linux/drivers/net/ethernet/sfc/net_driver.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8/* Common definitions for all Efx net driver code */
   9
  10#ifndef EFX_NET_DRIVER_H
  11#define EFX_NET_DRIVER_H
  12
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/ethtool.h>
  16#include <linux/if_vlan.h>
  17#include <linux/timer.h>
  18#include <linux/mdio.h>
  19#include <linux/list.h>
  20#include <linux/pci.h>
  21#include <linux/device.h>
  22#include <linux/highmem.h>
  23#include <linux/workqueue.h>
  24#include <linux/mutex.h>
  25#include <linux/rwsem.h>
  26#include <linux/vmalloc.h>
  27#include <linux/mtd/mtd.h>
  28#include <net/busy_poll.h>
  29#include <net/xdp.h>
  30
  31#include "enum.h"
  32#include "bitfield.h"
  33#include "filter.h"
  34
  35/**************************************************************************
  36 *
  37 * Build definitions
  38 *
  39 **************************************************************************/
  40
  41#ifdef DEBUG
  42#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  43#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  44#else
  45#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  46#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  47#endif
  48
  49/**************************************************************************
  50 *
  51 * Efx data structures
  52 *
  53 **************************************************************************/
  54
  55#define EFX_MAX_CHANNELS 32U
  56#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  57#define EFX_EXTRA_CHANNEL_IOV   0
  58#define EFX_EXTRA_CHANNEL_PTP   1
  59#define EFX_MAX_EXTRA_CHANNELS  2U
  60
  61/* Checksum generation is a per-queue option in hardware, so each
  62 * queue visible to the networking core is backed by two hardware TX
  63 * queues. */
  64#define EFX_MAX_TX_TC           2
  65#define EFX_MAX_CORE_TX_QUEUES  (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  66#define EFX_TXQ_TYPE_OUTER_CSUM 1       /* Outer checksum offload */
  67#define EFX_TXQ_TYPE_INNER_CSUM 2       /* Inner checksum offload */
  68#define EFX_TXQ_TYPE_HIGHPRI    4       /* High-priority (for TC) */
  69#define EFX_TXQ_TYPES           8
  70/* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
  71#define EFX_MAX_TXQ_PER_CHANNEL 4
  72#define EFX_MAX_TX_QUEUES       (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
  73
  74/* Maximum possible MTU the driver supports */
  75#define EFX_MAX_MTU (9 * 1024)
  76
  77/* Minimum MTU, from RFC791 (IP) */
  78#define EFX_MIN_MTU 68
  79
  80/* Maximum total header length for TSOv2 */
  81#define EFX_TSO2_MAX_HDRLEN     208
  82
  83/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  84 * and should be a multiple of the cache line size.
  85 */
  86#define EFX_RX_USR_BUF_SIZE     (2048 - 256)
  87
  88/* If possible, we should ensure cache line alignment at start and end
  89 * of every buffer.  Otherwise, we just need to ensure 4-byte
  90 * alignment of the network header.
  91 */
  92#if NET_IP_ALIGN == 0
  93#define EFX_RX_BUF_ALIGNMENT    L1_CACHE_BYTES
  94#else
  95#define EFX_RX_BUF_ALIGNMENT    4
  96#endif
  97
  98/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
  99 * still fit two standard MTU size packets into a single 4K page.
 100 */
 101#define EFX_XDP_HEADROOM        128
 102#define EFX_XDP_TAILROOM        SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 103
 104/* Forward declare Precision Time Protocol (PTP) support structure. */
 105struct efx_ptp_data;
 106struct hwtstamp_config;
 107
 108struct efx_self_tests;
 109
 110/**
 111 * struct efx_buffer - A general-purpose DMA buffer
 112 * @addr: host base address of the buffer
 113 * @dma_addr: DMA base address of the buffer
 114 * @len: Buffer length, in bytes
 115 *
 116 * The NIC uses these buffers for its interrupt status registers and
 117 * MAC stats dumps.
 118 */
 119struct efx_buffer {
 120        void *addr;
 121        dma_addr_t dma_addr;
 122        unsigned int len;
 123};
 124
 125/**
 126 * struct efx_special_buffer - DMA buffer entered into buffer table
 127 * @buf: Standard &struct efx_buffer
 128 * @index: Buffer index within controller;s buffer table
 129 * @entries: Number of buffer table entries
 130 *
 131 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 132 * Event and descriptor rings are addressed via one or more buffer
 133 * table entries (and so can be physically non-contiguous, although we
 134 * currently do not take advantage of that).  On Falcon and Siena we
 135 * have to take care of allocating and initialising the entries
 136 * ourselves.  On later hardware this is managed by the firmware and
 137 * @index and @entries are left as 0.
 138 */
 139struct efx_special_buffer {
 140        struct efx_buffer buf;
 141        unsigned int index;
 142        unsigned int entries;
 143};
 144
 145/**
 146 * struct efx_tx_buffer - buffer state for a TX descriptor
 147 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 148 *      freed when descriptor completes
 149 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
 150 *      member is the associated buffer to drop a page reference on.
 151 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
 152 *      descriptor.
 153 * @dma_addr: DMA address of the fragment.
 154 * @flags: Flags for allocation and DMA mapping type
 155 * @len: Length of this fragment.
 156 *      This field is zero when the queue slot is empty.
 157 * @unmap_len: Length of this fragment to unmap
 158 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 159 * Only valid if @unmap_len != 0.
 160 */
 161struct efx_tx_buffer {
 162        union {
 163                const struct sk_buff *skb;
 164                struct xdp_frame *xdpf;
 165        };
 166        union {
 167                efx_qword_t option;    /* EF10 */
 168                dma_addr_t dma_addr;
 169        };
 170        unsigned short flags;
 171        unsigned short len;
 172        unsigned short unmap_len;
 173        unsigned short dma_offset;
 174};
 175#define EFX_TX_BUF_CONT         1       /* not last descriptor of packet */
 176#define EFX_TX_BUF_SKB          2       /* buffer is last part of skb */
 177#define EFX_TX_BUF_MAP_SINGLE   8       /* buffer was mapped with dma_map_single() */
 178#define EFX_TX_BUF_OPTION       0x10    /* empty buffer for option descriptor */
 179#define EFX_TX_BUF_XDP          0x20    /* buffer was sent with XDP */
 180#define EFX_TX_BUF_TSO_V3       0x40    /* empty buffer for a TSO_V3 descriptor */
 181
 182/**
 183 * struct efx_tx_queue - An Efx TX queue
 184 *
 185 * This is a ring buffer of TX fragments.
 186 * Since the TX completion path always executes on the same
 187 * CPU and the xmit path can operate on different CPUs,
 188 * performance is increased by ensuring that the completion
 189 * path and the xmit path operate on different cache lines.
 190 * This is particularly important if the xmit path is always
 191 * executing on one CPU which is different from the completion
 192 * path.  There is also a cache line for members which are
 193 * read but not written on the fast path.
 194 *
 195 * @efx: The associated Efx NIC
 196 * @queue: DMA queue number
 197 * @label: Label for TX completion events.
 198 *      Is our index within @channel->tx_queue array.
 199 * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
 200 * @tso_version: Version of TSO in use for this queue.
 201 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
 202 * @channel: The associated channel
 203 * @core_txq: The networking core TX queue structure
 204 * @buffer: The software buffer ring
 205 * @cb_page: Array of pages of copy buffers.  Carved up according to
 206 *      %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 207 * @txd: The hardware descriptor ring
 208 * @ptr_mask: The size of the ring minus 1.
 209 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 210 *      Size of the region is efx_piobuf_size.
 211 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 212 * @initialised: Has hardware queue been initialised?
 213 * @timestamping: Is timestamping enabled for this channel?
 214 * @xdp_tx: Is this an XDP tx queue?
 215 * @read_count: Current read pointer.
 216 *      This is the number of buffers that have been removed from both rings.
 217 * @old_write_count: The value of @write_count when last checked.
 218 *      This is here for performance reasons.  The xmit path will
 219 *      only get the up-to-date value of @write_count if this
 220 *      variable indicates that the queue is empty.  This is to
 221 *      avoid cache-line ping-pong between the xmit path and the
 222 *      completion path.
