linux/drivers/net/ethernet/tundra/tsi108_eth.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*******************************************************************************
   3
   4  Copyright(c) 2006 Tundra Semiconductor Corporation.
   5
   6
   7*******************************************************************************/
   8
   9/* This driver is based on the driver code originally developed
  10 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  11 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  12 *
  13 * Currently changes from original version are:
  14 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  15 * - modifications to handle two ports independently and support for
  16 *   additional PHY devices (alexandre.bounine@tundra.com)
  17 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  18 *
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/types.h>
  23#include <linux/interrupt.h>
  24#include <linux/net.h>
  25#include <linux/netdevice.h>
  26#include <linux/etherdevice.h>
  27#include <linux/ethtool.h>
  28#include <linux/skbuff.h>
  29#include <linux/spinlock.h>
  30#include <linux/delay.h>
  31#include <linux/crc32.h>
  32#include <linux/mii.h>
  33#include <linux/device.h>
  34#include <linux/pci.h>
  35#include <linux/rtnetlink.h>
  36#include <linux/timer.h>
  37#include <linux/platform_device.h>
  38#include <linux/gfp.h>
  39
  40#include <asm/io.h>
  41#include <asm/tsi108.h>
  42
  43#include "tsi108_eth.h"
  44
  45#define MII_READ_DELAY 10000    /* max link wait time in msec */
  46
  47#define TSI108_RXRING_LEN     256
  48
  49/* NOTE: The driver currently does not support receiving packets
  50 * larger than the buffer size, so don't decrease this (unless you
  51 * want to add such support).
  52 */
  53#define TSI108_RXBUF_SIZE     1536
  54
  55#define TSI108_TXRING_LEN     256
  56
  57#define TSI108_TX_INT_FREQ    64
  58
  59/* Check the phy status every half a second. */
  60#define CHECK_PHY_INTERVAL (HZ/2)
  61
  62static int tsi108_init_one(struct platform_device *pdev);
  63static int tsi108_ether_remove(struct platform_device *pdev);
  64
  65struct tsi108_prv_data {
  66        void  __iomem *regs;    /* Base of normal regs */
  67        void  __iomem *phyregs; /* Base of register bank used for PHY access */
  68
  69        struct net_device *dev;
  70        struct napi_struct napi;
  71
  72        unsigned int phy;               /* Index of PHY for this interface */
  73        unsigned int irq_num;
  74        unsigned int id;
  75        unsigned int phy_type;
  76
  77        struct timer_list timer;/* Timer that triggers the check phy function */
  78        unsigned int rxtail;    /* Next entry in rxring to read */
  79        unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
  80        unsigned int rxfree;    /* Number of free, allocated RX buffers */
  81
  82        unsigned int rxpending; /* Non-zero if there are still descriptors
  83                                 * to be processed from a previous descriptor
  84                                 * interrupt condition that has been cleared */
  85
  86        unsigned int txtail;    /* Next TX descriptor to check status on */
  87        unsigned int txhead;    /* Next TX descriptor to use */
  88
  89        /* Number of free TX descriptors.  This could be calculated from
  90         * rxhead and rxtail if one descriptor were left unused to disambiguate
  91         * full and empty conditions, but it's simpler to just keep track
  92         * explicitly. */
  93
  94        unsigned int txfree;
  95
  96        unsigned int phy_ok;            /* The PHY is currently powered on. */
  97
  98        /* PHY status (duplex is 1 for half, 2 for full,
  99         * so that the default 0 indicates that neither has
 100         * yet been configured). */
 101
 102        unsigned int link_up;
 103        unsigned int speed;
 104        unsigned int duplex;
 105
 106        tx_desc *txring;
 107        rx_desc *rxring;
 108        struct sk_buff *txskbs[TSI108_TXRING_LEN];
 109        struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 110
 111        dma_addr_t txdma, rxdma;
 112
 113        /* txlock nests in misclock and phy_lock */
 114
 115        spinlock_t txlock, misclock;
 116
 117        /* stats is used to hold the upper bits of each hardware counter,
 118         * and tmpstats is used to hold the full values for returning
 119         * to the caller of get_stats().  They must be separate in case
 120         * an overflow interrupt occurs before the stats are consumed.
 121         */
 122
 123        struct net_device_stats stats;
 124        struct net_device_stats tmpstats;
 125
 126        /* These stats are kept separate in hardware, thus require individual
 127         * fields for handling carry.  They are combined in get_stats.
 128         */
 129
 130        unsigned long rx_fcs;   /* Add to rx_frame_errors */
 131        unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
 132        unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
 133        unsigned long rx_underruns;     /* Add to rx_length_errors */
 134        unsigned long rx_overruns;      /* Add to rx_length_errors */
 135
 136        unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
 137        unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
 138
 139        unsigned long mc_hash[16];
 140        u32 msg_enable;                 /* debug message level */
 141        struct mii_if_info mii_if;
 142        unsigned int init_media;
 143
 144        struct platform_device *pdev;
 145};
 146
 147/* Structure for a device driver */
 148
 149static struct platform_driver tsi_eth_driver = {
 150        .probe = tsi108_init_one,
 151        .remove = tsi108_ether_remove,
 152        .driver = {
 153                .name = "tsi-ethernet",
 154        },
 155};
 156
 157static void tsi108_timed_checker(struct timer_list *t);
 158
 159#ifdef DEBUG
 160static void dump_eth_one(struct net_device *dev)
 161{
 162        struct tsi108_prv_data *data = netdev_priv(dev);
 163
 164        printk("Dumping %s...\n", dev->name);
 165        printk("intstat %x intmask %x phy_ok %d"
 166               " link %d speed %d duplex %d\n",
 167               TSI_READ(TSI108_EC_INTSTAT),
 168               TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 169               data->link_up, data->speed, data->duplex);
 170
 171        printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 172               data->txhead, data->txtail, data->txfree,
 173               TSI_READ(TSI108_EC_TXSTAT),
 174               TSI_READ(TSI108_EC_TXESTAT),
 175               TSI_READ(TSI108_EC_TXERR));
 176
 177        printk("RX: head %d, tail %d, free %d, stat %x,"
 178               " estat %x, err %x, pending %d\n\n",
 179               data->rxhead, data->rxtail, data->rxfree,
 180               TSI_READ(TSI108_EC_RXSTAT),
 181               TSI_READ(TSI108_EC_RXESTAT),
 182               TSI_READ(TSI108_EC_RXERR), data->rxpending);
 183}
 184#endif
 185
 186/* Synchronization is needed between the thread and up/down events.
 187 * Note that the PHY is accessed through the same registers for both
 188 * interfaces, so this can't be made interface-specific.
