linux/drivers/net/ethernet/tehuti/tehuti.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Tehuti Networks(R) Network Driver
   4 * ethtool interface implementation
   5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   6 */
   7
   8/*
   9 * RX HW/SW interaction overview
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 * There are 2 types of RX communication channels between driver and NIC.
  12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  14 * info about buffer's location, size and ID. An ID field is used to identify a
  15 * buffer when it's returned with data via RXD Fifo (see below)
  16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  21 *
  22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  25 * filled with data, HW builds new RXD descriptor for it and push it into single
  26 * RXD Fifo.
  27 *
  28 * RX SW Data Structures
  29 * ~~~~~~~~~~~~~~~~~~~~~
  30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  31 * For RX case, ownership lasts from allocating new empty skb for RXF until
  32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  33 * skb db. Implemented as array with bitmask.
  34 * fifo - keeps info about fifo's size and location, relevant HW registers,
  35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  36 * Implemented as simple struct.
  37 *
  38 * RX SW Execution Flow
  39 * ~~~~~~~~~~~~~~~~~~~~
  40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  41 * relevant registers. At the end of init phase, driver enables interrupts.
  42 * NIC sees that there is no RXF buffers and raises
  43 * RD_INTR interrupt, isr fills skbs and Rx begins.
  44 * Driver has two receive operation modes:
  45 *    NAPI - interrupt-driven mixed with polling
  46 *    interrupt-driven only
  47 *
  48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  49 * interrupt and isr is called. isr collects all available packets
  50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  51
  52 * Rx buffer allocation note
  53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  54 * Driver cares to feed such amount of RxF descriptors that respective amount of
  55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  56 * overflow check in Bordeaux for RxD fifo free/used size.
  57 * FIXME: this is NOT fully implemented, more work should be done
  58 *
  59 */
  60
  61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  62
  63#include "tehuti.h"
  64
  65static const struct pci_device_id bdx_pci_tbl[] = {
  66        { PCI_VDEVICE(TEHUTI, 0x3009), },
  67        { PCI_VDEVICE(TEHUTI, 0x3010), },
  68        { PCI_VDEVICE(TEHUTI, 0x3014), },
  69        { 0 }
  70};
  71
  72MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  73
  74/* Definitions needed by ISR or NAPI functions */
  75static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  76static void bdx_tx_cleanup(struct bdx_priv *priv);
  77static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  78
  79/* Definitions needed by FW loading */
  80static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  81
  82/* Definitions needed by hw_start */
  83static int bdx_tx_init(struct bdx_priv *priv);
  84static int bdx_rx_init(struct bdx_priv *priv);
  85
  86/* Definitions needed by bdx_close */
  87static void bdx_rx_free(struct bdx_priv *priv);
  88static void bdx_tx_free(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_probe */
  91static void bdx_set_ethtool_ops(struct net_device *netdev);
  92
  93/*************************************************************************
  94 *    Print Info                                                         *
  95 *************************************************************************/
  96
  97static void print_hw_id(struct pci_dev *pdev)
  98{
  99        struct pci_nic *nic = pci_get_drvdata(pdev);
 100        u16 pci_link_status = 0;
 101        u16 pci_ctrl = 0;
 102
 103        pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 104        pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 105
 106        pr_info("%s%s\n", BDX_NIC_NAME,
 107                nic->port_num == 1 ? "" : ", 2-Port");
 108        pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 109                readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 110                readl(nic->regs + FPGA_SEED),
 111                GET_LINK_STATUS_LANES(pci_link_status),
 112                GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 113}
 114
 115static void print_fw_id(struct pci_nic *nic)
 116{
 117        pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 118}
 119
 120static void print_eth_id(struct net_device *ndev)
 121{
 122        netdev_info(ndev, "%s, Port %c\n",
 123                    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 124
 125}
 126
 127/*************************************************************************
 128 *    Code                                                               *
 129 *************************************************************************/
 130
 131#define bdx_enable_interrupts(priv)     \
 132        do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 133#define bdx_disable_interrupts(priv)    \
 134        do { WRITE_REG(priv, regIMR, 0); } while (0)
 135
 136/**
 137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 138 * @priv: NIC private structure
 139 * @f: fifo to initialize
 140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 141 * @reg_CFG0: offsets of registers relative to base address
 142 * @reg_CFG1: offsets of registers relative to base address
 143 * @reg_RPTR: offsets of registers relative to base address
 144 * @reg_WPTR: offsets of registers relative to base address
 145 *
 146 * 1K extra space is allocated at the end of the fifo to simplify
 147 * processing of descriptors that wraps around fifo's end
 148 *
 149 * Returns 0 on success, negative value on failure
 150 *
 151 */
 152static int
 153bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 154              u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 155{
 156        u16 memsz = FIFO_SIZE * (1 << fsz_type);
 157
 158        memset(f, 0, sizeof(struct fifo));
 159        /* dma_alloc_coherent gives us 4k-aligned memory */
 160        f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE,
 161                                   &f->da, GFP_ATOMIC);
 162        if (!f->va) {
 163                pr_err("dma_alloc_coherent failed\n");
 164                RET(-ENOMEM);
 165        }
 166        f->reg_CFG0 = reg_CFG0;
 167        f->reg_CFG1 = reg_CFG1;
 168        f->reg_RPTR = reg_RPTR;
 169        f->reg_WPTR = reg_WPTR;
 170        f->rptr = 0;
 171        f->wptr = 0;
 172        f->memsz = memsz;
 173        f->size_mask = memsz - 1;
 174        WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 175        WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 176
 177        RET(0);
 178}
 179
 180/**
 181 * bdx_fifo_free - free all resources used by fifo
 182 * @priv: NIC private structure
 183 * @f: fifo to release
 184 */
 185static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 186{
 187        ENTER;
 188        if (f->va) {
 189                dma_free_coherent(&priv->pdev->dev,
 190                                  f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 191                f->va = NULL;
 192        }
 193        RET();
 194}
 195
 196/**
 197 * bdx_link_changed - notifies OS about hw link state.
 198 * @priv: hw adapter structure
 199 */
 200static void bdx_link_changed(struct bdx_priv *priv)
 201{
 202        u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 203
 204        if (!link) {
 205                if (netif_carrier_ok(priv->ndev)) {
 206                        netif_stop_queue(priv->ndev);
 207                        netif_carrier_off(priv->ndev);
 208                        netdev_err(priv->ndev, "Link Down\n");
 209                }
 210        } else {
 211                if (!netif_carrier_ok(priv->ndev)) {
 212                        netif_wake_queue(priv->ndev);
 213                        netif_carrier_on(priv->ndev);
 214                        netdev_err(priv->ndev, "Link Up\n");
 215                }
 216        }
 217}
 218
 219static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 220{
 221        if (isr & IR_RX_FREE_0) {
 222                bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 223                DBG("RX_FREE_0\n");
 224        }
 225
 226        if (isr & IR_LNKCHG0)
 227                bdx_link_changed(priv);
 228
 229        if (isr & IR_PCIE_LINK)
 230                netdev_err(priv->ndev, "PCI-E Link Fault\n");
 231
 232        if (isr & IR_PCIE_TOUT)
 233                netdev_err(priv->ndev, "PCI-E Time Out\n");
 234
 235}
 236
 237/**
 238 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 239 * @irq: interrupt number
 240 * @dev: network device
 241 *
 242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 243 *
 244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 245 * Reasons of interest are:
 246 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 247 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 248 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 249 */
 250
 251static irqreturn_t bdx_isr_napi(int irq, void *dev)
 252{
 253        struct net_device *ndev = dev;
 254        struct bdx_priv *priv = netdev_priv(ndev);
 255        u32 isr;
 256
 257        ENTER;
 258        isr = (READ_REG(priv, regISR) & IR_RUN);
 259        if (unlikely(!isr)) {
 260                bdx_enable_interrupts(priv);
 261                return IRQ_NONE;        /* Not our interrupt */
 262        }
 263
 264        if (isr & IR_EXTRA)
 265                bdx_isr_extra(priv, isr);
 266
 267        if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 268                if (likely(napi_schedule_prep(&priv->napi))) {
 269                        __napi_schedule(&priv->napi);
 270                        RET(IRQ_HANDLED);
 271                } else {
 272                        /* NOTE: we get here if intr has slipped into window
 273                         * between these lines in bdx_poll:
 274                         *    bdx_enable_interrupts(priv);
 275                         *    return 0;
 276                         * currently intrs are disabled (since we read ISR),
 277                         * and we have failed to register next poll.
 278                         * so we read the regs to trigger chip
 279                         * and allow further interupts. */
 280                        READ_REG(priv, regTXF_WPTR_0);
 281                        READ_REG(priv, regRXD_WPTR_0);
 282                }
 283        }
 284
 285        bdx_enable_interrupts(priv);
 286        RET(IRQ_HANDLED);
 287}
 288
 289static int bdx_poll(struct napi_struct *napi, int budget)
 290{
 291        struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 292        int work_done;
 293
 294        ENTER;
 295        bdx_tx_cleanup(priv);
 296        work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 297        if ((work_done < budget) ||
 298            (priv->napi_stop++ >= 30)) {
 299                DBG("rx poll is done. backing to isr-driven\n");
 300
 301                /* from time to time we exit to let NAPI layer release
 302                 * device lock and allow waiting tasks (eg rmmod) to advance) */
 303                priv->napi_stop = 0;
 304
 305                napi_complete_done(napi, work_done);
 306                bdx_enable_interrupts(priv);
 307        }
 308        return work_done;
 309}
 310
 311/**
 312 * bdx_fw_load - loads firmware to NIC
 313 * @priv: NIC private structure
 314 *
 315 * Firmware is loaded via TXD fifo, so it must be initialized first.
