linux/drivers/net/ethernet/xilinx/xilinx_axienet_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Xilinx Axi Ethernet device driver
   4 *
   5 * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
   6 * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
   7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
   8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
   9 * Copyright (c) 2010 - 2011 PetaLogix
  10 * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
  11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
  12 *
  13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
  14 * and Spartan6.
  15 *
  16 * TODO:
  17 *  - Add Axi Fifo support.
  18 *  - Factor out Axi DMA code into separate driver.
  19 *  - Test and fix basic multicast filtering.
  20 *  - Add support for extended multicast filtering.
  21 *  - Test basic VLAN support.
  22 *  - Add support for extended VLAN support.
  23 */
  24
  25#include <linux/clk.h>
  26#include <linux/delay.h>
  27#include <linux/etherdevice.h>
  28#include <linux/module.h>
  29#include <linux/netdevice.h>
  30#include <linux/of_mdio.h>
  31#include <linux/of_net.h>
  32#include <linux/of_platform.h>
  33#include <linux/of_irq.h>
  34#include <linux/of_address.h>
  35#include <linux/skbuff.h>
  36#include <linux/spinlock.h>
  37#include <linux/phy.h>
  38#include <linux/mii.h>
  39#include <linux/ethtool.h>
  40
  41#include "xilinx_axienet.h"
  42
  43/* Descriptors defines for Tx and Rx DMA */
  44#define TX_BD_NUM_DEFAULT               64
  45#define RX_BD_NUM_DEFAULT               1024
  46#define TX_BD_NUM_MAX                   4096
  47#define RX_BD_NUM_MAX                   4096
  48
  49/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
  50#define DRIVER_NAME             "xaxienet"
  51#define DRIVER_DESCRIPTION      "Xilinx Axi Ethernet driver"
  52#define DRIVER_VERSION          "1.00a"
  53
  54#define AXIENET_REGS_N          40
  55
  56/* Match table for of_platform binding */
  57static const struct of_device_id axienet_of_match[] = {
  58        { .compatible = "xlnx,axi-ethernet-1.00.a", },
  59        { .compatible = "xlnx,axi-ethernet-1.01.a", },
  60        { .compatible = "xlnx,axi-ethernet-2.01.a", },
  61        {},
  62};
  63
  64MODULE_DEVICE_TABLE(of, axienet_of_match);
  65
  66/* Option table for setting up Axi Ethernet hardware options */
  67static struct axienet_option axienet_options[] = {
  68        /* Turn on jumbo packet support for both Rx and Tx */
  69        {
  70                .opt = XAE_OPTION_JUMBO,
  71                .reg = XAE_TC_OFFSET,
  72                .m_or = XAE_TC_JUM_MASK,
  73        }, {
  74                .opt = XAE_OPTION_JUMBO,
  75                .reg = XAE_RCW1_OFFSET,
  76                .m_or = XAE_RCW1_JUM_MASK,
  77        }, { /* Turn on VLAN packet support for both Rx and Tx */
  78                .opt = XAE_OPTION_VLAN,
  79                .reg = XAE_TC_OFFSET,
  80                .m_or = XAE_TC_VLAN_MASK,
  81        }, {
  82                .opt = XAE_OPTION_VLAN,
  83                .reg = XAE_RCW1_OFFSET,
  84                .m_or = XAE_RCW1_VLAN_MASK,
  85        }, { /* Turn on FCS stripping on receive packets */
  86                .opt = XAE_OPTION_FCS_STRIP,
  87                .reg = XAE_RCW1_OFFSET,
  88                .m_or = XAE_RCW1_FCS_MASK,
  89        }, { /* Turn on FCS insertion on transmit packets */
  90                .opt = XAE_OPTION_FCS_INSERT,
  91                .reg = XAE_TC_OFFSET,
  92                .m_or = XAE_TC_FCS_MASK,
  93        }, { /* Turn off length/type field checking on receive packets */
  94                .opt = XAE_OPTION_LENTYPE_ERR,
  95                .reg = XAE_RCW1_OFFSET,
  96                .m_or = XAE_RCW1_LT_DIS_MASK,
  97        }, { /* Turn on Rx flow control */
  98                .opt = XAE_OPTION_FLOW_CONTROL,
  99                .reg = XAE_FCC_OFFSET,
 100                .m_or = XAE_FCC_FCRX_MASK,
 101        }, { /* Turn on Tx flow control */
 102                .opt = XAE_OPTION_FLOW_CONTROL,
 103                .reg = XAE_FCC_OFFSET,
 104                .m_or = XAE_FCC_FCTX_MASK,
 105        }, { /* Turn on promiscuous frame filtering */
 106                .opt = XAE_OPTION_PROMISC,
 107                .reg = XAE_FMI_OFFSET,
 108                .m_or = XAE_FMI_PM_MASK,
 109        }, { /* Enable transmitter */
 110                .opt = XAE_OPTION_TXEN,
 111                .reg = XAE_TC_OFFSET,
 112                .m_or = XAE_TC_TX_MASK,
 113        }, { /* Enable receiver */
 114                .opt = XAE_OPTION_RXEN,
 115                .reg = XAE_RCW1_OFFSET,
 116                .m_or = XAE_RCW1_RX_MASK,
 117        },
 118        {}
 119};
 120
 121/**
 122 * axienet_dma_in32 - Memory mapped Axi DMA register read
 123 * @lp:         Pointer to axienet local structure
 124 * @reg:        Address offset from the base address of the Axi DMA core
 125 *
 126 * Return: The contents of the Axi DMA register
 127 *
 128 * This function returns the contents of the corresponding Axi DMA register.
 129 */
 130static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
 131{
 132        return ioread32(lp->dma_regs + reg);
 133}
 134
 135/**
 136 * axienet_dma_out32 - Memory mapped Axi DMA register write.
 137 * @lp:         Pointer to axienet local structure
 138 * @reg:        Address offset from the base address of the Axi DMA core
 139 * @value:      Value to be written into the Axi DMA register
 140 *
 141 * This function writes the desired value into the corresponding Axi DMA
 142 * register.
