linux/drivers/net/ethernet/sun/sungem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   3 * sungem.c: Sun GEM ethernet driver.
   4 *
   5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   6 *
   7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  10 *
  11 * NAPI and NETPOLL support
  12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  13 *
  14 */
  15
  16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/fcntl.h>
  22#include <linux/interrupt.h>
  23#include <linux/ioport.h>
  24#include <linux/in.h>
  25#include <linux/sched.h>
  26#include <linux/string.h>
  27#include <linux/delay.h>
  28#include <linux/errno.h>
  29#include <linux/pci.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/netdevice.h>
  32#include <linux/etherdevice.h>
  33#include <linux/skbuff.h>
  34#include <linux/mii.h>
  35#include <linux/ethtool.h>
  36#include <linux/crc32.h>
  37#include <linux/random.h>
  38#include <linux/workqueue.h>
  39#include <linux/if_vlan.h>
  40#include <linux/bitops.h>
  41#include <linux/mm.h>
  42#include <linux/gfp.h>
  43
  44#include <asm/io.h>
  45#include <asm/byteorder.h>
  46#include <linux/uaccess.h>
  47#include <asm/irq.h>
  48
  49#ifdef CONFIG_SPARC
  50#include <asm/idprom.h>
  51#include <asm/prom.h>
  52#endif
  53
  54#ifdef CONFIG_PPC_PMAC
  55#include <asm/prom.h>
  56#include <asm/machdep.h>
  57#include <asm/pmac_feature.h>
  58#endif
  59
  60#include <linux/sungem_phy.h>
  61#include "sungem.h"
  62
  63#define STRIP_FCS
  64
  65#define DEFAULT_MSG     (NETIF_MSG_DRV          | \
  66                         NETIF_MSG_PROBE        | \
  67                         NETIF_MSG_LINK)
  68
  69#define ADVERTISE_MASK  (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  70                         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  71                         SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  72                         SUPPORTED_Pause | SUPPORTED_Autoneg)
  73
  74#define DRV_NAME        "sungem"
  75#define DRV_VERSION     "1.0"
  76#define DRV_AUTHOR      "David S. Miller <davem@redhat.com>"
  77
  78static char version[] =
  79        DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  80
  81MODULE_AUTHOR(DRV_AUTHOR);
  82MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  83MODULE_LICENSE("GPL");
  84
  85#define GEM_MODULE_NAME "gem"
  86
  87static const struct pci_device_id gem_pci_tbl[] = {
  88        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  89          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90
  91        /* These models only differ from the original GEM in
  92         * that their tx/rx fifos are of a different size and
  93         * they only support 10/100 speeds. -DaveM
  94         *
  95         * Apple's GMAC does support gigabit on machines with
  96         * the BCM54xx PHYs. -BenH
  97         */
  98        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  99          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 100        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 101          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 102        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 103          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 104        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 105          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 106        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 107          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 108        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 109          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 110        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 111          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 112        {0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 116
 117static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
 118{
 119        u32 cmd;
 120        int limit = 10000;
 121
 122        cmd  = (1 << 30);
 123        cmd |= (2 << 28);
 124        cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 125        cmd |= (reg << 18) & MIF_FRAME_REGAD;
 126        cmd |= (MIF_FRAME_TAMSB);
 127        writel(cmd, gp->regs + MIF_FRAME);
 128
 129        while (--limit) {
 130                cmd = readl(gp->regs + MIF_FRAME);
 131                if (cmd & MIF_FRAME_TALSB)
 132                        break;
 133
 134                udelay(10);
 135        }
 136
 137        if (!limit)
 138                cmd = 0xffff;
 139
 140        return cmd & MIF_FRAME_DATA;
 141}
 142
 143static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
 144{
 145        struct gem *gp = netdev_priv(dev);
 146        return __sungem_phy_read(gp, mii_id, reg);
 147}
 148
 149static inline u16 sungem_phy_read(struct gem *gp, int reg)
 150{
 151        return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
 152}
 153
 154static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 155{
 156        u32 cmd;
 157        int limit = 10000;
 158
 159        cmd  = (1 << 30);
 160        cmd |= (1 << 28);
 161        cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 162        cmd |= (reg << 18) & MIF_FRAME_REGAD;
 163        cmd |= (MIF_FRAME_TAMSB);
 164        cmd |= (val & MIF_FRAME_DATA);
 165        writel(cmd, gp->regs + MIF_FRAME);
 166
 167        while (limit--) {
 168                cmd = readl(gp->regs + MIF_FRAME);
 169                if (cmd & MIF_FRAME_TALSB)
 170                        break;
 171
 172                udelay(10);
 173        }
 174}
 175
 176static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
 177{
 178        struct gem *gp = netdev_priv(dev);
 179        __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
 180}
 181
 182static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
 183{
 184        __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
 185}
 186
 187static inline void gem_enable_ints(struct gem *gp)
 188{
 189        /* Enable all interrupts but TXDONE */
 190        writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 191}
 192
 193static inline void gem_disable_ints(struct gem *gp)
 194{
 195        /* Disable all interrupts, including TXDONE */
 196        writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 197        (void)readl(gp->regs + GREG_IMASK); /* write posting */
 198}
 199
 200static void gem_get_cell(struct gem *gp)
 201{
 202        BUG_ON(gp->cell_enabled < 0);
 203        gp->cell_enabled++;
 204#ifdef CONFIG_PPC_PMAC
 205        if (gp->cell_enabled == 1) {
 206                mb();
 207                pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 208                udelay(10);
 209        }
 210#endif /* CONFIG_PPC_PMAC */
 211}
 212
 213/* Turn off the chip's clock */
 214static void gem_put_cell(struct gem *gp)
 215{
 216        BUG_ON(gp->cell_enabled <= 0);
 217        gp->cell_enabled--;
 218#ifdef CONFIG_PPC_PMAC
 219        if (gp->cell_enabled == 0) {
 220                mb();
 221                pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 222                udelay(10);
 223        }
 224#endif /* CONFIG_PPC_PMAC */
 225}
 226
 227static inline void gem_netif_stop(struct gem *gp)
 228{
 229        netif_trans_update(gp->dev);    /* prevent tx timeout */
 230        napi_disable(&gp->napi);
 231        netif_tx_disable(gp->dev);
 232}
 233
 234static inline void gem_netif_start(struct gem *gp)
 235{
 236        /* NOTE: unconditional netif_wake_queue is only
 237         * appropriate so long as all callers are assured to
 238         * have free tx slots.
 239         */
 240        netif_wake_queue(gp->dev);
 241        napi_enable(&gp->napi);
 242}
 243
 244static void gem_schedule_reset(struct gem *gp)
 245{
 246        gp->reset_task_pending = 1;
 247        schedule_work(&gp->reset_task);
 248}
 249
 250static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 251{
 252        if (netif_msg_intr(gp))
 253                printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 254}
 255
 256static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 257{
 258        u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 259        u32 pcs_miistat;
 260
 261        if (netif_msg_intr(gp))
 262                printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 263                        gp->dev->name, pcs_istat);
 264
 265        if (!(pcs_istat & PCS_ISTAT_LSC)) {
 266                netdev_err(dev, "PCS irq but no link status change???\n");
 267                return 0;
 268        }
 269
 270        /* The link status bit latches on zero, so you must
 271         * read it twice in such a case to see a transition
 272         * to the link being up.
 273         */
 274        pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 275        if (!(pcs_miistat & PCS_MIISTAT_LS))
 276                pcs_miistat |=
 277                        (readl(gp->regs + PCS_MIISTAT) &
 278                         PCS_MIISTAT_LS);
 279
 280        if (pcs_miistat & PCS_MIISTAT_ANC) {
 281                /* The remote-fault indication is only valid
 282                 * when autoneg has completed.
 283                 */
 284                if (pcs_miistat & PCS_MIISTAT_RF)
 285                        netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
 286                else
 287                        netdev_info(dev, "PCS AutoNEG complete\n");
 288        }
 289
 290        if (pcs_miistat & PCS_MIISTAT_LS) {
 291                netdev_info(dev, "PCS link is now up\n");
 292                netif_carrier_on(gp->dev);
 293        } else {
 294                netdev_info(dev, "PCS link is now down\n");
 295                netif_carrier_off(gp->dev);
 296                /* If this happens and the link timer is not running,
 297                 * reset so we re-negotiate.
 298                 */
 299                if (!timer_pending(&gp->link_timer))
 300                        return 1;
 301        }
 302
 303        return 0;
 304}
 305
 306static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 307{
 308        u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 309
 310        if (netif_msg_intr(gp))
 311                printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 312                        gp->dev->name, txmac_stat);
 313
 314        /* Defer timer expiration is quite normal,
 315         * don't even log the event.
 316         */
 317        if ((txmac_stat & MAC_TXSTAT_DTE) &&
 318            !(txmac_stat & ~MAC_TXSTAT_DTE))
 319                return 0;
 320
 321        if (txmac_stat & MAC_TXSTAT_URUN) {
 322                netdev_err(dev, "TX MAC xmit underrun\n");
 323                dev->stats.tx_fifo_errors++;
 324        }
 325
 326        if (txmac_stat & MAC_TXSTAT_MPE) {
 327                netdev_err(dev, "TX MAC max packet size error\n");
 328                dev->stats.tx_errors++;
 329        }
 330
 331        /* The rest are all cases of one of the 16-bit TX
 332         * counters expiring.
 333         */
 334        if (txmac_stat & MAC_TXSTAT_NCE)
 335                dev->stats.collisions += 0x10000;
 336
 337        if (txmac_stat & MAC_TXSTAT_ECE) {
 338                dev->stats.tx_aborted_errors += 0x10000;
 339                dev->stats.collisions += 0x10000;
 340        }
 341
 342        if (txmac_stat & MAC_TXSTAT_LCE) {
 343                dev->stats.tx_aborted_errors += 0x10000;
 344                dev->stats.collisions += 0x10000;
 345        }
 346
 347        /* We do not keep track of MAC_TXSTAT_FCE and
 348         * MAC_TXSTAT_PCE events.
 349         */
 350        return 0;
 351}
 352
 353/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 354 * so we do the following.
 355 *
 356 * If any part of the reset goes wrong, we return 1 and that causes the
 357 * whole chip to be reset.