 189 */
 190
 191static DEFINE_SPINLOCK(phy_lock);
 192
 193static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 194{
 195        unsigned i;
 196
 197        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 198                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 199                                (reg << TSI108_MAC_MII_ADDR_REG));
 200        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 201        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 202        for (i = 0; i < 100; i++) {
 203                if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 204                      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 205                        break;
 206                udelay(10);
 207        }
 208
 209        if (i == 100)
 210                return 0xffff;
 211        else
 212                return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 213}
 214
 215static void tsi108_write_mii(struct tsi108_prv_data *data,
 216                                int reg, u16 val)
 217{
 218        unsigned i = 100;
 219        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 220                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 221                                (reg << TSI108_MAC_MII_ADDR_REG));
 222        TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 223        while (i--) {
 224                if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 225                        TSI108_MAC_MII_IND_BUSY))
 226                        break;
 227                udelay(10);
 228        }
 229}
 230
 231static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 232{
 233        struct tsi108_prv_data *data = netdev_priv(dev);
 234        return tsi108_read_mii(data, reg);
 235}
 236
 237static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 238{
 239        struct tsi108_prv_data *data = netdev_priv(dev);
 240        tsi108_write_mii(data, reg, val);
 241}
 242
 243static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 244                                        int reg, u16 val)
 245{
 246        unsigned i = 1000;
 247        TSI_WRITE(TSI108_MAC_MII_ADDR,
 248                             (0x1e << TSI108_MAC_MII_ADDR_PHY)
 249                             | (reg << TSI108_MAC_MII_ADDR_REG));
 250        TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 251        while(i--) {
 252                if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 253                        return;
 254                udelay(10);
 255        }
 256        printk(KERN_ERR "%s function time out\n", __func__);
 257}
 258
 259static int mii_speed(struct mii_if_info *mii)
 260{
 261        int advert, lpa, val, media;
 262        int lpa2 = 0;
 263        int speed;
 264
 265        if (!mii_link_ok(mii))
 266                return 0;
 267
 268        val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 269        if ((val & BMSR_ANEGCOMPLETE) == 0)
 270                return 0;
 271
 272        advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 273        lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 274        media = mii_nway_result(advert & lpa);
 275
 276        if (mii->supports_gmii)
 277                lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 278
 279        speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 280                        (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 281        return speed;
 282}
 283
 284static void tsi108_check_phy(struct net_device *dev)
 285{
 286        struct tsi108_prv_data *data = netdev_priv(dev);
 287        u32 mac_cfg2_reg, portctrl_reg;
 288        u32 duplex;
 289        u32 speed;
 290        unsigned long flags;
 291
 292        spin_lock_irqsave(&phy_lock, flags);
 293
 294        if (!data->phy_ok)
 295                goto out;
 296
 297        duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 298        data->init_media = 0;
 299
 300        if (netif_carrier_ok(dev)) {
 301
 302                speed = mii_speed(&data->mii_if);
 303
 304                if ((speed != data->speed) || duplex) {
 305
 306                        mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 307                        portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 308
 309                        mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 310
 311                        if (speed == 1000) {
 312                                mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 313                                portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 314                        } else {
 315                                mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 316                                portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 317                        }
 318
 319                        data->speed = speed;
 320
 321                        if (data->mii_if.full_duplex) {
 322                                mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 323                                portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 324                                data->duplex = 2;
 325                        } else {
 326                                mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 327                                portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 328                                data->duplex = 1;
 329                        }
 330
 331                        TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 332                        TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 333                }
 334
 335                if (data->link_up == 0) {
 336                        /* The manual says it can take 3-4 usecs for the speed change
 337                         * to take effect.
 338                         */
 339                        udelay(5);
 340
 341                        spin_lock(&data->txlock);
 342                        if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 343                                netif_wake_queue(dev);
 344
 345                        data->link_up = 1;
 346                        spin_unlock(&data->txlock);
 347                }
 348        } else {
 349                if (data->link_up == 1) {
 350                        netif_stop_queue(dev);
 351                        data->link_up = 0;
 352                        printk(KERN_NOTICE "%s : link is down\n", dev->name);
 353                }
 354
 355                goto out;
 356        }
 357
 358
 359out:
 360        spin_unlock_irqrestore(&phy_lock, flags);
 361}
 362
 363static inline void
 364tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 365                      unsigned long *upper)
 366{
 367        if (carry & carry_bit)
 368                *upper += carry_shift;
 369}
 370
 371static void tsi108_stat_carry(struct net_device *dev)
 372{
 373        struct tsi108_prv_data *data = netdev_priv(dev);
 374        unsigned long flags;
 375        u32 carry1, carry2;
 376
 377        spin_lock_irqsave(&data->misclock, flags);
 378
 379        carry1 = TSI_READ(TSI108_STAT_CARRY1);
 380        carry2 = TSI_READ(TSI108_STAT_CARRY2);
 381
 382        TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 383        TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 384
 385        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 386                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 387
 388        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 389                              TSI108_STAT_RXPKTS_CARRY,
 390                              &data->stats.rx_packets);
 391
 392        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 393                              TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 394
 395        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 396                              TSI108_STAT_RXMCAST_CARRY,
 397                              &data->stats.multicast);
 398
 399        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 400                              TSI108_STAT_RXALIGN_CARRY,
 401                              &data->stats.rx_frame_errors);
 402
 403        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 404                              TSI108_STAT_RXLENGTH_CARRY,
 405                              &data->stats.rx_length_errors);
 406
 407        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 408                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 409
 410        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 411                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 412
 413        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 414                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 415
 416        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 417                              TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 418
 419        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 420                              TSI108_STAT_RXDROP_CARRY,
 421                              &data->stats.rx_missed_errors);
 422
 423        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 424                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 425
 426        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 427                              TSI108_STAT_TXPKTS_CARRY,
 428                              &data->stats.tx_packets);
 429
 430        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 431                              TSI108_STAT_TXEXDEF_CARRY,
 432                              &data->stats.tx_aborted_errors);
 433
 434        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 435                              TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 436
 437        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 438                              TSI108_STAT_TXTCOL_CARRY,
 439                              &data->stats.collisions);
 440
 441        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 442                              TSI108_STAT_TXPAUSEDROP_CARRY,
 443                              &data->tx_pause_drop);
 444
 445        spin_unlock_irqrestore(&data->misclock, flags);
 446}
 447
 448/* Read a stat counter atomically with respect to carries.
 449 * data->misclock must be held.
 450 */
 451static inline unsigned long
 452tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 453                 int carry_shift, unsigned long *upper)
 454{
 455        int carryreg;
 456        unsigned long val;
 457
 458        if (reg < 0xb0)
 459                carryreg = TSI108_STAT_CARRY1;
 460        else
 461                carryreg = TSI108_STAT_CARRY2;
 462
 463      again:
 464        val = TSI_READ(reg) | *upper;
 465
 466        /* Check to see if it overflowed, but the interrupt hasn't
 467         * been serviced yet.  If so, handle the carry here, and
 468         * try again.