 143 */
 144static inline void axienet_dma_out32(struct axienet_local *lp,
 145                                     off_t reg, u32 value)
 146{
 147        iowrite32(value, lp->dma_regs + reg);
 148}
 149
 150static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
 151                                 dma_addr_t addr)
 152{
 153        axienet_dma_out32(lp, reg, lower_32_bits(addr));
 154
 155        if (lp->features & XAE_FEATURE_DMA_64BIT)
 156                axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
 157}
 158
 159static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
 160                               struct axidma_bd *desc)
 161{
 162        desc->phys = lower_32_bits(addr);
 163        if (lp->features & XAE_FEATURE_DMA_64BIT)
 164                desc->phys_msb = upper_32_bits(addr);
 165}
 166
 167static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
 168                                     struct axidma_bd *desc)
 169{
 170        dma_addr_t ret = desc->phys;
 171
 172        if (lp->features & XAE_FEATURE_DMA_64BIT)
 173                ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
 174
 175        return ret;
 176}
 177
 178/**
 179 * axienet_dma_bd_release - Release buffer descriptor rings
 180 * @ndev:       Pointer to the net_device structure
 181 *
 182 * This function is used to release the descriptors allocated in
 183 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
 184 * driver stop api is called.
 185 */
 186static void axienet_dma_bd_release(struct net_device *ndev)
 187{
 188        int i;
 189        struct axienet_local *lp = netdev_priv(ndev);
 190
 191        /* If we end up here, tx_bd_v must have been DMA allocated. */
 192        dma_free_coherent(ndev->dev.parent,
 193                          sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
 194                          lp->tx_bd_v,
 195                          lp->tx_bd_p);
 196
 197        if (!lp->rx_bd_v)
 198                return;
 199
 200        for (i = 0; i < lp->rx_bd_num; i++) {
 201                dma_addr_t phys;
 202
 203                /* A NULL skb means this descriptor has not been initialised
 204                 * at all.
 205                 */
 206                if (!lp->rx_bd_v[i].skb)
 207                        break;
 208
 209                dev_kfree_skb(lp->rx_bd_v[i].skb);
 210
 211                /* For each descriptor, we programmed cntrl with the (non-zero)
 212                 * descriptor size, after it had been successfully allocated.
 213                 * So a non-zero value in there means we need to unmap it.
 214                 */
 215                if (lp->rx_bd_v[i].cntrl) {
 216                        phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
 217                        dma_unmap_single(ndev->dev.parent, phys,
 218                                         lp->max_frm_size, DMA_FROM_DEVICE);
 219                }
 220        }
 221
 222        dma_free_coherent(ndev->dev.parent,
 223                          sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
 224                          lp->rx_bd_v,
 225                          lp->rx_bd_p);
 226}
 227
 228/**
 229 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
 230 * @ndev:       Pointer to the net_device structure
 231 *
 232 * Return: 0, on success -ENOMEM, on failure
 233 *
 234 * This function is called to initialize the Rx and Tx DMA descriptor
 235 * rings. This initializes the descriptors with required default values
 236 * and is called when Axi Ethernet driver reset is called.
 237 */
 238static int axienet_dma_bd_init(struct net_device *ndev)
 239{
 240        u32 cr;
 241        int i;
 242        struct sk_buff *skb;
 243        struct axienet_local *lp = netdev_priv(ndev);
 244
 245        /* Reset the indexes which are used for accessing the BDs */
 246        lp->tx_bd_ci = 0;
 247        lp->tx_bd_tail = 0;
 248        lp->rx_bd_ci = 0;
 249
 250        /* Allocate the Tx and Rx buffer descriptors. */
 251        lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
 252                                         sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
 253                                         &lp->tx_bd_p, GFP_KERNEL);
 254        if (!lp->tx_bd_v)
 255                return -ENOMEM;
 256
 257        lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
 258                                         sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
 259                                         &lp->rx_bd_p, GFP_KERNEL);
 260        if (!lp->rx_bd_v)
 261                goto out;
 262
 263        for (i = 0; i < lp->tx_bd_num; i++) {
 264                dma_addr_t addr = lp->tx_bd_p +
 265                                  sizeof(*lp->tx_bd_v) *
 266                                  ((i + 1) % lp->tx_bd_num);
 267
 268                lp->tx_bd_v[i].next = lower_32_bits(addr);
 269                if (lp->features & XAE_FEATURE_DMA_64BIT)
 270                        lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
 271        }
 272
 273        for (i = 0; i < lp->rx_bd_num; i++) {
 274                dma_addr_t addr;
 275
 276                addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
 277                        ((i + 1) % lp->rx_bd_num);
 278                lp->rx_bd_v[i].next = lower_32_bits(addr);
 279                if (lp->features & XAE_FEATURE_DMA_64BIT)
 280                        lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
 281
 282                skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 283                if (!skb)
 284                        goto out;
 285
 286                lp->rx_bd_v[i].skb = skb;
 287                addr = dma_map_single(ndev->dev.parent, skb->data,
 288                                      lp->max_frm_size, DMA_FROM_DEVICE);
 289                if (dma_mapping_error(ndev->dev.parent, addr)) {
 290                        netdev_err(ndev, "DMA mapping error\n");
 291                        goto out;
 292                }
 293                desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
 294
 295                lp->rx_bd_v[i].cntrl = lp->max_frm_size;
 296        }
 297
 298        /* Start updating the Rx channel control register */
 299        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 300        /* Update the interrupt coalesce count */
 301        cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
 302              ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
 303        /* Update the delay timer count */
 304        cr = ((cr & ~XAXIDMA_DELAY_MASK) |
 305              (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 306        /* Enable coalesce, delay timer and error interrupts */
 307        cr |= XAXIDMA_IRQ_ALL_MASK;
 308        /* Write to the Rx channel control register */
 309        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 310
 311        /* Start updating the Tx channel control register */
 312        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 313        /* Update the interrupt coalesce count */
 314        cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
 315              ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
 316        /* Update the delay timer count */
 317        cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
 318              (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
 319        /* Enable coalesce, delay timer and error interrupts */
 320        cr |= XAXIDMA_IRQ_ALL_MASK;
 321        /* Write to the Tx channel control register */
 322        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 323
 324        /* Populate the tail pointer and bring the Rx Axi DMA engine out of
 325         * halted state. This will make the Rx side ready for reception.
 326         */
 327        axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
 328        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 329        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
 330                          cr | XAXIDMA_CR_RUNSTOP_MASK);
 331        axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
 332                             (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
 333
 334        /* Write to the RS (Run-stop) bit in the Tx channel control register.
 335         * Tx channel is now ready to run. But only after we write to the
 336         * tail pointer register that the Tx channel will start transmitting.
 337         */
 338        axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
 339        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 340        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
 341                          cr | XAXIDMA_CR_RUNSTOP_MASK);
 342
 343        return 0;
 344out:
 345        axienet_dma_bd_release(ndev);
 346        return -ENOMEM;
 347}
 348
 349/**
 350 * axienet_set_mac_address - Write the MAC address
 351 * @ndev:       Pointer to the net_device structure
 352 * @address:    6 byte Address to be written as MAC address
 353 *
 354 * This function is called to initialize the MAC address of the Axi Ethernet
 355 * core. It writes to the UAW0 and UAW1 registers of the core.