 223 * @merge_events: Number of TX merged completion events
 224 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 225 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 226 * @insert_count: Current insert pointer
 227 *      This is the number of buffers that have been added to the
 228 *      software ring.
 229 * @write_count: Current write pointer
 230 *      This is the number of buffers that have been added to the
 231 *      hardware ring.
 232 * @packet_write_count: Completable write pointer
 233 *      This is the write pointer of the last packet written.
 234 *      Normally this will equal @write_count, but as option descriptors
 235 *      don't produce completion events, they won't update this.
 236 *      Filled in iff @efx->type->option_descriptors; only used for PIO.
 237 *      Thus, this is written and used on EF10, and neither on farch.
 238 * @old_read_count: The value of read_count when last checked.
 239 *      This is here for performance reasons.  The xmit path will
 240 *      only get the up-to-date value of read_count if this
 241 *      variable indicates that the queue is full.  This is to
 242 *      avoid cache-line ping-pong between the xmit path and the
 243 *      completion path.
 244 * @tso_bursts: Number of times TSO xmit invoked by kernel
 245 * @tso_long_headers: Number of packets with headers too long for standard
 246 *      blocks
 247 * @tso_packets: Number of packets via the TSO xmit path
 248 * @tso_fallbacks: Number of times TSO fallback used
 249 * @pushes: Number of times the TX push feature has been used
 250 * @pio_packets: Number of times the TX PIO feature has been used
 251 * @xmit_pending: Are any packets waiting to be pushed to the NIC
 252 * @cb_packets: Number of times the TX copybreak feature has been used
 253 * @notify_count: Count of notified descriptors to the NIC
 254 * @empty_read_count: If the completion path has seen the queue as empty
 255 *      and the transmission path has not yet checked this, the value of
 256 *      @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 257 */
 258struct efx_tx_queue {
 259        /* Members which don't change on the fast path */
 260        struct efx_nic *efx ____cacheline_aligned_in_smp;
 261        unsigned int queue;
 262        unsigned int label;
 263        unsigned int type;
 264        unsigned int tso_version;
 265        bool tso_encap;
 266        struct efx_channel *channel;
 267        struct netdev_queue *core_txq;
 268        struct efx_tx_buffer *buffer;
 269        struct efx_buffer *cb_page;
 270        struct efx_special_buffer txd;
 271        unsigned int ptr_mask;
 272        void __iomem *piobuf;
 273        unsigned int piobuf_offset;
 274        bool initialised;
 275        bool timestamping;
 276        bool xdp_tx;
 277
 278        /* Members used mainly on the completion path */
 279        unsigned int read_count ____cacheline_aligned_in_smp;
 280        unsigned int old_write_count;
 281        unsigned int merge_events;
 282        unsigned int bytes_compl;
 283        unsigned int pkts_compl;
 284        u32 completed_timestamp_major;
 285        u32 completed_timestamp_minor;
 286
 287        /* Members used only on the xmit path */
 288        unsigned int insert_count ____cacheline_aligned_in_smp;
 289        unsigned int write_count;
 290        unsigned int packet_write_count;
 291        unsigned int old_read_count;
 292        unsigned int tso_bursts;
 293        unsigned int tso_long_headers;
 294        unsigned int tso_packets;
 295        unsigned int tso_fallbacks;
 296        unsigned int pushes;
 297        unsigned int pio_packets;
 298        bool xmit_pending;
 299        unsigned int cb_packets;
 300        unsigned int notify_count;
 301        /* Statistics to supplement MAC stats */
 302        unsigned long tx_packets;
 303
 304        /* Members shared between paths and sometimes updated */
 305        unsigned int empty_read_count ____cacheline_aligned_in_smp;
 306#define EFX_EMPTY_COUNT_VALID 0x80000000
 307        atomic_t flush_outstanding;
 308};
 309
 310#define EFX_TX_CB_ORDER 7
 311#define EFX_TX_CB_SIZE  (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 312
 313/**
 314 * struct efx_rx_buffer - An Efx RX data buffer
 315 * @dma_addr: DMA base address of the buffer
 316 * @page: The associated page buffer.
 317 *      Will be %NULL if the buffer slot is currently free.
 318 * @page_offset: If pending: offset in @page of DMA base address.
 319 *      If completed: offset in @page of Ethernet header.
 320 * @len: If pending: length for DMA descriptor.
 321 *      If completed: received length, excluding hash prefix.
 322 * @flags: Flags for buffer and packet state.  These are only set on the
 323 *      first buffer of a scattered packet.
 324 */
 325struct efx_rx_buffer {
 326        dma_addr_t dma_addr;
 327        struct page *page;
 328        u16 page_offset;
 329        u16 len;
 330        u16 flags;
 331};
 332#define EFX_RX_BUF_LAST_IN_PAGE 0x0001
 333#define EFX_RX_PKT_CSUMMED      0x0002
 334#define EFX_RX_PKT_DISCARD      0x0004
 335#define EFX_RX_PKT_TCP          0x0040
 336#define EFX_RX_PKT_PREFIX_LEN   0x0080  /* length is in prefix only */
 337#define EFX_RX_PKT_CSUM_LEVEL   0x0200
 338
 339/**
 340 * struct efx_rx_page_state - Page-based rx buffer state
 341 *
 342 * Inserted at the start of every page allocated for receive buffers.
 343 * Used to facilitate sharing dma mappings between recycled rx buffers
 344 * and those passed up to the kernel.
 345 *
 346 * @dma_addr: The dma address of this page.
 347 */
 348struct efx_rx_page_state {
 349        dma_addr_t dma_addr;
 350
 351        unsigned int __pad[] ____cacheline_aligned;
 352};
 353
 354/**
 355 * struct efx_rx_queue - An Efx RX queue
 356 * @efx: The associated Efx NIC
 357 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 358 *      is associated with a real RX queue.
 359 * @buffer: The software buffer ring
 360 * @rxd: The hardware descriptor ring
 361 * @ptr_mask: The size of the ring minus 1.
 362 * @refill_enabled: Enable refill whenever fill level is low
 363 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 364 *      @rxq_flush_pending.
 365 * @added_count: Number of buffers added to the receive queue.
 366 * @notified_count: Number of buffers given to NIC (<= @added_count).
 367 * @removed_count: Number of buffers removed from the receive queue.
 368 * @scatter_n: Used by NIC specific receive code.
 369 * @scatter_len: Used by NIC specific receive code.
 370 * @page_ring: The ring to store DMA mapped pages for reuse.
 371 * @page_add: Counter to calculate the write pointer for the recycle ring.
 372 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 373 * @page_recycle_count: The number of pages that have been recycled.
 374 * @page_recycle_failed: The number of pages that couldn't be recycled because
 375 *      the kernel still held a reference to them.
 376 * @page_recycle_full: The number of pages that were released because the
 377 *      recycle ring was full.
 378 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 379 * @max_fill: RX descriptor maximum fill level (<= ring size)
 380 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 381 *      (<= @max_fill)
 382 * @min_fill: RX descriptor minimum non-zero fill level.
 383 *      This records the minimum fill level observed when a ring
 384 *      refill was triggered.
 385 * @recycle_count: RX buffer recycle counter.
 386 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 387 * @xdp_rxq_info: XDP specific RX queue information.
 388 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
 389 */
 390struct efx_rx_queue {
 391        struct efx_nic *efx;
 392        int core_index;
 393        struct efx_rx_buffer *buffer;
 394        struct efx_special_buffer rxd;
 395        unsigned int ptr_mask;
 396        bool refill_enabled;
 397        bool flush_pending;
 398
 399        unsigned int added_count;
 400        unsigned int notified_count;
 401        unsigned int removed_count;
 402        unsigned int scatter_n;
 403        unsigned int scatter_len;
 404        struct page **page_ring;
 405        unsigned int page_add;
 406        unsigned int page_remove;
 407        unsigned int page_recycle_count;
 408        unsigned int page_recycle_failed;
 409        unsigned int page_recycle_full;
 410        unsigned int page_ptr_mask;
 411        unsigned int max_fill;
 412        unsigned int fast_fill_trigger;
 413        unsigned int min_fill;
 414        unsigned int min_overfill;
 415        unsigned int recycle_count;
 416        struct timer_list slow_fill;
 417        unsigned int slow_fill_count;
 418        /* Statistics to supplement MAC stats */
 419        unsigned long rx_packets;
 420        struct xdp_rxq_info xdp_rxq_info;
 421        bool xdp_rxq_info_valid;
 422};
 423
 424enum efx_sync_events_state {
 425        SYNC_EVENTS_DISABLED = 0,
 426        SYNC_EVENTS_QUIESCENT,
 427        SYNC_EVENTS_REQUESTED,
 428        SYNC_EVENTS_VALID,
 429};
 430
 431/**
 432 * struct efx_channel - An Efx channel
 433 *
 434 * A channel comprises an event queue, at least one TX queue, at least
 435 * one RX queue, and an associated tasklet for processing the event
 436 * queue.