 469         */
 470
 471        if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 472                *upper += carry_shift;
 473                TSI_WRITE(carryreg, carry_bit);
 474                goto again;
 475        }
 476
 477        return val;
 478}
 479
 480static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 481{
 482        unsigned long excol;
 483
 484        struct tsi108_prv_data *data = netdev_priv(dev);
 485        spin_lock_irq(&data->misclock);
 486
 487        data->tmpstats.rx_packets =
 488            tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 489                             TSI108_STAT_CARRY1_RXPKTS,
 490                             TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 491
 492        data->tmpstats.tx_packets =
 493            tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 494                             TSI108_STAT_CARRY2_TXPKTS,
 495                             TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 496
 497        data->tmpstats.rx_bytes =
 498            tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 499                             TSI108_STAT_CARRY1_RXBYTES,
 500                             TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 501
 502        data->tmpstats.tx_bytes =
 503            tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 504                             TSI108_STAT_CARRY2_TXBYTES,
 505                             TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 506
 507        data->tmpstats.multicast =
 508            tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 509                             TSI108_STAT_CARRY1_RXMCAST,
 510                             TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 511
 512        excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 513                                 TSI108_STAT_CARRY2_TXEXCOL,
 514                                 TSI108_STAT_TXEXCOL_CARRY,
 515                                 &data->tx_coll_abort);
 516
 517        data->tmpstats.collisions =
 518            tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 519                             TSI108_STAT_CARRY2_TXTCOL,
 520                             TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 521
 522        data->tmpstats.collisions += excol;
 523
 524        data->tmpstats.rx_length_errors =
 525            tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 526                             TSI108_STAT_CARRY1_RXLENGTH,
 527                             TSI108_STAT_RXLENGTH_CARRY,
 528                             &data->stats.rx_length_errors);
 529
 530        data->tmpstats.rx_length_errors +=
 531            tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 532                             TSI108_STAT_CARRY1_RXRUNT,
 533                             TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 534
 535        data->tmpstats.rx_length_errors +=
 536            tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 537                             TSI108_STAT_CARRY1_RXJUMBO,
 538                             TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 539
 540        data->tmpstats.rx_frame_errors =
 541            tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 542                             TSI108_STAT_CARRY1_RXALIGN,
 543                             TSI108_STAT_RXALIGN_CARRY,
 544                             &data->stats.rx_frame_errors);
 545
 546        data->tmpstats.rx_frame_errors +=
 547            tsi108_read_stat(data, TSI108_STAT_RXFCS,
 548                             TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 549                             &data->rx_fcs);
 550
 551        data->tmpstats.rx_frame_errors +=
 552            tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 553                             TSI108_STAT_CARRY1_RXFRAG,
 554                             TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 555
 556        data->tmpstats.rx_missed_errors =
 557            tsi108_read_stat(data, TSI108_STAT_RXDROP,
 558                             TSI108_STAT_CARRY1_RXDROP,
 559                             TSI108_STAT_RXDROP_CARRY,
 560                             &data->stats.rx_missed_errors);
 561
 562        /* These three are maintained by software. */
 563        data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 564        data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 565
 566        data->tmpstats.tx_aborted_errors =
 567            tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 568                             TSI108_STAT_CARRY2_TXEXDEF,
 569                             TSI108_STAT_TXEXDEF_CARRY,
 570                             &data->stats.tx_aborted_errors);
 571
 572        data->tmpstats.tx_aborted_errors +=
 573            tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 574                             TSI108_STAT_CARRY2_TXPAUSE,
 575                             TSI108_STAT_TXPAUSEDROP_CARRY,
 576                             &data->tx_pause_drop);
 577
 578        data->tmpstats.tx_aborted_errors += excol;
 579
 580        data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 581        data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 582            data->tmpstats.rx_crc_errors +
 583            data->tmpstats.rx_frame_errors +
 584            data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 585
 586        spin_unlock_irq(&data->misclock);
 587        return &data->tmpstats;
 588}
 589
 590static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 591{
 592        TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 593                             TSI108_EC_RXQ_PTRHIGH_VALID);
 594
 595        TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 596                             | TSI108_EC_RXCTRL_QUEUE0);
 597}
 598
 599static void tsi108_restart_tx(struct tsi108_prv_data * data)
 600{
 601        TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 602                             TSI108_EC_TXQ_PTRHIGH_VALID);
 603
 604        TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 605                             TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 606}
 607
 608/* txlock must be held by caller, with IRQs disabled, and
 609 * with permission to re-enable them when the lock is dropped.
 610 */
 611static void tsi108_complete_tx(struct net_device *dev)
 612{
 613        struct tsi108_prv_data *data = netdev_priv(dev);
 614        int tx;
 615        struct sk_buff *skb;
 616        int release = 0;
 617
 618        while (!data->txfree || data->txhead != data->txtail) {
 619                tx = data->txtail;
 620
 621                if (data->txring[tx].misc & TSI108_TX_OWN)
 622                        break;
 623
 624                skb = data->txskbs[tx];
 625
 626                if (!(data->txring[tx].misc & TSI108_TX_OK))
 627                        printk("%s: bad tx packet, misc %x\n",
 628                               dev->name, data->txring[tx].misc);
 629
 630                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 631                data->txfree++;
 632
 633                if (data->txring[tx].misc & TSI108_TX_EOF) {
 634                        dev_kfree_skb_any(skb);
 635                        release++;
 636                }
 637        }
 638
 639        if (release) {
 640                if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 641                        netif_wake_queue(dev);
 642        }
 643}
 644
 645static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 646{
 647        struct tsi108_prv_data *data = netdev_priv(dev);
 648        int frags = skb_shinfo(skb)->nr_frags + 1;
 649        int i;
 650
 651        if (!data->phy_ok && net_ratelimit())
 652                printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 653
 654        if (!data->link_up) {
 655                printk(KERN_ERR "%s: Transmit while link is down!\n",
 656                       dev->name);
 657                netif_stop_queue(dev);
 658                return NETDEV_TX_BUSY;
 659        }
 660
 661        if (data->txfree < MAX_SKB_FRAGS + 1) {
 662                netif_stop_queue(dev);
 663
 664                if (net_ratelimit())
 665                        printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 666                               dev->name);
 667                return NETDEV_TX_BUSY;
 668        }
 669
 670        if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 671                netif_stop_queue(dev);
 672        }
 673
 674        spin_lock_irq(&data->txlock);
 675
 676        for (i = 0; i < frags; i++) {
 677                int misc = 0;
 678                int tx = data->txhead;
 679
 680                /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 681                 * the interrupt bit.  TX descriptor-complete interrupts are
 682                 * enabled when the queue fills up, and masked when there is
 683                 * still free space.  This way, when saturating the outbound
 684                 * link, the tx interrupts are kept to a reasonable level.