 358 */
 359static int gem_rxmac_reset(struct gem *gp)
 360{
 361        struct net_device *dev = gp->dev;
 362        int limit, i;
 363        u64 desc_dma;
 364        u32 val;
 365
 366        /* First, reset & disable MAC RX. */
 367        writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 368        for (limit = 0; limit < 5000; limit++) {
 369                if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 370                        break;
 371                udelay(10);
 372        }
 373        if (limit == 5000) {
 374                netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
 375                return 1;
 376        }
 377
 378        writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 379               gp->regs + MAC_RXCFG);
 380        for (limit = 0; limit < 5000; limit++) {
 381                if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 382                        break;
 383                udelay(10);
 384        }
 385        if (limit == 5000) {
 386                netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
 387                return 1;
 388        }
 389
 390        /* Second, disable RX DMA. */
 391        writel(0, gp->regs + RXDMA_CFG);
 392        for (limit = 0; limit < 5000; limit++) {
 393                if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 394                        break;
 395                udelay(10);
 396        }
 397        if (limit == 5000) {
 398                netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
 399                return 1;
 400        }
 401
 402        mdelay(5);
 403
 404        /* Execute RX reset command. */
 405        writel(gp->swrst_base | GREG_SWRST_RXRST,
 406               gp->regs + GREG_SWRST);
 407        for (limit = 0; limit < 5000; limit++) {
 408                if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 409                        break;
 410                udelay(10);
 411        }
 412        if (limit == 5000) {
 413                netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
 414                return 1;
 415        }
 416
 417        /* Refresh the RX ring. */
 418        for (i = 0; i < RX_RING_SIZE; i++) {
 419                struct gem_rxd *rxd = &gp->init_block->rxd[i];
 420
 421                if (gp->rx_skbs[i] == NULL) {
 422                        netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
 423                        return 1;
 424                }
 425
 426                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 427        }
 428        gp->rx_new = gp->rx_old = 0;
 429
 430        /* Now we must reprogram the rest of RX unit. */
 431        desc_dma = (u64) gp->gblock_dvma;
 432        desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 433        writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 434        writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 435        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 436        val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 437               (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
 438        writel(val, gp->regs + RXDMA_CFG);
 439        if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 440                writel(((5 & RXDMA_BLANK_IPKTS) |
 441                        ((8 << 12) & RXDMA_BLANK_ITIME)),
 442                       gp->regs + RXDMA_BLANK);
 443        else
 444                writel(((5 & RXDMA_BLANK_IPKTS) |
 445                        ((4 << 12) & RXDMA_BLANK_ITIME)),
 446                       gp->regs + RXDMA_BLANK);
 447        val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 448        val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 449        writel(val, gp->regs + RXDMA_PTHRESH);
 450        val = readl(gp->regs + RXDMA_CFG);
 451        writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 452        writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 453        val = readl(gp->regs + MAC_RXCFG);
 454        writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 455
 456        return 0;
 457}
 458
 459static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 460{
 461        u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 462        int ret = 0;
 463
 464        if (netif_msg_intr(gp))
 465                printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 466                        gp->dev->name, rxmac_stat);
 467
 468        if (rxmac_stat & MAC_RXSTAT_OFLW) {
 469                u32 smac = readl(gp->regs + MAC_SMACHINE);
 470
 471                netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
 472                dev->stats.rx_over_errors++;
 473                dev->stats.rx_fifo_errors++;
 474
 475                ret = gem_rxmac_reset(gp);
 476        }
 477
 478        if (rxmac_stat & MAC_RXSTAT_ACE)
 479                dev->stats.rx_frame_errors += 0x10000;
 480
 481        if (rxmac_stat & MAC_RXSTAT_CCE)
 482                dev->stats.rx_crc_errors += 0x10000;
 483
 484        if (rxmac_stat & MAC_RXSTAT_LCE)
 485                dev->stats.rx_length_errors += 0x10000;
 486
 487        /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 488         * events.
 489         */
 490        return ret;
 491}
 492
 493static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 494{
 495        u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 496
 497        if (netif_msg_intr(gp))
 498                printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 499                        gp->dev->name, mac_cstat);
 500
 501        /* This interrupt is just for pause frame and pause
 502         * tracking.  It is useful for diagnostics and debug
 503         * but probably by default we will mask these events.
 504         */
 505        if (mac_cstat & MAC_CSTAT_PS)
 506                gp->pause_entered++;
 507
 508        if (mac_cstat & MAC_CSTAT_PRCV)
 509                gp->pause_last_time_recvd = (mac_cstat >> 16);
 510
 511        return 0;
 512}
 513
 514static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 515{
 516        u32 mif_status = readl(gp->regs + MIF_STATUS);
 517        u32 reg_val, changed_bits;
 518
 519        reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 520        changed_bits = (mif_status & MIF_STATUS_STAT);
 521
 522        gem_handle_mif_event(gp, reg_val, changed_bits);
 523
 524        return 0;
 525}
 526
 527static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 528{
 529        u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 530
 531        if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 532            gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 533                netdev_err(dev, "PCI error [%04x]", pci_estat);
 534
 535                if (pci_estat & GREG_PCIESTAT_BADACK)
 536                        pr_cont(" <No ACK64# during ABS64 cycle>");
 537                if (pci_estat & GREG_PCIESTAT_DTRTO)
 538                        pr_cont(" <Delayed transaction timeout>");
 539                if (pci_estat & GREG_PCIESTAT_OTHER)
 540                        pr_cont(" <other>");
 541                pr_cont("\n");
 542        } else {
 543                pci_estat |= GREG_PCIESTAT_OTHER;
 544                netdev_err(dev, "PCI error\n");
 545        }
 546
 547        if (pci_estat & GREG_PCIESTAT_OTHER) {
 548                int pci_errs;
 549
 550                /* Interrogate PCI config space for the
 551                 * true cause.
 552                 */
 553                pci_errs = pci_status_get_and_clear_errors(gp->pdev);
 554                netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
 555                if (pci_errs & PCI_STATUS_PARITY)
 556                        netdev_err(dev, "PCI parity error detected\n");
 557                if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
 558                        netdev_err(dev, "PCI target abort\n");
 559                if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
 560                        netdev_err(dev, "PCI master acks target abort\n");
 561                if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
 562                        netdev_err(dev, "PCI master abort\n");
 563                if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
 564                        netdev_err(dev, "PCI system error SERR#\n");
 565                if (pci_errs & PCI_STATUS_DETECTED_PARITY)
 566                        netdev_err(dev, "PCI parity error\n");
 567        }
 568
 569        /* For all PCI errors, we should reset the chip. */
 570        return 1;
 571}
 572
 573/* All non-normal interrupt conditions get serviced here.
 574 * Returns non-zero if we should just exit the interrupt
 575 * handler right now (ie. if we reset the card which invalidates
 576 * all of the other original irq status bits).
 577 */
 578static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 579{
 580        if (gem_status & GREG_STAT_RXNOBUF) {
 581                /* Frame arrived, no free RX buffers available. */
 582                if (netif_msg_rx_err(gp))
 583                        printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 584                                gp->dev->name);
 585                dev->stats.rx_dropped++;
 586        }
 587
 588        if (gem_status & GREG_STAT_RXTAGERR) {
 589                /* corrupt RX tag framing */
 590                if (netif_msg_rx_err(gp))
 591                        printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 592                                gp->dev->name);
 593                dev->stats.rx_errors++;
 594
 595                return 1;
 596        }
 597
 598        if (gem_status & GREG_STAT_PCS) {
 599                if (gem_pcs_interrupt(dev, gp, gem_status))
 600                        return 1;
 601        }
 602
 603        if (gem_status & GREG_STAT_TXMAC) {
 604                if (gem_txmac_interrupt(dev, gp, gem_status))
 605                        return 1;
 606        }
 607
 608        if (gem_status & GREG_STAT_RXMAC) {
 609                if (gem_rxmac_interrupt(dev, gp, gem_status))
 610                        return 1;
 611        }
 612
 613        if (gem_status & GREG_STAT_MAC) {
 614                if (gem_mac_interrupt(dev, gp, gem_status))
 615                        return 1;
 616        }
 617
 618        if (gem_status & GREG_STAT_MIF) {
 619                if (gem_mif_interrupt(dev, gp, gem_status))
 620                        return 1;
 621        }
 622
 623        if (gem_status & GREG_STAT_PCIERR) {
 624                if (gem_pci_interrupt(dev, gp, gem_status))
 625                        return 1;
 626        }
 627
 628        return 0;
 629}
 630
 631static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 632{
 633        int entry, limit;
 634
 635        entry = gp->tx_old;
 636        limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 637        while (entry != limit) {
 638                struct sk_buff *skb;
 639                struct gem_txd *txd;
 640                dma_addr_t dma_addr;
 641                u32 dma_len;
 642                int frag;
 643
 644                if (netif_msg_tx_done(gp))
 645                        printk(KERN_DEBUG "%s: tx done, slot %d\n",
 646                                gp->dev->name, entry);
 647                skb = gp->tx_skbs[entry];
 648                if (skb_shinfo(skb)->nr_frags) {
 649                        int last = entry + skb_shinfo(skb)->nr_frags;
 650                        int walk = entry;
 651                        int incomplete = 0;
 652
 653                        last &= (TX_RING_SIZE - 1);
 654                        for (;;) {
 655                                walk = NEXT_TX(walk);
 656                                if (walk == limit)
 657                                        incomplete = 1;
 658                                if (walk == last)
 659                                        break;
 660                        }
 661                        if (incomplete)
 662                                break;
 663                }
 664                gp->tx_skbs[entry] = NULL;
 665                dev->stats.tx_bytes += skb->len;
 666
 667                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 668                        txd = &gp->init_block->txd[entry];
 669
 670                        dma_addr = le64_to_cpu(txd->buffer);
 671                        dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 672
 673                        dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
 674                                       DMA_TO_DEVICE);
 675                        entry = NEXT_TX(entry);
 676                }
 677
 678                dev->stats.tx_packets++;
 679                dev_consume_skb_any(skb);
 680        }
 681        gp->tx_old = entry;
 682
 683        /* Need to make the tx_old update visible to gem_start_xmit()
 684         * before checking for netif_queue_stopped().  Without the
 685         * memory barrier, there is a small possibility that gem_start_xmit()
 686         * will miss it and cause the queue to be stopped forever.
 687         */
 688        smp_mb();
 689
 690        if (unlikely(netif_queue_stopped(dev) &&
 691                     TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
 692                struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 693
 694                __netif_tx_lock(txq, smp_processor_id());
 695                if (netif_queue_stopped(dev) &&
 696                    TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 697                        netif_wake_queue(dev);
 698                __netif_tx_unlock(txq);
 699        }
 700}
 701
 702static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 703{
 704        int cluster_start, curr, count, kick;
 705
 706        cluster_start = curr = (gp->rx_new & ~(4 - 1));
 707        count = 0;
 708        kick = -1;
 709        dma_wmb();
 710        while (curr != limit) {
 711                curr = NEXT_RX(curr);
 712                if (++count == 4) {
 713                        struct gem_rxd *rxd =
 714                                &gp->init_block->rxd[cluster_start];
 715                        for (;;) {
 716                                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 717                                rxd++;
 718                                cluster_start = NEXT_RX(cluster_start);
 719                                if (cluster_start == curr)
 720                                        break;
 721                        }
 722                        kick = curr;
 723                        count = 0;
 724                }
 725        }
 726        if (kick >= 0) {
 727                mb();
 728                writel(kick, gp->regs + RXDMA_KICK);
 729        }
 730}
 731
 732#define ALIGNED_RX_SKB_ADDR(addr) \
 733        ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
 734static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
 735                                                gfp_t gfp_flags)
 736{
 737        struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
 738
 739        if (likely(skb)) {
 740                unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
 741                skb_reserve(skb, offset);
 742        }
 743        return skb;
 744}
 745
 746static int gem_rx(struct gem *gp, int work_to_do)
 747{
 748        struct net_device *dev = gp->dev;
 749        int entry, drops, work_done = 0;
 750        u32 done;
 751
 752        if (netif_msg_rx_status(gp))
 753                printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 754                        gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 755
 756        entry = gp->rx_new;
 757        drops = 0;
 758        done = readl(gp->regs + RXDMA_DONE);
 759        for (;;) {
 760                struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 761                struct sk_buff *skb;
 762                u64 status = le64_to_cpu(rxd->status_word);
 763                dma_addr_t dma_addr;
 764                int len;
 765
 766                if ((status & RXDCTRL_OWN) != 0)
 767                        break;
 768
 769                if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 770                        break;
 771
 772                /* When writing back RX descriptor, GEM writes status
 773                 * then buffer address, possibly in separate transactions.
 774                 * If we don't wait for the chip to write both, we could
 775                 * post a new buffer to this descriptor then have GEM spam
 776                 * on the buffer address.  We sync on the RX completion
 777                 * register to prevent this from happening.