 316 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 317 * can have few of them). So all drivers use semaphore register to choose one
 318 * that will actually load FW to NIC.
 319 */
 320
 321static int bdx_fw_load(struct bdx_priv *priv)
 322{
 323        const struct firmware *fw = NULL;
 324        int master, i;
 325        int rc;
 326
 327        ENTER;
 328        master = READ_REG(priv, regINIT_SEMAPHORE);
 329        if (!READ_REG(priv, regINIT_STATUS) && master) {
 330                rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 331                if (rc)
 332                        goto out;
 333                bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 334                mdelay(100);
 335        }
 336        for (i = 0; i < 200; i++) {
 337                if (READ_REG(priv, regINIT_STATUS)) {
 338                        rc = 0;
 339                        goto out;
 340                }
 341                mdelay(2);
 342        }
 343        rc = -EIO;
 344out:
 345        if (master)
 346                WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 347
 348        release_firmware(fw);
 349
 350        if (rc) {
 351                netdev_err(priv->ndev, "firmware loading failed\n");
 352                if (rc == -EIO)
 353                        DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 354                            READ_REG(priv, regVPC),
 355                            READ_REG(priv, regVIC),
 356                            READ_REG(priv, regINIT_STATUS), i);
 357                RET(rc);
 358        } else {
 359                DBG("%s: firmware loading success\n", priv->ndev->name);
 360                RET(0);
 361        }
 362}
 363
 364static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 365{
 366        u32 val;
 367
 368        ENTER;
 369        DBG("mac0=%x mac1=%x mac2=%x\n",
 370            READ_REG(priv, regUNC_MAC0_A),
 371            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 372
 373        val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 374        WRITE_REG(priv, regUNC_MAC2_A, val);
 375        val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 376        WRITE_REG(priv, regUNC_MAC1_A, val);
 377        val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 378        WRITE_REG(priv, regUNC_MAC0_A, val);
 379
 380        DBG("mac0=%x mac1=%x mac2=%x\n",
 381            READ_REG(priv, regUNC_MAC0_A),
 382            READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 383        RET();
 384}
 385
 386/**
 387 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 388 * @priv: NIC private structure
 389 */
 390static int bdx_hw_start(struct bdx_priv *priv)
 391{
 392        int rc = -EIO;
 393        struct net_device *ndev = priv->ndev;
 394
 395        ENTER;
 396        bdx_link_changed(priv);
 397
 398        /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 399        WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 400        WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 401        WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 402        WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 403        WRITE_REG(priv, regRX_FULLNESS, 0);
 404        WRITE_REG(priv, regTX_FULLNESS, 0);
 405        WRITE_REG(priv, regCTRLST,
 406                  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 407
 408        WRITE_REG(priv, regVGLB, 0);
 409        WRITE_REG(priv, regMAX_FRAME_A,
 410                  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 411
 412        DBG("RDINTCM=%08x\n", priv->rdintcm);   /*NOTE: test script uses this */
 413        WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 414        WRITE_REG(priv, regRDINTCM2, 0);        /*cpu_to_le32(rcm.val)); */
 415
 416        DBG("TDINTCM=%08x\n", priv->tdintcm);   /*NOTE: test script uses this */
 417        WRITE_REG(priv, regTDINTCM0, priv->tdintcm);    /* old val = 0x300064 */
 418
 419        /* Enable timer interrupt once in 2 secs. */
 420        /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 421        bdx_restore_mac(priv->ndev, priv);
 422
 423        WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 424                  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 425
 426#define BDX_IRQ_TYPE    ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 427
 428        rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 429                         ndev->name, ndev);
 430        if (rc)
 431                goto err_irq;
 432        bdx_enable_interrupts(priv);
 433
 434        RET(0);
 435
 436err_irq:
 437        RET(rc);
 438}
 439
 440static void bdx_hw_stop(struct bdx_priv *priv)
 441{
 442        ENTER;
 443        bdx_disable_interrupts(priv);
 444        free_irq(priv->pdev->irq, priv->ndev);
 445
 446        netif_carrier_off(priv->ndev);
 447        netif_stop_queue(priv->ndev);
 448
 449        RET();
 450}
 451
 452static int bdx_hw_reset_direct(void __iomem *regs)
 453{
 454        u32 val, i;
 455        ENTER;
 456
 457        /* reset sequences: read, write 1, read, write 0 */
 458        val = readl(regs + regCLKPLL);
 459        writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 460        udelay(50);
 461        val = readl(regs + regCLKPLL);
 462        writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 463
 464        /* check that the PLLs are locked and reset ended */
 465        for (i = 0; i < 70; i++, mdelay(10))
 466                if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 467                        /* do any PCI-E read transaction */
 468                        readl(regs + regRXD_CFG0_0);
 469                        return 0;
 470                }
 471        pr_err("HW reset failed\n");
 472        return 1;               /* failure */
 473}
 474
 475static int bdx_hw_reset(struct bdx_priv *priv)
 476{
 477        u32 val, i;
 478        ENTER;
 479
 480        if (priv->port == 0) {
 481                /* reset sequences: read, write 1, read, write 0 */
 482                val = READ_REG(priv, regCLKPLL);
 483                WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 484                udelay(50);
 485                val = READ_REG(priv, regCLKPLL);
 486                WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 487        }
 488        /* check that the PLLs are locked and reset ended */
 489        for (i = 0; i < 70; i++, mdelay(10))
 490                if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 491                        /* do any PCI-E read transaction */
 492                        READ_REG(priv, regRXD_CFG0_0);
 493                        return 0;
 494                }
 495        pr_err("HW reset failed\n");
 496        return 1;               /* failure */
 497}
 498
 499static int bdx_sw_reset(struct bdx_priv *priv)
 500{
 501        int i;
 502
 503        ENTER;
 504        /* 1. load MAC (obsolete) */
 505        /* 2. disable Rx (and Tx) */
 506        WRITE_REG(priv, regGMAC_RXF_A, 0);
 507        mdelay(100);
 508        /* 3. disable port */
 509        WRITE_REG(priv, regDIS_PORT, 1);
 510        /* 4. disable queue */
 511        WRITE_REG(priv, regDIS_QU, 1);
 512        /* 5. wait until hw is disabled */
 513        for (i = 0; i < 50; i++) {
 514                if (READ_REG(priv, regRST_PORT) & 1)
 515                        break;
 516                mdelay(10);
 517        }
 518        if (i == 50)
 519                netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 520
 521        /* 6. disable intrs */
 522        WRITE_REG(priv, regRDINTCM0, 0);
 523        WRITE_REG(priv, regTDINTCM0, 0);
 524        WRITE_REG(priv, regIMR, 0);
 525        READ_REG(priv, regISR);
 526
 527        /* 7. reset queue */
 528        WRITE_REG(priv, regRST_QU, 1);
 529        /* 8. reset port */
 530        WRITE_REG(priv, regRST_PORT, 1);
 531        /* 9. zero all read and write pointers */
 532        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 533                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 534        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 535                WRITE_REG(priv, i, 0);
 536        /* 10. unseet port disable */
 537        WRITE_REG(priv, regDIS_PORT, 0);
 538        /* 11. unset queue disable */
 539        WRITE_REG(priv, regDIS_QU, 0);
 540        /* 12. unset queue reset */
 541        WRITE_REG(priv, regRST_QU, 0);
 542        /* 13. unset port reset */
 543        WRITE_REG(priv, regRST_PORT, 0);
 544        /* 14. enable Rx */
 545        /* skiped. will be done later */
 546        /* 15. save MAC (obsolete) */
 547        for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 548                DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 549
 550        RET(0);
 551}
 552
 553/* bdx_reset - performs right type of reset depending on hw type */
 554static int bdx_reset(struct bdx_priv *priv)
 555{
 556        ENTER;
 557        RET((priv->pdev->device == 0x3009)
 558            ? bdx_hw_reset(priv)
 559            : bdx_sw_reset(priv));
 560}
 561
 562/**
 563 * bdx_close - Disables a network interface
 564 * @ndev: network interface device structure
 565 *
 566 * Returns 0, this is not allowed to fail
 567 *
 568 * The close entry point is called when an interface is de-activated
 569 * by the OS.  The hardware is still under the drivers control, but
 570 * needs to be disabled.  A global MAC reset is issued to stop the
 571 * hardware, and all transmit and receive resources are freed.
 572 **/
 573static int bdx_close(struct net_device *ndev)
 574{
 575        struct bdx_priv *priv = NULL;
 576
 577        ENTER;
 578        priv = netdev_priv(ndev);
 579
 580        napi_disable(&priv->napi);
 581
 582        bdx_reset(priv);
 583        bdx_hw_stop(priv);
 584        bdx_rx_free(priv);
 585        bdx_tx_free(priv);
 586        RET(0);
 587}
 588
 589/**
 590 * bdx_open - Called when a network interface is made active
 591 * @ndev: network interface device structure
 592 *
 593 * Returns 0 on success, negative value on failure
 594 *
 595 * The open entry point is called when a network interface is made
 596 * active by the system (IFF_UP).  At this point all resources needed
 597 * for transmit and receive operations are allocated, the interrupt
 598 * handler is registered with the OS, the watchdog timer is started,
 599 * and the stack is notified that the interface is ready.