 437 *
 438 * @efx: Associated Efx NIC
 439 * @channel: Channel instance number
 440 * @type: Channel type definition
 441 * @eventq_init: Event queue initialised flag
 442 * @enabled: Channel enabled indicator
 443 * @irq: IRQ number (MSI and MSI-X only)
 444 * @irq_moderation_us: IRQ moderation value (in microseconds)
 445 * @napi_dev: Net device used with NAPI
 446 * @napi_str: NAPI control structure
 447 * @state: state for NAPI vs busy polling
 448 * @state_lock: lock protecting @state
 449 * @eventq: Event queue buffer
 450 * @eventq_mask: Event queue pointer mask
 451 * @eventq_read_ptr: Event queue read pointer
 452 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 453 * @irq_count: Number of IRQs since last adaptive moderation decision
 454 * @irq_mod_score: IRQ moderation score
 455 * @rfs_filter_count: number of accelerated RFS filters currently in place;
 456 *      equals the count of @rps_flow_id slots filled
 457 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
 458 *      were checked for expiry
 459 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
 460 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
 461 * @n_rfs_failed: number of failed accelerated RFS filter insertions
 462 * @filter_work: Work item for efx_filter_rfs_expire()
 463 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 464 *      indexed by filter ID
 465 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 466 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 467 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 468 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 469 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 470 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 471 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 472 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 473 *      lack of descriptors
 474 * @n_rx_merge_events: Number of RX merged completion events
 475 * @n_rx_merge_packets: Number of RX packets completed by merged events
 476 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
 477 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
 478 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
 479 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
 480 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 481 *      __efx_rx_packet(), or zero if there is none
 482 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 483 *      by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 484 * @rx_list: list of SKBs from current RX, awaiting processing
 485 * @rx_queue: RX queue for this channel
 486 * @tx_queue: TX queues for this channel
 487 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
 488 * @sync_events_state: Current state of sync events on this channel
 489 * @sync_timestamp_major: Major part of the last ptp sync event
 490 * @sync_timestamp_minor: Minor part of the last ptp sync event
 491 */
 492struct efx_channel {
 493        struct efx_nic *efx;
 494        int channel;
 495        const struct efx_channel_type *type;
 496        bool eventq_init;
 497        bool enabled;
 498        int irq;
 499        unsigned int irq_moderation_us;
 500        struct net_device *napi_dev;
 501        struct napi_struct napi_str;
 502#ifdef CONFIG_NET_RX_BUSY_POLL
 503        unsigned long busy_poll_state;
 504#endif
 505        struct efx_special_buffer eventq;
 506        unsigned int eventq_mask;
 507        unsigned int eventq_read_ptr;
 508        int event_test_cpu;
 509
 510        unsigned int irq_count;
 511        unsigned int irq_mod_score;
 512#ifdef CONFIG_RFS_ACCEL
 513        unsigned int rfs_filter_count;
 514        unsigned int rfs_last_expiry;
 515        unsigned int rfs_expire_index;
 516        unsigned int n_rfs_succeeded;
 517        unsigned int n_rfs_failed;
 518        struct delayed_work filter_work;
 519#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 520        u32 *rps_flow_id;
 521#endif
 522
 523        unsigned int n_rx_tobe_disc;
 524        unsigned int n_rx_ip_hdr_chksum_err;
 525        unsigned int n_rx_tcp_udp_chksum_err;
 526        unsigned int n_rx_outer_ip_hdr_chksum_err;
 527        unsigned int n_rx_outer_tcp_udp_chksum_err;
 528        unsigned int n_rx_inner_ip_hdr_chksum_err;
 529        unsigned int n_rx_inner_tcp_udp_chksum_err;
 530        unsigned int n_rx_eth_crc_err;
 531        unsigned int n_rx_mcast_mismatch;
 532        unsigned int n_rx_frm_trunc;
 533        unsigned int n_rx_overlength;
 534        unsigned int n_skbuff_leaks;
 535        unsigned int n_rx_nodesc_trunc;
 536        unsigned int n_rx_merge_events;
 537        unsigned int n_rx_merge_packets;
 538        unsigned int n_rx_xdp_drops;
 539        unsigned int n_rx_xdp_bad_drops;
 540        unsigned int n_rx_xdp_tx;
 541        unsigned int n_rx_xdp_redirect;
 542
 543        unsigned int rx_pkt_n_frags;
 544        unsigned int rx_pkt_index;
 545
 546        struct list_head *rx_list;
 547
 548        struct efx_rx_queue rx_queue;
 549        struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
 550        struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
 551
 552        enum efx_sync_events_state sync_events_state;
 553        u32 sync_timestamp_major;
 554        u32 sync_timestamp_minor;
 555};
 556
 557/**
 558 * struct efx_msi_context - Context for each MSI
 559 * @efx: The associated NIC
 560 * @index: Index of the channel/IRQ
 561 * @name: Name of the channel/IRQ
 562 *
 563 * Unlike &struct efx_channel, this is never reallocated and is always
 564 * safe for the IRQ handler to access.
 565 */
 566struct efx_msi_context {
 567        struct efx_nic *efx;
 568        unsigned int index;
 569        char name[IFNAMSIZ + 6];
 570};
 571
 572/**
 573 * struct efx_channel_type - distinguishes traffic and extra channels
 574 * @handle_no_channel: Handle failure to allocate an extra channel
 575 * @pre_probe: Set up extra state prior to initialisation
 576 * @post_remove: Tear down extra state after finalisation, if allocated.
 577 *      May be called on channels that have not been probed.
 578 * @get_name: Generate the channel's name (used for its IRQ handler)
 579 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 580 *      reallocation is not supported.
 581 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 582 * @want_txqs: Determine whether this channel should have TX queues
 583 *      created.  If %NULL, TX queues are not created.
 584 * @keep_eventq: Flag for whether event queue should be kept initialised
 585 *      while the device is stopped
 586 * @want_pio: Flag for whether PIO buffers should be linked to this
 587 *      channel's TX queues.