 778                 */
 779                if (entry == done) {
 780                        done = readl(gp->regs + RXDMA_DONE);
 781                        if (entry == done)
 782                                break;
 783                }
 784
 785                /* We can now account for the work we're about to do */
 786                work_done++;
 787
 788                skb = gp->rx_skbs[entry];
 789
 790                len = (status & RXDCTRL_BUFSZ) >> 16;
 791                if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 792                        dev->stats.rx_errors++;
 793                        if (len < ETH_ZLEN)
 794                                dev->stats.rx_length_errors++;
 795                        if (len & RXDCTRL_BAD)
 796                                dev->stats.rx_crc_errors++;
 797
 798                        /* We'll just return it to GEM. */
 799                drop_it:
 800                        dev->stats.rx_dropped++;
 801                        goto next;
 802                }
 803
 804                dma_addr = le64_to_cpu(rxd->buffer);
 805                if (len > RX_COPY_THRESHOLD) {
 806                        struct sk_buff *new_skb;
 807
 808                        new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 809                        if (new_skb == NULL) {
 810                                drops++;
 811                                goto drop_it;
 812                        }
 813                        dma_unmap_page(&gp->pdev->dev, dma_addr,
 814                                       RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
 815                        gp->rx_skbs[entry] = new_skb;
 816                        skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 817                        rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
 818                                                               virt_to_page(new_skb->data),
 819                                                               offset_in_page(new_skb->data),
 820                                                               RX_BUF_ALLOC_SIZE(gp),
 821                                                               DMA_FROM_DEVICE));
 822                        skb_reserve(new_skb, RX_OFFSET);
 823
 824                        /* Trim the original skb for the netif. */
 825                        skb_trim(skb, len);
 826                } else {
 827                        struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
 828
 829                        if (copy_skb == NULL) {
 830                                drops++;
 831                                goto drop_it;
 832                        }
 833
 834                        skb_reserve(copy_skb, 2);
 835                        skb_put(copy_skb, len);
 836                        dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
 837                                                DMA_FROM_DEVICE);
 838                        skb_copy_from_linear_data(skb, copy_skb->data, len);
 839                        dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
 840                                                   len, DMA_FROM_DEVICE);
 841
 842                        /* We'll reuse the original ring buffer. */
 843                        skb = copy_skb;
 844                }
 845
 846                if (likely(dev->features & NETIF_F_RXCSUM)) {
 847                        __sum16 csum;
 848
 849                        csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 850                        skb->csum = csum_unfold(csum);
 851                        skb->ip_summed = CHECKSUM_COMPLETE;
 852                }
 853                skb->protocol = eth_type_trans(skb, gp->dev);
 854
 855                napi_gro_receive(&gp->napi, skb);
 856
 857                dev->stats.rx_packets++;
 858                dev->stats.rx_bytes += len;
 859
 860        next:
 861                entry = NEXT_RX(entry);
 862        }
 863
 864        gem_post_rxds(gp, entry);
 865
 866        gp->rx_new = entry;
 867
 868        if (drops)
 869                netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
 870
 871        return work_done;
 872}
 873
 874static int gem_poll(struct napi_struct *napi, int budget)
 875{
 876        struct gem *gp = container_of(napi, struct gem, napi);
 877        struct net_device *dev = gp->dev;
 878        int work_done;
 879
 880        work_done = 0;
 881        do {
 882                /* Handle anomalies */
 883                if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
 884                        struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
 885                        int reset;
 886
 887                        /* We run the abnormal interrupt handling code with
 888                         * the Tx lock. It only resets the Rx portion of the
 889                         * chip, but we need to guard it against DMA being
 890                         * restarted by the link poll timer
 891                         */
 892                        __netif_tx_lock(txq, smp_processor_id());
 893                        reset = gem_abnormal_irq(dev, gp, gp->status);
 894                        __netif_tx_unlock(txq);
 895                        if (reset) {
 896                                gem_schedule_reset(gp);
 897                                napi_complete(napi);
 898                                return work_done;
 899                        }
 900                }
 901
 902                /* Run TX completion thread */
 903                gem_tx(dev, gp, gp->status);
 904
 905                /* Run RX thread. We don't use any locking here,
 906                 * code willing to do bad things - like cleaning the
 907                 * rx ring - must call napi_disable(), which
 908                 * schedule_timeout()'s if polling is already disabled.
 909                 */
 910                work_done += gem_rx(gp, budget - work_done);
 911
 912                if (work_done >= budget)
 913                        return work_done;
 914
 915                gp->status = readl(gp->regs + GREG_STAT);
 916        } while (gp->status & GREG_STAT_NAPI);
 917
 918        napi_complete_done(napi, work_done);
 919        gem_enable_ints(gp);
 920
 921        return work_done;
 922}
 923
 924static irqreturn_t gem_interrupt(int irq, void *dev_id)
 925{
 926        struct net_device *dev = dev_id;
 927        struct gem *gp = netdev_priv(dev);
 928
 929        if (napi_schedule_prep(&gp->napi)) {
 930                u32 gem_status = readl(gp->regs + GREG_STAT);
 931
 932                if (unlikely(gem_status == 0)) {
 933                        napi_enable(&gp->napi);
 934                        return IRQ_NONE;
 935                }
 936                if (netif_msg_intr(gp))
 937                        printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
 938                               gp->dev->name, gem_status);
 939
 940                gp->status = gem_status;
 941                gem_disable_ints(gp);
 942                __napi_schedule(&gp->napi);
 943        }
 944
 945        /* If polling was disabled at the time we received that
 946         * interrupt, we may return IRQ_HANDLED here while we
 947         * should return IRQ_NONE. No big deal...
 948         */
 949        return IRQ_HANDLED;
 950}
 951
 952#ifdef CONFIG_NET_POLL_CONTROLLER
 953static void gem_poll_controller(struct net_device *dev)
 954{
 955        struct gem *gp = netdev_priv(dev);
 956
 957        disable_irq(gp->pdev->irq);
 958        gem_interrupt(gp->pdev->irq, dev);
 959        enable_irq(gp->pdev->irq);
 960}
 961#endif
 962
 963static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
 964{
 965        struct gem *gp = netdev_priv(dev);
 966
 967        netdev_err(dev, "transmit timed out, resetting\n");
 968
 969        netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
 970                   readl(gp->regs + TXDMA_CFG),
 971                   readl(gp->regs + MAC_TXSTAT),
 972                   readl(gp->regs + MAC_TXCFG));
 973        netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
 974                   readl(gp->regs + RXDMA_CFG),
 975                   readl(gp->regs + MAC_RXSTAT),
 976                   readl(gp->regs + MAC_RXCFG));
 977
 978        gem_schedule_reset(gp);
 979}
 980
 981static __inline__ int gem_intme(int entry)
 982{
 983        /* Algorithm: IRQ every 1/2 of descriptors. */
 984        if (!(entry & ((TX_RING_SIZE>>1)-1)))
 985                return 1;
 986
 987        return 0;
 988}
 989
 990static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
 991                                  struct net_device *dev)
 992{
 993        struct gem *gp = netdev_priv(dev);
 994        int entry;
 995        u64 ctrl;
 996
 997        ctrl = 0;
 998        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 999                const u64 csum_start_off = skb_checksum_start_offset(skb);
1000                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1001
1002                ctrl = (TXDCTRL_CENAB |
1003                        (csum_start_off << 15) |
1004                        (csum_stuff_off << 21));
1005        }
1006
1007        if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1008                /* This is a hard error, log it. */
1009                if (!netif_queue_stopped(dev)) {
1010                        netif_stop_queue(dev);
1011                        netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1012                }
1013                return NETDEV_TX_BUSY;
1014        }
1015
1016        entry = gp->tx_new;
1017        gp->tx_skbs[entry] = skb;
1018
1019        if (skb_shinfo(skb)->nr_frags == 0) {
1020                struct gem_txd *txd = &gp->init_block->txd[entry];
1021                dma_addr_t mapping;
1022                u32 len;
1023
1024                len = skb->len;
1025                mapping = dma_map_page(&gp->pdev->dev,
1026                                       virt_to_page(skb->data),
1027                                       offset_in_page(skb->data),
1028                                       len, DMA_TO_DEVICE);
1029                ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1030                if (gem_intme(entry))
1031                        ctrl |= TXDCTRL_INTME;
1032                txd->buffer = cpu_to_le64(mapping);
1033                dma_wmb();
1034                txd->control_word = cpu_to_le64(ctrl);
1035                entry = NEXT_TX(entry);
1036        } else {
1037                struct gem_txd *txd;
1038                u32 first_len;
1039                u64 intme;
1040                dma_addr_t first_mapping;
1041                int frag, first_entry = entry;
1042
1043                intme = 0;
1044                if (gem_intme(entry))
1045                        intme |= TXDCTRL_INTME;
1046
1047                /* We must give this initial chunk to the device last.
1048                 * Otherwise we could race with the device.
1049                 */
1050                first_len = skb_headlen(skb);
1051                first_mapping = dma_map_page(&gp->pdev->dev,
1052                                             virt_to_page(skb->data),
1053                                             offset_in_page(skb->data),
1054                                             first_len, DMA_TO_DEVICE);
1055                entry = NEXT_TX(entry);
1056
1057                for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1058                        const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1059                        u32 len;
1060                        dma_addr_t mapping;
1061                        u64 this_ctrl;
1062
1063                        len = skb_frag_size(this_frag);
1064                        mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1065                                                   0, len, DMA_TO_DEVICE);
1066                        this_ctrl = ctrl;
1067                        if (frag == skb_shinfo(skb)->nr_frags - 1)
1068                                this_ctrl |= TXDCTRL_EOF;
1069
1070                        txd = &gp->init_block->txd[entry];
1071                        txd->buffer = cpu_to_le64(mapping);
1072                        dma_wmb();
1073                        txd->control_word = cpu_to_le64(this_ctrl | len);
1074
1075                        if (gem_intme(entry))
1076                                intme |= TXDCTRL_INTME;
1077
1078                        entry = NEXT_TX(entry);
1079                }
1080                txd = &gp->init_block->txd[first_entry];
1081                txd->buffer = cpu_to_le64(first_mapping);
1082                dma_wmb();
1083                txd->control_word =
1084                        cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1085        }
1086
1087        gp->tx_new = entry;
1088        if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1089                netif_stop_queue(dev);
1090
1091                /* netif_stop_queue() must be done before checking
1092                 * checking tx index in TX_BUFFS_AVAIL() below, because
1093                 * in gem_tx(), we update tx_old before checking for
1094                 * netif_queue_stopped().
1095                 */
1096                smp_mb();
1097                if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1098                        netif_wake_queue(dev);
1099        }
1100        if (netif_msg_tx_queued(gp))
1101                printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1102                       dev->name, entry, skb->len);
1103        mb();
1104        writel(gp->tx_new, gp->regs + TXDMA_KICK);
1105
1106        return NETDEV_TX_OK;
1107}
1108
1109static void gem_pcs_reset(struct gem *gp)
1110{
1111        int limit;
1112        u32 val;
1113
1114        /* Reset PCS unit. */
1115        val = readl(gp->regs + PCS_MIICTRL);
1116        val |= PCS_MIICTRL_RST;
1117        writel(val, gp->regs + PCS_MIICTRL);
1118
1119        limit = 32;
1120        while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1121                udelay(100);
1122                if (limit-- <= 0)
1123                        break;
1124        }
1125        if (limit < 0)
1126                netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1127}
1128
1129static void gem_pcs_reinit_adv(struct gem *gp)
1130{
1131        u32 val;
1132
1133        /* Make sure PCS is disabled while changing advertisement
1134         * configuration.
1135         */
1136        val = readl(gp->regs + PCS_CFG);
1137        val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1138        writel(val, gp->regs + PCS_CFG);
1139
1140        /* Advertise all capabilities except asymmetric
1141         * pause.
1142         */
1143        val = readl(gp->regs + PCS_MIIADV);
1144        val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1145                PCS_MIIADV_SP | PCS_MIIADV_AP);
1146        writel(val, gp->regs + PCS_MIIADV);
1147
1148        /* Enable and restart auto-negotiation, disable wrapback/loopback,
1149         * and re-enable PCS.
1150         */
1151        val = readl(gp->regs + PCS_MIICTRL);
1152        val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1153        val &= ~PCS_MIICTRL_WB;
1154        writel(val, gp->regs + PCS_MIICTRL);
1155
1156        val = readl(gp->regs + PCS_CFG);
1157        val |= PCS_CFG_ENABLE;
1158        writel(val, gp->regs + PCS_CFG);
1159
1160        /* Make sure serialink loopback is off.  The meaning
1161         * of this bit is logically inverted based upon whether
1162         * you are in Serialink or SERDES mode.