 600 **/
 601static int bdx_open(struct net_device *ndev)
 602{
 603        struct bdx_priv *priv;
 604        int rc;
 605
 606        ENTER;
 607        priv = netdev_priv(ndev);
 608        bdx_reset(priv);
 609        if (netif_running(ndev))
 610                netif_stop_queue(priv->ndev);
 611
 612        if ((rc = bdx_tx_init(priv)) ||
 613            (rc = bdx_rx_init(priv)) ||
 614            (rc = bdx_fw_load(priv)))
 615                goto err;
 616
 617        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 618
 619        rc = bdx_hw_start(priv);
 620        if (rc)
 621                goto err;
 622
 623        napi_enable(&priv->napi);
 624
 625        print_fw_id(priv->nic);
 626
 627        RET(0);
 628
 629err:
 630        bdx_close(ndev);
 631        RET(rc);
 632}
 633
 634static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 635{
 636        return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 637                -EINVAL : 0;
 638}
 639
 640static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr,
 641                              void __user *udata, int cmd)
 642{
 643        struct bdx_priv *priv = netdev_priv(ndev);
 644        u32 data[3];
 645        int error;
 646
 647        ENTER;
 648
 649        DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 650        if (cmd != SIOCDEVPRIVATE) {
 651                error = copy_from_user(data, udata, sizeof(data));
 652                if (error) {
 653                        pr_err("can't copy from user\n");
 654                        RET(-EFAULT);
 655                }
 656                DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 657        } else {
 658                return -EOPNOTSUPP;
 659        }
 660
 661        if (!capable(CAP_SYS_RAWIO))
 662                return -EPERM;
 663
 664        switch (data[0]) {
 665
 666        case BDX_OP_READ:
 667                error = bdx_range_check(priv, data[1]);
 668                if (error < 0)
 669                        return error;
 670                data[2] = READ_REG(priv, data[1]);
 671                DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 672                    data[2]);
 673                error = copy_to_user(udata, data, sizeof(data));
 674                if (error)
 675                        RET(-EFAULT);
 676                break;
 677
 678        case BDX_OP_WRITE:
 679                error = bdx_range_check(priv, data[1]);
 680                if (error < 0)
 681                        return error;
 682                WRITE_REG(priv, data[1], data[2]);
 683                DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 684                break;
 685
 686        default:
 687                RET(-EOPNOTSUPP);
 688        }
 689        return 0;
 690}
 691
 692/**
 693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 694 * @ndev: network device
 695 * @vid:  VLAN vid
 696 * @enable: enable or disable vlan
 697 *
 698 * Passes VLAN filter table to hardware
 699 */
 700static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 701{
 702        struct bdx_priv *priv = netdev_priv(ndev);
 703        u32 reg, bit, val;
 704
 705        ENTER;
 706        DBG2("vid=%d value=%d\n", (int)vid, enable);
 707        if (unlikely(vid >= 4096)) {
 708                pr_err("invalid VID: %u (> 4096)\n", vid);
 709                RET();
 710        }
 711        reg = regVLAN_0 + (vid / 32) * 4;
 712        bit = 1 << vid % 32;
 713        val = READ_REG(priv, reg);
 714        DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 715        if (enable)
 716                val |= bit;
 717        else
 718                val &= ~bit;
 719        DBG2("new val %x\n", val);
 720        WRITE_REG(priv, reg, val);
 721        RET();
 722}
 723
 724/**
 725 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 726 * @ndev: network device
 727 * @proto: unused
 728 * @vid:  VLAN vid to add
 729 */
 730static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 731{
 732        __bdx_vlan_rx_vid(ndev, vid, 1);
 733        return 0;
 734}
 735
 736/**
 737 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 738 * @ndev: network device
 739 * @proto: unused
 740 * @vid:  VLAN vid to kill
 741 */
 742static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 743{
 744        __bdx_vlan_rx_vid(ndev, vid, 0);
 745        return 0;
 746}
 747
 748/**
 749 * bdx_change_mtu - Change the Maximum Transfer Unit
 750 * @ndev: network interface device structure
 751 * @new_mtu: new value for maximum frame size
 752 *
 753 * Returns 0 on success, negative on failure
 754 */
 755static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 756{
 757        ENTER;
 758
 759        ndev->mtu = new_mtu;
 760        if (netif_running(ndev)) {
 761                bdx_close(ndev);
 762                bdx_open(ndev);
 763        }
 764        RET(0);
 765}
 766
 767static void bdx_setmulti(struct net_device *ndev)
 768{
 769        struct bdx_priv *priv = netdev_priv(ndev);
 770
 771        u32 rxf_val =
 772            GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 773        int i;
 774
 775        ENTER;
 776        /* IMF - imperfect (hash) rx multicat filter */
 777        /* PMF - perfect rx multicat filter */
 778
 779        /* FIXME: RXE(OFF) */
 780        if (ndev->flags & IFF_PROMISC) {
 781                rxf_val |= GMAC_RX_FILTER_PRM;
 782        } else if (ndev->flags & IFF_ALLMULTI) {
 783                /* set IMF to accept all multicast frmaes */
 784                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 785                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 786        } else if (!netdev_mc_empty(ndev)) {
 787                u8 hash;
 788                struct netdev_hw_addr *ha;
 789                u32 reg, val;
 790
 791                /* set IMF to deny all multicast frames */
 792                for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 793                        WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 794                /* set PMF to deny all multicast frames */
 795                for (i = 0; i < MAC_MCST_NUM; i++) {
 796                        WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 797                        WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 798                }
 799
 800                /* use PMF to accept first MAC_MCST_NUM (15) addresses */
 801                /* TBD: sort addresses and write them in ascending order
 802                 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 803                 * multicast frames throu IMF */
 804                /* accept the rest of addresses throu IMF */
 805                netdev_for_each_mc_addr(ha, ndev) {
 806                        hash = 0;
 807                        for (i = 0; i < ETH_ALEN; i++)
 808                                hash ^= ha->addr[i];
 809                        reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 810                        val = READ_REG(priv, reg);
 811                        val |= (1 << (hash % 32));
 812                        WRITE_REG(priv, reg, val);
 813                }
 814
 815        } else {
 816                DBG("only own mac %d\n", netdev_mc_count(ndev));
 817                rxf_val |= GMAC_RX_FILTER_AB;
 818        }
 819        WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 820        /* enable RX */
 821        /* FIXME: RXE(ON) */
 822        RET();
 823}
 824
 825static int bdx_set_mac(struct net_device *ndev, void *p)
 826{
 827        struct bdx_priv *priv = netdev_priv(ndev);
 828        struct sockaddr *addr = p;
 829
 830        ENTER;
 831        /*
 832           if (netif_running(dev))
 833           return -EBUSY
 834         */
 835        memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 836        bdx_restore_mac(ndev, priv);
 837        RET(0);
 838}
 839
 840static int bdx_read_mac(struct bdx_priv *priv)
 841{
 842        u16 macAddress[3], i;
 843        ENTER;
 844
 845        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 846        macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 847        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 848        macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 849        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 850        macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 851        for (i = 0; i < 3; i++) {
 852                priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 853                priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 854        }
 855        RET(0);
 856}
 857
 858static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 859{
 860        u64 val;
 861
 862        val = READ_REG(priv, reg);
 863        val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 864        return val;
 865}
 866
 867/*Do the statistics-update work*/
 868static void bdx_update_stats(struct bdx_priv *priv)
 869{
 870        struct bdx_stats *stats = &priv->hw_stats;
 871        u64 *stats_vector = (u64 *) stats;
 872        int i;
 873        int addr;
 874
 875        /*Fill HW structure */
 876        addr = 0x7200;
 877        /*First 12 statistics - 0x7200 - 0x72B0 */
 878        for (i = 0; i < 12; i++) {
 879                stats_vector[i] = bdx_read_l2stat(priv, addr);
 880                addr += 0x10;
 881        }
 882        BDX_ASSERT(addr != 0x72C0);
 883        /* 0x72C0-0x72E0 RSRV */
 884        addr = 0x72F0;
 885        for (; i < 16; i++) {
 886                stats_vector[i] = bdx_read_l2stat(priv, addr);
 887                addr += 0x10;
 888        }
 889        BDX_ASSERT(addr != 0x7330);
 890        /* 0x7330-0x7360 RSRV */
 891        addr = 0x7370;
 892        for (; i < 19; i++) {
 893                stats_vector[i] = bdx_read_l2stat(priv, addr);
 894                addr += 0x10;
 895        }
 896        BDX_ASSERT(addr != 0x73A0);
 897        /* 0x73A0-0x73B0 RSRV */
 898        addr = 0x73C0;
 899        for (; i < 23; i++) {
 900                stats_vector[i] = bdx_read_l2stat(priv, addr);
 901                addr += 0x10;
 902        }
 903        BDX_ASSERT(addr != 0x7400);
 904        BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 905}
 906
 907static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 908                       u16 rxd_vlan);
 909static void print_rxfd(struct rxf_desc *rxfd);
 910
 911/*************************************************************************
 912 *     Rx DB                                                             *
 913 *************************************************************************/
 914
 915static void bdx_rxdb_destroy(struct rxdb *db)
 916{
 917        vfree(db);
 918}
 919
 920static struct rxdb *bdx_rxdb_create(int nelem)
 921{
 922        struct rxdb *db;
 923        int i;
 924
 925        db = vmalloc(sizeof(struct rxdb)
 926                     + (nelem * sizeof(int))
 927                     + (nelem * sizeof(struct rx_map)));
 928        if (likely(db != NULL)) {
 929                db->stack = (int *)(db + 1);
 930                db->elems = (void *)(db->stack + nelem);
 931                db->nelem = nelem;
 932                db->top = nelem;
 933                for (i = 0; i < nelem; i++)
 934                        db->stack[i] = nelem - i - 1;   /* to make first allocs
 935                                                           close to db struct*/
 936        }
 937
 938        return db;
 939}
 940
 941static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 942{
 943        BDX_ASSERT(db->top <= 0);
 944        return db->stack[--(db->top)];
 945}
 946
 947static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 948{
 949        BDX_ASSERT((n < 0) || (n >= db->nelem));
 950        return db->elems + n;
 951}
 952
 953static inline int bdx_rxdb_available(struct rxdb *db)
 954{
 955        return db->top;
 956}
 957
 958static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 959{
 960        BDX_ASSERT((n >= db->nelem) || (n < 0));
 961        db->stack[(db->top)++] = n;
 962}
 963
 964/*************************************************************************
 965 *     Rx Init                                                           *
 966 *************************************************************************/
 967
 968/**
 969 * bdx_rx_init - initialize RX all related HW and SW resources
 970 * @priv: NIC private structure
 971 *
 972 * Returns 0 on success, negative value on failure
 973 *
 974 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 975 * skb for rx. It assumes that Rx is desabled in HW
 976 * funcs are grouped for better cache usage
 977 *
 978 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 979 * filled and packets will be dropped by nic without getting into host or
 980 * cousing interrupt. Anyway, in that condition, host has no chance to process
 981 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 982 */
 983
 984/* TBD: ensure proper packet size */
 985
 986static int bdx_rx_init(struct bdx_priv *priv)
 987{
 988        ENTER;
 989