 685                 * When the queue is not full, reclamation of skbs still occurs
 686                 * as new packets are transmitted, or on a queue-empty
 687                 * interrupt.
 688                 */
 689
 690                if ((tx % TSI108_TX_INT_FREQ == 0) &&
 691                    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 692                        misc = TSI108_TX_INT;
 693
 694                data->txskbs[tx] = skb;
 695
 696                if (i == 0) {
 697                        data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
 698                                        skb->data, skb_headlen(skb),
 699                                        DMA_TO_DEVICE);
 700                        data->txring[tx].len = skb_headlen(skb);
 701                        misc |= TSI108_TX_SOF;
 702                } else {
 703                        const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 704
 705                        data->txring[tx].buf0 =
 706                                skb_frag_dma_map(&data->pdev->dev, frag,
 707                                                0, skb_frag_size(frag),
 708                                                DMA_TO_DEVICE);
 709                        data->txring[tx].len = skb_frag_size(frag);
 710                }
 711
 712                if (i == frags - 1)
 713                        misc |= TSI108_TX_EOF;
 714
 715                if (netif_msg_pktdata(data)) {
 716                        int i;
 717                        printk("%s: Tx Frame contents (%d)\n", dev->name,
 718                               skb->len);
 719                        for (i = 0; i < skb->len; i++)
 720                                printk(" %2.2x", skb->data[i]);
 721                        printk(".\n");
 722                }
 723                data->txring[tx].misc = misc | TSI108_TX_OWN;
 724
 725                data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 726                data->txfree--;
 727        }
 728
 729        tsi108_complete_tx(dev);
 730
 731        /* This must be done after the check for completed tx descriptors,
 732         * so that the tail pointer is correct.
 733         */
 734
 735        if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 736                tsi108_restart_tx(data);
 737
 738        spin_unlock_irq(&data->txlock);
 739        return NETDEV_TX_OK;
 740}
 741
 742static int tsi108_complete_rx(struct net_device *dev, int budget)
 743{
 744        struct tsi108_prv_data *data = netdev_priv(dev);
 745        int done = 0;
 746
 747        while (data->rxfree && done != budget) {
 748                int rx = data->rxtail;
 749                struct sk_buff *skb;
 750
 751                if (data->rxring[rx].misc & TSI108_RX_OWN)
 752                        break;
 753
 754                skb = data->rxskbs[rx];
 755                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 756                data->rxfree--;
 757                done++;
 758
 759                if (data->rxring[rx].misc & TSI108_RX_BAD) {
 760                        spin_lock_irq(&data->misclock);
 761
 762                        if (data->rxring[rx].misc & TSI108_RX_CRC)
 763                                data->stats.rx_crc_errors++;
 764                        if (data->rxring[rx].misc & TSI108_RX_OVER)
 765                                data->stats.rx_fifo_errors++;
 766
 767                        spin_unlock_irq(&data->misclock);
 768
 769                        dev_kfree_skb_any(skb);
 770                        continue;
 771                }
 772                if (netif_msg_pktdata(data)) {
 773                        int i;
 774                        printk("%s: Rx Frame contents (%d)\n",
 775                               dev->name, data->rxring[rx].len);
 776                        for (i = 0; i < data->rxring[rx].len; i++)
 777                                printk(" %2.2x", skb->data[i]);
 778                        printk(".\n");
 779                }
 780
 781                skb_put(skb, data->rxring[rx].len);
 782                skb->protocol = eth_type_trans(skb, dev);
 783                netif_receive_skb(skb);
 784        }
 785
 786        return done;
 787}
 788
 789static int tsi108_refill_rx(struct net_device *dev, int budget)
 790{
 791        struct tsi108_prv_data *data = netdev_priv(dev);
 792        int done = 0;
 793
 794        while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 795                int rx = data->rxhead;
 796                struct sk_buff *skb;
 797
 798                skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 799                data->rxskbs[rx] = skb;
 800                if (!skb)
 801                        break;
 802
 803                data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
 804                                skb->data, TSI108_RX_SKB_SIZE,
 805                                DMA_FROM_DEVICE);
 806
 807                /* Sometimes the hardware sets blen to zero after packet
 808                 * reception, even though the manual says that it's only ever
 809                 * modified by the driver.
 810                 */
 811
 812                data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 813                data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 814
 815                data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 816                data->rxfree++;
 817                done++;
 818        }
 819
 820        if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 821                           TSI108_EC_RXSTAT_QUEUE0))
 822                tsi108_restart_rx(data, dev);
 823
 824        return done;
 825}
 826
 827static int tsi108_poll(struct napi_struct *napi, int budget)
 828{
 829        struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 830        struct net_device *dev = data->dev;
 831        u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 832        u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 833        int num_received = 0, num_filled = 0;
 834
 835        intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 836            TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 837
 838        TSI_WRITE(TSI108_EC_RXESTAT, estat);
 839        TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 840
 841        if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 842                num_received = tsi108_complete_rx(dev, budget);
 843
 844        /* This should normally fill no more slots than the number of
 845         * packets received in tsi108_complete_rx().  The exception
 846         * is when we previously ran out of memory for RX SKBs.  In that
 847         * case, it's helpful to obey the budget, not only so that the
 848         * CPU isn't hogged, but so that memory (which may still be low)
 849         * is not hogged by one device.
 850         *
 851         * A work unit is considered to be two SKBs to allow us to catch
 852         * up when the ring has shrunk due to out-of-memory but we're
 853         * still removing the full budget's worth of packets each time.
 854         */
 855
 856        if (data->rxfree < TSI108_RXRING_LEN)
 857                num_filled = tsi108_refill_rx(dev, budget * 2);
 858
 859        if (intstat & TSI108_INT_RXERROR) {
 860                u32 err = TSI_READ(TSI108_EC_RXERR);
 861                TSI_WRITE(TSI108_EC_RXERR, err);
 862
 863                if (err) {
 864                        if (net_ratelimit())
 865                                printk(KERN_DEBUG "%s: RX error %x\n",
 866                                       dev->name, err);
 867
 868                        if (!(TSI_READ(TSI108_EC_RXSTAT) &
 869                              TSI108_EC_RXSTAT_QUEUE0))
 870                                tsi108_restart_rx(data, dev);
 871                }
 872        }
 873
 874        if (intstat & TSI108_INT_RXOVERRUN) {
 875                spin_lock_irq(&data->misclock);
 876                data->stats.rx_fifo_errors++;
 877                spin_unlock_irq(&data->misclock);
 878        }
 879
 880        if (num_received < budget) {
 881                data->rxpending = 0;
 882                napi_complete_done(napi, num_received);
 883
 884                TSI_WRITE(TSI108_EC_INTMASK,
 885                                     TSI_READ(TSI108_EC_INTMASK)
 886                                     & ~(TSI108_INT_RXQUEUE0
 887                                         | TSI108_INT_RXTHRESH |
 888                                         TSI108_INT_RXOVERRUN |
 889                                         TSI108_INT_RXERROR |
 890                                         TSI108_INT_RXWAIT));
 891        } else {
 892                data->rxpending = 1;
 893        }
 894
 895        return num_received;
 896}
 897
 898static void tsi108_rx_int(struct net_device *dev)
 899{
 900        struct tsi108_prv_data *data = netdev_priv(dev);
 901
 902        /* A race could cause dev to already be scheduled, so it's not an
 903         * error if that happens (and interrupts shouldn't be re-masked,
 904         * because that can cause harmful races, if poll has already
 905         * unmasked them but not cleared LINK_STATE_SCHED).