 356 */
 357static void axienet_set_mac_address(struct net_device *ndev,
 358                                    const void *address)
 359{
 360        struct axienet_local *lp = netdev_priv(ndev);
 361
 362        if (address)
 363                memcpy(ndev->dev_addr, address, ETH_ALEN);
 364        if (!is_valid_ether_addr(ndev->dev_addr))
 365                eth_hw_addr_random(ndev);
 366
 367        /* Set up unicast MAC address filter set its mac address */
 368        axienet_iow(lp, XAE_UAW0_OFFSET,
 369                    (ndev->dev_addr[0]) |
 370                    (ndev->dev_addr[1] << 8) |
 371                    (ndev->dev_addr[2] << 16) |
 372                    (ndev->dev_addr[3] << 24));
 373        axienet_iow(lp, XAE_UAW1_OFFSET,
 374                    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
 375                      ~XAE_UAW1_UNICASTADDR_MASK) |
 376                     (ndev->dev_addr[4] |
 377                     (ndev->dev_addr[5] << 8))));
 378}
 379
 380/**
 381 * netdev_set_mac_address - Write the MAC address (from outside the driver)
 382 * @ndev:       Pointer to the net_device structure
 383 * @p:          6 byte Address to be written as MAC address
 384 *
 385 * Return: 0 for all conditions. Presently, there is no failure case.
 386 *
 387 * This function is called to initialize the MAC address of the Axi Ethernet
 388 * core. It calls the core specific axienet_set_mac_address. This is the
 389 * function that goes into net_device_ops structure entry ndo_set_mac_address.
 390 */
 391static int netdev_set_mac_address(struct net_device *ndev, void *p)
 392{
 393        struct sockaddr *addr = p;
 394        axienet_set_mac_address(ndev, addr->sa_data);
 395        return 0;
 396}
 397
 398/**
 399 * axienet_set_multicast_list - Prepare the multicast table
 400 * @ndev:       Pointer to the net_device structure
 401 *
 402 * This function is called to initialize the multicast table during
 403 * initialization. The Axi Ethernet basic multicast support has a four-entry
 404 * multicast table which is initialized here. Additionally this function
 405 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
 406 * means whenever the multicast table entries need to be updated this
 407 * function gets called.
 408 */
 409static void axienet_set_multicast_list(struct net_device *ndev)
 410{
 411        int i;
 412        u32 reg, af0reg, af1reg;
 413        struct axienet_local *lp = netdev_priv(ndev);
 414
 415        if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
 416            netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
 417                /* We must make the kernel realize we had to move into
 418                 * promiscuous mode. If it was a promiscuous mode request
 419                 * the flag is already set. If not we set it.
 420                 */
 421                ndev->flags |= IFF_PROMISC;
 422                reg = axienet_ior(lp, XAE_FMI_OFFSET);
 423                reg |= XAE_FMI_PM_MASK;
 424                axienet_iow(lp, XAE_FMI_OFFSET, reg);
 425                dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
 426        } else if (!netdev_mc_empty(ndev)) {
 427                struct netdev_hw_addr *ha;
 428
 429                i = 0;
 430                netdev_for_each_mc_addr(ha, ndev) {
 431                        if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
 432                                break;
 433
 434                        af0reg = (ha->addr[0]);
 435                        af0reg |= (ha->addr[1] << 8);
 436                        af0reg |= (ha->addr[2] << 16);
 437                        af0reg |= (ha->addr[3] << 24);
 438
 439                        af1reg = (ha->addr[4]);
 440                        af1reg |= (ha->addr[5] << 8);
 441
 442                        reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 443                        reg |= i;
 444
 445                        axienet_iow(lp, XAE_FMI_OFFSET, reg);
 446                        axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
 447                        axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
 448                        i++;
 449                }
 450        } else {
 451                reg = axienet_ior(lp, XAE_FMI_OFFSET);
 452                reg &= ~XAE_FMI_PM_MASK;
 453
 454                axienet_iow(lp, XAE_FMI_OFFSET, reg);
 455
 456                for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
 457                        reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
 458                        reg |= i;
 459
 460                        axienet_iow(lp, XAE_FMI_OFFSET, reg);
 461                        axienet_iow(lp, XAE_AF0_OFFSET, 0);
 462                        axienet_iow(lp, XAE_AF1_OFFSET, 0);
 463                }
 464
 465                dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
 466        }
 467}
 468
 469/**
 470 * axienet_setoptions - Set an Axi Ethernet option
 471 * @ndev:       Pointer to the net_device structure
 472 * @options:    Option to be enabled/disabled
 473 *
 474 * The Axi Ethernet core has multiple features which can be selectively turned
 475 * on or off. The typical options could be jumbo frame option, basic VLAN
 476 * option, promiscuous mode option etc. This function is used to set or clear
 477 * these options in the Axi Ethernet hardware. This is done through
 478 * axienet_option structure .
 479 */
 480static void axienet_setoptions(struct net_device *ndev, u32 options)
 481{
 482        int reg;
 483        struct axienet_local *lp = netdev_priv(ndev);
 484        struct axienet_option *tp = &axienet_options[0];
 485
 486        while (tp->opt) {
 487                reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
 488                if (options & tp->opt)
 489                        reg |= tp->m_or;
 490                axienet_iow(lp, tp->reg, reg);
 491                tp++;
 492        }
 493
 494        lp->options |= options;
 495}
 496
 497static int __axienet_device_reset(struct axienet_local *lp)
 498{
 499        u32 timeout;
 500
 501        /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
 502         * process of Axi DMA takes a while to complete as all pending
 503         * commands/transfers will be flushed or completed during this
 504         * reset process.
 505         * Note that even though both TX and RX have their own reset register,
 506         * they both reset the entire DMA core, so only one needs to be used.
 507         */
 508        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
 509        timeout = DELAY_OF_ONE_MILLISEC;
 510        while (axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET) &
 511                                XAXIDMA_CR_RESET_MASK) {
 512                udelay(1);
 513                if (--timeout == 0) {
 514                        netdev_err(lp->ndev, "%s: DMA reset timeout!\n",
 515                                   __func__);
 516                        return -ETIMEDOUT;
 517                }
 518        }
 519
 520        return 0;
 521}
 522
 523/**
 524 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
 525 * @ndev:       Pointer to the net_device structure
 526 *
 527 * This function is called to reset and initialize the Axi Ethernet core. This
 528 * is typically called during initialization. It does a reset of the Axi DMA
 529 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
 530 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
 531 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
 532 * core.