 990        if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 991                          regRXD_CFG0_0, regRXD_CFG1_0,
 992                          regRXD_RPTR_0, regRXD_WPTR_0))
 993                goto err_mem;
 994        if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
 995                          regRXF_CFG0_0, regRXF_CFG1_0,
 996                          regRXF_RPTR_0, regRXF_WPTR_0))
 997                goto err_mem;
 998        priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
 999                                     sizeof(struct rxf_desc));
1000        if (!priv->rxdb)
1001                goto err_mem;
1002
1003        priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1004        return 0;
1005
1006err_mem:
1007        netdev_err(priv->ndev, "Rx init failed\n");
1008        return -ENOMEM;
1009}
1010
1011/**
1012 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1013 * @priv: NIC private structure
1014 * @f: RXF fifo
1015 */
1016static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1017{
1018        struct rx_map *dm;
1019        struct rxdb *db = priv->rxdb;
1020        u16 i;
1021
1022        ENTER;
1023        DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1024            db->nelem - bdx_rxdb_available(db));
1025        while (bdx_rxdb_available(db) > 0) {
1026                i = bdx_rxdb_alloc_elem(db);
1027                dm = bdx_rxdb_addr_elem(db, i);
1028                dm->dma = 0;
1029        }
1030        for (i = 0; i < db->nelem; i++) {
1031                dm = bdx_rxdb_addr_elem(db, i);
1032                if (dm->dma) {
1033                        dma_unmap_single(&priv->pdev->dev, dm->dma,
1034                                         f->m.pktsz, DMA_FROM_DEVICE);
1035                        dev_kfree_skb(dm->skb);
1036                }
1037        }
1038}
1039
1040/**
1041 * bdx_rx_free - release all Rx resources
1042 * @priv: NIC private structure
1043 *
1044 * It assumes that Rx is desabled in HW
1045 */
1046static void bdx_rx_free(struct bdx_priv *priv)
1047{
1048        ENTER;
1049        if (priv->rxdb) {
1050                bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1051                bdx_rxdb_destroy(priv->rxdb);
1052                priv->rxdb = NULL;
1053        }
1054        bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1055        bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1056
1057        RET();
1058}
1059
1060/*************************************************************************
1061 *     Rx Engine                                                         *
1062 *************************************************************************/
1063
1064/**
1065 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1066 * @priv: nic's private structure
1067 * @f: RXF fifo that needs skbs
1068 *
1069 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1070 * skb's virtual and physical addresses are stored in skb db.
1071 * To calculate free space, func uses cached values of RPTR and WPTR
1072 * When needed, it also updates RPTR and WPTR.
1073 */
1074
1075/* TBD: do not update WPTR if no desc were written */
1076
1077static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1078{
1079        struct sk_buff *skb;
1080        struct rxf_desc *rxfd;
1081        struct rx_map *dm;
1082        int dno, delta, idx;
1083        struct rxdb *db = priv->rxdb;
1084
1085        ENTER;
1086        dno = bdx_rxdb_available(db) - 1;
1087        while (dno > 0) {
1088                skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1089                if (!skb)
1090                        break;
1091
1092                skb_reserve(skb, NET_IP_ALIGN);
1093
1094                idx = bdx_rxdb_alloc_elem(db);
1095                dm = bdx_rxdb_addr_elem(db, idx);
1096                dm->dma = dma_map_single(&priv->pdev->dev, skb->data,
1097                                         f->m.pktsz, DMA_FROM_DEVICE);
1098                dm->skb = skb;
1099                rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1100                rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1101                rxfd->va_lo = idx;
1102                rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1103                rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1104                rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1105                print_rxfd(rxfd);
1106
1107                f->m.wptr += sizeof(struct rxf_desc);
1108                delta = f->m.wptr - f->m.memsz;
1109                if (unlikely(delta >= 0)) {
1110                        f->m.wptr = delta;
1111                        if (delta > 0) {
1112                                memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1113                                DBG("wrapped descriptor\n");
1114                        }
1115                }
1116                dno--;
1117        }
1118        /*TBD: to do - delayed rxf wptr like in txd */
1119        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1120        RET();
1121}
1122
1123static inline void
1124NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1125             struct sk_buff *skb)
1126{
1127        ENTER;
1128        DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1129        if (GET_RXD_VTAG(rxd_val1)) {
1130                DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1131                    priv->ndev->name,
1132                    GET_RXD_VLAN_ID(rxd_vlan),
1133                    GET_RXD_VTAG(rxd_val1));
1134                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1135        }
1136        netif_receive_skb(skb);
1137}
1138
1139static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1140{
1141        struct rxf_desc *rxfd;
1142        struct rx_map *dm;
1143        struct rxf_fifo *f;
1144        struct rxdb *db;
1145        int delta;
1146
1147        ENTER;
1148        DBG("priv=%p rxdd=%p\n", priv, rxdd);
1149        f = &priv->rxf_fifo0;
1150        db = priv->rxdb;
1151        DBG("db=%p f=%p\n", db, f);
1152        dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1153        DBG("dm=%p\n", dm);
1154        rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1155        rxfd->info = CPU_CHIP_SWAP32(0x10003);  /* INFO=1 BC=3 */
1156        rxfd->va_lo = rxdd->va_lo;
1157        rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1158        rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1159        rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1160        print_rxfd(rxfd);
1161
1162        f->m.wptr += sizeof(struct rxf_desc);
1163        delta = f->m.wptr - f->m.memsz;
1164        if (unlikely(delta >= 0)) {
1165                f->m.wptr = delta;
1166                if (delta > 0) {
1167                        memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1168                        DBG("wrapped descriptor\n");
1169                }
1170        }
1171        RET();
1172}
1173
1174/**
1175 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1176 * NOTE: a special treatment is given to non-continuous descriptors
1177 * that start near the end, wraps around and continue at the beginning. a second
1178 * part is copied right after the first, and then descriptor is interpreted as
1179 * normal. fifo has an extra space to allow such operations
1180 * @priv: nic's private structure
1181 * @f: RXF fifo that needs skbs
1182 * @budget: maximum number of packets to receive
1183 */
1184
1185/* TBD: replace memcpy func call by explicite inline asm */
1186
1187static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1188{
1189        struct net_device *ndev = priv->ndev;
1190        struct sk_buff *skb, *skb2;
1191        struct rxd_desc *rxdd;
1192        struct rx_map *dm;
1193        struct rxf_fifo *rxf_fifo;
1194        int tmp_len, size;
1195        int done = 0;
1196        int max_done = BDX_MAX_RX_DONE;
1197        struct rxdb *db = NULL;
1198        /* Unmarshalled descriptor - copy of descriptor in host order */
1199        u32 rxd_val1;
1200        u16 len;
1201        u16 rxd_vlan;
1202
1203        ENTER;
1204        max_done = budget;
1205
1206        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1207
1208        size = f->m.wptr - f->m.rptr;
1209        if (size < 0)
1210                size = f->m.memsz + size;       /* size is negative :-) */
1211
1212        while (size > 0) {
1213
1214                rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1215                rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1216
1217                len = CPU_CHIP_SWAP16(rxdd->len);
1218
1219                rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1220
1221                print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1222
1223                tmp_len = GET_RXD_BC(rxd_val1) << 3;
1224                BDX_ASSERT(tmp_len <= 0);
1225                size -= tmp_len;
1226                if (size < 0)   /* test for partially arrived descriptor */
1227                        break;
1228
1229                f->m.rptr += tmp_len;
1230
1231                tmp_len = f->m.rptr - f->m.memsz;
1232                if (unlikely(tmp_len >= 0)) {
1233                        f->m.rptr = tmp_len;
1234                        if (tmp_len > 0) {
1235                                DBG("wrapped desc rptr=%d tmp_len=%d\n",
1236                                    f->m.rptr, tmp_len);
1237                                memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1238                        }
1239                }
1240
1241                if (unlikely(GET_RXD_ERR(rxd_val1))) {
1242                        DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1243                        ndev->stats.rx_errors++;
1244                        bdx_recycle_skb(priv, rxdd);
1245                        continue;
1246                }
1247
1248                rxf_fifo = &priv->rxf_fifo0;
1249                db = priv->rxdb;
1250                dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1251                skb = dm->skb;
1252
1253                if (len < BDX_COPYBREAK &&
1254                    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1255                        skb_reserve(skb2, NET_IP_ALIGN);
1256                        /*skb_put(skb2, len); */
1257                        dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma,
1258                                                rxf_fifo->m.pktsz,
1259                                                DMA_FROM_DEVICE);
1260                        memcpy(skb2->data, skb->data, len);
1261                        bdx_recycle_skb(priv, rxdd);
1262                        skb = skb2;
1263                } else {
1264                        dma_unmap_single(&priv->pdev->dev, dm->dma,
1265                                         rxf_fifo->m.pktsz, DMA_FROM_DEVICE);
1266                        bdx_rxdb_free_elem(db, rxdd->va_lo);
1267                }
1268
1269                ndev->stats.rx_bytes += len;
1270
1271                skb_put(skb, len);
1272                skb->protocol = eth_type_trans(skb, ndev);
1273
1274                /* Non-IP packets aren't checksum-offloaded */
1275                if (GET_RXD_PKT_ID(rxd_val1) == 0)
1276                        skb_checksum_none_assert(skb);
1277                else
1278                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1279
1280                NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1281
1282                if (++done >= max_done)
1283                        break;
1284        }
1285
1286        ndev->stats.rx_packets += done;
1287
1288        /* FIXME: do smth to minimize pci accesses    */
1289        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1290
1291        bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1292
1293        RET(done);
1294}
1295
1296/*************************************************************************
1297 * Debug / Temprorary Code                                               *
1298 *************************************************************************/
1299static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1300                       u16 rxd_vlan)
1301{
1302        DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1303            GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1304            GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1305            GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1306            GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1307            GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1308            rxdd->va_hi);
1309}
1310
1311static void print_rxfd(struct rxf_desc *rxfd)
1312{
1313        DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1314            "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1315            rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1316}
1317
1318/*
1319 * TX HW/SW interaction overview
1320 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1321 * There are 2 types of TX communication channels between driver and NIC.