 906         *
 907         * This can happen if this code races with tsi108_poll(), which masks
 908         * the interrupts after tsi108_irq_one() read the mask, but before
 909         * napi_schedule is called.  It could also happen due to calls
 910         * from tsi108_check_rxring().
 911         */
 912
 913        if (napi_schedule_prep(&data->napi)) {
 914                /* Mask, rather than ack, the receive interrupts.  The ack
 915                 * will happen in tsi108_poll().
 916                 */
 917
 918                TSI_WRITE(TSI108_EC_INTMASK,
 919                                     TSI_READ(TSI108_EC_INTMASK) |
 920                                     TSI108_INT_RXQUEUE0
 921                                     | TSI108_INT_RXTHRESH |
 922                                     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 923                                     TSI108_INT_RXWAIT);
 924                __napi_schedule(&data->napi);
 925        } else {
 926                if (!netif_running(dev)) {
 927                        /* This can happen if an interrupt occurs while the
 928                         * interface is being brought down, as the START
 929                         * bit is cleared before the stop function is called.
 930                         *
 931                         * In this case, the interrupts must be masked, or
 932                         * they will continue indefinitely.
 933                         *
 934                         * There's a race here if the interface is brought down
 935                         * and then up in rapid succession, as the device could
 936                         * be made running after the above check and before
 937                         * the masking below.  This will only happen if the IRQ
 938                         * thread has a lower priority than the task brining
 939                         * up the interface.  Fixing this race would likely
 940                         * require changes in generic code.
 941                         */
 942
 943                        TSI_WRITE(TSI108_EC_INTMASK,
 944                                             TSI_READ
 945                                             (TSI108_EC_INTMASK) |
 946                                             TSI108_INT_RXQUEUE0 |
 947                                             TSI108_INT_RXTHRESH |
 948                                             TSI108_INT_RXOVERRUN |
 949                                             TSI108_INT_RXERROR |
 950                                             TSI108_INT_RXWAIT);
 951                }
 952        }
 953}
 954
 955/* If the RX ring has run out of memory, try periodically
 956 * to allocate some more, as otherwise poll would never
 957 * get called (apart from the initial end-of-queue condition).
 958 *
 959 * This is called once per second (by default) from the thread.
 960 */
 961
 962static void tsi108_check_rxring(struct net_device *dev)
 963{
 964        struct tsi108_prv_data *data = netdev_priv(dev);
 965
 966        /* A poll is scheduled, as opposed to caling tsi108_refill_rx
 967         * directly, so as to keep the receive path single-threaded
 968         * (and thus not needing a lock).
 969         */
 970
 971        if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 972                tsi108_rx_int(dev);
 973}
 974
 975static void tsi108_tx_int(struct net_device *dev)
 976{
 977        struct tsi108_prv_data *data = netdev_priv(dev);
 978        u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 979
 980        TSI_WRITE(TSI108_EC_TXESTAT, estat);
 981        TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 982                             TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 983        if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 984                u32 err = TSI_READ(TSI108_EC_TXERR);
 985                TSI_WRITE(TSI108_EC_TXERR, err);
 986
 987                if (err && net_ratelimit())
 988                        printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
 989        }
 990
 991        if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
 992                spin_lock(&data->txlock);
 993                tsi108_complete_tx(dev);
 994                spin_unlock(&data->txlock);
 995        }
 996}
 997
 998
 999static irqreturn_t tsi108_irq(int irq, void *dev_id)
1000{
1001        struct net_device *dev = dev_id;
1002        struct tsi108_prv_data *data = netdev_priv(dev);
1003        u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1004
1005        if (!(stat & TSI108_INT_ANY))
1006                return IRQ_NONE;        /* Not our interrupt */
1007
1008        stat &= ~TSI_READ(TSI108_EC_INTMASK);
1009
1010        if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1011                    TSI108_INT_TXERROR))
1012                tsi108_tx_int(dev);
1013        if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1014                    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1015                    TSI108_INT_RXERROR))
1016                tsi108_rx_int(dev);
1017
1018        if (stat & TSI108_INT_SFN) {
1019                if (net_ratelimit())
1020                        printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1021                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1022        }
1023
1024        if (stat & TSI108_INT_STATCARRY) {
1025                tsi108_stat_carry(dev);
1026                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1027        }
1028
1029        return IRQ_HANDLED;
1030}
1031
1032static void tsi108_stop_ethernet(struct net_device *dev)
1033{
1034        struct tsi108_prv_data *data = netdev_priv(dev);
1035        int i = 1000;
1036        /* Disable all TX and RX queues ... */
1037        TSI_WRITE(TSI108_EC_TXCTRL, 0);
1038        TSI_WRITE(TSI108_EC_RXCTRL, 0);
1039
1040        /* ...and wait for them to become idle */
1041        while(i--) {
1042                if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1043                        break;
1044                udelay(10);
1045        }
1046        i = 1000;
1047        while(i--){
1048                if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1049                        return;
1050                udelay(10);
1051        }
1052        printk(KERN_ERR "%s function time out\n", __func__);
1053}
1054
1055static void tsi108_reset_ether(struct tsi108_prv_data * data)
1056{
1057        TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1058        udelay(100);
1059        TSI_WRITE(TSI108_MAC_CFG1, 0);
1060
1061        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1062        udelay(100);
1063        TSI_WRITE(TSI108_EC_PORTCTRL,
1064                             TSI_READ(TSI108_EC_PORTCTRL) &
1065                             ~TSI108_EC_PORTCTRL_STATRST);
1066
1067        TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1068        udelay(100);
1069        TSI_WRITE(TSI108_EC_TXCFG,
1070                             TSI_READ(TSI108_EC_TXCFG) &
1071                             ~TSI108_EC_TXCFG_RST);
1072
1073        TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1074        udelay(100);
1075        TSI_WRITE(TSI108_EC_RXCFG,
1076                             TSI_READ(TSI108_EC_RXCFG) &
1077                             ~TSI108_EC_RXCFG_RST);
1078
1079        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1080                             TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1081                             TSI108_MAC_MII_MGMT_RST);
1082        udelay(100);
1083        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1084                             (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1085                             ~(TSI108_MAC_MII_MGMT_RST |
1086                               TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1087}
1088
1089static int tsi108_get_mac(struct net_device *dev)
1090{
1091        struct tsi108_prv_data *data = netdev_priv(dev);
1092        u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1093        u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1094
1095        /* Note that the octets are reversed from what the manual says,
1096         * producing an even weirder ordering...