1163         */
1164        val = readl(gp->regs + PCS_SCTRL);
1165        if (gp->phy_type == phy_serialink)
1166                val &= ~PCS_SCTRL_LOOP;
1167        else
1168                val |= PCS_SCTRL_LOOP;
1169        writel(val, gp->regs + PCS_SCTRL);
1170}
1171
1172#define STOP_TRIES 32
1173
1174static void gem_reset(struct gem *gp)
1175{
1176        int limit;
1177        u32 val;
1178
1179        /* Make sure we won't get any more interrupts */
1180        writel(0xffffffff, gp->regs + GREG_IMASK);
1181
1182        /* Reset the chip */
1183        writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1184               gp->regs + GREG_SWRST);
1185
1186        limit = STOP_TRIES;
1187
1188        do {
1189                udelay(20);
1190                val = readl(gp->regs + GREG_SWRST);
1191                if (limit-- <= 0)
1192                        break;
1193        } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1194
1195        if (limit < 0)
1196                netdev_err(gp->dev, "SW reset is ghetto\n");
1197
1198        if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1199                gem_pcs_reinit_adv(gp);
1200}
1201
1202static void gem_start_dma(struct gem *gp)
1203{
1204        u32 val;
1205
1206        /* We are ready to rock, turn everything on. */
1207        val = readl(gp->regs + TXDMA_CFG);
1208        writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209        val = readl(gp->regs + RXDMA_CFG);
1210        writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211        val = readl(gp->regs + MAC_TXCFG);
1212        writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213        val = readl(gp->regs + MAC_RXCFG);
1214        writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1215
1216        (void) readl(gp->regs + MAC_RXCFG);
1217        udelay(100);
1218
1219        gem_enable_ints(gp);
1220
1221        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1222}
1223
1224/* DMA won't be actually stopped before about 4ms tho ...
1225 */
1226static void gem_stop_dma(struct gem *gp)
1227{
1228        u32 val;
1229
1230        /* We are done rocking, turn everything off. */
1231        val = readl(gp->regs + TXDMA_CFG);
1232        writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1233        val = readl(gp->regs + RXDMA_CFG);
1234        writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1235        val = readl(gp->regs + MAC_TXCFG);
1236        writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1237        val = readl(gp->regs + MAC_RXCFG);
1238        writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1239
1240        (void) readl(gp->regs + MAC_RXCFG);
1241
1242        /* Need to wait a bit ... done by the caller */
1243}
1244
1245
1246// XXX dbl check what that function should do when called on PCS PHY
1247static void gem_begin_auto_negotiation(struct gem *gp,
1248                                       const struct ethtool_link_ksettings *ep)
1249{
1250        u32 advertise, features;
1251        int autoneg;
1252        int speed;
1253        int duplex;
1254        u32 advertising;
1255
1256        if (ep)
1257                ethtool_convert_link_mode_to_legacy_u32(
1258                        &advertising, ep->link_modes.advertising);
1259
1260        if (gp->phy_type != phy_mii_mdio0 &&
1261            gp->phy_type != phy_mii_mdio1)
1262                goto non_mii;
1263
1264        /* Setup advertise */
1265        if (found_mii_phy(gp))
1266                features = gp->phy_mii.def->features;
1267        else
1268                features = 0;
1269
1270        advertise = features & ADVERTISE_MASK;
1271        if (gp->phy_mii.advertising != 0)
1272                advertise &= gp->phy_mii.advertising;
1273
1274        autoneg = gp->want_autoneg;
1275        speed = gp->phy_mii.speed;
1276        duplex = gp->phy_mii.duplex;
1277
1278        /* Setup link parameters */
1279        if (!ep)
1280                goto start_aneg;
1281        if (ep->base.autoneg == AUTONEG_ENABLE) {
1282                advertise = advertising;
1283                autoneg = 1;
1284        } else {
1285                autoneg = 0;
1286                speed = ep->base.speed;
1287                duplex = ep->base.duplex;
1288        }
1289
1290start_aneg:
1291        /* Sanitize settings based on PHY capabilities */
1292        if ((features & SUPPORTED_Autoneg) == 0)
1293                autoneg = 0;
1294        if (speed == SPEED_1000 &&
1295            !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1296                speed = SPEED_100;
1297        if (speed == SPEED_100 &&
1298            !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1299                speed = SPEED_10;
1300        if (duplex == DUPLEX_FULL &&
1301            !(features & (SUPPORTED_1000baseT_Full |
1302                          SUPPORTED_100baseT_Full |
1303                          SUPPORTED_10baseT_Full)))
1304                duplex = DUPLEX_HALF;
1305        if (speed == 0)
1306                speed = SPEED_10;
1307
1308        /* If we are asleep, we don't try to actually setup the PHY, we
1309         * just store the settings
1310         */
1311        if (!netif_device_present(gp->dev)) {
1312                gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1313                gp->phy_mii.speed = speed;
1314                gp->phy_mii.duplex = duplex;
1315                return;
1316        }
1317
1318        /* Configure PHY & start aneg */
1319        gp->want_autoneg = autoneg;
1320        if (autoneg) {
1321                if (found_mii_phy(gp))
1322                        gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1323                gp->lstate = link_aneg;
1324        } else {
1325                if (found_mii_phy(gp))
1326                        gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1327                gp->lstate = link_force_ok;
1328        }
1329
1330non_mii:
1331        gp->timer_ticks = 0;
1332        mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1333}
1334
1335/* A link-up condition has occurred, initialize and enable the
1336 * rest of the chip.
1337 */
1338static int gem_set_link_modes(struct gem *gp)
1339{
1340        struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1341        int full_duplex, speed, pause;
1342        u32 val;
1343
1344        full_duplex = 0;
1345        speed = SPEED_10;
1346        pause = 0;
1347
1348        if (found_mii_phy(gp)) {
1349                if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1350                        return 1;
1351                full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1352                speed = gp->phy_mii.speed;
1353                pause = gp->phy_mii.pause;
1354        } else if (gp->phy_type == phy_serialink ||
1355                   gp->phy_type == phy_serdes) {
1356                u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1357
1358                if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1359                        full_duplex = 1;
1360                speed = SPEED_1000;
1361        }
1362
1363        netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1364                   speed, (full_duplex ? "full" : "half"));
1365
1366
1367        /* We take the tx queue lock to avoid collisions between
1368         * this code, the tx path and the NAPI-driven error path
1369         */
1370        __netif_tx_lock(txq, smp_processor_id());
1371
1372        val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1373        if (full_duplex) {
1374                val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1375        } else {
1376                /* MAC_TXCFG_NBO must be zero. */
1377        }
1378        writel(val, gp->regs + MAC_TXCFG);
1379
1380        val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1381        if (!full_duplex &&
1382            (gp->phy_type == phy_mii_mdio0 ||
1383             gp->phy_type == phy_mii_mdio1)) {
1384                val |= MAC_XIFCFG_DISE;
1385        } else if (full_duplex) {
1386                val |= MAC_XIFCFG_FLED;
1387        }
1388
1389        if (speed == SPEED_1000)
1390                val |= (MAC_XIFCFG_GMII);
1391
1392        writel(val, gp->regs + MAC_XIFCFG);
1393
1394        /* If gigabit and half-duplex, enable carrier extension
1395         * mode.  Else, disable it.
1396         */
1397        if (speed == SPEED_1000 && !full_duplex) {
1398                val = readl(gp->regs + MAC_TXCFG);
1399                writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1400
1401                val = readl(gp->regs + MAC_RXCFG);
1402                writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1403        } else {
1404                val = readl(gp->regs + MAC_TXCFG);
1405                writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406
1407                val = readl(gp->regs + MAC_RXCFG);
1408                writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409        }
1410
1411        if (gp->phy_type == phy_serialink ||
1412            gp->phy_type == phy_serdes) {
1413                u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1414
1415                if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1416                        pause = 1;
1417        }
1418
1419        if (!full_duplex)
1420                writel(512, gp->regs + MAC_STIME);
1421        else
1422                writel(64, gp->regs + MAC_STIME);
1423        val = readl(gp->regs + MAC_MCCFG);
1424        if (pause)
1425                val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1426        else
1427                val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428        writel(val, gp->regs + MAC_MCCFG);
1429
1430        gem_start_dma(gp);
1431
1432        __netif_tx_unlock(txq);
1433
1434        if (netif_msg_link(gp)) {
1435                if (pause) {
1436                        netdev_info(gp->dev,
1437                                    "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1438                                    gp->rx_fifo_sz,
1439                                    gp->rx_pause_off,
1440                                    gp->rx_pause_on);
1441                } else {
1442                        netdev_info(gp->dev, "Pause is disabled\n");
1443                }
1444        }
1445
1446        return 0;
1447}
1448
1449static int gem_mdio_link_not_up(struct gem *gp)
1450{
1451        switch (gp->lstate) {
1452        case link_force_ret:
1453                netif_info(gp, link, gp->dev,
1454                           "Autoneg failed again, keeping forced mode\n");
1455                gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1456                        gp->last_forced_speed, DUPLEX_HALF);
1457                gp->timer_ticks = 5;
1458                gp->lstate = link_force_ok;
1459                return 0;
1460        case link_aneg:
1461                /* We try forced modes after a failed aneg only on PHYs that don't
1462                 * have "magic_aneg" bit set, which means they internally do the
1463                 * while forced-mode thingy. On these, we just restart aneg
1464                 */
1465                if (gp->phy_mii.def->magic_aneg)
1466                        return 1;
1467                netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1468                /* Try forced modes. */
1469                gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1470                        DUPLEX_HALF);
1471                gp->timer_ticks = 5;
1472                gp->lstate = link_force_try;
1473                return 0;
1474        case link_force_try:
1475                /* Downgrade from 100 to 10 Mbps if necessary.
1476                 * If already at 10Mbps, warn user about the
1477                 * situation every 10 ticks.