1322 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1323 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1324 *
1325 * Currently NIC supports TSO, checksuming and gather DMA
1326 * UFO and IP fragmentation is on the way
1327 *
1328 * RX SW Data Structures
1329 * ~~~~~~~~~~~~~~~~~~~~~
1330 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1331 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1332 * acknowledges sent by TXF descriptors.
1333 * Implemented as cyclic buffer.
1334 * fifo - keeps info about fifo's size and location, relevant HW registers,
1335 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1336 * Implemented as simple struct.
1337 *
1338 * TX SW Execution Flow
1339 * ~~~~~~~~~~~~~~~~~~~~
1340 * OS calls driver's hard_xmit method with packet to sent.
1341 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1342 * by updating TXD WPTR.
1343 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1344 * To prevent TXD fifo overflow without reading HW registers every time,
1345 * SW deploys "tx level" technique.
1346 * Upon strart up, tx level is initialized to TXD fifo length.
1347 * For every sent packet, SW gets its TXD descriptor sizei
1348 * (from precalculated array) and substructs it from tx level.
1349 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1350 * original TXD descriptor from txdb and adds it to tx level.
1351 * When Tx level drops under some predefined treshhold, the driver
1352 * stops the TX queue. When TX level rises above that level,
1353 * the tx queue is enabled again.
1354 *
1355 * This technique avoids eccessive reading of RPTR and WPTR registers.
1356 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1357 */
1358
1359/**
1360 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1361 * @db: tx data base
1362 * @pptr: read or write pointer
1363 */
1364static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1365{
1366        BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1367
1368        BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1369                   *pptr != db->wptr);  /* or write pointer */
1370
1371        BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1372                   *pptr >= db->end);   /* in range */
1373
1374        ++*pptr;
1375        if (unlikely(*pptr == db->end))
1376                *pptr = db->start;
1377}
1378
1379/**
1380 * bdx_tx_db_inc_rptr - increment read pointer
1381 * @db: tx data base
1382 */
1383static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1384{
1385        BDX_ASSERT(db->rptr == db->wptr);       /* can't read from empty db */
1386        __bdx_tx_db_ptr_next(db, &db->rptr);
1387}
1388
1389/**
1390 * bdx_tx_db_inc_wptr - increment write pointer
1391 * @db: tx data base
1392 */
1393static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1394{
1395        __bdx_tx_db_ptr_next(db, &db->wptr);
1396        BDX_ASSERT(db->rptr == db->wptr);       /* we can not get empty db as
1397                                                   a result of write */
1398}
1399
1400/**
1401 * bdx_tx_db_init - creates and initializes tx db
1402 * @d: tx data base
1403 * @sz_type: size of tx fifo
1404 *
1405 * Returns 0 on success, error code otherwise
1406 */
1407static int bdx_tx_db_init(struct txdb *d, int sz_type)
1408{
1409        int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1410
1411        d->start = vmalloc(memsz);
1412        if (!d->start)
1413                return -ENOMEM;
1414
1415        /*
1416         * In order to differentiate between db is empty and db is full
1417         * states at least one element should always be empty in order to
1418         * avoid rptr == wptr which means db is empty
1419         */
1420        d->size = memsz / sizeof(struct tx_map) - 1;
1421        d->end = d->start + d->size + 1;        /* just after last element */
1422
1423        /* all dbs are created equally empty */
1424        d->rptr = d->start;
1425        d->wptr = d->start;
1426
1427        return 0;
1428}
1429
1430/**
1431 * bdx_tx_db_close - closes tx db and frees all memory
1432 * @d: tx data base
1433 */
1434static void bdx_tx_db_close(struct txdb *d)
1435{
1436        BDX_ASSERT(d == NULL);
1437
1438        vfree(d->start);
1439        d->start = NULL;
1440}
1441
1442/*************************************************************************
1443 *     Tx Engine                                                         *
1444 *************************************************************************/
1445
1446/* sizes of tx desc (including padding if needed) as function
1447 * of skb's frag number */
1448static struct {
1449        u16 bytes;
1450        u16 qwords;             /* qword = 64 bit */
1451} txd_sizes[MAX_SKB_FRAGS + 1];
1452
1453/**
1454 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1455 * @priv: NIC private structure
1456 * @skb: socket buffer to map
1457 * @txdd: TX descriptor to use
1458 *
1459 * It makes dma mappings for skb's data blocks and writes them to PBL of
1460 * new tx descriptor. It also stores them in the tx db, so they could be
1461 * unmaped after data was sent. It is reponsibility of a caller to make
1462 * sure that there is enough space in the tx db. Last element holds pointer
1463 * to skb itself and marked with zero length
1464 */
1465static inline void
1466bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1467               struct txd_desc *txdd)
1468{
1469        struct txdb *db = &priv->txdb;
1470        struct pbl *pbl = &txdd->pbl[0];
1471        int nr_frags = skb_shinfo(skb)->nr_frags;
1472        int i;
1473
1474        db->wptr->len = skb_headlen(skb);
1475        db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data,
1476                                            db->wptr->len, DMA_TO_DEVICE);
1477        pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1478        pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1479        pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1480        DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1481        DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1482        DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1483        bdx_tx_db_inc_wptr(db);
1484
1485        for (i = 0; i < nr_frags; i++) {
1486                const skb_frag_t *frag;
1487
1488                frag = &skb_shinfo(skb)->frags[i];
1489                db->wptr->len = skb_frag_size(frag);
1490                db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1491                                                      0, skb_frag_size(frag),
1492                                                      DMA_TO_DEVICE);
1493
1494                pbl++;
1495                pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1496                pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1497                pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1498                bdx_tx_db_inc_wptr(db);
1499        }
1500
1501        /* add skb clean up info. */
1502        db->wptr->len = -txd_sizes[nr_frags].bytes;
1503        db->wptr->addr.skb = skb;
1504        bdx_tx_db_inc_wptr(db);
1505}
1506
1507/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1508 * number of frags is used as index to fetch correct descriptors size,
1509 * instead of calculating it each time */
1510static void __init init_txd_sizes(void)
1511{
1512        int i, lwords;
1513
1514        /* 7 - is number of lwords in txd with one phys buffer
1515         * 3 - is number of lwords used for every additional phys buffer */
1516        for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1517                lwords = 7 + (i * 3);
1518                if (lwords & 1)
1519                        lwords++;       /* pad it with 1 lword */
1520                txd_sizes[i].qwords = lwords >> 1;
1521                txd_sizes[i].bytes = lwords << 2;
1522        }
1523}
1524
1525/* bdx_tx_init - initialize all Tx related stuff.
1526 * Namely, TXD and TXF fifos, database etc */
1527static int bdx_tx_init(struct bdx_priv *priv)
1528{
1529        if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1530                          regTXD_CFG0_0,
1531                          regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1532                goto err_mem;
1533        if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1534                          regTXF_CFG0_0,
1535                          regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1536                goto err_mem;
1537
1538        /* The TX db has to keep mappings for all packets sent (on TxD)
1539         * and not yet reclaimed (on TxF) */
1540        if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1541                goto err_mem;
1542
1543        priv->tx_level = BDX_MAX_TX_LEVEL;
1544#ifdef BDX_DELAY_WPTR
1545        priv->tx_update_mark = priv->tx_level - 1024;
1546#endif
1547        return 0;
1548
1549err_mem:
1550        netdev_err(priv->ndev, "Tx init failed\n");
1551        return -ENOMEM;
1552}
1553
1554/**
1555 * bdx_tx_space - calculates available space in TX fifo
1556 * @priv: NIC private structure
1557 *
1558 * Returns available space in TX fifo in bytes
1559 */
1560static inline int bdx_tx_space(struct bdx_priv *priv)
1561{
1562        struct txd_fifo *f = &priv->txd_fifo0;
1563        int fsize;
1564
1565        f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1566        fsize = f->m.rptr - f->m.wptr;
1567        if (fsize <= 0)
1568                fsize = f->m.memsz + fsize;
1569        return fsize;
1570}
1571
1572/**
1573 * bdx_tx_transmit - send packet to NIC
1574 * @skb: packet to send
1575 * @ndev: network device assigned to NIC
1576 * Return codes:
1577 * o NETDEV_TX_OK everything ok.