1097         */
1098        if (word2 == 0 && word1 == 0) {
1099                dev->dev_addr[0] = 0x00;
1100                dev->dev_addr[1] = 0x06;
1101                dev->dev_addr[2] = 0xd2;
1102                dev->dev_addr[3] = 0x00;
1103                dev->dev_addr[4] = 0x00;
1104                if (0x8 == data->phy)
1105                        dev->dev_addr[5] = 0x01;
1106                else
1107                        dev->dev_addr[5] = 0x02;
1108
1109                word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1110
1111                word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1112                    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1113
1114                TSI_WRITE(TSI108_MAC_ADDR1, word1);
1115                TSI_WRITE(TSI108_MAC_ADDR2, word2);
1116        } else {
1117                dev->dev_addr[0] = (word2 >> 16) & 0xff;
1118                dev->dev_addr[1] = (word2 >> 24) & 0xff;
1119                dev->dev_addr[2] = (word1 >> 0) & 0xff;
1120                dev->dev_addr[3] = (word1 >> 8) & 0xff;
1121                dev->dev_addr[4] = (word1 >> 16) & 0xff;
1122                dev->dev_addr[5] = (word1 >> 24) & 0xff;
1123        }
1124
1125        if (!is_valid_ether_addr(dev->dev_addr)) {
1126                printk(KERN_ERR
1127                       "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1128                       dev->name, word1, word2);
1129                return -EINVAL;
1130        }
1131
1132        return 0;
1133}
1134
1135static int tsi108_set_mac(struct net_device *dev, void *addr)
1136{
1137        struct tsi108_prv_data *data = netdev_priv(dev);
1138        u32 word1, word2;
1139        int i;
1140
1141        if (!is_valid_ether_addr(addr))
1142                return -EADDRNOTAVAIL;
1143
1144        for (i = 0; i < 6; i++)
1145                /* +2 is for the offset of the HW addr type */
1146                dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1147
1148        word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1149
1150        word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1151            (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1152
1153        spin_lock_irq(&data->misclock);
1154        TSI_WRITE(TSI108_MAC_ADDR1, word1);
1155        TSI_WRITE(TSI108_MAC_ADDR2, word2);
1156        spin_lock(&data->txlock);
1157
1158        if (data->txfree && data->link_up)
1159                netif_wake_queue(dev);
1160
1161        spin_unlock(&data->txlock);
1162        spin_unlock_irq(&data->misclock);
1163        return 0;
1164}
1165
1166/* Protected by dev->xmit_lock. */
1167static void tsi108_set_rx_mode(struct net_device *dev)
1168{
1169        struct tsi108_prv_data *data = netdev_priv(dev);
1170        u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1171
1172        if (dev->flags & IFF_PROMISC) {
1173                rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1174                rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1175                goto out;
1176        }
1177
1178        rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1179
1180        if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1181                int i;
1182                struct netdev_hw_addr *ha;
1183                rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1184
1185                memset(data->mc_hash, 0, sizeof(data->mc_hash));
1186
1187                netdev_for_each_mc_addr(ha, dev) {
1188                        u32 hash, crc;
1189
1190                        crc = ether_crc(6, ha->addr);
1191                        hash = crc >> 23;
1192                        __set_bit(hash, &data->mc_hash[0]);
1193                }
1194
1195                TSI_WRITE(TSI108_EC_HASHADDR,
1196                                     TSI108_EC_HASHADDR_AUTOINC |
1197                                     TSI108_EC_HASHADDR_MCAST);
1198
1199                for (i = 0; i < 16; i++) {
1200                        /* The manual says that the hardware may drop
1201                         * back-to-back writes to the data register.
1202                         */
1203                        udelay(1);
1204                        TSI_WRITE(TSI108_EC_HASHDATA,
1205                                             data->mc_hash[i]);
1206                }
1207        }
1208
1209      out:
1210        TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1211}
1212
1213static void tsi108_init_phy(struct net_device *dev)
1214{
1215        struct tsi108_prv_data *data = netdev_priv(dev);
1216        u32 i = 0;
1217        u16 phyval = 0;
1218        unsigned long flags;
1219
1220        spin_lock_irqsave(&phy_lock, flags);
1221
1222        tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1223        while (--i) {
1224                if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1225                        break;
1226                udelay(10);
1227        }
1228        if (i == 0)
1229                printk(KERN_ERR "%s function time out\n", __func__);
1230
1231        if (data->phy_type == TSI108_PHY_BCM54XX) {
1232                tsi108_write_mii(data, 0x09, 0x0300);
1233                tsi108_write_mii(data, 0x10, 0x1020);
1234                tsi108_write_mii(data, 0x1c, 0x8c00);
1235        }
1236
1237        tsi108_write_mii(data,
1238                         MII_BMCR,
1239                         BMCR_ANENABLE | BMCR_ANRESTART);
1240        while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1241                cpu_relax();
1242
1243        /* Set G/MII mode and receive clock select in TBI control #2.  The
1244         * second port won't work if this isn't done, even though we don't
1245         * use TBI mode.
1246         */
1247
1248        tsi108_write_tbi(data, 0x11, 0x30);
1249
1250        /* FIXME: It seems to take more than 2 back-to-back reads to the
1251         * PHY_STAT register before the link up status bit is set.