1478                 */
1479                if (gp->phy_mii.speed == SPEED_100) {
1480                        gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1481                                DUPLEX_HALF);
1482                        gp->timer_ticks = 5;
1483                        netif_info(gp, link, gp->dev,
1484                                   "switching to forced 10bt\n");
1485                        return 0;
1486                } else
1487                        return 1;
1488        default:
1489                return 0;
1490        }
1491}
1492
1493static void gem_link_timer(struct timer_list *t)
1494{
1495        struct gem *gp = from_timer(gp, t, link_timer);
1496        struct net_device *dev = gp->dev;
1497        int restart_aneg = 0;
1498
1499        /* There's no point doing anything if we're going to be reset */
1500        if (gp->reset_task_pending)
1501                return;
1502
1503        if (gp->phy_type == phy_serialink ||
1504            gp->phy_type == phy_serdes) {
1505                u32 val = readl(gp->regs + PCS_MIISTAT);
1506
1507                if (!(val & PCS_MIISTAT_LS))
1508                        val = readl(gp->regs + PCS_MIISTAT);
1509
1510                if ((val & PCS_MIISTAT_LS) != 0) {
1511                        if (gp->lstate == link_up)
1512                                goto restart;
1513
1514                        gp->lstate = link_up;
1515                        netif_carrier_on(dev);
1516                        (void)gem_set_link_modes(gp);
1517                }
1518                goto restart;
1519        }
1520        if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1521                /* Ok, here we got a link. If we had it due to a forced
1522                 * fallback, and we were configured for autoneg, we do
1523                 * retry a short autoneg pass. If you know your hub is
1524                 * broken, use ethtool ;)
1525                 */
1526                if (gp->lstate == link_force_try && gp->want_autoneg) {
1527                        gp->lstate = link_force_ret;
1528                        gp->last_forced_speed = gp->phy_mii.speed;
1529                        gp->timer_ticks = 5;
1530                        if (netif_msg_link(gp))
1531                                netdev_info(dev,
1532                                            "Got link after fallback, retrying autoneg once...\n");
1533                        gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1534                } else if (gp->lstate != link_up) {
1535                        gp->lstate = link_up;
1536                        netif_carrier_on(dev);
1537                        if (gem_set_link_modes(gp))
1538                                restart_aneg = 1;
1539                }
1540        } else {
1541                /* If the link was previously up, we restart the
1542                 * whole process
1543                 */
1544                if (gp->lstate == link_up) {
1545                        gp->lstate = link_down;
1546                        netif_info(gp, link, dev, "Link down\n");
1547                        netif_carrier_off(dev);
1548                        gem_schedule_reset(gp);
1549                        /* The reset task will restart the timer */
1550                        return;
1551                } else if (++gp->timer_ticks > 10) {
1552                        if (found_mii_phy(gp))
1553                                restart_aneg = gem_mdio_link_not_up(gp);
1554                        else
1555                                restart_aneg = 1;
1556                }
1557        }
1558        if (restart_aneg) {
1559                gem_begin_auto_negotiation(gp, NULL);
1560                return;
1561        }
1562restart:
1563        mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1564}
1565
1566static void gem_clean_rings(struct gem *gp)
1567{
1568        struct gem_init_block *gb = gp->init_block;
1569        struct sk_buff *skb;
1570        int i;
1571        dma_addr_t dma_addr;
1572
1573        for (i = 0; i < RX_RING_SIZE; i++) {
1574                struct gem_rxd *rxd;
1575
1576                rxd = &gb->rxd[i];
1577                if (gp->rx_skbs[i] != NULL) {
1578                        skb = gp->rx_skbs[i];
1579                        dma_addr = le64_to_cpu(rxd->buffer);
1580                        dma_unmap_page(&gp->pdev->dev, dma_addr,
1581                                       RX_BUF_ALLOC_SIZE(gp),
1582                                       DMA_FROM_DEVICE);
1583                        dev_kfree_skb_any(skb);
1584                        gp->rx_skbs[i] = NULL;
1585                }
1586                rxd->status_word = 0;
1587                dma_wmb();
1588                rxd->buffer = 0;
1589        }
1590
1591        for (i = 0; i < TX_RING_SIZE; i++) {
1592                if (gp->tx_skbs[i] != NULL) {
1593                        struct gem_txd *txd;
1594                        int frag;
1595
1596                        skb = gp->tx_skbs[i];
1597                        gp->tx_skbs[i] = NULL;
1598
1599                        for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1600                                int ent = i & (TX_RING_SIZE - 1);
1601
1602                                txd = &gb->txd[ent];
1603                                dma_addr = le64_to_cpu(txd->buffer);
1604                                dma_unmap_page(&gp->pdev->dev, dma_addr,
1605                                               le64_to_cpu(txd->control_word) &
1606                                               TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1607
1608                                if (frag != skb_shinfo(skb)->nr_frags)
1609                                        i++;
1610                        }
1611                        dev_kfree_skb_any(skb);
1612                }
1613        }
1614}
1615
1616static void gem_init_rings(struct gem *gp)
1617{
1618        struct gem_init_block *gb = gp->init_block;
1619        struct net_device *dev = gp->dev;
1620        int i;
1621        dma_addr_t dma_addr;
1622
1623        gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1624
1625        gem_clean_rings(gp);
1626
1627        gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1628                            (unsigned)VLAN_ETH_FRAME_LEN);
1629
1630        for (i = 0; i < RX_RING_SIZE; i++) {
1631                struct sk_buff *skb;
1632                struct gem_rxd *rxd = &gb->rxd[i];
1633
1634                skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1635                if (!skb) {
1636                        rxd->buffer = 0;
1637                        rxd->status_word = 0;
1638                        continue;
1639                }
1640
1641                gp->rx_skbs[i] = skb;
1642                skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1643                dma_addr = dma_map_page(&gp->pdev->dev,
1644                                        virt_to_page(skb->data),
1645                                        offset_in_page(skb->data),
1646                                        RX_BUF_ALLOC_SIZE(gp),
1647                                        DMA_FROM_DEVICE);
1648                rxd->buffer = cpu_to_le64(dma_addr);
1649                dma_wmb();
1650                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1651                skb_reserve(skb, RX_OFFSET);
1652        }
1653
1654        for (i = 0; i < TX_RING_SIZE; i++) {
1655                struct gem_txd *txd = &gb->txd[i];
1656
1657                txd->control_word = 0;
1658                dma_wmb();
1659                txd->buffer = 0;
1660        }
1661        wmb();
1662}
1663
1664/* Init PHY interface and start link poll state machine */
1665static void gem_init_phy(struct gem *gp)
1666{
1667        u32 mifcfg;
1668
1669        /* Revert MIF CFG setting done on stop_phy */
1670        mifcfg = readl(gp->regs + MIF_CFG);
1671        mifcfg &= ~MIF_CFG_BBMODE;
1672        writel(mifcfg, gp->regs + MIF_CFG);
1673
1674        if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1675                int i;
1676
1677                /* Those delays sucks, the HW seems to love them though, I'll
1678                 * seriously consider breaking some locks here to be able
1679                 * to schedule instead
1680                 */
1681                for (i = 0; i < 3; i++) {
1682#ifdef CONFIG_PPC_PMAC
1683                        pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1684                        msleep(20);
1685#endif
1686                        /* Some PHYs used by apple have problem getting back to us,
1687                         * we do an additional reset here
1688                         */
1689                        sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1690                        msleep(20);
1691                        if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1692                                break;
1693                        if (i == 2)
1694                                netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1695                }
1696        }
1697
1698        if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1699            gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1700                u32 val;
1701
1702                /* Init datapath mode register. */
1703                if (gp->phy_type == phy_mii_mdio0 ||
1704                    gp->phy_type == phy_mii_mdio1) {
1705                        val = PCS_DMODE_MGM;
1706                } else if (gp->phy_type == phy_serialink) {
1707                        val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1708                } else {
1709                        val = PCS_DMODE_ESM;
1710                }
1711
1712                writel(val, gp->regs + PCS_DMODE);
1713        }
1714
1715        if (gp->phy_type == phy_mii_mdio0 ||
1716            gp->phy_type == phy_mii_mdio1) {
1717                /* Reset and detect MII PHY */
1718                sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1719
1720                /* Init PHY */
1721                if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1722                        gp->phy_mii.def->ops->init(&gp->phy_mii);
1723        } else {
1724                gem_pcs_reset(gp);
1725                gem_pcs_reinit_adv(gp);
1726        }
1727
1728        /* Default aneg parameters */
1729        gp->timer_ticks = 0;
1730        gp->lstate = link_down;
1731        netif_carrier_off(gp->dev);
1732
1733        /* Print things out */
1734        if (gp->phy_type == phy_mii_mdio0 ||
1735            gp->phy_type == phy_mii_mdio1)
1736                netdev_info(gp->dev, "Found %s PHY\n",
1737                            gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1738
1739        gem_begin_auto_negotiation(gp, NULL);
1740}
1741
1742static void gem_init_dma(struct gem *gp)
1743{
1744        u64 desc_dma = (u64) gp->gblock_dvma;
1745        u32 val;
1746
1747        val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1748        writel(val, gp->regs + TXDMA_CFG);
1749
1750        writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1751        writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1752        desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1753
1754        writel(0, gp->regs + TXDMA_KICK);
1755
1756        val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1757               (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1758        writel(val, gp->regs + RXDMA_CFG);
1759
1760        writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1761        writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1762
1763        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1764
1765        val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1766        val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1767        writel(val, gp->regs + RXDMA_PTHRESH);
1768
1769        if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1770                writel(((5 & RXDMA_BLANK_IPKTS) |
1771                        ((8 << 12) & RXDMA_BLANK_ITIME)),
1772                       gp->regs + RXDMA_BLANK);
1773        else
1774                writel(((5 & RXDMA_BLANK_IPKTS) |
1775                        ((4 << 12) & RXDMA_BLANK_ITIME)),
1776                       gp->regs + RXDMA_BLANK);
1777}
1778
1779static u32 gem_setup_multicast(struct gem *gp)
1780{
1781        u32 rxcfg = 0;
1782        int i;
1783
1784        if ((gp->dev->flags & IFF_ALLMULTI) ||
1785            (netdev_mc_count(gp->dev) > 256)) {
1786                for (i=0; i<16; i++)
1787                        writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1788                rxcfg |= MAC_RXCFG_HFE;
1789        } else if (gp->dev->flags & IFF_PROMISC) {
1790                rxcfg |= MAC_RXCFG_PROM;
1791        } else {
1792                u16 hash_table[16];
1793                u32 crc;
1794                struct netdev_hw_addr *ha;
1795                int i;
1796
1797                memset(hash_table, 0, sizeof(hash_table));
1798                netdev_for_each_mc_addr(ha, gp->dev) {
1799                        crc = ether_crc_le(6, ha->addr);
1800                        crc >>= 24;
1801                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1802                }
1803                for (i=0; i<16; i++)
1804                        writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1805                rxcfg |= MAC_RXCFG_HFE;
1806        }
1807
1808        return rxcfg;
1809}
1810
1811static void gem_init_mac(struct gem *gp)
1812{
1813        unsigned char *e = &gp->dev->dev_addr[0];
1814
1815        writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1816
1817        writel(0x00, gp->regs + MAC_IPG0);
1818        writel(0x08, gp->regs + MAC_IPG1);
1819        writel(0x04, gp->regs + MAC_IPG2);
1820        writel(0x40, gp->regs + MAC_STIME);
1821        writel(0x40, gp->regs + MAC_MINFSZ);
1822
1823        /* Ethernet payload + header + FCS + optional VLAN tag. */
1824        writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1825
1826        writel(0x07, gp->regs + MAC_PASIZE);
1827        writel(0x04, gp->regs + MAC_JAMSIZE);
1828        writel(0x10, gp->regs + MAC_ATTLIM);
1829        writel(0x8808, gp->regs + MAC_MCTYPE);
1830
1831        writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1832
1833        writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1834        writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1835        writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1836
1837        writel(0, gp->regs + MAC_ADDR3);
1838        writel(0, gp->regs + MAC_ADDR4);
1839        writel(0, gp->regs + MAC_ADDR5);
1840
1841        writel(0x0001, gp->regs + MAC_ADDR6);
1842        writel(0xc200, gp->regs + MAC_ADDR7);
1843        writel(0x0180, gp->regs + MAC_ADDR8);
1844
1845        writel(0, gp->regs + MAC_AFILT0);
1846        writel(0, gp->regs + MAC_AFILT1);
1847        writel(0, gp->regs + MAC_AFILT2);
1848        writel(0, gp->regs + MAC_AF21MSK);
1849        writel(0, gp->regs + MAC_AF0MSK);
1850
1851        gp->mac_rx_cfg = gem_setup_multicast(gp);
1852#ifdef STRIP_FCS
1853        gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1854#endif
1855        writel(0, gp->regs + MAC_NCOLL);
1856        writel(0, gp->regs + MAC_FASUCC);
1857        writel(0, gp->regs + MAC_ECOLL);
1858        writel(0, gp->regs + MAC_LCOLL);
1859        writel(0, gp->regs + MAC_DTIMER);
1860        writel(0, gp->regs + MAC_PATMPS);
1861        writel(0, gp->regs + MAC_RFCTR);
1862        writel(0, gp->regs + MAC_LERR);
1863        writel(0, gp->regs + MAC_AERR);
1864        writel(0, gp->regs + MAC_FCSERR);
1865        writel(0, gp->regs + MAC_RXCVERR);
1866
1867        /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1868         * them once a link is established.
1869         */
1870        writel(0, gp->regs + MAC_TXCFG);
1871        writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1872        writel(0, gp->regs + MAC_MCCFG);
1873        writel(0, gp->regs + MAC_XIFCFG);
1874
1875        /* Setup MAC interrupts.  We want to get all of the interesting
1876         * counter expiration events, but we do not want to hear about
1877         * normal rx/tx as the DMA engine tells us that.
1878         */
1879        writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1880        writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1881
1882        /* Don't enable even the PAUSE interrupts for now, we
1883         * make no use of those events other than to record them.
1884         */
1885        writel(0xffffffff, gp->regs + MAC_MCMASK);
1886
1887        /* Don't enable GEM's WOL in normal operations
1888         */
1889        if (gp->has_wol)
1890                writel(0, gp->regs + WOL_WAKECSR);
1891}
1892
1893static void gem_init_pause_thresholds(struct gem *gp)
1894{
1895        u32 cfg;
1896
1897        /* Calculate pause thresholds.  Setting the OFF threshold to the
1898         * full RX fifo size effectively disables PAUSE generation which
1899         * is what we do for 10/100 only GEMs which have FIFOs too small
1900         * to make real gains from PAUSE.