 588 */
 589struct efx_channel_type {
 590        void (*handle_no_channel)(struct efx_nic *);
 591        int (*pre_probe)(struct efx_channel *);
 592        void (*post_remove)(struct efx_channel *);
 593        void (*get_name)(struct efx_channel *, char *buf, size_t len);
 594        struct efx_channel *(*copy)(const struct efx_channel *);
 595        bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 596        bool (*want_txqs)(struct efx_channel *);
 597        bool keep_eventq;
 598        bool want_pio;
 599};
 600
 601enum efx_led_mode {
 602        EFX_LED_OFF     = 0,
 603        EFX_LED_ON      = 1,
 604        EFX_LED_DEFAULT = 2
 605};
 606
 607#define STRING_TABLE_LOOKUP(val, member) \
 608        ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 609
 610extern const char *const efx_loopback_mode_names[];
 611extern const unsigned int efx_loopback_mode_max;
 612#define LOOPBACK_MODE(efx) \
 613        STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 614
 615extern const char *const efx_reset_type_names[];
 616extern const unsigned int efx_reset_type_max;
 617#define RESET_TYPE(type) \
 618        STRING_TABLE_LOOKUP(type, efx_reset_type)
 619
 620enum efx_int_mode {
 621        /* Be careful if altering to correct macro below */
 622        EFX_INT_MODE_MSIX = 0,
 623        EFX_INT_MODE_MSI = 1,
 624        EFX_INT_MODE_LEGACY = 2,
 625        EFX_INT_MODE_MAX        /* Insert any new items before this */
 626};
 627#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 628
 629enum nic_state {
 630        STATE_UNINIT = 0,       /* device being probed/removed or is frozen */
 631        STATE_READY = 1,        /* hardware ready and netdev registered */
 632        STATE_DISABLED = 2,     /* device disabled due to hardware errors */
 633        STATE_RECOVERY = 3,     /* device recovering from PCI error */
 634};
 635
 636/* Forward declaration */
 637struct efx_nic;
 638
 639/* Pseudo bit-mask flow control field */
 640#define EFX_FC_RX       FLOW_CTRL_RX
 641#define EFX_FC_TX       FLOW_CTRL_TX
 642#define EFX_FC_AUTO     4
 643
 644/**
 645 * struct efx_link_state - Current state of the link
 646 * @up: Link is up
 647 * @fd: Link is full-duplex
 648 * @fc: Actual flow control flags
 649 * @speed: Link speed (Mbps)
 650 */
 651struct efx_link_state {
 652        bool up;
 653        bool fd;
 654        u8 fc;
 655        unsigned int speed;
 656};
 657
 658static inline bool efx_link_state_equal(const struct efx_link_state *left,
 659                                        const struct efx_link_state *right)
 660{
 661        return left->up == right->up && left->fd == right->fd &&
 662                left->fc == right->fc && left->speed == right->speed;
 663}
 664
 665/**
 666 * enum efx_phy_mode - PHY operating mode flags
 667 * @PHY_MODE_NORMAL: on and should pass traffic
 668 * @PHY_MODE_TX_DISABLED: on with TX disabled
 669 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 670 * @PHY_MODE_OFF: switched off through external control
 671 * @PHY_MODE_SPECIAL: on but will not pass traffic
 672 */
 673enum efx_phy_mode {
 674        PHY_MODE_NORMAL         = 0,
 675        PHY_MODE_TX_DISABLED    = 1,
 676        PHY_MODE_LOW_POWER      = 2,
 677        PHY_MODE_OFF            = 4,
 678        PHY_MODE_SPECIAL        = 8,
 679};
 680
 681static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 682{
 683        return !!(mode & ~PHY_MODE_TX_DISABLED);
 684}
 685
 686/**
 687 * struct efx_hw_stat_desc - Description of a hardware statistic
 688 * @name: Name of the statistic as visible through ethtool, or %NULL if
 689 *      it should not be exposed
 690 * @dma_width: Width in bits (0 for non-DMA statistics)
 691 * @offset: Offset within stats (ignored for non-DMA statistics)
 692 */
 693struct efx_hw_stat_desc {
 694        const char *name;
 695        u16 dma_width;
 696        u16 offset;
 697};
 698
 699/* Number of bits used in a multicast filter hash address */
 700#define EFX_MCAST_HASH_BITS 8
 701
 702/* Number of (single-bit) entries in a multicast filter hash */
 703#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 704
 705/* An Efx multicast filter hash */
 706union efx_multicast_hash {
 707        u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 708        efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 709};
 710
 711struct vfdi_status;
 712
 713/* The reserved RSS context value */
 714#define EFX_MCDI_RSS_CONTEXT_INVALID    0xffffffff
 715/**
 716 * struct efx_rss_context - A user-defined RSS context for filtering
 717 * @list: node of linked list on which this struct is stored
 718 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
 719 *      %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
 720 *      For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
 721 * @user_id: the rss_context ID exposed to userspace over ethtool.
 722 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 723 * @rx_hash_key: Toeplitz hash key for this RSS context
 724 * @indir_table: Indirection table for this RSS context
 725 */
 726struct efx_rss_context {
 727        struct list_head list;
 728        u32 context_id;
 729        u32 user_id;
 730        bool rx_hash_udp_4tuple;
 731        u8 rx_hash_key[40];
 732        u32 rx_indir_table[128];
 733};
 734
 735#ifdef CONFIG_RFS_ACCEL
 736/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 737 * is used to test if filter does or will exist.
 738 */
 739#define EFX_ARFS_FILTER_ID_PENDING      -1
 740#define EFX_ARFS_FILTER_ID_ERROR        -2
 741#define EFX_ARFS_FILTER_ID_REMOVING     -3
 742/**
 743 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 744 * @node: linkage into hash table
 745 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 746 *      determine which member to use.
 747 * @rxq_index: channel to which the filter will steer traffic.
 748 * @arfs_id: filter ID which was returned to ARFS
 749 * @filter_id: index in software filter table.  May be
 750 *      %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 751 *      %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 752 *      %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 753 */
 754struct efx_arfs_rule {
 755        struct hlist_node node;
 756        struct efx_filter_spec spec;
 757        u16 rxq_index;
 758        u16 arfs_id;
 759        s32 filter_id;
 760};
 761
 762/* Size chosen so that the table is one page (4kB) */
 763#define EFX_ARFS_HASH_TABLE_SIZE        512
 764
 765/**
 766 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 767 * @net_dev: Reference to the netdevice
 768 * @spec: The filter to insert
 769 * @work: Workitem for this request
 770 * @rxq_index: Identifies the channel for which this request was made
 771 * @flow_id: Identifies the kernel-side flow for which this request was made
 772 */
 773struct efx_async_filter_insertion {
 774        struct net_device *net_dev;
 775        struct efx_filter_spec spec;
 776        struct work_struct work;
 777        u16 rxq_index;
 778        u32 flow_id;
 779};
 780
 781/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 782#define EFX_RPS_MAX_IN_FLIGHT   8
 783#endif /* CONFIG_RFS_ACCEL */
 784
 785enum efx_xdp_tx_queues_mode {
 786        EFX_XDP_TX_QUEUES_DEDICATED,    /* one queue per core, locking not needed */
 787        EFX_XDP_TX_QUEUES_SHARED,       /* each queue used by more than 1 core */
 788        EFX_XDP_TX_QUEUES_BORROWED      /* queues borrowed from net stack */
 789};
 790
 791/**
 792 * struct efx_nic - an Efx NIC
 793 * @name: Device name (net device name or bus id before net device registered)
 794 * @pci_dev: The PCI device
 795 * @node: List node for maintaning primary/secondary function lists
 796 * @primary: &struct efx_nic instance for the primary function of this
 797 *      controller.  May be the same structure, and may be %NULL if no
 798 *      primary function is bound.  Serialised by rtnl_lock.
 799 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 800 *      functions of the controller, if this is for the primary function.
 801 *      Serialised by rtnl_lock.
 802 * @type: Controller type attributes
 803 * @legacy_irq: IRQ number
 804 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 805 *      Work items do not hold and must not acquire RTNL.
 806 * @workqueue_name: Name of workqueue
 807 * @reset_work: Scheduled reset workitem
 808 * @membase_phys: Memory BAR value as physical address
 809 * @membase: Memory BAR value
 810 * @vi_stride: step between per-VI registers / memory regions
 811 * @interrupt_mode: Interrupt mode
 812 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 813 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 814 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 815 * @irqs_hooked: Channel interrupts are hooked
 816 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 817 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 818 * @msg_enable: Log message enable flags
 819 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 820 * @reset_pending: Bitmask for pending resets
 821 * @tx_queue: TX DMA queues
 822 * @rx_queue: RX DMA queues
 823 * @channel: Channels
 824 * @msi_context: Context for each MSI
 825 * @extra_channel_types: Types of extra (non-traffic) channels that
 826 *      should be allocated for this NIC
 827 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
 828 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
 829 * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
 830 * @rxq_entries: Size of receive queues requested by user.
 831 * @txq_entries: Size of transmit queues requested by user.
 832 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 833 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 834 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 835 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 836 * @sram_lim_qw: Qword address limit of SRAM
 837 * @next_buffer_table: First available buffer table id
 838 * @n_channels: Number of channels in use
 839 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 840 * @n_tx_channels: Number of channels used for TX
 841 * @n_extra_tx_channels: Number of extra channels with TX queues
 842 * @tx_queues_per_channel: number of TX queues probed on each channel
 843 * @n_xdp_channels: Number of channels used for XDP TX
 844 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
 845 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
 846 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 847 *      in accordance with NET_IP_ALIGN
 848 * @rx_dma_len: Current maximum RX DMA length
 849 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 850 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 851 *      for use in sk_buff::truesize
 852 * @rx_prefix_size: Size of RX prefix before packet data
 853 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 854 *      (valid only if @rx_prefix_size != 0; always negative)
 855 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 856 *      (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 857 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 858 *      (valid only if channel->sync_timestamps_enabled; always negative)
 859 * @rx_scatter: Scatter mode enabled for receives
 860 * @rss_context: Main RSS context.  Its @list member is the head of the list of
 861 *      RSS contexts created by user requests
 862 * @rss_lock: Protects custom RSS context software state in @rss_context.list
 863 * @vport_id: The function's vport ID, only relevant for PFs
 864 * @int_error_count: Number of internal errors seen recently
 865 * @int_error_expire: Time at which error count will be expired
 866 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 867 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 868 *      acknowledge but do nothing else.
