer->skb = skb;
 174        buffer->flags = EF4_TX_BUF_SKB;
 175
 176        ++tx_queue->insert_count;
 177        return rc;
 178}
 179
 180static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
 181                                              dma_addr_t dma_addr,
 182                                              size_t len)
 183{
 184        const struct ef4_nic_type *nic_type = tx_queue->efx->type;
 185        struct ef4_tx_buffer *buffer;
 186        unsigned int dma_len;
 187
 188        /* Map the fragment taking account of NIC-dependent DMA limits. */
 189        do {
 190                buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
 191                dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
 192
 193                buffer->len = dma_len;
 194                buffer->dma_addr = dma_addr;
 195                buffer->flags = EF4_TX_BUF_CONT;
 196                len -= dma_len;
 197                dma_addr += dma_len;
 198                ++tx_queue->insert_count;
 199        } while (len);
 200
 201        return buffer;
 202}
 203
 204/* Map all data from an SKB for DMA and create descriptors on the queue.
 205 */
 206static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
 207{
 208        struct ef4_nic *efx = tx_queue->efx;
 209        struct device *dma_dev = &efx->pci_dev->dev;
 210        unsigned int frag_index, nr_frags;
 211        dma_addr_t dma_addr, unmap_addr;
 212        unsigned short dma_flags;
 213        size_t len, unmap_len;
 214
 215        nr_frags = skb_shinfo(skb)->nr_frags;
 216        frag_index = 0;
 217
 218        /* Map header data. */
 219        len = skb_headlen(skb);
 220        dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
 221        dma_flags = EF4_TX_BUF_MAP_SINGLE;
 222        unmap_len = len;
 223        unmap_addr = dma_addr;
 224
 225        if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 226                return -EIO;
 227
 228        /* Add descriptors for each fragment. */
 229        do {
 230                struct ef4_tx_buffer *buffer;
 231                skb_frag_t *fragment;
 232
 233                buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
 234
 235                /* The final descriptor for a fragment is responsible for
 236                 * unmapping the whole fragment.
 237                 */
 238                buffer->flags = EF4_TX_BUF_CONT | dma_flags;
 239                buffer->unmap_len = unmap_len;
 240                buffer->dma_offset = buffer->dma_addr - unmap_addr;
 241
 242                if (frag_index >= nr_frags) {
 243                        /* Store SKB details with the final buffer for
 244                         * the completion.
 245                         */
 246                        buffer->skb = skb;
 247                        buffer->flags = EF4_TX_BUF_SKB | dma_flags;
 248                        return 0;
 249                }
 250
 251                /* Move on to the next fragment. */
 252                fragment = &skb_shinfo(skb)->frags[frag_index++];
 253                len = skb_frag_size(fragment);
 254                dma_addr = skb_frag_dma_map(dma_dev, fragment,
 255                                0, len, DMA_TO_DEVICE);
 256                dma_flags = 0;
 257                unmap_len = len;
 258                unmap_addr = dma_addr;
 259
 260                if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 261                        return -EIO;
 262        } while (1);
 263}
 264
 265/* Remove buffers put into a tx_queue.  None of the buffers must have
 266 * an skb attached.
 267 */
 268static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
 269{
 270        struct ef4_tx_buffer *buffer;
 271
 272        /* Work backwards until we hit the original insert pointer value */
 273        while (tx_queue->insert_count != tx_queue->write_count) {
 274                --tx_queue->insert_count;
 275                buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
 276                ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
 277        }
 278}
 279
 280/*
 281 * Add a socket buffer to a TX queue
 282 *
 283 * This maps all fragments of a socket buffer for DMA and adds them to
 284 * the TX queue.  The queue's insert pointer will be incremented by
 285 * the number of fragments in the socket buffer.
 286 *
 287 * If any DMA mapping fails, any mapped fragments will be unmapped,
 288 * the queue's insert pointer will be restored to its original value.
 289 *
 290 * This function is split out from ef4_hard_start_xmit to allow the
 291 * loopback test to direct packets via specific TX queues.
 292 *
 293 * Returns NETDEV_TX_OK.
 294 * You must hold netif_tx_lock() to call this function.
 295 */
 296netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
 297{
 298        bool data_mapped = false;
 299        unsigned int skb_len;
 300
 301        skb_len = skb->len;
 302        EF4_WARN_ON_PARANOID(skb_is_gso(skb));
 303
 304        if (skb_len < tx_queue->tx_min_size ||
 305                        (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
 306                /* Pad short packets or coalesce short fragmented packets. */
 307                if (ef4_enqueue_skb_copy(tx_queue, skb))
 308                        goto err;
 309                tx_queue->cb_packets++;
 310                data_mapped = true;
 311        }
 312
 313        /* Map for DMA and create descriptors if we haven't done so already. */
 314        if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
 315                goto err;
 316
 317        /* Update BQL */
 318        netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
 319
 320        /* Pass off to hardware */
 321        if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
 322                struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
 323
 324                /* There could be packets left on the partner queue if those
 325                 * SKBs had skb->xmit_more set. If we do not push those they
 326                 * could be left for a long time and cause a netdev watchdog.