1901         */
1902        if (gp->rx_fifo_sz <= (2 * 1024)) {
1903                gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1904        } else {
1905                int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1906                int off = (gp->rx_fifo_sz - (max_frame * 2));
1907                int on = off - max_frame;
1908
1909                gp->rx_pause_off = off;
1910                gp->rx_pause_on = on;
1911        }
1912
1913
1914        /* Configure the chip "burst" DMA mode & enable some
1915         * HW bug fixes on Apple version
1916         */
1917        cfg  = 0;
1918        if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1919                cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1920#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1921        cfg |= GREG_CFG_IBURST;
1922#endif
1923        cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1924        cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1925        writel(cfg, gp->regs + GREG_CFG);
1926
1927        /* If Infinite Burst didn't stick, then use different
1928         * thresholds (and Apple bug fixes don't exist)
1929         */
1930        if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1931                cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1932                cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1933                writel(cfg, gp->regs + GREG_CFG);
1934        }
1935}
1936
1937static int gem_check_invariants(struct gem *gp)
1938{
1939        struct pci_dev *pdev = gp->pdev;
1940        u32 mif_cfg;
1941
1942        /* On Apple's sungem, we can't rely on registers as the chip
1943         * was been powered down by the firmware. The PHY is looked
1944         * up later on.
1945         */
1946        if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1947                gp->phy_type = phy_mii_mdio0;
1948                gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1949                gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1950                gp->swrst_base = 0;
1951
1952                mif_cfg = readl(gp->regs + MIF_CFG);
1953                mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1954                mif_cfg |= MIF_CFG_MDI0;
1955                writel(mif_cfg, gp->regs + MIF_CFG);
1956                writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1957                writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1958
1959                /* We hard-code the PHY address so we can properly bring it out of
1960                 * reset later on, we can't really probe it at this point, though
1961                 * that isn't an issue.
1962                 */
1963                if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1964                        gp->mii_phy_addr = 1;
1965                else
1966                        gp->mii_phy_addr = 0;
1967
1968                return 0;
1969        }
1970
1971        mif_cfg = readl(gp->regs + MIF_CFG);
1972
1973        if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1974            pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1975                /* One of the MII PHYs _must_ be present
1976                 * as this chip has no gigabit PHY.
1977                 */
1978                if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1979                        pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1980                               mif_cfg);
1981                        return -1;
1982                }
1983        }
1984
1985        /* Determine initial PHY interface type guess.  MDIO1 is the
1986         * external PHY and thus takes precedence over MDIO0.
1987         */
1988
1989        if (mif_cfg & MIF_CFG_MDI1) {
1990                gp->phy_type = phy_mii_mdio1;
1991                mif_cfg |= MIF_CFG_PSELECT;
1992                writel(mif_cfg, gp->regs + MIF_CFG);
1993        } else if (mif_cfg & MIF_CFG_MDI0) {
1994                gp->phy_type = phy_mii_mdio0;
1995                mif_cfg &= ~MIF_CFG_PSELECT;
1996                writel(mif_cfg, gp->regs + MIF_CFG);
1997        } else {
1998#ifdef CONFIG_SPARC
1999                const char *p;
2000
2001                p = of_get_property(gp->of_node, "shared-pins", NULL);
2002                if (p && !strcmp(p, "serdes"))
2003                        gp->phy_type = phy_serdes;
2004                else
2005#endif
2006                        gp->phy_type = phy_serialink;
2007        }
2008        if (gp->phy_type == phy_mii_mdio1 ||
2009            gp->phy_type == phy_mii_mdio0) {
2010                int i;
2011
2012                for (i = 0; i < 32; i++) {
2013                        gp->mii_phy_addr = i;
2014                        if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2015                                break;
2016                }
2017                if (i == 32) {
2018                        if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2019                                pr_err("RIO MII phy will not respond\n");
2020                                return -1;
2021                        }
2022                        gp->phy_type = phy_serdes;
2023                }
2024        }
2025
2026        /* Fetch the FIFO configurations now too. */
2027        gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2028        gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2029
2030        if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2031                if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2032                        if (gp->tx_fifo_sz != (9 * 1024) ||
2033                            gp->rx_fifo_sz != (20 * 1024)) {
2034                                pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2035                                       gp->tx_fifo_sz, gp->rx_fifo_sz);
2036                                return -1;
2037                        }
2038                        gp->swrst_base = 0;
2039                } else {
2040                        if (gp->tx_fifo_sz != (2 * 1024) ||
2041                            gp->rx_fifo_sz != (2 * 1024)) {
2042                                pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043                                       gp->tx_fifo_sz, gp->rx_fifo_sz);
2044                                return -1;
2045                        }
2046                        gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2047                }
2048        }
2049
2050        return 0;
2051}
2052
2053static void gem_reinit_chip(struct gem *gp)
2054{
2055        /* Reset the chip */
2056        gem_reset(gp);
2057
2058        /* Make sure ints are disabled */
2059        gem_disable_ints(gp);
2060
2061        /* Allocate & setup ring buffers */
2062        gem_init_rings(gp);
2063
2064        /* Configure pause thresholds */
2065        gem_init_pause_thresholds(gp);
2066
2067        /* Init DMA & MAC engines */
2068        gem_init_dma(gp);
2069        gem_init_mac(gp);
2070}
2071
2072
2073static void gem_stop_phy(struct gem *gp, int wol)
2074{
2075        u32 mifcfg;
2076
2077        /* Let the chip settle down a bit, it seems that helps
2078         * for sleep mode on some models
2079         */
2080        msleep(10);
2081
2082        /* Make sure we aren't polling PHY status change. We
2083         * don't currently use that feature though
2084         */
2085        mifcfg = readl(gp->regs + MIF_CFG);
2086        mifcfg &= ~MIF_CFG_POLL;
2087        writel(mifcfg, gp->regs + MIF_CFG);
2088
2089        if (wol && gp->has_wol) {
2090                unsigned char *e = &gp->dev->dev_addr[0];
2091                u32 csr;
2092
2093                /* Setup wake-on-lan for MAGIC packet */
2094                writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2095                       gp->regs + MAC_RXCFG);
2096                writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2097                writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2098                writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2099
2100                writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2101                csr = WOL_WAKECSR_ENABLE;
2102                if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2103                        csr |= WOL_WAKECSR_MII;
2104                writel(csr, gp->regs + WOL_WAKECSR);
2105        } else {
2106                writel(0, gp->regs + MAC_RXCFG);
2107                (void)readl(gp->regs + MAC_RXCFG);
2108                /* Machine sleep will die in strange ways if we
2109                 * dont wait a bit here, looks like the chip takes
2110                 * some time to really shut down
2111                 */
2112                msleep(10);
2113        }
2114
2115        writel(0, gp->regs + MAC_TXCFG);
2116        writel(0, gp->regs + MAC_XIFCFG);
2117        writel(0, gp->regs + TXDMA_CFG);
2118        writel(0, gp->regs + RXDMA_CFG);
2119
2120        if (!wol) {
2121                gem_reset(gp);
2122                writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2123                writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2124
2125                if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2126                        gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2127
2128                /* According to Apple, we must set the MDIO pins to this begnign
2129                 * state or we may 1) eat more current, 2) damage some PHYs
2130                 */
2131                writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2132                writel(0, gp->regs + MIF_BBCLK);
2133                writel(0, gp->regs + MIF_BBDATA);
2134                writel(0, gp->regs + MIF_BBOENAB);
2135                writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2136                (void) readl(gp->regs + MAC_XIFCFG);
2137        }
2138}
2139
2140static int gem_do_start(struct net_device *dev)
2141{
2142        struct gem *gp = netdev_priv(dev);
2143        int rc;
2144
2145        pci_set_master(gp->pdev);
2146
2147        /* Init & setup chip hardware */
2148        gem_reinit_chip(gp);
2149
2150        /* An interrupt might come in handy */
2151        rc = request_irq(gp->pdev->irq, gem_interrupt,
2152                         IRQF_SHARED, dev->name, (void *)dev);
2153        if (rc) {
2154                netdev_err(dev, "failed to request irq !\n");
2155
2156                gem_reset(gp);
2157                gem_clean_rings(gp);
2158                gem_put_cell(gp);
2159                return rc;
2160        }
2161
2162        /* Mark us as attached again if we come from resume(), this has
2163         * no effect if we weren't detached and needs to be done now.
2164         */
2165        netif_device_attach(dev);
2166
2167        /* Restart NAPI & queues */
2168        gem_netif_start(gp);
2169
2170        /* Detect & init PHY, start autoneg etc... this will
2171         * eventually result in starting DMA operations when
2172         * the link is up
2173         */
2174        gem_init_phy(gp);
2175
2176        return 0;
2177}
2178
2179static void gem_do_stop(struct net_device *dev, int wol)
2180{
2181        struct gem *gp = netdev_priv(dev);
2182
2183        /* Stop NAPI and stop tx queue */
2184        gem_netif_stop(gp);
2185
2186        /* Make sure ints are disabled. We don't care about
2187         * synchronizing as NAPI is disabled, thus a stray
2188         * interrupt will do nothing bad (our irq handler
2189         * just schedules NAPI)
2190         */
2191        gem_disable_ints(gp);
2192
2193        /* Stop the link timer */
2194        del_timer_sync(&gp->link_timer);
2195
2196        /* We cannot cancel the reset task while holding the
2197         * rtnl lock, we'd get an A->B / B->A deadlock stituation
2198         * if we did. This is not an issue however as the reset
2199         * task is synchronized vs. us (rtnl_lock) and will do
2200         * nothing if the device is down or suspended. We do
2201         * still clear reset_task_pending to avoid a spurrious
2202         * reset later on in case we do resume before it gets
2203         * scheduled.
2204         */
2205        gp->reset_task_pending = 0;
2206
2207        /* If we are going to sleep with WOL */
2208        gem_stop_dma(gp);
2209        msleep(10);
2210        if (!wol)
2211                gem_reset(gp);
2212        msleep(10);
2213
2214        /* Get rid of rings */
2215        gem_clean_rings(gp);
2216
2217        /* No irq needed anymore */
2218        free_irq(gp->pdev->irq, (void *) dev);
2219
2220        /* Shut the PHY down eventually and setup WOL */
2221        gem_stop_phy(gp, wol);
2222}
2223
2224static void gem_reset_task(struct work_struct *work)
2225{
2226        struct gem *gp = container_of(work, struct gem, reset_task);
2227
2228        /* Lock out the network stack (essentially shield ourselves
2229         * against a racing open, close, control call, or suspend
2230         */
2231        rtnl_lock();
2232
2233        /* Skip the reset task if suspended or closed, or if it's
2234         * been cancelled by gem_do_stop (see comment there)
2235         */
2236        if (!netif_device_present(gp->dev) ||
2237            !netif_running(gp->dev) ||
2238            !gp->reset_task_pending) {
2239                rtnl_unlock();
2240                return;
2241        }
2242
2243        /* Stop the link timer */
2244        del_timer_sync(&gp->link_timer);
2245
2246        /* Stop NAPI and tx */
2247        gem_netif_stop(gp);
2248
2249        /* Reset the chip & rings */
2250        gem_reinit_chip(gp);
2251        if (gp->lstate == link_up)
2252                gem_set_link_modes(gp);
2253
2254        /* Restart NAPI and Tx */
2255        gem_netif_start(gp);
2256
2257        /* We are back ! */
2258        gp->reset_task_pending = 0;
2259
2260        /* If the link is not up, restart autoneg, else restart the
2261         * polling timer
2262         */
2263        if (gp->lstate != link_up)
2264                gem_begin_auto_negotiation(gp, NULL);
2265        else
2266                mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2267
2268        rtnl_unlock();
2269}
2270
2271static int gem_open(struct net_device *dev)
2272{
2273        struct gem *gp = netdev_priv(dev);
2274        int rc;
2275
2276        /* We allow open while suspended, we just do nothing,
2277         * the chip will be initialized in resume()
2278         */
2279        if (netif_device_present(dev)) {
2280                /* Enable the cell */
2281                gem_get_cell(gp);
2282
2283                /* Make sure PCI access and bus master are enabled */
2284                rc = pci_enable_device(gp->pdev);
2285                if (rc) {
2286                        netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2287
2288                        /* Put cell and forget it for now, it will be considered
2289                         *as still asleep, a new sleep cycle may bring it back
2290                         */
2291                        gem_put_cell(gp);
2292                        return -ENXIO;
2293                }
2294                return gem_do_start(dev);
2295        }
2296
2297        return 0;
2298}
2299
2300static int gem_close(struct net_device *dev)
2301{
2302        struct gem *gp = netdev_priv(dev);
2303
2304        if (netif_device_present(dev)) {
2305                gem_do_stop(dev, 0);
2306
2307                /* Make sure bus master is disabled */
2308                pci_disable_device(gp->pdev);
2309
2310                /* Cell not needed neither if no WOL */
2311                if (!gp->asleep_wol)
2312                        gem_put_cell(gp);
2313        }
2314        return 0;
2315}
2316
2317static int __maybe_unused gem_suspend(struct device *dev_d)
2318{
2319        struct net_device *dev = dev_get_drvdata(dev_d);
2320        struct gem *gp = netdev_priv(dev);
2321
2322        /* Lock the network stack first to avoid racing with open/close,
2323         * reset task and setting calls
2324         */
2325        rtnl_lock();
2326
2327        /* Not running, mark ourselves non-present, no need for
2328         * a lock here
2329         */
2330        if (!netif_running(dev)) {
2331                netif_device_detach(dev);
2332                rtnl_unlock();
2333                return 0;
2334        }
2335        netdev_info(dev, "suspending, WakeOnLan %s\n",
2336                    (gp->wake_on_lan && netif_running(dev)) ?