 533 * Returns 0 on success or a negative error number otherwise.
 534 */
 535static int axienet_device_reset(struct net_device *ndev)
 536{
 537        u32 axienet_status;
 538        struct axienet_local *lp = netdev_priv(ndev);
 539        int ret;
 540
 541        ret = __axienet_device_reset(lp);
 542        if (ret)
 543                return ret;
 544
 545        lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
 546        lp->options |= XAE_OPTION_VLAN;
 547        lp->options &= (~XAE_OPTION_JUMBO);
 548
 549        if ((ndev->mtu > XAE_MTU) &&
 550                (ndev->mtu <= XAE_JUMBO_MTU)) {
 551                lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
 552                                        XAE_TRL_SIZE;
 553
 554                if (lp->max_frm_size <= lp->rxmem)
 555                        lp->options |= XAE_OPTION_JUMBO;
 556        }
 557
 558        ret = axienet_dma_bd_init(ndev);
 559        if (ret) {
 560                netdev_err(ndev, "%s: descriptor allocation failed\n",
 561                           __func__);
 562                return ret;
 563        }
 564
 565        axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
 566        axienet_status &= ~XAE_RCW1_RX_MASK;
 567        axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
 568
 569        axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
 570        if (axienet_status & XAE_INT_RXRJECT_MASK)
 571                axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
 572        axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
 573                    XAE_INT_RECV_ERROR_MASK : 0);
 574
 575        axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
 576
 577        /* Sync default options with HW but leave receiver and
 578         * transmitter disabled.
 579         */
 580        axienet_setoptions(ndev, lp->options &
 581                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
 582        axienet_set_mac_address(ndev, NULL);
 583        axienet_set_multicast_list(ndev);
 584        axienet_setoptions(ndev, lp->options);
 585
 586        netif_trans_update(ndev);
 587
 588        return 0;
 589}
 590
 591/**
 592 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
 593 * @ndev:       Pointer to the net_device structure
 594 * @first_bd:   Index of first descriptor to clean up
 595 * @nr_bds:     Number of descriptors to clean up, can be -1 if unknown.
 596 * @sizep:      Pointer to a u32 filled with the total sum of all bytes
 597 *              in all cleaned-up descriptors. Ignored if NULL.
 598 *
 599 * Would either be called after a successful transmit operation, or after
 600 * there was an error when setting up the chain.
 601 * Returns the number of descriptors handled.
 602 */
 603static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
 604                                 int nr_bds, u32 *sizep)
 605{
 606        struct axienet_local *lp = netdev_priv(ndev);
 607        struct axidma_bd *cur_p;
 608        int max_bds = nr_bds;
 609        unsigned int status;
 610        dma_addr_t phys;
 611        int i;
 612
 613        if (max_bds == -1)
 614                max_bds = lp->tx_bd_num;
 615
 616        for (i = 0; i < max_bds; i++) {
 617                cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
 618                status = cur_p->status;
 619
 620                /* If no number is given, clean up *all* descriptors that have
 621                 * been completed by the MAC.
 622                 */
 623                if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
 624                        break;
 625
 626                phys = desc_get_phys_addr(lp, cur_p);
 627                dma_unmap_single(ndev->dev.parent, phys,
 628                                 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
 629                                 DMA_TO_DEVICE);
 630
 631                if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
 632                        dev_consume_skb_irq(cur_p->skb);
 633
 634                cur_p->cntrl = 0;
 635                cur_p->app0 = 0;
 636                cur_p->app1 = 0;
 637                cur_p->app2 = 0;
 638                cur_p->app4 = 0;
 639                cur_p->status = 0;
 640                cur_p->skb = NULL;
 641
 642                if (sizep)
 643                        *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
 644        }
 645
 646        return i;
 647}
 648
 649/**
 650 * axienet_start_xmit_done - Invoked once a transmit is completed by the
 651 * Axi DMA Tx channel.
 652 * @ndev:       Pointer to the net_device structure
 653 *
 654 * This function is invoked from the Axi DMA Tx isr to notify the completion
 655 * of transmit operation. It clears fields in the corresponding Tx BDs and
 656 * unmaps the corresponding buffer so that CPU can regain ownership of the
 657 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
 658 * required.
 659 */
 660static void axienet_start_xmit_done(struct net_device *ndev)
 661{
 662        struct axienet_local *lp = netdev_priv(ndev);
 663        u32 packets = 0;
 664        u32 size = 0;
 665
 666        packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
 667
 668        lp->tx_bd_ci += packets;
 669        if (lp->tx_bd_ci >= lp->tx_bd_num)
 670                lp->tx_bd_ci -= lp->tx_bd_num;
 671
 672        ndev->stats.tx_packets += packets;
 673        ndev->stats.tx_bytes += size;
 674
 675        /* Matches barrier in axienet_start_xmit */
 676        smp_mb();
 677
 678        netif_wake_queue(ndev);
 679}
 680
 681/**
 682 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
 683 * @lp:         Pointer to the axienet_local structure
 684 * @num_frag:   The number of BDs to check for
 685 *
 686 * Return: 0, on success
 687 *          NETDEV_TX_BUSY, if any of the descriptors are not free
 688 *
 689 * This function is invoked before BDs are allocated and transmission starts.
 690 * This function returns 0 if a BD or group of BDs can be allocated for
 691 * transmission. If the BD or any of the BDs are not free the function
 692 * returns a busy status. This is invoked from axienet_start_xmit.
 693 */
 694static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
 695                                            int num_frag)
 696{
 697        struct axidma_bd *cur_p;
 698        cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
 699        if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
 700                return NETDEV_TX_BUSY;
 701        return 0;
 702}
 703
 704/**
 705 * axienet_start_xmit - Starts the transmission.
 706 * @skb:        sk_buff pointer that contains data to be Txed.
 707 * @ndev:       Pointer to net_device structure.
 708 *
 709 * Return: NETDEV_TX_OK, on success
 710 *          NETDEV_TX_BUSY, if any of the descriptors are not free
 711 *
 712 * This function is invoked from upper layers to initiate transmission. The
 713 * function uses the next available free BDs and populates their fields to
 714 * start the transmission. Additionally if checksum offloading is supported,
 715 * it populates AXI Stream Control fields with appropriate values.