 327                 */
 328                if (txq2->xmit_more_available)
 329                        ef4_nic_push_buffers(txq2);
 330
 331                ef4_nic_push_buffers(tx_queue);
 332        } else {
 333                tx_queue->xmit_more_available = netdev_xmit_more();
 334        }
 335
 336        tx_queue->tx_packets++;
 337
 338        ef4_tx_maybe_stop_queue(tx_queue);
 339
 340        return NETDEV_TX_OK;
 341
 342
 343err:
 344        ef4_enqueue_unwind(tx_queue);
 345        dev_kfree_skb_any(skb);
 346        return NETDEV_TX_OK;
 347}
 348
 349/* Remove packets from the TX queue
 350 *
 351 * This removes packets from the TX queue, up to and including the
 352 * specified index.
 353 */
 354static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
 355                                unsigned int index,
 356                                unsigned int *pkts_compl,
 357                                unsigned int *bytes_compl)
 358{
 359        struct ef4_nic *efx = tx_queue->efx;
 360        unsigned int stop_index, read_ptr;
 361
 362        stop_index = (index + 1) & tx_queue->ptr_mask;
 363        read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 364
 365        while (read_ptr != stop_index) {
 366                struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 367
 368                if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
 369                    unlikely(buffer->len == 0)) {
 370                        netif_err(efx, tx_err, efx->net_dev,
 371                                  "TX queue %d spurious TX completion id %x\n",
 372                                  tx_queue->queue, read_ptr);
 373                        ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 374                        return;
 375                }
 376
 377                ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 378
 379                ++tx_queue->read_count;
 380                read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 381        }
 382}
 383
 384/* Initiate a packet transmission.  We use one channel per CPU
 385 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 386 * completion events will be directed back to the CPU that transmitted
 387 * the packet, which should be cache-efficient.
 388 *
 389 * Context: non-blocking.
 390 * Note that returning anything other than NETDEV_TX_OK will cause the
 391 * OS to free the skb.
 392 */
 393netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
 394                                struct net_device *net_dev)
 395{
 396        struct ef4_nic *efx = netdev_priv(net_dev);
 397        struct ef4_tx_queue *tx_queue;
 398        unsigned index, type;
 399
 400        EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
 401
 402        index = skb_get_queue_mapping(skb);
 403        type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
 404        if (index >= efx->n_tx_channels) {
 405                index -= efx->n_tx_channels;
 406                type |= EF4_TXQ_TYPE_HIGHPRI;
 407        }
 408        tx_queue = ef4_get_tx_queue(efx, index, type);
 409
 410        return ef4_enqueue_skb(tx_queue, skb);
 411}
 412
 413void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
 414{
 415        struct ef4_nic *efx = tx_queue->efx;
 416
 417        /* Must be inverse of queue lookup in ef4_hard_start_xmit() */
 418        tx_queue->core_txq =
 419                netdev_get_tx_queue(efx->net_dev,
 420                                    tx_queue->queue / EF4_TXQ_TYPES +
 421                                    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
 422                                     efx->n_tx_channels : 0));
 423}
 424
 425int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
 426                 void *type_data)
 427{
 428        struct ef4_nic *efx = netdev_priv(net_dev);
 429        struct tc_mqprio_qopt *mqprio = type_data;
 430        struct ef4_channel *channel;
 431        struct ef4_tx_queue *tx_queue;
 432        unsigned tc, num_tc;
 433        int rc;
 434
 435        if (type != TC_SETUP_QDISC_MQPRIO)
 436                return -EOPNOTSUPP;
 437
 438        num_tc = mqprio->num_tc;
 439
 440        if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
 441                return -EINVAL;
 442
 443        mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 444
 445        if (num_tc == net_dev->num_tc)
 446                return 0;
 447
 448        for (tc = 0; tc < num_tc; tc++) {
 449                net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
 450                net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
 451        }
 452
 453        if (num_tc > net_dev->num_tc) {
 454                /* Initialise high-priority queues as necessary */
 455                ef4_for_each_channel(channel, efx) {
 456                        ef4_for_each_possible_channel_tx_queue(tx_queue,
 457                                                               channel) {
 458                                if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
 459                                        continue;
 460                                if (!tx_queue->buffer) {
 461                                        rc = ef4_probe_tx_queue(tx_queue);
 462                                        if (rc)
 463                                                return rc;
 464                                }
 465                                if (!tx_queue->initialised)
 466                                        ef4_init_tx_queue(tx_queue);
 467                                ef4_init_tx_queue_core_txq(tx_queue);
 468                        }
 469                }
 470        } else {
 471                /* Reduce number of classes before number of queues */
 472                net_dev->num_tc = num_tc;
 473        }
 474
 475        rc = netif_set_real_num_tx_queues(net_dev,
 476                                          max_t(int, num_tc, 1) *
 477                                          efx->n_tx_channels);
 478        if (rc)
 479                return rc;
 480
 481        /* Do not destroy high-priority queues when they become
 482         * unused.  We would have to flush them first, and it is
 483         * fairly difficult to flush a subset of TX queues.  Leave
 484         * it to ef4_fini_channels().