1578 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1579 *   Usually a bug, means queue start/stop flow control is broken in
1580 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1581 */
1582static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1583                                   struct net_device *ndev)
1584{
1585        struct bdx_priv *priv = netdev_priv(ndev);
1586        struct txd_fifo *f = &priv->txd_fifo0;
1587        int txd_checksum = 7;   /* full checksum */
1588        int txd_lgsnd = 0;
1589        int txd_vlan_id = 0;
1590        int txd_vtag = 0;
1591        int txd_mss = 0;
1592
1593        int nr_frags = skb_shinfo(skb)->nr_frags;
1594        struct txd_desc *txdd;
1595        int len;
1596        unsigned long flags;
1597
1598        ENTER;
1599        local_irq_save(flags);
1600        spin_lock(&priv->tx_lock);
1601
1602        /* build tx descriptor */
1603        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* started with valid wptr */
1604        txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1605        if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1606                txd_checksum = 0;
1607
1608        if (skb_shinfo(skb)->gso_size) {
1609                txd_mss = skb_shinfo(skb)->gso_size;
1610                txd_lgsnd = 1;
1611                DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1612                    txd_mss);
1613        }
1614
1615        if (skb_vlan_tag_present(skb)) {
1616                /*Cut VLAN ID to 12 bits */
1617                txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1618                txd_vtag = 1;
1619        }
1620
1621        txdd->length = CPU_CHIP_SWAP16(skb->len);
1622        txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1623        txdd->txd_val1 =
1624            CPU_CHIP_SWAP32(TXD_W1_VAL
1625                            (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1626                             txd_lgsnd, txd_vlan_id));
1627        DBG("=== TxD desc =====================\n");
1628        DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1629        DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1630
1631        bdx_tx_map_skb(priv, skb, txdd);
1632
1633        /* increment TXD write pointer. In case of
1634           fifo wrapping copy reminder of the descriptor
1635           to the beginning */
1636        f->m.wptr += txd_sizes[nr_frags].bytes;
1637        len = f->m.wptr - f->m.memsz;
1638        if (unlikely(len >= 0)) {
1639                f->m.wptr = len;
1640                if (len > 0) {
1641                        BDX_ASSERT(len > f->m.memsz);
1642                        memcpy(f->m.va, f->m.va + f->m.memsz, len);
1643                }
1644        }
1645        BDX_ASSERT(f->m.wptr >= f->m.memsz);    /* finished with valid wptr */
1646
1647        priv->tx_level -= txd_sizes[nr_frags].bytes;
1648        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1649#ifdef BDX_DELAY_WPTR
1650        if (priv->tx_level > priv->tx_update_mark) {
1651                /* Force memory writes to complete before letting h/w
1652                   know there are new descriptors to fetch.
1653                   (might be needed on platforms like IA64)
1654                   wmb(); */
1655                WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1656        } else {
1657                if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1658                        priv->tx_noupd = 0;
1659                        WRITE_REG(priv, f->m.reg_WPTR,
1660                                  f->m.wptr & TXF_WPTR_WR_PTR);
1661                }
1662        }
1663#else
1664        /* Force memory writes to complete before letting h/w
1665           know there are new descriptors to fetch.
1666           (might be needed on platforms like IA64)
1667           wmb(); */
1668        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1669
1670#endif
1671#ifdef BDX_LLTX
1672        netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1673#endif
1674        ndev->stats.tx_packets++;
1675        ndev->stats.tx_bytes += skb->len;
1676
1677        if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1678                DBG("%s: %s: TX Q STOP level %d\n",
1679                    BDX_DRV_NAME, ndev->name, priv->tx_level);
1680                netif_stop_queue(ndev);
1681        }
1682
1683        spin_unlock_irqrestore(&priv->tx_lock, flags);
1684        return NETDEV_TX_OK;
1685}
1686
1687/**
1688 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1689 * @priv: bdx adapter
1690 *
1691 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1692 * that those packets were sent
1693 */
1694static void bdx_tx_cleanup(struct bdx_priv *priv)
1695{
1696        struct txf_fifo *f = &priv->txf_fifo0;
1697        struct txdb *db = &priv->txdb;
1698        int tx_level = 0;
1699
1700        ENTER;
1701        f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1702        BDX_ASSERT(f->m.rptr >= f->m.memsz);    /* started with valid rptr */
1703
1704        while (f->m.wptr != f->m.rptr) {
1705                f->m.rptr += BDX_TXF_DESC_SZ;
1706                f->m.rptr &= f->m.size_mask;
1707
1708                /* unmap all the fragments */
1709                /* first has to come tx_maps containing dma */
1710                BDX_ASSERT(db->rptr->len == 0);
1711                do {
1712                        BDX_ASSERT(db->rptr->addr.dma == 0);
1713                        dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
1714                                       db->rptr->len, DMA_TO_DEVICE);
1715                        bdx_tx_db_inc_rptr(db);
1716                } while (db->rptr->len > 0);
1717                tx_level -= db->rptr->len;      /* '-' koz len is negative */
1718
1719                /* now should come skb pointer - free it */
1720                dev_consume_skb_irq(db->rptr->addr.skb);
1721                bdx_tx_db_inc_rptr(db);
1722        }
1723
1724        /* let h/w know which TXF descriptors were cleaned */
1725        BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1726        WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1727
1728        /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1729         * we resume the transmission and use tx_lock to synchronize with xmit.*/
1730        spin_lock(&priv->tx_lock);
1731        priv->tx_level += tx_level;
1732        BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1733#ifdef BDX_DELAY_WPTR
1734        if (priv->tx_noupd) {
1735                priv->tx_noupd = 0;
1736                WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1737                          priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1738        }
1739#endif
1740
1741        if (unlikely(netif_queue_stopped(priv->ndev) &&
1742                     netif_carrier_ok(priv->ndev) &&
1743                     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1744                DBG("%s: %s: TX Q WAKE level %d\n",
1745                    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1746                netif_wake_queue(priv->ndev);
1747        }
1748        spin_unlock(&priv->tx_lock);
1749}
1750
1751/**
1752 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1753 * @priv: NIC private structure
1754 *
1755 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1756 */
1757static void bdx_tx_free_skbs(struct bdx_priv *priv)
1758{
1759        struct txdb *db = &priv->txdb;
1760
1761        ENTER;
1762        while (db->rptr != db->wptr) {
1763                if (likely(db->rptr->len))
1764                        dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
1765                                       db->rptr->len, DMA_TO_DEVICE);
1766                else
1767                        dev_kfree_skb(db->rptr->addr.skb);
1768                bdx_tx_db_inc_rptr(db);
1769        }
1770        RET();
1771}
1772
1773/* bdx_tx_free - frees all Tx resources */
1774static void bdx_tx_free(struct bdx_priv *priv)
1775{
1776        ENTER;
1777        bdx_tx_free_skbs(priv);
1778        bdx_fifo_free(priv, &priv->txd_fifo0.m);
1779        bdx_fifo_free(priv, &priv->txf_fifo0.m);
1780        bdx_tx_db_close(&priv->txdb);
1781}
1782
1783/**
1784 * bdx_tx_push_desc - push descriptor to TxD fifo
1785 * @priv: NIC private structure
1786 * @data: desc's data
1787 * @size: desc's size
1788 *
1789 * Pushes desc to TxD fifo and overlaps it if needed.
1790 * NOTE: this func does not check for available space. this is responsibility
1791 *    of the caller. Neither does it check that data size is smaller than
1792 *    fifo size.
1793 */
1794static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1795{
1796        struct txd_fifo *f = &priv->txd_fifo0;
1797        int i = f->m.memsz - f->m.wptr;
1798
1799        if (size == 0)
1800                return;
1801
1802        if (i > size) {
1803                memcpy(f->m.va + f->m.wptr, data, size);
1804                f->m.wptr += size;
1805        } else {
1806                memcpy(f->m.va + f->m.wptr, data, i);
1807                f->m.wptr = size - i;
1808                memcpy(f->m.va, data + i, f->m.wptr);
1809        }
1810        WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1811}
1812
1813/**
1814 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1815 * @priv: NIC private structure
1816 * @data: desc's data
1817 * @size: desc's size
1818 *
1819 * NOTE: this func does check for available space and, if necessary, waits for
1820 *   NIC to read existing data before writing new one.