 716 */
 717static netdev_tx_t
 718axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 719{
 720        u32 ii;
 721        u32 num_frag;
 722        u32 csum_start_off;
 723        u32 csum_index_off;
 724        skb_frag_t *frag;
 725        dma_addr_t tail_p, phys;
 726        struct axienet_local *lp = netdev_priv(ndev);
 727        struct axidma_bd *cur_p;
 728        u32 orig_tail_ptr = lp->tx_bd_tail;
 729
 730        num_frag = skb_shinfo(skb)->nr_frags;
 731        cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 732
 733        if (axienet_check_tx_bd_space(lp, num_frag)) {
 734                if (netif_queue_stopped(ndev))
 735                        return NETDEV_TX_BUSY;
 736
 737                netif_stop_queue(ndev);
 738
 739                /* Matches barrier in axienet_start_xmit_done */
 740                smp_mb();
 741
 742                /* Space might have just been freed - check again */
 743                if (axienet_check_tx_bd_space(lp, num_frag))
 744                        return NETDEV_TX_BUSY;
 745
 746                netif_wake_queue(ndev);
 747        }
 748
 749        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 750                if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
 751                        /* Tx Full Checksum Offload Enabled */
 752                        cur_p->app0 |= 2;
 753                } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
 754                        csum_start_off = skb_transport_offset(skb);
 755                        csum_index_off = csum_start_off + skb->csum_offset;
 756                        /* Tx Partial Checksum Offload Enabled */
 757                        cur_p->app0 |= 1;
 758                        cur_p->app1 = (csum_start_off << 16) | csum_index_off;
 759                }
 760        } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
 761                cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
 762        }
 763
 764        phys = dma_map_single(ndev->dev.parent, skb->data,
 765                              skb_headlen(skb), DMA_TO_DEVICE);
 766        if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
 767                if (net_ratelimit())
 768                        netdev_err(ndev, "TX DMA mapping error\n");
 769                ndev->stats.tx_dropped++;
 770                return NETDEV_TX_OK;
 771        }
 772        desc_set_phys_addr(lp, phys, cur_p);
 773        cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
 774
 775        for (ii = 0; ii < num_frag; ii++) {
 776                if (++lp->tx_bd_tail >= lp->tx_bd_num)
 777                        lp->tx_bd_tail = 0;
 778                cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
 779                frag = &skb_shinfo(skb)->frags[ii];
 780                phys = dma_map_single(ndev->dev.parent,
 781                                      skb_frag_address(frag),
 782                                      skb_frag_size(frag),
 783                                      DMA_TO_DEVICE);
 784                if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
 785                        if (net_ratelimit())
 786                                netdev_err(ndev, "TX DMA mapping error\n");
 787                        ndev->stats.tx_dropped++;
 788                        axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
 789                                              NULL);
 790                        lp->tx_bd_tail = orig_tail_ptr;
 791
 792                        return NETDEV_TX_OK;
 793                }
 794                desc_set_phys_addr(lp, phys, cur_p);
 795                cur_p->cntrl = skb_frag_size(frag);
 796        }
 797
 798        cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
 799        cur_p->skb = skb;
 800
 801        tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
 802        /* Start the transfer */
 803        axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
 804        if (++lp->tx_bd_tail >= lp->tx_bd_num)
 805                lp->tx_bd_tail = 0;
 806
 807        return NETDEV_TX_OK;
 808}
 809
 810/**
 811 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
 812 *                BD processing.
 813 * @ndev:       Pointer to net_device structure.
 814 *
 815 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
 816 * does minimal processing and invokes "netif_rx" to complete further
 817 * processing.
 818 */
 819static void axienet_recv(struct net_device *ndev)
 820{
 821        u32 length;
 822        u32 csumstatus;
 823        u32 size = 0;
 824        u32 packets = 0;
 825        dma_addr_t tail_p = 0;
 826        struct axienet_local *lp = netdev_priv(ndev);
 827        struct sk_buff *skb, *new_skb;
 828        struct axidma_bd *cur_p;
 829
 830        cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 831
 832        while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
 833                dma_addr_t phys;
 834
 835                tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
 836
 837                phys = desc_get_phys_addr(lp, cur_p);
 838                dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
 839                                 DMA_FROM_DEVICE);
 840
 841                skb = cur_p->skb;
 842                cur_p->skb = NULL;
 843                length = cur_p->app4 & 0x0000FFFF;
 844
 845                skb_put(skb, length);
 846                skb->protocol = eth_type_trans(skb, ndev);
 847                /*skb_checksum_none_assert(skb);*/
 848                skb->ip_summed = CHECKSUM_NONE;
 849
 850                /* if we're doing Rx csum offload, set it up */
 851                if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
 852                        csumstatus = (cur_p->app2 &
 853                                      XAE_FULL_CSUM_STATUS_MASK) >> 3;
 854                        if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
 855                            (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
 856                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 857                        }
 858                } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
 859                           skb->protocol == htons(ETH_P_IP) &&
 860                           skb->len > 64) {
 861                        skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
 862                        skb->ip_summed = CHECKSUM_COMPLETE;
 863                }
 864
 865                netif_rx(skb);
 866
 867                size += length;
 868                packets++;
 869
 870                new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
 871                if (!new_skb)
 872                        return;
 873
 874                phys = dma_map_single(ndev->dev.parent, new_skb->data,
 875                                      lp->max_frm_size,
 876                                      DMA_FROM_DEVICE);
 877                if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
 878                        if (net_ratelimit())
 879                                netdev_err(ndev, "RX DMA mapping error\n");
 880                        dev_kfree_skb(new_skb);
 881                        return;
 882                }
 883                desc_set_phys_addr(lp, phys, cur_p);
 884
 885                cur_p->cntrl = lp->max_frm_size;
 886                cur_p->status = 0;
 887                cur_p->skb = new_skb;
 888
 889                if (++lp->rx_bd_ci >= lp->rx_bd_num)
 890                        lp->rx_bd_ci = 0;
 891                cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
 892        }
 893
 894        ndev->stats.rx_packets += packets;
 895        ndev->stats.rx_bytes += size;
 896
 897        if (tail_p)
 898                axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
 899}
 900
 901/**
 902 * axienet_tx_irq - Tx Done Isr.
 903 * @irq:        irq number
 904 * @_ndev:      net_device pointer
 905 *
 906 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
 907 *
 908 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
 909 * to complete the BD processing.