 869 * @irq_status: Interrupt status buffer
 870 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 871 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 872 * @selftest_work: Work item for asynchronous self-test
 873 * @mtd_list: List of MTDs attached to the NIC
 874 * @nic_data: Hardware dependent state
 875 * @mcdi: Management-Controller-to-Driver Interface state
 876 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 877 *      efx_monitor() and efx_reconfigure_port()
 878 * @port_enabled: Port enabled indicator.
 879 *      Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 880 *      efx_mac_work() with kernel interfaces. Safe to read under any
 881 *      one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 882 *      be held to modify it.
 883 * @port_initialized: Port initialized?
 884 * @net_dev: Operating system network device. Consider holding the rtnl lock
 885 * @fixed_features: Features which cannot be turned off
 886 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 887 *      field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 888 * @stats_buffer: DMA buffer for statistics
 889 * @phy_type: PHY type
 890 * @phy_data: PHY private data (including PHY-specific stats)
 891 * @mdio: PHY MDIO interface
 892 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 893 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 894 * @link_advertising: Autonegotiation advertising flags
 895 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 896 *      see &enum ethtool_fec_config_bits.
 897 * @link_state: Current state of the link
 898 * @n_link_state_changes: Number of times the link has changed state
 899 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 900 *      Protected by @mac_lock.
 901 * @multicast_hash: Multicast hash table for Falcon-arch.
 902 *      Protected by @mac_lock.
 903 * @wanted_fc: Wanted flow control flags
 904 * @fc_disable: When non-zero flow control is disabled. Typically used to
 905 *      ensure that network back pressure doesn't delay dma queue flushes.
 906 *      Serialised by the rtnl lock.
 907 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 908 * @loopback_mode: Loopback status
 909 * @loopback_modes: Supported loopback mode bitmask
 910 * @loopback_selftest: Offline self-test private state
 911 * @xdp_prog: Current XDP programme for this interface
 912 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 913 * @filter_state: Architecture-dependent filter table state
 914 * @rps_mutex: Protects RPS state of all channels
 915 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 916 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 917 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 918 *      @rps_next_id).
 919 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 920 * @rps_next_id: next arfs_id for an ARFS filter
 921 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 922 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 923 *      Decremented when the efx_flush_rx_queue() is called.
 924 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 925 *      completed (either success or failure). Not used when MCDI is used to
 926 *      flush receive queues.
 927 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 928 * @vf_count: Number of VFs intended to be enabled.
 929 * @vf_init_count: Number of VFs that have been fully initialised.
 930 * @vi_scale: log2 number of vnics per VF.
 931 * @ptp_data: PTP state data
 932 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 933 * @vpd_sn: Serial number read from VPD
 934 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
 935 *      xdp_rxq_info structures?
 936 * @netdev_notifier: Netdevice notifier.
 937 * @mem_bar: The BAR that is mapped into membase.
 938 * @reg_base: Offset from the start of the bar to the function control window.
 939 * @monitor_work: Hardware monitor workitem
 940 * @biu_lock: BIU (bus interface unit) lock
 941 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 942 *      field is used by efx_test_interrupts() to verify that an
 943 *      interrupt has occurred.
 944 * @stats_lock: Statistics update lock. Must be held when calling
 945 *      efx_nic_type::{update,start,stop}_stats.
 946 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 947 *
 948 * This is stored in the private area of the &struct net_device.
 949 */
 950struct efx_nic {
 951        /* The following fields should be written very rarely */
 952
 953        char name[IFNAMSIZ];
 954        struct list_head node;
 955        struct efx_nic *primary;
 956        struct list_head secondary_list;
 957        struct pci_dev *pci_dev;
 958        unsigned int port_num;
 959        const struct efx_nic_type *type;
 960        int legacy_irq;
 961        bool eeh_disabled_legacy_irq;
 962        struct workqueue_struct *workqueue;
 963        char workqueue_name[16];
 964        struct work_struct reset_work;
 965        resource_size_t membase_phys;
 966        void __iomem *membase;
 967
 968        unsigned int vi_stride;
 969
 970        enum efx_int_mode interrupt_mode;
 971        unsigned int timer_quantum_ns;
 972        unsigned int timer_max_ns;
 973        bool irq_rx_adaptive;
 974        bool irqs_hooked;
 975        unsigned int irq_mod_step_us;
 976        unsigned int irq_rx_moderation_us;
 977        u32 msg_enable;
 978
 979        enum nic_state state;
 980        unsigned long reset_pending;
 981
 982        struct efx_channel *channel[EFX_MAX_CHANNELS];
 983        struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 984        const struct efx_channel_type *
 985        extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 986
 987        unsigned int xdp_tx_queue_count;
 988        struct efx_tx_queue **xdp_tx_queues;
 989        enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
 990
 991        unsigned rxq_entries;
 992        unsigned txq_entries;
 993        unsigned int txq_stop_thresh;
 994        unsigned int txq_wake_thresh;
 995
 996        unsigned tx_dc_base;
 997        unsigned rx_dc_base;
 998        unsigned sram_lim_qw;
 999        unsigned next_buffer_table;
1000
1001        unsigned int max_channels;
1002        unsigned int max_vis;
1003        unsigned int max_tx_channels;
1004        unsigned n_channels;
1005        unsigned n_rx_channels;
1006        unsigned rss_spread;
1007        unsigned tx_channel_offset;
1008        unsigned n_tx_channels;
1009        unsigned n_extra_tx_channels;
1010        unsigned int tx_queues_per_channel;
1011        unsigned int n_xdp_channels;
1012        unsigned int xdp_channel_offset;
1013        unsigned int xdp_tx_per_channel;
1014        unsigned int rx_ip_align;
1015        unsigned int rx_dma_len;
1016        unsigned int rx_buffer_order;
1017        unsigned int rx_buffer_truesize;
1018        unsigned int rx_page_buf_step;
1019        unsigned int rx_bufs_per_page;
1020        unsigned int rx_pages_per_batch;
1021        unsigned int rx_prefix_size;
1022        int rx_packet_hash_offset;
1023        int rx_packet_len_offset;
1024        int rx_packet_ts_offset;
1025        bool rx_scatter;
1026        struct efx_rss_context rss_context;
1027        struct mutex rss_lock;
1028        u32 vport_id;
1029
1030        unsigned int_error_count;
1031        unsigned long int_error_expire;
1032
1033        bool must_realloc_vis;
1034        bool irq_soft_enabled;
1035        struct efx_buffer irq_status;
1036        unsigned irq_zero_count;
1037        unsigned irq_level;
1038        struct delayed_work selftest_work;
1039
1040#ifdef CONFIG_SFC_MTD
1041        struct list_head mtd_list;
1042#endif
1043
1044        void *nic_data;
1045        struct efx_mcdi_data *mcdi;
1046
1047        struct mutex mac_lock;
1048        struct work_struct mac_work;
1049        bool port_enabled;
1050
1051        bool mc_bist_for_other_fn;
1052        bool port_initialized;
1053        struct net_device *net_dev;
1054
1055        netdev_features_t fixed_features;
1056
1057        u16 num_mac_stats;
1058        struct efx_buffer stats_buffer;
1059        u64 rx_nodesc_drops_total;
1060        u64 rx_nodesc_drops_while_down;
1061        bool rx_nodesc_drops_prev_state;
1062
1063        unsigned int phy_type;
1064        void *phy_data;
1065        struct mdio_if_info mdio;
1066        unsigned int mdio_bus;
1067        enum efx_phy_mode phy_mode;
1068
1069        __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1070        u32 fec_config;
1071        struct efx_link_state link_state;
1072        unsigned int n_link_state_changes;
1073
1074        bool unicast_filter;
1075        union efx_multicast_hash multicast_hash;
1076        u8 wanted_fc;
1077        unsigned fc_disable;
1078
1079        atomic_t rx_reset;
1080        enum efx_loopback_mode loopback_mode;
1081        u64 loopback_modes;
1082
1083        void *loopback_selftest;
1084        /* We access loopback_selftest immediately before running XDP,
1085         * so we want them next to each other.