2337                    "enabled" : "disabled");
2338
2339        /* Tell the network stack we're gone. gem_do_stop() below will
2340         * synchronize with TX, stop NAPI etc...
2341         */
2342        netif_device_detach(dev);
2343
2344        /* Switch off chip, remember WOL setting */
2345        gp->asleep_wol = !!gp->wake_on_lan;
2346        gem_do_stop(dev, gp->asleep_wol);
2347
2348        /* Cell not needed neither if no WOL */
2349        if (!gp->asleep_wol)
2350                gem_put_cell(gp);
2351
2352        /* Unlock the network stack */
2353        rtnl_unlock();
2354
2355        return 0;
2356}
2357
2358static int __maybe_unused gem_resume(struct device *dev_d)
2359{
2360        struct net_device *dev = dev_get_drvdata(dev_d);
2361        struct gem *gp = netdev_priv(dev);
2362
2363        /* See locking comment in gem_suspend */
2364        rtnl_lock();
2365
2366        /* Not running, mark ourselves present, no need for
2367         * a lock here
2368         */
2369        if (!netif_running(dev)) {
2370                netif_device_attach(dev);
2371                rtnl_unlock();
2372                return 0;
2373        }
2374
2375        /* Enable the cell */
2376        gem_get_cell(gp);
2377
2378        /* Restart chip. If that fails there isn't much we can do, we
2379         * leave things stopped.
2380         */
2381        gem_do_start(dev);
2382
2383        /* If we had WOL enabled, the cell clock was never turned off during
2384         * sleep, so we end up beeing unbalanced. Fix that here
2385         */
2386        if (gp->asleep_wol)
2387                gem_put_cell(gp);
2388
2389        /* Unlock the network stack */
2390        rtnl_unlock();
2391
2392        return 0;
2393}
2394
2395static struct net_device_stats *gem_get_stats(struct net_device *dev)
2396{
2397        struct gem *gp = netdev_priv(dev);
2398
2399        /* I have seen this being called while the PM was in progress,
2400         * so we shield against this. Let's also not poke at registers
2401         * while the reset task is going on.
2402         *
2403         * TODO: Move stats collection elsewhere (link timer ?) and
2404         * make this a nop to avoid all those synchro issues
2405         */
2406        if (!netif_device_present(dev) || !netif_running(dev))
2407                goto bail;
2408
2409        /* Better safe than sorry... */
2410        if (WARN_ON(!gp->cell_enabled))
2411                goto bail;
2412
2413        dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2414        writel(0, gp->regs + MAC_FCSERR);
2415
2416        dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2417        writel(0, gp->regs + MAC_AERR);
2418
2419        dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2420        writel(0, gp->regs + MAC_LERR);
2421
2422        dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2423        dev->stats.collisions +=
2424                (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2425        writel(0, gp->regs + MAC_ECOLL);
2426        writel(0, gp->regs + MAC_LCOLL);
2427 bail:
2428        return &dev->stats;
2429}
2430
2431static int gem_set_mac_address(struct net_device *dev, void *addr)
2432{
2433        struct sockaddr *macaddr = (struct sockaddr *) addr;
2434        struct gem *gp = netdev_priv(dev);
2435        unsigned char *e = &dev->dev_addr[0];
2436
2437        if (!is_valid_ether_addr(macaddr->sa_data))
2438                return -EADDRNOTAVAIL;
2439
2440        memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2441
2442        /* We'll just catch it later when the device is up'd or resumed */
2443        if (!netif_running(dev) || !netif_device_present(dev))
2444                return 0;
2445
2446        /* Better safe than sorry... */
2447        if (WARN_ON(!gp->cell_enabled))
2448                return 0;
2449
2450        writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2451        writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2452        writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2453
2454        return 0;
2455}
2456
2457static void gem_set_multicast(struct net_device *dev)
2458{
2459        struct gem *gp = netdev_priv(dev);
2460        u32 rxcfg, rxcfg_new;
2461        int limit = 10000;
2462
2463        if (!netif_running(dev) || !netif_device_present(dev))
2464                return;
2465
2466        /* Better safe than sorry... */
2467        if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2468                return;
2469
2470        rxcfg = readl(gp->regs + MAC_RXCFG);
2471        rxcfg_new = gem_setup_multicast(gp);
2472#ifdef STRIP_FCS
2473        rxcfg_new |= MAC_RXCFG_SFCS;
2474#endif
2475        gp->mac_rx_cfg = rxcfg_new;
2476
2477        writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2478        while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2479                if (!limit--)
2480                        break;
2481                udelay(10);
2482        }
2483
2484        rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2485        rxcfg |= rxcfg_new;
2486
2487        writel(rxcfg, gp->regs + MAC_RXCFG);
2488}
2489
2490/* Jumbo-grams don't seem to work :-( */
2491#define GEM_MIN_MTU     ETH_MIN_MTU
2492#if 1
2493#define GEM_MAX_MTU     ETH_DATA_LEN
2494#else
2495#define GEM_MAX_MTU     9000
2496#endif
2497
2498static int gem_change_mtu(struct net_device *dev, int new_mtu)
2499{
2500        struct gem *gp = netdev_priv(dev);
2501
2502        dev->mtu = new_mtu;
2503
2504        /* We'll just catch it later when the device is up'd or resumed */
2505        if (!netif_running(dev) || !netif_device_present(dev))
2506                return 0;
2507
2508        /* Better safe than sorry... */
2509        if (WARN_ON(!gp->cell_enabled))
2510                return 0;
2511
2512        gem_netif_stop(gp);
2513        gem_reinit_chip(gp);
2514        if (gp->lstate == link_up)
2515                gem_set_link_modes(gp);
2516        gem_netif_start(gp);
2517
2518        return 0;
2519}
2520
2521static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2522{
2523        struct gem *gp = netdev_priv(dev);
2524
2525        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2526        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2527        strlcpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2528}
2529
2530static int gem_get_link_ksettings(struct net_device *dev,
2531                                  struct ethtool_link_ksettings *cmd)
2532{
2533        struct gem *gp = netdev_priv(dev);
2534        u32 supported, advertising;
2535
2536        if (gp->phy_type == phy_mii_mdio0 ||
2537            gp->phy_type == phy_mii_mdio1) {
2538                if (gp->phy_mii.def)
2539                        supported = gp->phy_mii.def->features;
2540                else
2541                        supported = (SUPPORTED_10baseT_Half |
2542                                          SUPPORTED_10baseT_Full);
2543
2544                /* XXX hardcoded stuff for now */
2545                cmd->base.port = PORT_MII;
2546                cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2547
2548                /* Return current PHY settings */
2549                cmd->base.autoneg = gp->want_autoneg;
2550                cmd->base.speed = gp->phy_mii.speed;
2551                cmd->base.duplex = gp->phy_mii.duplex;
2552                advertising = gp->phy_mii.advertising;
2553
2554                /* If we started with a forced mode, we don't have a default
2555                 * advertise set, we need to return something sensible so
2556                 * userland can re-enable autoneg properly.
2557                 */
2558                if (advertising == 0)
2559                        advertising = supported;
2560        } else { // XXX PCS ?