 910 */
 911static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
 912{
 913        u32 cr;
 914        unsigned int status;
 915        struct net_device *ndev = _ndev;
 916        struct axienet_local *lp = netdev_priv(ndev);
 917
 918        status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
 919        if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 920                axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 921                axienet_start_xmit_done(lp->ndev);
 922                goto out;
 923        }
 924        if (!(status & XAXIDMA_IRQ_ALL_MASK))
 925                return IRQ_NONE;
 926        if (status & XAXIDMA_IRQ_ERROR_MASK) {
 927                dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
 928                dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
 929                        (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
 930                        (lp->tx_bd_v[lp->tx_bd_ci]).phys);
 931
 932                cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 933                /* Disable coalesce, delay timer and error interrupts */
 934                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 935                /* Write to the Tx channel control register */
 936                axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 937
 938                cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 939                /* Disable coalesce, delay timer and error interrupts */
 940                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 941                /* Write to the Rx channel control register */
 942                axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 943
 944                schedule_work(&lp->dma_err_task);
 945                axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
 946        }
 947out:
 948        return IRQ_HANDLED;
 949}
 950
 951/**
 952 * axienet_rx_irq - Rx Isr.
 953 * @irq:        irq number
 954 * @_ndev:      net_device pointer
 955 *
 956 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
 957 *
 958 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
 959 * processing.
 960 */
 961static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
 962{
 963        u32 cr;
 964        unsigned int status;
 965        struct net_device *ndev = _ndev;
 966        struct axienet_local *lp = netdev_priv(ndev);
 967
 968        status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
 969        if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
 970                axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 971                axienet_recv(lp->ndev);
 972                goto out;
 973        }
 974        if (!(status & XAXIDMA_IRQ_ALL_MASK))
 975                return IRQ_NONE;
 976        if (status & XAXIDMA_IRQ_ERROR_MASK) {
 977                dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
 978                dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
 979                        (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
 980                        (lp->rx_bd_v[lp->rx_bd_ci]).phys);
 981
 982                cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
 983                /* Disable coalesce, delay timer and error interrupts */
 984                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 985                /* Finally write to the Tx channel control register */
 986                axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
 987
 988                cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
 989                /* Disable coalesce, delay timer and error interrupts */
 990                cr &= (~XAXIDMA_IRQ_ALL_MASK);
 991                /* write to the Rx channel control register */
 992                axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
 993
 994                schedule_work(&lp->dma_err_task);
 995                axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
 996        }
 997out:
 998        return IRQ_HANDLED;
 999}
1000
1001/**
1002 * axienet_eth_irq - Ethernet core Isr.
1003 * @irq:        irq number
1004 * @_ndev:      net_device pointer
1005 *
1006 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1007 *
1008 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1009 */
1010static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1011{
1012        struct net_device *ndev = _ndev;
1013        struct axienet_local *lp = netdev_priv(ndev);
1014        unsigned int pending;
1015
1016        pending = axienet_ior(lp, XAE_IP_OFFSET);
1017        if (!pending)
1018                return IRQ_NONE;
1019
1020        if (pending & XAE_INT_RXFIFOOVR_MASK)
1021                ndev->stats.rx_missed_errors++;
1022
1023        if (pending & XAE_INT_RXRJECT_MASK)
1024                ndev->stats.rx_frame_errors++;
1025
1026        axienet_iow(lp, XAE_IS_OFFSET, pending);
1027        return IRQ_HANDLED;
1028}
1029
1030static void axienet_dma_err_handler(struct work_struct *work);
1031
1032/**
1033 * axienet_open - Driver open routine.
1034 * @ndev:       Pointer to net_device structure
1035 *
1036 * Return: 0, on success.
1037 *          non-zero error value on failure
1038 *
1039 * This is the driver open routine. It calls phylink_start to start the
1040 * PHY device.
1041 * It also allocates interrupt service routines, enables the interrupt lines
1042 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1043 * descriptors are initialized.
1044 */
1045static int axienet_open(struct net_device *ndev)
1046{
1047        int ret;
1048        struct axienet_local *lp = netdev_priv(ndev);
1049
1050        dev_dbg(&ndev->dev, "axienet_open()\n");
1051
1052        /* When we do an Axi Ethernet reset, it resets the complete core
1053         * including the MDIO. MDIO must be disabled before resetting.
1054         * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1055         */
1056        axienet_lock_mii(lp);
1057        ret = axienet_device_reset(ndev);
1058        axienet_unlock_mii(lp);
1059
1060        ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1061        if (ret) {
1062                dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1063                return ret;
1064        }
1065
1066        phylink_start(lp->phylink);
1067
1068        /* Enable worker thread for Axi DMA error handling */
1069        INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1070
1071        /* Enable interrupts for Axi DMA Tx */
1072        ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1073                          ndev->name, ndev);
1074        if (ret)
1075                goto err_tx_irq;
1076        /* Enable interrupts for Axi DMA Rx */
1077        ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1078                          ndev->name, ndev);
1079        if (ret)
1080                goto err_rx_irq;
1081        /* Enable interrupts for Axi Ethernet core (if defined) */
1082        if (lp->eth_irq > 0) {
1083                ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1084                                  ndev->name, ndev);
1085                if (ret)
1086                        goto err_eth_irq;
1087        }
1088
1089        return 0;
1090
1091err_eth_irq:
1092        free_irq(lp->rx_irq, ndev);
1093err_rx_irq:
1094        free_irq(lp->tx_irq, ndev);
1095err_tx_irq:
1096        phylink_stop(lp->phylink);
1097        phylink_disconnect_phy(lp->phylink);
1098        cancel_work_sync(&lp->dma_err_task);
1099        dev_err(lp->dev, "request_irq() failed\n");
1100        return ret;
1101}
1102
1103/**
1104 * axienet_stop - Driver stop routine.
1105 * @ndev:       Pointer to net_device structure
1106 *
1107 * Return: 0, on success.
1108 *
1109 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1110 * device. It also removes the interrupt handlers and disables the interrupts.
1111 * The Axi DMA Tx/Rx BDs are released.
1112 */
1113static int axienet_stop(struct net_device *ndev)
1114{
1115        u32 cr, sr;
1116        int count;
1117        struct axienet_local *lp = netdev_priv(ndev);
1118
1119        dev_dbg(&ndev->dev, "axienet_close()\n");
1120
1121        phylink_stop(lp->phylink);
1122        phylink_disconnect_phy(lp->phylink);
1123
1124        axienet_setoptions(ndev, lp->options &
1125                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1126
1127        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1128        cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1129        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1130
1131        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1132        cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1133        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1134
1135        axienet_iow(lp, XAE_IE_OFFSET, 0);
1136
1137        /* Give DMAs a chance to halt gracefully */
1138        sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1139        for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1140                msleep(20);
1141                sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1142        }
1143
1144        sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1145        for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1146                msleep(20);
1147                sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1148        }
1149
1150        /* Do a reset to ensure DMA is really stopped */
1151        axienet_lock_mii(lp);
1152        __axienet_device_reset(lp);
1153        axienet_unlock_mii(lp);
1154
1155        cancel_work_sync(&lp->dma_err_task);
1156
1157        if (lp->eth_irq > 0)
1158                free_irq(lp->eth_irq, ndev);
1159        free_irq(lp->tx_irq, ndev);
1160        free_irq(lp->rx_irq, ndev);
1161
1162        axienet_dma_bd_release(ndev);
1163        return 0;
1164}
1165
1166/**
1167 * axienet_change_mtu - Driver change mtu routine.