1821 */
1822static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1823{
1824        int timer = 0;
1825        ENTER;
1826
1827        while (size > 0) {
1828                /* we substruct 8 because when fifo is full rptr == wptr
1829                   which also means that fifo is empty, we can understand
1830                   the difference, but could hw do the same ??? :) */
1831                int avail = bdx_tx_space(priv) - 8;
1832                if (avail <= 0) {
1833                        if (timer++ > 300) {    /* prevent endless loop */
1834                                DBG("timeout while writing desc to TxD fifo\n");
1835                                break;
1836                        }
1837                        udelay(50);     /* give hw a chance to clean fifo */
1838                        continue;
1839                }
1840                avail = min(avail, size);
1841                DBG("about to push  %d bytes starting %p size %d\n", avail,
1842                    data, size);
1843                bdx_tx_push_desc(priv, data, avail);
1844                size -= avail;
1845                data += avail;
1846        }
1847        RET();
1848}
1849
1850static const struct net_device_ops bdx_netdev_ops = {
1851        .ndo_open               = bdx_open,
1852        .ndo_stop               = bdx_close,
1853        .ndo_start_xmit         = bdx_tx_transmit,
1854        .ndo_validate_addr      = eth_validate_addr,
1855        .ndo_siocdevprivate     = bdx_siocdevprivate,
1856        .ndo_set_rx_mode        = bdx_setmulti,
1857        .ndo_change_mtu         = bdx_change_mtu,
1858        .ndo_set_mac_address    = bdx_set_mac,
1859        .ndo_vlan_rx_add_vid    = bdx_vlan_rx_add_vid,
1860        .ndo_vlan_rx_kill_vid   = bdx_vlan_rx_kill_vid,
1861};
1862
1863/**
1864 * bdx_probe - Device Initialization Routine
1865 * @pdev: PCI device information struct
1866 * @ent: entry in bdx_pci_tbl
1867 *
1868 * Returns 0 on success, negative on failure
1869 *
1870 * bdx_probe initializes an adapter identified by a pci_dev structure.
1871 * The OS initialization, configuring of the adapter private structure,
1872 * and a hardware reset occur.
1873 *
1874 * functions and their order used as explained in
1875 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1876 *
1877 */
1878
1879/* TBD: netif_msg should be checked and implemented. I disable it for now */
1880static int
1881bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1882{
1883        struct net_device *ndev;
1884        struct bdx_priv *priv;
1885        int err, pci_using_dac, port;
1886        unsigned long pciaddr;
1887        u32 regionSize;
1888        struct pci_nic *nic;
1889
1890        ENTER;
1891
1892        nic = vmalloc(sizeof(*nic));
1893        if (!nic)
1894                RET(-ENOMEM);
1895
1896    /************** pci *****************/
1897        err = pci_enable_device(pdev);
1898        if (err)                        /* it triggers interrupt, dunno why. */
1899                goto err_pci;           /* it's not a problem though */
1900
1901        if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) &&
1902            !(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)))) {
1903                pci_using_dac = 1;
1904        } else {
1905                if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) ||
1906                    (err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
1907                        pr_err("No usable DMA configuration, aborting\n");
1908                        goto err_dma;
1909                }
1910                pci_using_dac = 0;
1911        }
1912
1913        err = pci_request_regions(pdev, BDX_DRV_NAME);
1914        if (err)
1915                goto err_dma;
1916
1917        pci_set_master(pdev);
1918
1919        pciaddr = pci_resource_start(pdev, 0);
1920        if (!pciaddr) {
1921                err = -EIO;
1922                pr_err("no MMIO resource\n");
1923                goto err_out_res;
1924        }
1925        regionSize = pci_resource_len(pdev, 0);
1926        if (regionSize < BDX_REGS_SIZE) {
1927                err = -EIO;
1928                pr_err("MMIO resource (%x) too small\n", regionSize);
1929                goto err_out_res;
1930        }
1931
1932        nic->regs = ioremap(pciaddr, regionSize);
1933        if (!nic->regs) {
1934                err = -EIO;
1935                pr_err("ioremap failed\n");
1936                goto err_out_res;
1937        }
1938
1939        if (pdev->irq < 2) {
1940                err = -EIO;
1941                pr_err("invalid irq (%d)\n", pdev->irq);
1942                goto err_out_iomap;
1943        }
1944        pci_set_drvdata(pdev, nic);
1945
1946        if (pdev->device == 0x3014)
1947                nic->port_num = 2;
1948        else
1949                nic->port_num = 1;
1950
1951        print_hw_id(pdev);
1952
1953        bdx_hw_reset_direct(nic->regs);
1954
1955        nic->irq_type = IRQ_INTX;
1956#ifdef BDX_MSI
1957        if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1958                err = pci_enable_msi(pdev);
1959                if (err)
1960                        pr_err("Can't enable msi. error is %d\n", err);
1961                else
1962                        nic->irq_type = IRQ_MSI;
1963        } else
1964                DBG("HW does not support MSI\n");
1965#endif
1966
1967    /************** netdev **************/
1968        for (port = 0; port < nic->port_num; port++) {
1969                ndev = alloc_etherdev(sizeof(struct bdx_priv));
1970                if (!ndev) {
1971                        err = -ENOMEM;
1972                        goto err_out_iomap;
1973                }
1974
1975                ndev->netdev_ops = &bdx_netdev_ops;
1976                ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1977
1978                bdx_set_ethtool_ops(ndev);      /* ethtool interface */
1979
1980                /* these fields are used for info purposes only
1981                 * so we can have them same for all ports of the board */
1982                ndev->if_port = port;
1983                ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1984                    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1985                    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
1986                    ;
1987                ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1988                        NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
1989
1990                if (pci_using_dac)
1991                        ndev->features |= NETIF_F_HIGHDMA;
1992
1993        /************** priv ****************/
1994                priv = nic->priv[port] = netdev_priv(ndev);
1995
1996                priv->pBdxRegs = nic->regs + port * 0x8000;
1997                priv->port = port;
1998                priv->pdev = pdev;
1999                priv->ndev = ndev;
2000                priv->nic = nic;
2001                priv->msg_enable = BDX_DEF_MSG_ENABLE;
2002
2003                netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2004
2005                if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2006                        DBG("HW statistics not supported\n");
2007                        priv->stats_flag = 0;
2008                } else {
2009                        priv->stats_flag = 1;
2010                }
2011
2012                /* Initialize fifo sizes. */
2013                priv->txd_size = 2;
2014                priv->txf_size = 2;
2015                priv->rxd_size = 2;
2016                priv->rxf_size = 3;
2017
2018                /* Initialize the initial coalescing registers. */
2019                priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2020                priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2021
2022                /* ndev->xmit_lock spinlock is not used.
2023                 * Private priv->tx_lock is used for synchronization
2024                 * between transmit and TX irq cleanup.  In addition
2025                 * set multicast list callback has to use priv->tx_lock.
2026                 */
2027#ifdef BDX_LLTX
2028                ndev->features |= NETIF_F_LLTX;
2029#endif
2030                /* MTU range: 60 - 16384 */
2031                ndev->min_mtu = ETH_ZLEN;
2032                ndev->max_mtu = BDX_MAX_MTU;
2033
2034                spin_lock_init(&priv->tx_lock);
2035
2036                /*bdx_hw_reset(priv); */
2037                if (bdx_read_mac(priv)) {
2038                        pr_err("load MAC address failed\n");
2039                        err = -EFAULT;
2040                        goto err_out_iomap;
2041                }
2042                SET_NETDEV_DEV(ndev, &pdev->dev);
2043                err = register_netdev(ndev);
2044                if (err) {
2045                        pr_err("register_netdev failed\n");
2046                        goto err_out_free;
2047                }
2048                netif_carrier_off(ndev);
2049                netif_stop_queue(ndev);
2050
2051                print_eth_id(ndev);
2052        }
2053        RET(0);
2054
2055err_out_free:
2056        free_netdev(ndev);
2057err_out_iomap:
2058        iounmap(nic->regs);
2059err_out_res:
2060        pci_release_regions(pdev);
2061err_dma:
2062        pci_disable_device(pdev);
2063err_pci:
2064        vfree(nic);
2065
2066        RET(err);
2067}
2068
2069/****************** Ethtool interface *********************/
2070/* get strings for statistics counters */
2071static const char
2072 bdx_stat_names[][ETH_GSTRING_LEN] = {
2073        "InUCast",              /* 0x7200 */
2074        "InMCast",              /* 0x7210 */
2075        "InBCast",              /* 0x7220 */
2076        "InPkts",               /* 0x7230 */
2077        "InErrors",             /* 0x7240 */
2078        "InDropped",            /* 0x7250 */
2079        "FrameTooLong",         /* 0x7260 */
2080        "FrameSequenceErrors",  /* 0x7270 */
2081        "InVLAN",               /* 0x7280 */
2082        "InDroppedDFE",         /* 0x7290 */
2083        "InDroppedIntFull",     /* 0x72A0 */
2084        "InFrameAlignErrors",   /* 0x72B0 */
2085
2086        /* 0x72C0-0x72E0 RSRV */
2087
2088        "OutUCast",             /* 0x72F0 */
2089        "OutMCast",             /* 0x7300 */
2090        "OutBCast",             /* 0x7310 */
2091        "OutPkts",              /* 0x7320 */
2092
2093        /* 0x7330-0x7360 RSRV */
2094
2095        "OutVLAN",              /* 0x7370 */
2096        "InUCastOctects",       /* 0x7380 */
2097        "OutUCastOctects",      /* 0x7390 */
2098
2099        /* 0x73A0-0x73B0 RSRV */
2100
2101        "InBCastOctects",       /* 0x73C0 */
2102        "OutBCastOctects",      /* 0x73D0 */
2103        "InOctects",            /* 0x73E0 */
2104        "OutOctects",           /* 0x73F0 */
2105};
2106
2107/*
2108 * bdx_get_link_ksettings - get device-specific settings
2109 * @netdev
2110 * @ecmd
2111 */
2112static int bdx_get_link_ksettings(struct net_device *netdev,
2113                                  struct ethtool_link_ksettings *ecmd)
2114{
2115        ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2116        ethtool_link_ksettings_add_link_mode(ecmd, supported,