1086         */
1087        struct bpf_prog __rcu *xdp_prog;
1088
1089        struct rw_semaphore filter_sem;
1090        void *filter_state;
1091#ifdef CONFIG_RFS_ACCEL
1092        struct mutex rps_mutex;
1093        unsigned long rps_slot_map;
1094        struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1095        spinlock_t rps_hash_lock;
1096        struct hlist_head *rps_hash_table;
1097        u32 rps_next_id;
1098#endif
1099
1100        atomic_t active_queues;
1101        atomic_t rxq_flush_pending;
1102        atomic_t rxq_flush_outstanding;
1103        wait_queue_head_t flush_wq;
1104
1105#ifdef CONFIG_SFC_SRIOV
1106        unsigned vf_count;
1107        unsigned vf_init_count;
1108        unsigned vi_scale;
1109#endif
1110
1111        struct efx_ptp_data *ptp_data;
1112        bool ptp_warned;
1113
1114        char *vpd_sn;
1115        bool xdp_rxq_info_failed;
1116
1117        struct notifier_block netdev_notifier;
1118
1119        unsigned int mem_bar;
1120        u32 reg_base;
1121
1122        /* The following fields may be written more often */
1123
1124        struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1125        spinlock_t biu_lock;
1126        int last_irq_cpu;
1127        spinlock_t stats_lock;
1128        atomic_t n_rx_noskb_drops;
1129};
1130
1131static inline int efx_dev_registered(struct efx_nic *efx)
1132{
1133        return efx->net_dev->reg_state == NETREG_REGISTERED;
1134}
1135
1136static inline unsigned int efx_port_num(struct efx_nic *efx)
1137{
1138        return efx->port_num;
1139}
1140
1141struct efx_mtd_partition {
1142        struct list_head node;
1143        struct mtd_info mtd;
1144        const char *dev_type_name;
1145        const char *type_name;
1146        char name[IFNAMSIZ + 20];
1147};
1148
1149struct efx_udp_tunnel {
1150#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID     0xffff
1151        u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1152        __be16 port;
1153};
1154
1155/**
1156 * struct efx_nic_type - Efx device type definition
1157 * @mem_bar: Get the memory BAR
1158 * @mem_map_size: Get memory BAR mapped size
1159 * @probe: Probe the controller
1160 * @remove: Free resources allocated by probe()
1161 * @init: Initialise the controller
1162 * @dimension_resources: Dimension controller resources (buffer table,
1163 *      and VIs once the available interrupt resources are clear)
1164 * @fini: Shut down the controller
1165 * @monitor: Periodic function for polling link state and hardware monitor
1166 * @map_reset_reason: Map ethtool reset reason to a reset method
1167 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1168 * @reset: Reset the controller hardware and possibly the PHY.  This will
1169 *      be called while the controller is uninitialised.
1170 * @probe_port: Probe the MAC and PHY
1171 * @remove_port: Free resources allocated by probe_port()
1172 * @handle_global_event: Handle a "global" event (may be %NULL)
1173 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1174 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1175 *      (for Falcon architecture)
1176 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1177 *      architecture)
1178 * @prepare_flr: Prepare for an FLR
1179 * @finish_flr: Clean up after an FLR
1180 * @describe_stats: Describe statistics for ethtool
1181 * @update_stats: Update statistics not provided by event handling.
1182 *      Either argument may be %NULL.
1183 * @update_stats_atomic: Update statistics while in atomic context, if that
1184 *      is more limiting than @update_stats.  Otherwise, leave %NULL and
1185 *      driver core will call @update_stats.
1186 * @start_stats: Start the regular fetching of statistics
1187 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1188 * @stop_stats: Stop the regular fetching of statistics
1189 * @push_irq_moderation: Apply interrupt moderation value
1190 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1191 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1192 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1193 *      to the hardware.  Serialised by the mac_lock.
1194 * @check_mac_fault: Check MAC fault state. True if fault present.
1195 * @get_wol: Get WoL configuration from driver state
1196 * @set_wol: Push WoL configuration to the NIC
1197 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1198 * @get_fec_stats: Get standard FEC statistics.
1199 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1200 *      expected to reset the NIC.
1201 * @test_nvram: Test validity of NVRAM contents
1202 * @mcdi_request: Send an MCDI request with the given header and SDU.
1203 *      The SDU length may be any value from 0 up to the protocol-
1204 *      defined maximum, but its buffer will be padded to a multiple
1205 *      of 4 bytes.
1206 * @mcdi_poll_response: Test whether an MCDI response is available.
1207 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1208 *      be a multiple of 4.  The length may not be, but the buffer
1209 *      will be padded so it is safe to round up.
1210 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1211 *      return an appropriate error code for aborting any current
1212 *      request; otherwise return 0.
1213 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1214 *      be separately enabled after this.
1215 * @irq_test_generate: Generate a test IRQ
1216 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1217 *      queue must be separately disabled before this.
1218 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1219 *      a pointer to the &struct efx_msi_context for the channel.
1220 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1221 *      is a pointer to the &struct efx_nic.
1222 * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1223 * @tx_init: Initialise TX queue on the NIC
1224 * @tx_remove: Free resources for TX queue
1225 * @tx_write: Write TX descriptors and doorbell
1226 * @tx_enqueue: Add an SKB to TX queue
1227 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1228 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1229 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1230 *      user RSS context to the NIC
1231 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1232 *      RSS context back from the NIC
1233 * @rx_probe: Allocate resources for RX queue
1234 * @rx_init: Initialise RX queue on the NIC
1235 * @rx_remove: Free resources for RX queue
1236 * @rx_write: Write RX descriptors and doorbell
1237 * @rx_defer_refill: Generate a refill reminder event
1238 * @rx_packet: Receive the queued RX buffer on a channel
1239 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1240 * @ev_probe: Allocate resources for event queue
1241 * @ev_init: Initialise event queue on the NIC
1242 * @ev_fini: Deinitialise event queue on the NIC
1243 * @ev_remove: Free resources for event queue
1244 * @ev_process: Process events for a queue, up to the given NAPI quota
1245 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1246 * @ev_test_generate: Generate a test event
1247 * @filter_table_probe: Probe filter capabilities and set up filter software state
1248 * @filter_table_restore: Restore filters removed from hardware
1249 * @filter_table_remove: Remove filters from hardware and tear down software state
1250 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1251 * @filter_insert: add or replace a filter
1252 * @filter_remove_safe: remove a filter by ID, carefully
1253 * @filter_get_safe: retrieve a filter by ID, carefully
1254 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1255 *      equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1256 * @filter_count_rx_used: Get the number of filters in use at a given priority
1257 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1258 * @filter_get_rx_ids: Get list of RX filters at a given priority
1259 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1260 *      This must check whether the specified table entry is used by RFS
1261 *      and that rps_may_expire_flow() returns true for it.
1262 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1263 *       using efx_mtd_add()
1264 * @mtd_rename: Set an MTD partition name using the net device name
1265 * @mtd_read: Read from an MTD partition
1266 * @mtd_erase: Erase part of an MTD partition
1267 * @mtd_write: Write to an MTD partition
1268 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1269 *      also notifies the driver that a writer has finished using this
1270 *      partition.
1271 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1272 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1273 *      timestamping, possibly only temporarily for the purposes of a reset.
1274 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1275 *      and tx_type will already have been validated but this operation
1276 *      must validate and update rx_filter.
1277 * @get_phys_port_id: Get the underlying physical port id.
1278 * @set_mac_address: Set the MAC address of the device
1279 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1280 *      If %NULL, then device does not support any TSO version.