1252         */
1253
1254        data->link_up = 0;
1255
1256        while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1257                 BMSR_LSTATUS)) {
1258                if (i++ > (MII_READ_DELAY / 10)) {
1259                        break;
1260                }
1261                spin_unlock_irqrestore(&phy_lock, flags);
1262                msleep(10);
1263                spin_lock_irqsave(&phy_lock, flags);
1264        }
1265
1266        data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1267        printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1268        data->phy_ok = 1;
1269        data->init_media = 1;
1270        spin_unlock_irqrestore(&phy_lock, flags);
1271}
1272
1273static void tsi108_kill_phy(struct net_device *dev)
1274{
1275        struct tsi108_prv_data *data = netdev_priv(dev);
1276        unsigned long flags;
1277
1278        spin_lock_irqsave(&phy_lock, flags);
1279        tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1280        data->phy_ok = 0;
1281        spin_unlock_irqrestore(&phy_lock, flags);
1282}
1283
1284static int tsi108_open(struct net_device *dev)
1285{
1286        int i;
1287        struct tsi108_prv_data *data = netdev_priv(dev);
1288        unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1289        unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1290
1291        i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1292        if (i != 0) {
1293                printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1294                       data->id, data->irq_num);
1295                return i;
1296        } else {
1297                dev->irq = data->irq_num;
1298                printk(KERN_NOTICE
1299                       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1300                       data->id, dev->irq, dev->name);
1301        }
1302
1303        data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1304                                          &data->rxdma, GFP_KERNEL);
1305        if (!data->rxring)
1306                return -ENOMEM;
1307
1308        data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1309                                          &data->txdma, GFP_KERNEL);
1310        if (!data->txring) {
1311                dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1312                                    data->rxdma);
1313                return -ENOMEM;
1314        }
1315
1316        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1317                data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1318                data->rxring[i].blen = TSI108_RXBUF_SIZE;
1319                data->rxring[i].vlan = 0;
1320        }
1321
1322        data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1323
1324        data->rxtail = 0;
1325        data->rxhead = 0;
1326
1327        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328                struct sk_buff *skb;
1329
1330                skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1331                if (!skb) {
1332                        /* Bah.  No memory for now, but maybe we'll get
1333                         * some more later.
1334                         * For now, we'll live with the smaller ring.
1335                         */
1336                        printk(KERN_WARNING
1337                               "%s: Could only allocate %d receive skb(s).\n",
1338                               dev->name, i);
1339                        data->rxhead = i;
1340                        break;
1341                }
1342
1343                data->rxskbs[i] = skb;
1344                data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1345                data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1346        }
1347
1348        data->rxfree = i;
1349        TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1350
1351        for (i = 0; i < TSI108_TXRING_LEN; i++) {
1352                data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1353                data->txring[i].misc = 0;
1354        }
1355
1356        data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1357        data->txtail = 0;
1358        data->txhead = 0;
1359        data->txfree = TSI108_TXRING_LEN;
1360        TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1361        tsi108_init_phy(dev);
1362
1363        napi_enable(&data->napi);
1364
1365        timer_setup(&data->timer, tsi108_timed_checker, 0);
1366        mod_timer(&data->timer, jiffies + 1);
1367
1368        tsi108_restart_rx(data, dev);
1369
1370        TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1371
1372        TSI_WRITE(TSI108_EC_INTMASK,
1373                             ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1374                               TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1375                               TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1376                               TSI108_INT_SFN | TSI108_INT_STATCARRY));
1377
1378        TSI_WRITE(TSI108_MAC_CFG1,
1379                             TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1380        netif_start_queue(dev);
1381        return 0;
1382}
1383
1384static int tsi108_close(struct net_device *dev)
1385{
1386        struct tsi108_prv_data *data = netdev_priv(dev);
1387
1388        netif_stop_queue(dev);
1389        napi_disable(&data->napi);
1390
1391        del_timer_sync(&data->timer);
1392
1393        tsi108_stop_ethernet(dev);
1394        tsi108_kill_phy(dev);
1395        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1396        TSI_WRITE(TSI108_MAC_CFG1, 0);
1397
1398        /* Check for any pending TX packets, and drop them. */
1399
1400        while (!data->txfree || data->txhead != data->txtail) {
1401                int tx = data->txtail;
1402                struct sk_buff *skb;
1403                skb = data->txskbs[tx];
1404                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1405                data->txfree++;
1406                dev_kfree_skb(skb);
1407        }
1408
1409        free_irq(data->irq_num, dev);
1410
1411        /* Discard the RX ring. */
1412
1413        while (data->rxfree) {
1414                int rx = data->rxtail;
1415                struct sk_buff *skb;
1416
1417                skb = data->rxskbs[rx];
1418                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1419                data->rxfree--;
1420                dev_kfree_skb(skb);
1421        }
1422
1423        dma_free_coherent(&data->pdev->dev,
1424                            TSI108_RXRING_LEN * sizeof(rx_desc),
1425                            data->rxring, data->rxdma);
1426        dma_free_coherent(&data->pdev->dev,
1427                            TSI108_TXRING_LEN * sizeof(tx_desc),
1428                            data->txring, data->txdma);
1429
1430        return 0;
1431}
1432
1433static void tsi108_init_mac(struct net_device *dev)
1434{
1435        struct tsi108_prv_data *data = netdev_priv(dev);
1436
1437        TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1438                             TSI108_MAC_CFG2_PADCRC);
1439
1440        TSI_WRITE(TSI108_EC_TXTHRESH,
1441                             (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1442                             (192 << TSI108_EC_TXTHRESH_STOPFILL));
1443
1444        TSI_WRITE(TSI108_STAT_CARRYMASK1,
1445                             ~(TSI108_STAT_CARRY1_RXBYTES |
1446                               TSI108_STAT_CARRY1_RXPKTS |
1447                               TSI108_STAT_CARRY1_RXFCS |
1448                               TSI108_STAT_CARRY1_RXMCAST |
1449                               TSI108_STAT_CARRY1_RXALIGN |
1450                               TSI108_STAT_CARRY1_RXLENGTH |
1451                               TSI108_STAT_CARRY1_RXRUNT |
1452                               TSI108_STAT_CARRY1_RXJUMBO |
1453                               TSI108_STAT_CARRY1_RXFRAG |
1454                               TSI108_STAT_CARRY1_RXJABBER |
1455                               TSI108_STAT_CARRY1_RXDROP));
1456
1457        TSI_WRITE(TSI108_STAT_CARRYMASK2,
1458                             ~(TSI108_STAT_CARRY2_TXBYTES |
1459                               TSI108_STAT_CARRY2_TXPKTS |
1460                               TSI108_STAT_CARRY2_TXEXDEF |
1461                               TSI108_STAT_CARRY2_TXEXCOL |
1462                               TSI108_STAT_CARRY2_TXTCOL |
1463                               TSI108_STAT_CARRY2_TXPAUSE));