2561                supported =
2562                        (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2563                         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2564                         SUPPORTED_Autoneg);
2565                advertising = supported;
2566                cmd->base.speed = 0;
2567                cmd->base.duplex = 0;
2568                cmd->base.port = 0;
2569                cmd->base.phy_address = 0;
2570                cmd->base.autoneg = 0;
2571
2572                /* serdes means usually a Fibre connector, with most fixed */
2573                if (gp->phy_type == phy_serdes) {
2574                        cmd->base.port = PORT_FIBRE;
2575                        supported = (SUPPORTED_1000baseT_Half |
2576                                SUPPORTED_1000baseT_Full |
2577                                SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2578                                SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2579                        advertising = supported;
2580                        if (gp->lstate == link_up)
2581                                cmd->base.speed = SPEED_1000;
2582                        cmd->base.duplex = DUPLEX_FULL;
2583                        cmd->base.autoneg = 1;
2584                }
2585        }
2586
2587        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2588                                                supported);
2589        ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2590                                                advertising);
2591
2592        return 0;
2593}
2594
2595static int gem_set_link_ksettings(struct net_device *dev,
2596                                  const struct ethtool_link_ksettings *cmd)
2597{
2598        struct gem *gp = netdev_priv(dev);
2599        u32 speed = cmd->base.speed;
2600        u32 advertising;
2601
2602        ethtool_convert_link_mode_to_legacy_u32(&advertising,
2603                                                cmd->link_modes.advertising);
2604
2605        /* Verify the settings we care about. */
2606        if (cmd->base.autoneg != AUTONEG_ENABLE &&
2607            cmd->base.autoneg != AUTONEG_DISABLE)
2608                return -EINVAL;
2609
2610        if (cmd->base.autoneg == AUTONEG_ENABLE &&
2611            advertising == 0)
2612                return -EINVAL;
2613
2614        if (cmd->base.autoneg == AUTONEG_DISABLE &&
2615            ((speed != SPEED_1000 &&
2616              speed != SPEED_100 &&
2617              speed != SPEED_10) ||
2618             (cmd->base.duplex != DUPLEX_HALF &&
2619              cmd->base.duplex != DUPLEX_FULL)))
2620                return -EINVAL;
2621
2622        /* Apply settings and restart link process. */
2623        if (netif_device_present(gp->dev)) {
2624                del_timer_sync(&gp->link_timer);
2625                gem_begin_auto_negotiation(gp, cmd);
2626        }
2627
2628        return 0;
2629}
2630
2631static int gem_nway_reset(struct net_device *dev)
2632{
2633        struct gem *gp = netdev_priv(dev);
2634
2635        if (!gp->want_autoneg)
2636                return -EINVAL;
2637
2638        /* Restart link process  */
2639        if (netif_device_present(gp->dev)) {
2640                del_timer_sync(&gp->link_timer);
2641                gem_begin_auto_negotiation(gp, NULL);
2642        }
2643
2644        return 0;
2645}
2646
2647static u32 gem_get_msglevel(struct net_device *dev)
2648{
2649        struct gem *gp = netdev_priv(dev);
2650        return gp->msg_enable;
2651}
2652
2653static void gem_set_msglevel(struct net_device *dev, u32 value)
2654{
2655        struct gem *gp = netdev_priv(dev);
2656        gp->msg_enable = value;
2657}
2658
2659
2660/* Add more when I understand how to program the chip */
2661/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2662
2663#define WOL_SUPPORTED_MASK      (WAKE_MAGIC)
2664
2665static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666{
2667        struct gem *gp = netdev_priv(dev);
2668
2669        /* Add more when I understand how to program the chip */
2670        if (gp->has_wol) {
2671                wol->supported = WOL_SUPPORTED_MASK;
2672                wol->wolopts = gp->wake_on_lan;
2673        } else {
2674                wol->supported = 0;
2675                wol->wolopts = 0;
2676        }
2677}
2678
2679static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2680{
2681        struct gem *gp = netdev_priv(dev);
2682
2683        if (!gp->has_wol)
2684                return -EOPNOTSUPP;
2685        gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2686        return 0;
2687}
2688
2689static const struct ethtool_ops gem_ethtool_ops = {
2690        .get_drvinfo            = gem_get_drvinfo,
2691        .get_link               = ethtool_op_get_link,
2692        .nway_reset             = gem_nway_reset,
2693        .get_msglevel           = gem_get_msglevel,
2694        .set_msglevel           = gem_set_msglevel,
2695        .get_wol                = gem_get_wol,
2696        .set_wol                = gem_set_wol,
2697        .get_link_ksettings     = gem_get_link_ksettings,
2698        .set_link_ksettings     = gem_set_link_ksettings,
2699};
2700
2701static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2702{
2703        struct gem *gp = netdev_priv(dev);
2704        struct mii_ioctl_data *data = if_mii(ifr);
2705        int rc = -EOPNOTSUPP;
2706
2707        /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2708         * netif_device_present() is true and holds rtnl_lock for us
2709         * so we have nothing to worry about
2710         */
2711
2712        switch (cmd) {
2713        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
2714                data->phy_id = gp->mii_phy_addr;
2715                fallthrough;
2716
2717        case SIOCGMIIREG:               /* Read MII PHY register. */
2718                data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2719                                           data->reg_num & 0x1f);
2720                rc = 0;
2721                break;
2722
2723        case SIOCSMIIREG:               /* Write MII PHY register. */
2724                __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2725                            data->val_in);
2726                rc = 0;
2727                break;
2728        }
2729        return rc;
2730}
2731
2732#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2733/* Fetch MAC address from vital product data of PCI ROM. */
2734static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2735{
2736        int this_offset;
2737
2738        for (this_offset = 0x20; this_offset < len; this_offset++) {
2739                void __iomem *p = rom_base + this_offset;
2740                int i;
2741
2742                if (readb(p + 0) != 0x90 ||
2743                    readb(p + 1) != 0x00 ||
2744                    readb(p + 2) != 0x09 ||
2745                    readb(p + 3) != 0x4e ||
2746                    readb(p + 4) != 0x41 ||
2747                    readb(p + 5) != 0x06)
2748                        continue;
2749
2750                this_offset += 6;
2751                p += 6;
2752
2753                for (i = 0; i < 6; i++)
2754                        dev_addr[i] = readb(p + i);
2755                return 1;
2756        }
2757        return 0;
2758}
2759
2760static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2761{
2762        size_t size;
2763        void __iomem *p = pci_map_rom(pdev, &size);
2764
2765        if (p) {
2766                int found;
2767
2768                found = readb(p) == 0x55 &&
2769                        readb(p + 1) == 0xaa &&
2770                        find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2771                pci_unmap_rom(pdev, p);
2772                if (found)
2773                        return;
2774        }
2775
2776        /* Sun MAC prefix then 3 random bytes. */
2777        dev_addr[0] = 0x08;
2778        dev_addr[1] = 0x00;
2779        dev_addr[2] = 0x20;
2780        get_random_bytes(dev_addr + 3, 3);
2781}
2782#endif /* not Sparc and not PPC */
2783
2784static int gem_get_device_address(struct gem *gp)
2785{
2786#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2787        struct net_device *dev = gp->dev;
2788        const unsigned char *addr;
2789
2790        addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2791        if (addr == NULL) {
2792#ifdef CONFIG_SPARC
2793                addr = idprom->id_ethaddr;
2794#else
2795                printk("\n");
2796                pr_err("%s: can't get mac-address\n", dev->name);
2797                return -1;
2798#endif
2799        }
2800        memcpy(dev->dev_addr, addr, ETH_ALEN);
2801#else
2802        get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2803#endif
2804        return 0;
2805}
2806
2807static void gem_remove_one(struct pci_dev *pdev)
2808{
2809        struct net_device *dev = pci_get_drvdata(pdev);
2810
2811        if (dev) {
2812                struct gem *gp = netdev_priv(dev);
2813
2814                unregister_netdev(dev);
2815
2816                /* Ensure reset task is truly gone */
2817                cancel_work_sync(&gp->reset_task);
2818
2819                /* Free resources */
2820                dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2821                                  gp->init_block, gp->gblock_dvma);
2822                iounmap(gp->regs);
2823                pci_release_regions(pdev);
2824                free_netdev(dev);
2825        }
2826}
2827
2828static const struct net_device_ops gem_netdev_ops = {
2829        .ndo_open               = gem_open,
2830        .ndo_stop               = gem_close,
2831        .ndo_start_xmit         = gem_start_xmit,
2832        .ndo_get_stats          = gem_get_stats,
2833        .ndo_set_rx_mode        = gem_set_multicast,
2834        .ndo_eth_ioctl          = gem_ioctl,
2835        .ndo_tx_timeout         = gem_tx_timeout,
2836        .ndo_change_mtu         = gem_change_mtu,
2837        .ndo_validate_addr      = eth_validate_addr,
2838        .ndo_set_mac_address    = gem_set_mac_address,
2839#ifdef CONFIG_NET_POLL_CONTROLLER
2840        .ndo_poll_controller    = gem_poll_controller,
2841#endif
2842};
2843
2844static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2845{
2846        unsigned long gemreg_base, gemreg_len;
2847        struct net_device *dev;
2848        struct gem *gp;
2849        int err, pci_using_dac;
2850
2851        printk_once(KERN_INFO "%s", version);
2852
2853        /* Apple gmac note: during probe, the chip is powered up by
2854         * the arch code to allow the code below to work (and to let
2855         * the chip be probed on the config space. It won't stay powered
2856         * up until the interface is brought up however, so we can't rely
2857         * on register configuration done at this point.
2858         */
2859        err = pci_enable_device(pdev);
2860        if (err) {
2861                pr_err("Cannot enable MMIO operation, aborting\n");
2862                return err;
2863        }
2864        pci_set_master(pdev);
2865
2866        /* Configure DMA attributes. */
2867
2868        /* All of the GEM documentation states that 64-bit DMA addressing
2869         * is fully supported and should work just fine.  However the
2870         * front end for RIO based GEMs is different and only supports
2871         * 32-bit addressing.
2872         *
2873         * For now we assume the various PPC GEMs are 32-bit only as well.
2874         */
2875        if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2876            pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2877            !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2878                pci_using_dac = 1;
2879        } else {
2880                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2881                if (err) {
2882                        pr_err("No usable DMA configuration, aborting\n");
2883                        goto err_disable_device;
2884                }
2885                pci_using_dac = 0;
2886        }
2887
2888        gemreg_base = pci_resource_start(pdev, 0);
2889        gemreg_len = pci_resource_len(pdev, 0);
2890
2891        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2892                pr_err("Cannot find proper PCI device base address, aborting\n");
2893                err = -ENODEV;
2894                goto err_disable_device;
2895        }
2896
2897        dev = alloc_etherdev(sizeof(*gp));
2898        if (!dev) {
2899                err = -ENOMEM;
2900                goto err_disable_device;
2901        }
2902        SET_NETDEV_DEV(dev, &pdev->dev);
2903
2904        gp = netdev_priv(dev);
2905
2906        err = pci_request_regions(pdev, DRV_NAME);
2907        if (err) {
2908                pr_err("Cannot obtain PCI resources, aborting\n");
2909                goto err_out_free_netdev;
2910        }
2911
2912        gp->pdev = pdev;
2913        gp->dev = dev;
2914
2915        gp->msg_enable = DEFAULT_MSG;
2916
2917        timer_setup(&gp->link_timer, gem_link_timer, 0);
2918
2919        INIT_WORK(&gp->reset_task, gem_reset_task);
2920
2921        gp->lstate = link_down;
2922        gp->timer_ticks = 0;
2923        netif_carrier_off(dev);
2924
2925        gp->regs = ioremap(gemreg_base, gemreg_len);
2926        if (!gp->regs) {
2927                pr_err("Cannot map device registers, aborting\n");
2928                err = -EIO;
2929                goto err_out_free_res;
2930        }
2931
2932        /* On Apple, we want a reference to the Open Firmware device-tree
2933         * node. We use it for clock control.
2934         */
2935#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2936        gp->of_node = pci_device_to_OF_node(pdev);
2937#endif
2938
2939        /* Only Apple version supports WOL afaik */
2940        if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2941                gp->has_wol = 1;
2942
2943        /* Make sure cell is enabled */
2944        gem_get_cell(gp);
2945
2946        /* Make sure everything is stopped and in init state */
2947        gem_reset(gp);
2948
2949        /* Fill up the mii_phy structure (even if we won't use it) */
2950        gp->phy_mii.dev = dev;
2951        gp->phy_mii.mdio_read = _sungem_phy_read;
2952        gp->phy_mii.mdio_write = _sungem_phy_write;
2953#ifdef CONFIG_PPC_PMAC
2954        gp->phy_mii.platform_data = gp->of_node;
2955#endif
2956        /* By default, we start with autoneg */
2957        gp->want_autoneg = 1;
2958
2959        /* Check fifo sizes, PHY type, etc... */
2960        if (gem_check_invariants(gp)) {
2961                err = -ENODEV;
2962                goto err_out_iounmap;
2963        }
2964
2965        /* It is guaranteed that the returned buffer will be at least
2966         * PAGE_SIZE aligned.
2967         */
2968        gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2969                                            &gp->gblock_dvma, GFP_KERNEL);
2970        if (!gp->init_block) {
2971                pr_err("Cannot allocate init block, aborting\n");
2972                err = -ENOMEM;
2973                goto err_out_iounmap;
2974        }
2975
2976        err = gem_get_device_address(gp);
2977        if (err)
2978                goto err_out_free_consistent;
2979
2980        dev->netdev_ops = &gem_netdev_ops;
2981        netif_napi_add(dev, &gp->napi, gem_poll, 64);
2982        dev->ethtool_ops = &gem_ethtool_ops;
2983        dev->watchdog_timeo = 5 * HZ;
2984        dev->dma = 0;
2985
2986        /* Set that now, in case PM kicks in now */
2987        pci_set_drvdata(pdev, dev);
2988
2989        /* We can do scatter/gather and HW checksum */
2990        dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2991        dev->features = dev->hw_features;
2992        if (pci_using_dac)
2993                dev->features |= NETIF_F_HIGHDMA;
2994
2995        /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2996        dev->min_mtu = GEM_MIN_MTU;
2997        dev->max_mtu = GEM_MAX_MTU;
2998
2999        /* Register with kernel */
3000        if (register_netdev(dev)) {
3001                pr_err("Cannot register net device, aborting\n");
3002                err = -ENOMEM;
3003                goto err_out_free_consistent;
3004        }
3005
3006        /* Undo the get_cell with appropriate locking (we could use
3007         * ndo_init/uninit but that would be even more clumsy imho)
3008         */
3009        rtnl_lock();
3010        gem_put_cell(gp);
3011        rtnl_unlock();
3012
3013        netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3014                    dev->dev_addr);
3015        return 0;
3016
3017err_out_free_consistent:
3018        gem_remove_one(pdev);
3019err_out_iounmap:
3020        gem_put_cell(gp);
3021        iounmap(gp->regs);
3022
3023err_out_free_res:
3024        pci_release_regions(pdev);
3025
3026err_out_free_netdev:
3027        free_netdev(dev);
3028err_disable_device:
3029        pci_disable_device(pdev);
3030        return err;
3031
3032}
3033
3034static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3035
3036static struct pci_driver gem_driver = {
3037        .name           = GEM_MODULE_NAME,
3038        .id_table       = gem_pci_tbl,
3039        .probe          = gem_init_one,
3040        .remove         = gem_remove_one,
3041        .driver.pm      = &gem_pm_ops,
3042};
3043
3044module_pci_driver(gem_driver);
3045