1281 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1282 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1283 * @print_additional_fwver: Dump NIC-specific additional FW version info
1284 * @sensor_event: Handle a sensor event from MCDI
1285 * @revision: Hardware architecture revision
1286 * @txd_ptr_tbl_base: TX descriptor ring base address
1287 * @rxd_ptr_tbl_base: RX descriptor ring base address
1288 * @buf_tbl_base: Buffer table base address
1289 * @evq_ptr_tbl_base: Event queue pointer table base address
1290 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1291 * @max_dma_mask: Maximum possible DMA mask
1292 * @rx_prefix_size: Size of RX prefix before packet data
1293 * @rx_hash_offset: Offset of RX flow hash within prefix
1294 * @rx_ts_offset: Offset of timestamp within prefix
1295 * @rx_buffer_padding: Size of padding at end of RX packet
1296 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1297 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1298 * @option_descriptors: NIC supports TX option descriptors
1299 * @min_interrupt_mode: Lowest capability interrupt mode supported
1300 *      from &enum efx_int_mode.
1301 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1302 * @offload_features: net_device feature flags for protocol offload
1303 *      features implemented in hardware
1304 * @mcdi_max_ver: Maximum MCDI version supported
1305 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1306 */
1307struct efx_nic_type {
1308        bool is_vf;
1309        unsigned int (*mem_bar)(struct efx_nic *efx);
1310        unsigned int (*mem_map_size)(struct efx_nic *efx);
1311        int (*probe)(struct efx_nic *efx);
1312        void (*remove)(struct efx_nic *efx);
1313        int (*init)(struct efx_nic *efx);
1314        int (*dimension_resources)(struct efx_nic *efx);
1315        void (*fini)(struct efx_nic *efx);
1316        void (*monitor)(struct efx_nic *efx);
1317        enum reset_type (*map_reset_reason)(enum reset_type reason);
1318        int (*map_reset_flags)(u32 *flags);
1319        int (*reset)(struct efx_nic *efx, enum reset_type method);
1320        int (*probe_port)(struct efx_nic *efx);
1321        void (*remove_port)(struct efx_nic *efx);
1322        bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1323        int (*fini_dmaq)(struct efx_nic *efx);
1324        void (*prepare_flush)(struct efx_nic *efx);
1325        void (*finish_flush)(struct efx_nic *efx);
1326        void (*prepare_flr)(struct efx_nic *efx);
1327        void (*finish_flr)(struct efx_nic *efx);
1328        size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1329        size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1330                               struct rtnl_link_stats64 *core_stats);
1331        size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1332                                      struct rtnl_link_stats64 *core_stats);
1333        void (*start_stats)(struct efx_nic *efx);
1334        void (*pull_stats)(struct efx_nic *efx);
1335        void (*stop_stats)(struct efx_nic *efx);
1336        void (*push_irq_moderation)(struct efx_channel *channel);
1337        int (*reconfigure_port)(struct efx_nic *efx);
1338        void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1339        int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1340        bool (*check_mac_fault)(struct efx_nic *efx);
1341        void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1342        int (*set_wol)(struct efx_nic *efx, u32 type);
1343        void (*resume_wol)(struct efx_nic *efx);
1344        void (*get_fec_stats)(struct efx_nic *efx,
1345                              struct ethtool_fec_stats *fec_stats);
1346        unsigned int (*check_caps)(const struct efx_nic *efx,
1347                                   u8 flag,
1348                                   u32 offset);
1349        int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1350        int (*test_nvram)(struct efx_nic *efx);
1351        void (*mcdi_request)(struct efx_nic *efx,
1352                             const efx_dword_t *hdr, size_t hdr_len,
1353                             const efx_dword_t *sdu, size_t sdu_len);
1354        bool (*mcdi_poll_response)(struct efx_nic *efx);
1355        void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1356                                   size_t pdu_offset, size_t pdu_len);
1357        int (*mcdi_poll_reboot)(struct efx_nic *efx);
1358        void (*mcdi_reboot_detected)(struct efx_nic *efx);
1359        void (*irq_enable_master)(struct efx_nic *efx);
1360        int (*irq_test_generate)(struct efx_nic *efx);
1361        void (*irq_disable_non_ev)(struct efx_nic *efx);
1362        irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1363        irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1364        int (*tx_probe)(struct efx_tx_queue *tx_queue);
1365        void (*tx_init)(struct efx_tx_queue *tx_queue);
1366        void (*tx_remove)(struct efx_tx_queue *tx_queue);
1367        void (*tx_write)(struct efx_tx_queue *tx_queue);
1368        netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1369        unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1370                                     dma_addr_t dma_addr, unsigned int len);
1371        int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1372                                  const u32 *rx_indir_table, const u8 *key);
1373        int (*rx_pull_rss_config)(struct efx_nic *efx);
1374        int (*rx_push_rss_context_config)(struct efx_nic *efx,
1375                                          struct efx_rss_context *ctx,
1376                                          const u32 *rx_indir_table,
1377                                          const u8 *key);
1378        int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1379                                          struct efx_rss_context *ctx);
1380        void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1381        int (*rx_probe)(struct efx_rx_queue *rx_queue);
1382        void (*rx_init)(struct efx_rx_queue *rx_queue);
1383        void (*rx_remove)(struct efx_rx_queue *rx_queue);
1384        void (*rx_write)(struct efx_rx_queue *rx_queue);
1385        void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1386        void (*rx_packet)(struct efx_channel *channel);
1387        bool (*rx_buf_hash_valid)(const u8 *prefix);
1388        int (*ev_probe)(struct efx_channel *channel);
1389        int (*ev_init)(struct efx_channel *channel);
1390        void (*ev_fini)(struct efx_channel *channel);
1391        void (*ev_remove)(struct efx_channel *channel);
1392        int (*ev_process)(struct efx_channel *channel, int quota);
1393        void (*ev_read_ack)(struct efx_channel *channel);
1394        void (*ev_test_generate)(struct efx_channel *channel);
1395        int (*filter_table_probe)(struct efx_nic *efx);
1396        void (*filter_table_restore)(struct efx_nic *efx);
1397        void (*filter_table_remove)(struct efx_nic *efx);
1398        void (*filter_update_rx_scatter)(struct efx_nic *efx);
1399        s32 (*filter_insert)(struct efx_nic *efx,
1400                             struct efx_filter_spec *spec, bool replace);
1401        int (*filter_remove_safe)(struct efx_nic *efx,
1402                                  enum efx_filter_priority priority,
1403                                  u32 filter_id);
1404        int (*filter_get_safe)(struct efx_nic *efx,
1405                               enum efx_filter_priority priority,
1406                               u32 filter_id, struct efx_filter_spec *);
1407        int (*filter_clear_rx)(struct efx_nic *efx,
1408                               enum efx_filter_priority priority);
1409        u32 (*filter_count_rx_used)(struct efx_nic *efx,
1410                                    enum efx_filter_priority priority);
1411        u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1412        s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1413                                 enum efx_filter_priority priority,
1414                                 u32 *buf, u32 size);
1415#ifdef CONFIG_RFS_ACCEL
1416        bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1417                                      unsigned int index);
1418#endif
1419#ifdef CONFIG_SFC_MTD
1420        int (*mtd_probe)(struct efx_nic *efx);
1421        void (*mtd_rename)(struct efx_mtd_partition *part);
1422        int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1423                        size_t *retlen, u8 *buffer);
1424        int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1425        int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1426                         size_t *retlen, const u8 *buffer);
1427        int (*mtd_sync)(struct mtd_info *mtd);
1428#endif
1429        void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1430        int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1431        int (*ptp_set_ts_config)(struct efx_nic *efx,
1432                                 struct hwtstamp_config *init);
1433        int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1434        int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1435        int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1436        int (*get_phys_port_id)(struct efx_nic *efx,
1437                                struct netdev_phys_item_id *ppid);
1438        int (*sriov_init)(struct efx_nic *efx);
1439        void (*sriov_fini)(struct efx_nic *efx);
1440        bool (*sriov_wanted)(struct efx_nic *efx);
1441        void (*sriov_reset)(struct efx_nic *efx);
1442        void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1443        int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1444        int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1445                                 u8 qos);
1446        int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1447                                     bool spoofchk);
1448        int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1449                                   struct ifla_vf_info *ivi);
1450        int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1451                                       int link_state);
1452        int (*vswitching_probe)(struct efx_nic *efx);