1464
1465        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1466        TSI_WRITE(TSI108_MAC_CFG1, 0);
1467
1468        TSI_WRITE(TSI108_EC_RXCFG,
1469                             TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1470
1471        TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1472                             TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1473                             TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1474                                                TSI108_EC_TXQ_CFG_SFNPORT));
1475
1476        TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1477                             TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1478                             TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1479                                                TSI108_EC_RXQ_CFG_SFNPORT));
1480
1481        TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1482                             TSI108_EC_TXQ_BUFCFG_BURST256 |
1483                             TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1484                                                TSI108_EC_TXQ_BUFCFG_SFNPORT));
1485
1486        TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1487                             TSI108_EC_RXQ_BUFCFG_BURST256 |
1488                             TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1489                                                TSI108_EC_RXQ_BUFCFG_SFNPORT));
1490
1491        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1492}
1493
1494static int tsi108_get_link_ksettings(struct net_device *dev,
1495                                     struct ethtool_link_ksettings *cmd)
1496{
1497        struct tsi108_prv_data *data = netdev_priv(dev);
1498        unsigned long flags;
1499
1500        spin_lock_irqsave(&data->txlock, flags);
1501        mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1502        spin_unlock_irqrestore(&data->txlock, flags);
1503
1504        return 0;
1505}
1506
1507static int tsi108_set_link_ksettings(struct net_device *dev,
1508                                     const struct ethtool_link_ksettings *cmd)
1509{
1510        struct tsi108_prv_data *data = netdev_priv(dev);
1511        unsigned long flags;
1512        int rc;
1513
1514        spin_lock_irqsave(&data->txlock, flags);
1515        rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1516        spin_unlock_irqrestore(&data->txlock, flags);
1517
1518        return rc;
1519}
1520
1521static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1522{
1523        struct tsi108_prv_data *data = netdev_priv(dev);
1524        if (!netif_running(dev))
1525                return -EINVAL;
1526        return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1527}
1528
1529static const struct ethtool_ops tsi108_ethtool_ops = {
1530        .get_link       = ethtool_op_get_link,
1531        .get_link_ksettings     = tsi108_get_link_ksettings,
1532        .set_link_ksettings     = tsi108_set_link_ksettings,
1533};
1534
1535static const struct net_device_ops tsi108_netdev_ops = {
1536        .ndo_open               = tsi108_open,
1537        .ndo_stop               = tsi108_close,
1538        .ndo_start_xmit         = tsi108_send_packet,
1539        .ndo_set_rx_mode        = tsi108_set_rx_mode,
1540        .ndo_get_stats          = tsi108_get_stats,
1541        .ndo_eth_ioctl          = tsi108_do_ioctl,
1542        .ndo_set_mac_address    = tsi108_set_mac,
1543        .ndo_validate_addr      = eth_validate_addr,
1544};
1545
1546static int
1547tsi108_init_one(struct platform_device *pdev)
1548{
1549        struct net_device *dev = NULL;
1550        struct tsi108_prv_data *data = NULL;
1551        hw_info *einfo;
1552        int err = 0;
1553
1554        einfo = dev_get_platdata(&pdev->dev);
1555
1556        if (NULL == einfo) {
1557                printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1558                       pdev->id);
1559                return -ENODEV;
1560        }
1561
1562        /* Create an ethernet device instance */
1563
1564        dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1565        if (!dev)
1566                return -ENOMEM;
1567
1568        printk("tsi108_eth%d: probe...\n", pdev->id);
1569        data = netdev_priv(dev);
1570        data->dev = dev;
1571        data->pdev = pdev;
1572
1573        pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1574                        pdev->id, einfo->regs, einfo->phyregs,
1575                        einfo->phy, einfo->irq_num);
1576
1577        data->regs = ioremap(einfo->regs, 0x400);
1578        if (NULL == data->regs) {
1579                err = -ENOMEM;
1580                goto regs_fail;
1581        }
1582
1583        data->phyregs = ioremap(einfo->phyregs, 0x400);
1584        if (NULL == data->phyregs) {
1585                err = -ENOMEM;
1586                goto phyregs_fail;
1587        }
1588/* MII setup */
1589        data->mii_if.dev = dev;
1590        data->mii_if.mdio_read = tsi108_mdio_read;
1591        data->mii_if.mdio_write = tsi108_mdio_write;
1592        data->mii_if.phy_id = einfo->phy;
1593        data->mii_if.phy_id_mask = 0x1f;
1594        data->mii_if.reg_num_mask = 0x1f;
1595
1596        data->phy = einfo->phy;
1597        data->phy_type = einfo->phy_type;
1598        data->irq_num = einfo->irq_num;
1599        data->id = pdev->id;
1600        netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1601        dev->netdev_ops = &tsi108_netdev_ops;
1602        dev->ethtool_ops = &tsi108_ethtool_ops;
1603
1604        /* Apparently, the Linux networking code won't use scatter-gather
1605         * if the hardware doesn't do checksums.  However, it's faster
1606         * to checksum in place and use SG, as (among other reasons)
1607         * the cache won't be dirtied (which then has to be flushed
1608         * before DMA).  The checksumming is done by the driver (via
1609         * a new function skb_csum_dev() in net/core/skbuff.c).
1610         */
1611
1612        dev->features = NETIF_F_HIGHDMA;
1613
1614        spin_lock_init(&data->txlock);
1615        spin_lock_init(&data->misclock);
1616
1617        tsi108_reset_ether(data);
1618        tsi108_kill_phy(dev);
1619
1620        if ((err = tsi108_get_mac(dev)) != 0) {
1621                printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1622                       dev->name);
1623                goto register_fail;
1624        }
1625
1626        tsi108_init_mac(dev);
1627        err = register_netdev(dev);
1628        if (err) {
1629                printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1630                                dev->name);
1631                goto register_fail;
1632        }
1633
1634        platform_set_drvdata(pdev, dev);
1635        printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1636               dev->name, dev->dev_addr);
1637#ifdef DEBUG
1638        data->msg_enable = DEBUG;
1639        dump_eth_one(dev);
1640#endif
1641
1642        return 0;
1643
1644register_fail:
1645        iounmap(data->phyregs);
1646
1647phyregs_fail:
1648        iounmap(data->regs);
1649
1650regs_fail:
1651        free_netdev(dev);
1652        return err;
1653}
1654
1655/* There's no way to either get interrupts from the PHY when
1656 * something changes, or to have the Tsi108 automatically communicate
1657 * with the PHY to reconfigure itself.
1658 *
1659 * Thus, we have to do it using a timer.
1660 */
1661
1662static void tsi108_timed_checker(struct timer_list *t)
1663{
1664        struct tsi108_prv_data *data = from_timer(data, t, timer);
1665        struct net_device *dev = data->dev;
1666
1667        tsi108_check_phy(dev);
1668        tsi108_check_rxring(dev);
1669        mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1670}
1671
1672static int tsi108_ether_remove(struct platform_device *pdev)
1673{
1674        struct net_device *dev = platform_get_drvdata(pdev);
1675        struct tsi108_prv_data *priv = netdev_priv(dev);
1676
1677        unregister_netdev(dev);
1678        tsi108_stop_ethernet(dev);
1679        iounmap(priv->regs);
1680        iounmap(priv->phyregs);
1681        free_netdev(dev);
1682
1683        return 0;
1684}
1685module_platform_driver(tsi_eth_driver);
1686
1687MODULE_AUTHOR("Tundra Semiconductor Corporation");
1688MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1689MODULE_LICENSE("GPL");
1690MODULE_ALIAS("platform:tsi-ethernet");
1691