2117                                             10000baseT_Full);
2118        ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2119        ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2120        ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2121                                             10000baseT_Full);
2122        ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2123
2124        ecmd->base.speed = SPEED_10000;
2125        ecmd->base.duplex = DUPLEX_FULL;
2126        ecmd->base.port = PORT_FIBRE;
2127        ecmd->base.autoneg = AUTONEG_DISABLE;
2128
2129        return 0;
2130}
2131
2132/*
2133 * bdx_get_drvinfo - report driver information
2134 * @netdev
2135 * @drvinfo
2136 */
2137static void
2138bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2139{
2140        struct bdx_priv *priv = netdev_priv(netdev);
2141
2142        strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2143        strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2144        strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2145        strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2146                sizeof(drvinfo->bus_info));
2147}
2148
2149/*
2150 * bdx_get_coalesce - get interrupt coalescing parameters
2151 * @netdev
2152 * @ecoal
2153 */
2154static int bdx_get_coalesce(struct net_device *netdev,
2155                            struct ethtool_coalesce *ecoal,
2156                            struct kernel_ethtool_coalesce *kernel_coal,
2157                            struct netlink_ext_ack *extack)
2158{
2159        u32 rdintcm;
2160        u32 tdintcm;
2161        struct bdx_priv *priv = netdev_priv(netdev);
2162
2163        rdintcm = priv->rdintcm;
2164        tdintcm = priv->tdintcm;
2165
2166        /* PCK_TH measures in multiples of FIFO bytes
2167           We translate to packets */
2168        ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2169        ecoal->rx_max_coalesced_frames =
2170            ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2171
2172        ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2173        ecoal->tx_max_coalesced_frames =
2174            ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2175
2176        /* adaptive parameters ignored */
2177        return 0;
2178}
2179
2180/*
2181 * bdx_set_coalesce - set interrupt coalescing parameters
2182 * @netdev
2183 * @ecoal
2184 */
2185static int bdx_set_coalesce(struct net_device *netdev,
2186                            struct ethtool_coalesce *ecoal,
2187                            struct kernel_ethtool_coalesce *kernel_coal,
2188                            struct netlink_ext_ack *extack)
2189{
2190        u32 rdintcm;
2191        u32 tdintcm;
2192        struct bdx_priv *priv = netdev_priv(netdev);
2193        int rx_coal;
2194        int tx_coal;
2195        int rx_max_coal;
2196        int tx_max_coal;
2197
2198        /* Check for valid input */
2199        rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2200        tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2201        rx_max_coal = ecoal->rx_max_coalesced_frames;
2202        tx_max_coal = ecoal->tx_max_coalesced_frames;
2203
2204        /* Translate from packets to multiples of FIFO bytes */
2205        rx_max_coal =
2206            (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2207             / PCK_TH_MULT);
2208        tx_max_coal =
2209            (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2210             / PCK_TH_MULT);
2211
2212        if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2213            (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2214                return -EINVAL;
2215
2216        rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2217                              GET_RXF_TH(priv->rdintcm), rx_max_coal);
2218        tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2219                              tx_max_coal);
2220
2221        priv->rdintcm = rdintcm;
2222        priv->tdintcm = tdintcm;
2223
2224        WRITE_REG(priv, regRDINTCM0, rdintcm);
2225        WRITE_REG(priv, regTDINTCM0, tdintcm);
2226
2227        return 0;
2228}
2229
2230/* Convert RX fifo size to number of pending packets */
2231static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2232{
2233        return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2234}
2235
2236/* Convert TX fifo size to number of pending packets */
2237static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2238{
2239        return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2240}
2241
2242/*
2243 * bdx_get_ringparam - report ring sizes
2244 * @netdev
2245 * @ring
2246 */
2247static void
2248bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2249{
2250        struct bdx_priv *priv = netdev_priv(netdev);
2251
2252        /*max_pending - the maximum-sized FIFO we allow */
2253        ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2254        ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2255        ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2256        ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2257}
2258
2259/*
2260 * bdx_set_ringparam - set ring sizes
2261 * @netdev
2262 * @ring
2263 */
2264static int
2265bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2266{
2267        struct bdx_priv *priv = netdev_priv(netdev);
2268        int rx_size = 0;
2269        int tx_size = 0;
2270
2271        for (; rx_size < 4; rx_size++) {
2272                if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2273                        break;
2274        }
2275        if (rx_size == 4)
2276                rx_size = 3;
2277
2278        for (; tx_size < 4; tx_size++) {
2279                if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2280                        break;
2281        }
2282        if (tx_size == 4)
2283                tx_size = 3;
2284
2285        /*Is there anything to do? */
2286        if ((rx_size == priv->rxf_size) &&
2287            (tx_size == priv->txd_size))
2288                return 0;
2289
2290        priv->rxf_size = rx_size;
2291        if (rx_size > 1)
2292                priv->rxd_size = rx_size - 1;
2293        else
2294                priv->rxd_size = rx_size;
2295
2296        priv->txf_size = priv->txd_size = tx_size;
2297
2298        if (netif_running(netdev)) {
2299                bdx_close(netdev);
2300                bdx_open(netdev);
2301        }
2302        return 0;
2303}
2304
2305/*
2306 * bdx_get_strings - return a set of strings that describe the requested objects
2307 * @netdev
2308 * @data
2309 */
2310static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2311{
2312        switch (stringset) {
2313        case ETH_SS_STATS:
2314                memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2315                break;
2316        }
2317}
2318
2319/*
2320 * bdx_get_sset_count - return number of statistics or tests
2321 * @netdev
2322 */
2323static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2324{
2325        struct bdx_priv *priv = netdev_priv(netdev);
2326
2327        switch (stringset) {
2328        case ETH_SS_STATS:
2329                BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2330                           != sizeof(struct bdx_stats) / sizeof(u64));
2331                return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)  : 0;
2332        }
2333
2334        return -EINVAL;
2335}
2336
2337/*
2338 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2339 * @netdev
2340 * @stats
2341 * @data
2342 */
2343static void bdx_get_ethtool_stats(struct net_device *netdev,
2344                                  struct ethtool_stats *stats, u64 *data)
2345{
2346        struct bdx_priv *priv = netdev_priv(netdev);
2347
2348        if (priv->stats_flag) {
2349
2350                /* Update stats from HW */
2351                bdx_update_stats(priv);
2352
2353                /* Copy data to user buffer */
2354                memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2355        }
2356}
2357
2358/*
2359 * bdx_set_ethtool_ops - ethtool interface implementation
2360 * @netdev
2361 */
2362static void bdx_set_ethtool_ops(struct net_device *netdev)
2363{
2364        static const struct ethtool_ops bdx_ethtool_ops = {
2365                .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2366                                             ETHTOOL_COALESCE_MAX_FRAMES,
2367                .get_drvinfo = bdx_get_drvinfo,
2368                .get_link = ethtool_op_get_link,
2369                .get_coalesce = bdx_get_coalesce,
2370                .set_coalesce = bdx_set_coalesce,
2371                .get_ringparam = bdx_get_ringparam,
2372                .set_ringparam = bdx_set_ringparam,
2373                .get_strings = bdx_get_strings,
2374                .get_sset_count = bdx_get_sset_count,
2375                .get_ethtool_stats = bdx_get_ethtool_stats,
2376                .get_link_ksettings = bdx_get_link_ksettings,
2377        };
2378
2379        netdev->ethtool_ops = &bdx_ethtool_ops;
2380}
2381
2382/**
2383 * bdx_remove - Device Removal Routine
2384 * @pdev: PCI device information struct
2385 *
2386 * bdx_remove is called by the PCI subsystem to alert the driver
2387 * that it should release a PCI device.  The could be caused by a
2388 * Hot-Plug event, or because the driver is going to be removed from
2389 * memory.
2390 **/
2391static void bdx_remove(struct pci_dev *pdev)
2392{
2393        struct pci_nic *nic = pci_get_drvdata(pdev);
2394        struct net_device *ndev;
2395        int port;
2396
2397        for (port = 0; port < nic->port_num; port++) {
2398                ndev = nic->priv[port]->ndev;
2399                unregister_netdev(ndev);
2400                free_netdev(ndev);
2401        }
2402
2403        /*bdx_hw_reset_direct(nic->regs); */
2404#ifdef BDX_MSI
2405        if (nic->irq_type == IRQ_MSI)
2406                pci_disable_msi(pdev);
2407#endif
2408
2409        iounmap(nic->regs);
2410        pci_release_regions(pdev);
2411        pci_disable_device(pdev);
2412        vfree(nic);
2413
2414        RET();
2415}
2416
2417static struct pci_driver bdx_pci_driver = {
2418        .name = BDX_DRV_NAME,
2419        .id_table = bdx_pci_tbl,
2420        .probe = bdx_probe,
2421        .remove = bdx_remove,
2422};
2423
2424/*
2425 * print_driver_id - print parameters of the driver build
2426 */
2427static void __init print_driver_id(void)
2428{
2429        pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2430        pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2431}
2432
2433static int __init bdx_module_init(void)
2434{
2435        ENTER;
2436        init_txd_sizes();
2437        print_driver_id();
2438        RET(pci_register_driver(&bdx_pci_driver));
2439}
2440
2441module_init(bdx_module_init);
2442
2443static void __exit bdx_module_exit(void)
2444{
2445        ENTER;
2446        pci_unregister_driver(&bdx_pci_driver);
2447        RET();
2448}
2449
2450module_exit(bdx_module_exit);
2451
2452MODULE_LICENSE("GPL");
2453MODULE_AUTHOR(DRIVER_AUTHOR);
2454MODULE_DESCRIPTION(BDX_DRV_DESC);
2455MODULE_FIRMWARE("tehuti/bdx.bin");
2456