1453        int (*vswitching_restore)(struct efx_nic *efx);
1454        void (*vswitching_remove)(struct efx_nic *efx);
1455        int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1456        int (*set_mac_address)(struct efx_nic *efx);
1457        u32 (*tso_versions)(struct efx_nic *efx);
1458        int (*udp_tnl_push_ports)(struct efx_nic *efx);
1459        bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1460        size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1461                                         size_t len);
1462        void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1463
1464        int revision;
1465        unsigned int txd_ptr_tbl_base;
1466        unsigned int rxd_ptr_tbl_base;
1467        unsigned int buf_tbl_base;
1468        unsigned int evq_ptr_tbl_base;
1469        unsigned int evq_rptr_tbl_base;
1470        u64 max_dma_mask;
1471        unsigned int rx_prefix_size;
1472        unsigned int rx_hash_offset;
1473        unsigned int rx_ts_offset;
1474        unsigned int rx_buffer_padding;
1475        bool can_rx_scatter;
1476        bool always_rx_scatter;
1477        bool option_descriptors;
1478        unsigned int min_interrupt_mode;
1479        unsigned int timer_period_max;
1480        netdev_features_t offload_features;
1481        int mcdi_max_ver;
1482        unsigned int max_rx_ip_filters;
1483        u32 hwtstamp_filters;
1484        unsigned int rx_hash_key_size;
1485};
1486
1487/**************************************************************************
1488 *
1489 * Prototypes and inline functions
1490 *
1491 *************************************************************************/
1492
1493static inline struct efx_channel *
1494efx_get_channel(struct efx_nic *efx, unsigned index)
1495{
1496        EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1497        return efx->channel[index];
1498}
1499
1500/* Iterate over all used channels */
1501#define efx_for_each_channel(_channel, _efx)                            \
1502        for (_channel = (_efx)->channel[0];                             \
1503             _channel;                                                  \
1504             _channel = (_channel->channel + 1 < (_efx)->n_channels) ?  \
1505                     (_efx)->channel[_channel->channel + 1] : NULL)
1506
1507/* Iterate over all used channels in reverse */
1508#define efx_for_each_channel_rev(_channel, _efx)                        \
1509        for (_channel = (_efx)->channel[(_efx)->n_channels - 1];        \
1510             _channel;                                                  \
1511             _channel = _channel->channel ?                             \
1512                     (_efx)->channel[_channel->channel - 1] : NULL)
1513
1514static inline struct efx_channel *
1515efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1516{
1517        EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1518        return efx->channel[efx->tx_channel_offset + index];
1519}
1520
1521static inline struct efx_channel *
1522efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1523{
1524        EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1525        return efx->channel[efx->xdp_channel_offset + index];
1526}
1527
1528static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1529{
1530        return channel->channel - channel->efx->xdp_channel_offset <
1531               channel->efx->n_xdp_channels;
1532}
1533
1534static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1535{
1536        return true;
1537}
1538
1539static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1540{
1541        if (efx_channel_is_xdp_tx(channel))
1542                return channel->efx->xdp_tx_per_channel;
1543        return channel->efx->tx_queues_per_channel;
1544}
1545
1546static inline struct efx_tx_queue *
1547efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1548{
1549        EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1550        return channel->tx_queue_by_type[type];
1551}
1552
1553static inline struct efx_tx_queue *
1554efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1555{
1556        struct efx_channel *channel = efx_get_tx_channel(efx, index);
1557
1558        return efx_channel_get_tx_queue(channel, type);
1559}
1560
1561/* Iterate over all TX queues belonging to a channel */
1562#define efx_for_each_channel_tx_queue(_tx_queue, _channel)              \
1563        if (!efx_channel_has_tx_queues(_channel))                       \
1564                ;                                                       \
1565        else                                                            \
1566                for (_tx_queue = (_channel)->tx_queue;                  \
1567                     _tx_queue < (_channel)->tx_queue +                 \
1568                                 efx_channel_num_tx_queues(_channel);           \
1569                     _tx_queue++)
1570
1571static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1572{
1573        return channel->rx_queue.core_index >= 0;
1574}
1575
1576static inline struct efx_rx_queue *
1577efx_channel_get_rx_queue(struct efx_channel *channel)
1578{
1579        EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1580        return &channel->rx_queue;
1581}
1582
1583/* Iterate over all RX queues belonging to a channel */
1584#define efx_for_each_channel_rx_queue(_rx_queue, _channel)              \
1585        if (!efx_channel_has_rx_queue(_channel))                        \
1586                ;                                                       \
1587        else                                                            \
1588                for (_rx_queue = &(_channel)->rx_queue;                 \
1589                     _rx_queue;                                         \
1590                     _rx_queue = NULL)
1591
1592static inline struct efx_channel *
1593efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1594{
1595        return container_of(rx_queue, struct efx_channel, rx_queue);
1596}
1597
1598static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1599{
1600        return efx_rx_queue_channel(rx_queue)->channel;
1601}
1602
1603/* Returns a pointer to the specified receive buffer in the RX
1604 * descriptor queue.
1605 */
1606static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1607                                                  unsigned int index)
1608{
1609        return &rx_queue->buffer[index];
1610}
1611
1612static inline struct efx_rx_buffer *
1613efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1614{
1615        if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1616                return efx_rx_buffer(rx_queue, 0);
1617        else
1618                return rx_buf + 1;
1619}
1620
1621/**
1622 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1623 *
1624 * This calculates the maximum frame length that will be used for a
1625 * given MTU.  The frame length will be equal to the MTU plus a
1626 * constant amount of header space and padding.  This is the quantity
1627 * that the net driver will program into the MAC as the maximum frame
1628 * length.
1629 *
1630 * The 10G MAC requires 8-byte alignment on the frame
1631 * length, so we round up to the nearest 8.
1632 *
1633 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1634 * XGMII cycle).  If the frame length reaches the maximum value in the
1635 * same cycle, the XMAC can miss the IPG altogether.  We work around
1636 * this by adding a further 16 bytes.
1637 */
1638#define EFX_FRAME_PAD   16
1639#define EFX_MAX_FRAME_LEN(mtu) \
1640        (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1641
1642static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1643{
1644        return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1645}
1646static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1647{
1648        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1649}
1650
1651/* Get the max fill level of the TX queues on this channel */
1652static inline unsigned int
1653efx_channel_tx_fill_level(struct efx_channel *channel)
1654{
1655        struct efx_tx_queue *tx_queue;
1656        unsigned int fill_level = 0;
1657
1658        efx_for_each_channel_tx_queue(tx_queue, channel)
1659                fill_level = max(fill_level,
1660                                 tx_queue->insert_count - tx_queue->read_count);
1661
1662        return fill_level;
1663}
1664
1665/* Conservative approximation of efx_channel_tx_fill_level using cached value */
1666static inline unsigned int
1667efx_channel_tx_old_fill_level(struct efx_channel *channel)
1668{
1669        struct efx_tx_queue *tx_queue;
1670        unsigned int fill_level = 0;
1671
1672        efx_for_each_channel_tx_queue(tx_queue, channel)
1673                fill_level = max(fill_level,
1674                                 tx_queue->insert_count - tx_queue->old_read_count);
1675
1676        return fill_level;
1677}
1678
1679/* Get all supported features.
1680 * If a feature is not fixed, it is present in hw_features.
1681 * If a feature is fixed, it does not present in hw_features, but
1682 * always in features.
1683 */
1684static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1685{
1686        const struct net_device *net_dev = efx->net_dev;
1687
1688        return net_dev->features | net_dev->hw_features;
1689}
1690
1691/* Get the current TX queue insert index. */
1692static inline unsigned int
1693efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1694{
1695        return tx_queue->insert_count & tx_queue->ptr_mask;
1696}
1697
1698/* Get a TX buffer. */
1699static inline struct efx_tx_buffer *
1700__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1701{
1702        return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1703}
1704
1705/* Get a TX buffer, checking it's not currently in use. */
1706static inline struct efx_tx_buffer *
1707efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1708{
1709        struct efx_tx_buffer *buffer =
1710                __efx_tx_queue_get_insert_buffer(tx_queue);
1711
1712        EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1713        EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1714        EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1715
1716        return buffer;
1717}
1718
1719#endif /* EFX_NET_DRIVER_H */
1720