 485         */
 486
 487        net_dev->num_tc = num_tc;
 488        return 0;
 489}
 490
 491void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
 492{
 493        unsigned fill_level;
 494        struct ef4_nic *efx = tx_queue->efx;
 495        struct ef4_tx_queue *txq2;
 496        unsigned int pkts_compl = 0, bytes_compl = 0;
 497
 498        EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
 499
 500        ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 501        tx_queue->pkts_compl += pkts_compl;
 502        tx_queue->bytes_compl += bytes_compl;
 503
 504        if (pkts_compl > 1)
 505                ++tx_queue->merge_events;
 506
 507        /* See if we need to restart the netif queue.  This memory
 508         * barrier ensures that we write read_count (inside
 509         * ef4_dequeue_buffers()) before reading the queue status.
 510         */
 511        smp_mb();
 512        if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 513            likely(efx->port_enabled) &&
 514            likely(netif_device_present(efx->net_dev))) {
 515                txq2 = ef4_tx_queue_partner(tx_queue);
 516                fill_level = max(tx_queue->insert_count - tx_queue->read_count,
 517                                 txq2->insert_count - txq2->read_count);
 518                if (fill_level <= efx->txq_wake_thresh)
 519                        netif_tx_wake_queue(tx_queue->core_txq);
 520        }
 521
 522        /* Check whether the hardware queue is now empty */
 523        if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 524                tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
 525                if (tx_queue->read_count == tx_queue->old_write_count) {
 526                        smp_mb();
 527                        tx_queue->empty_read_count =
 528                                tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
 529                }
 530        }
 531}
 532
 533static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
 534{
 535        return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
 536}
 537
 538int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
 539{
 540        struct ef4_nic *efx = tx_queue->efx;
 541        unsigned int entries;
 542        int rc;
 543
 544        /* Create the smallest power-of-two aligned ring */
 545        entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
 546        EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
 547        tx_queue->ptr_mask = entries - 1;
 548
 549        netif_dbg(efx, probe, efx->net_dev,
 550                  "creating TX queue %d size %#x mask %#x\n",
 551                  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 552
 553        /* Allocate software ring */
 554        tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 555                                   GFP_KERNEL);
 556        if (!tx_queue->buffer)
 557                return -ENOMEM;
 558
 559        tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
 560                                    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 561        if (!tx_queue->cb_page) {
 562                rc = -ENOMEM;
 563                goto fail1;
 564        }
 565
 566        /* Allocate hardware ring */
 567        rc = ef4_nic_probe_tx(tx_queue);
 568        if (rc)
 569                goto fail2;
 570
 571        return 0;
 572
 573fail2:
 574        kfree(tx_queue->cb_page);
 575        tx_queue->cb_page = NULL;
 576fail1:
 577        kfree(tx_queue->buffer);
 578        tx_queue->buffer = NULL;
 579        return rc;
 580}
 581
 582void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
 583{
 584        struct ef4_nic *efx = tx_queue->efx;
 585
 586        netif_dbg(efx, drv, efx->net_dev,
 587                  "initialising TX queue %d\n", tx_queue->queue);
 588
 589        tx_queue->insert_count = 0;
 590        tx_queue->write_count = 0;
 591        tx_queue->old_write_count = 0;
 592        tx_queue->read_count = 0;
 593        tx_queue->old_read_count = 0;
 594        tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
 595        tx_queue->xmit_more_available = false;
 596
 597        /* Some older hardware requires Tx writes larger than 32. */
 598        tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
 599
 600        /* Set up TX descriptor ring */
 601        ef4_nic_init_tx(tx_queue);
 602
 603        tx_queue->initialised = true;
 604}
 605
 606void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
 607{
 608        struct ef4_tx_buffer *buffer;
 609
 610        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 611                  "shutting down TX queue %d\n", tx_queue->queue);
 612
 613        if (!tx_queue->buffer)
 614                return;
 615
 616        /* Free any buffers left in the ring */
 617        while (tx_queue->read_count != tx_queue->write_count) {
 618                unsigned int pkts_compl = 0, bytes_compl = 0;
 619                buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 620                ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 621
 622                ++tx_queue->read_count;
 623        }
 624        tx_queue->xmit_more_available = false;
 625        netdev_tx_reset_queue(tx_queue->core_txq);
 626}
 627
 628void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
 629{
 630        int i;
 631
 632        if (!tx_queue->buffer)
 633                return;
 634
 635        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 636                  "destroying TX queue %d\n", tx_queue->queue);
 637        ef4_nic_remove_tx(tx_queue);
 638
 639        if (tx_queue->cb_page) {
 640                for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
 641                        ef4_nic_free_buffer(tx_queue->efx,
 642                                            &tx_queue->cb_page[i]);
 643                kfree(tx_queue->cb_page);
 644                tx_queue->cb_page = NULL;
 645        }
 646
 647        kfree(tx_queue->buffer);
 648        tx_queue->buffer = NULL;
 649}
 650