1168 * @ndev:       Pointer to net_device structure
1169 * @new_mtu:    New mtu value to be applied
1170 *
1171 * Return: Always returns 0 (success).
1172 *
1173 * This is the change mtu driver routine. It checks if the Axi Ethernet
1174 * hardware supports jumbo frames before changing the mtu. This can be
1175 * called only when the device is not up.
1176 */
1177static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1178{
1179        struct axienet_local *lp = netdev_priv(ndev);
1180
1181        if (netif_running(ndev))
1182                return -EBUSY;
1183
1184        if ((new_mtu + VLAN_ETH_HLEN +
1185                XAE_TRL_SIZE) > lp->rxmem)
1186                return -EINVAL;
1187
1188        ndev->mtu = new_mtu;
1189
1190        return 0;
1191}
1192
1193#ifdef CONFIG_NET_POLL_CONTROLLER
1194/**
1195 * axienet_poll_controller - Axi Ethernet poll mechanism.
1196 * @ndev:       Pointer to net_device structure
1197 *
1198 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1199 * to polling the ISRs and are enabled back after the polling is done.
1200 */
1201static void axienet_poll_controller(struct net_device *ndev)
1202{
1203        struct axienet_local *lp = netdev_priv(ndev);
1204        disable_irq(lp->tx_irq);
1205        disable_irq(lp->rx_irq);
1206        axienet_rx_irq(lp->tx_irq, ndev);
1207        axienet_tx_irq(lp->rx_irq, ndev);
1208        enable_irq(lp->tx_irq);
1209        enable_irq(lp->rx_irq);
1210}
1211#endif
1212
1213static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1214{
1215        struct axienet_local *lp = netdev_priv(dev);
1216
1217        if (!netif_running(dev))
1218                return -EINVAL;
1219
1220        return phylink_mii_ioctl(lp->phylink, rq, cmd);
1221}
1222
1223static const struct net_device_ops axienet_netdev_ops = {
1224        .ndo_open = axienet_open,
1225        .ndo_stop = axienet_stop,
1226        .ndo_start_xmit = axienet_start_xmit,
1227        .ndo_change_mtu = axienet_change_mtu,
1228        .ndo_set_mac_address = netdev_set_mac_address,
1229        .ndo_validate_addr = eth_validate_addr,
1230        .ndo_eth_ioctl = axienet_ioctl,
1231        .ndo_set_rx_mode = axienet_set_multicast_list,
1232#ifdef CONFIG_NET_POLL_CONTROLLER
1233        .ndo_poll_controller = axienet_poll_controller,
1234#endif
1235};
1236
1237/**
1238 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1239 * @ndev:       Pointer to net_device structure
1240 * @ed:         Pointer to ethtool_drvinfo structure
1241 *
1242 * This implements ethtool command for getting the driver information.
1243 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1244 */
1245static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1246                                         struct ethtool_drvinfo *ed)
1247{
1248        strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1249        strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1250}
1251
1252/**
1253 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1254 *                                 AxiEthernet core.
1255 * @ndev:       Pointer to net_device structure
1256 *
1257 * This implements ethtool command for getting the total register length
1258 * information.
1259 *
1260 * Return: the total regs length
1261 */
1262static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1263{
1264        return sizeof(u32) * AXIENET_REGS_N;
1265}
1266
1267/**
1268 * axienet_ethtools_get_regs - Dump the contents of all registers present
1269 *                             in AxiEthernet core.
1270 * @ndev:       Pointer to net_device structure
1271 * @regs:       Pointer to ethtool_regs structure
1272 * @ret:        Void pointer used to return the contents of the registers.
1273 *
1274 * This implements ethtool command for getting the Axi Ethernet register dump.
1275 * Issue "ethtool -d ethX" to execute this function.
1276 */
1277static void axienet_ethtools_get_regs(struct net_device *ndev,
1278                                      struct ethtool_regs *regs, void *ret)
1279{
1280        u32 *data = (u32 *) ret;
1281        size_t len = sizeof(u32) * AXIENET_REGS_N;
1282        struct axienet_local *lp = netdev_priv(ndev);
1283
1284        regs->version = 0;
1285        regs->len = len;
1286
1287        memset(data, 0, len);
1288        data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1289        data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1290        data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1291        data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1292        data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1293        data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1294        data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1295        data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1296        data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1297        data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1298        data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1299        data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1300        data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1301        data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1302        data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1303        data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1304        data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1305        data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1306        data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1307        data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1308        data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1309        data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1310        data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1311        data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1312        data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1313        data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1314        data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1315        data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1316        data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1317        data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1318        data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1319        data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1320        data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1321        data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1322        data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1323        data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1324}
1325
1326static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1327                                           struct ethtool_ringparam *ering)
1328{
1329        struct axienet_local *lp = netdev_priv(ndev);
1330
1331        ering->rx_max_pending = RX_BD_NUM_MAX;
1332        ering->rx_mini_max_pending = 0;
1333        ering->rx_jumbo_max_pending = 0;
1334        ering->tx_max_pending = TX_BD_NUM_MAX;
1335        ering->rx_pending = lp->rx_bd_num;
1336        ering->rx_mini_pending = 0;
1337        ering->rx_jumbo_pending = 0;
1338        ering->tx_pending = lp->tx_bd_num;
1339}
1340
1341static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1342                                          struct ethtool_ringparam *ering)
1343{
1344        struct axienet_local *lp = netdev_priv(ndev);
1345
1346        if (ering->rx_pending > RX_BD_NUM_MAX ||
1347            ering->rx_mini_pending ||
1348            ering->rx_jumbo_pending ||
1349            ering->rx_pending > TX_BD_NUM_MAX)
1350                return -EINVAL;
1351
1352        if (netif_running(ndev))
1353                return -EBUSY;
1354
1355        lp->rx_bd_num = ering->rx_pending;
1356        lp->tx_bd_num = ering->tx_pending;
1357        return 0;
1358}
1359
1360/**
1361 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1362 *                                   Tx and Rx paths.
1363 * @ndev:       Pointer to net_device structure
1364 * @epauseparm: Pointer to ethtool_pauseparam structure.
1365 *
1366 * This implements ethtool command for getting axi ethernet pause frame
1367 * setting. Issue "ethtool -a ethX" to execute this function.
1368 */
1369static void
1370axienet_ethtools_get_pauseparam(struct net_device *ndev,
1371                                struct ethtool_pauseparam *epauseparm)
1372{
1373        struct axienet_local *lp = netdev_priv(ndev);
1374
1375        phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1376}
1377
1378/**
1379 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1380 *                                   settings.
1381 * @ndev:       Pointer to net_device structure
1382 * @epauseparm:Pointer to ethtool_pauseparam structure
1383 *
1384 * This implements ethtool command for enabling flow control on Rx and Tx
1385 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1386 * function.
1387 *
1388 * Return: 0 on success, -EFAULT if device is running
1389 */
1390static int
1391axienet_ethtools_set_pauseparam(struct net_device *ndev,
1392                                struct ethtool_pauseparam *epauseparm)
1393{
1394        struct axienet_local *lp = netdev_priv(ndev);
1395
1396        return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1397}
1398
1399/**
1400 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1401 * @ndev:       Pointer to net_device structure
1402 * @ecoalesce:  Pointer to ethtool_coalesce structure
1403 * @kernel_coal: ethtool CQE mode setting structure
1404 * @extack:     extack for reporting error messages
1405 *
1406 * This implements ethtool command for getting the DMA interrupt coalescing
1407 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1408 * execute this function.
1409 *
1410 * Return: 0 always
1411 */
1412static int
1413axienet_ethtools_get_coalesce(struct net_device *ndev,
1414                              struct ethtool_coalesce *ecoalesce,
1415                              struct kernel_ethtool_coalesce *kernel_coal,
1416                              struct netlink_ext_ack *extack)
1417{
1418        u32 regval = 0;
1419        struct axienet_local *lp = netdev_priv(ndev);
1420        regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1421        ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1422                                             >> XAXIDMA_COALESCE_SHIFT;
1423        regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1424        ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1425                                             >> XAXIDMA_COALESCE_SHIFT;
1426        return 0;
1427}
1428
1429/**
1430 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1431 * @ndev:       Pointer to net_device structure
1432 * @ecoalesce:  Pointer to ethtool_coalesce structure
1433 * @kernel_coal: ethtool CQE mode setting structure
1434 * @extack:     extack for reporting error messages
1435 *
1436 * This implements ethtool command for setting the DMA interrupt coalescing
1437 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1438 * prompt to execute this function.
1439 *
1440 * Return: 0, on success, Non-zero error value on failure.
1441 */
1442static int
1443axienet_ethtools_set_coalesce(struct net_device *ndev,
1444                              struct ethtool_coalesce *ecoalesce,
1445                              struct kernel_ethtool_coalesce *kernel_coal,
1446                              struct netlink_ext_ack *extack)
1447{
1448        struct axienet_local *lp = netdev_priv(ndev);
1449
1450        if (netif_running(ndev)) {
1451                netdev_err(ndev,
1452                           "Please stop netif before applying configuration\n");
1453                return -EFAULT;
1454        }
1455
1456        if (ecoalesce->rx_max_coalesced_frames)
1457                lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1458        if (ecoalesce->tx_max_coalesced_frames)
1459                lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1460
1461        return 0;
1462}
1463
1464static int
1465axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1466                                    struct ethtool_link_ksettings *cmd)
1467{
1468        struct axienet_local *lp = netdev_priv(ndev);
1469
1470        return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1471}
1472
1473static int
1474axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1475                                    const struct ethtool_link_ksettings *cmd)
1476{
1477        struct axienet_local *lp = netdev_priv(ndev);
1478
1479        return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1480}
1481
1482static int axienet_ethtools_nway_reset(struct net_device *dev)
1483{
1484        struct axienet_local *lp = netdev_priv(dev);
1485
1486        return phylink_ethtool_nway_reset(lp->phylink);
1487}
1488
1489static const struct ethtool_ops axienet_ethtool_ops = {
1490        .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1491        .get_drvinfo    = axienet_ethtools_get_drvinfo,
1492        .get_regs_len   = axienet_ethtools_get_regs_len,
1493        .get_regs       = axienet_ethtools_get_regs,
1494        .get_link       = ethtool_op_get_link,
1495        .get_ringparam  = axienet_ethtools_get_ringparam,
1496        .set_ringparam  = axienet_ethtools_set_ringparam,
1497        .get_pauseparam = axienet_ethtools_get_pauseparam,
1498        .set_pauseparam = axienet_ethtools_set_pauseparam,
1499        .get_coalesce   = axienet_ethtools_get_coalesce,
1500        .set_coalesce   = axienet_ethtools_set_coalesce,
1501        .get_link_ksettings = axienet_ethtools_get_link_ksettings,
1502        .set_link_ksettings = axienet_ethtools_set_link_ksettings,
1503        .nway_reset     = axienet_ethtools_nway_reset,
1504};
1505
1506static void axienet_validate(struct phylink_config *config,
1507                             unsigned long *supported,
1508                             struct phylink_link_state *state)
1509{
1510        struct net_device *ndev = to_net_dev(config->dev);
1511        struct axienet_local *lp = netdev_priv(ndev);
1512        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1513
1514        /* Only support the mode we are configured for */
1515        switch (state->interface) {
1516        case PHY_INTERFACE_MODE_NA:
1517                break;
1518        case PHY_INTERFACE_MODE_1000BASEX:
1519        case PHY_INTERFACE_MODE_SGMII:
1520                if (lp->switch_x_sgmii)
1521                        break;
1522                fallthrough;
1523        default:
1524                if (state->interface != lp->phy_mode) {
1525                        netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1526                                    phy_modes(state->interface),
1527                                    phy_modes(lp->phy_mode));
1528                        bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1529                        return;
1530                }
1531        }
1532
1533        phylink_set(mask, Autoneg);
1534        phylink_set_port_modes(mask);
1535
1536        phylink_set(mask, Asym_Pause);
1537        phylink_set(mask, Pause);
1538
1539        switch (state->interface) {
1540        case PHY_INTERFACE_MODE_NA:
1541        case PHY_INTERFACE_MODE_1000BASEX:
1542        case PHY_INTERFACE_MODE_SGMII:
1543        case PHY_INTERFACE_MODE_GMII:
1544        case PHY_INTERFACE_MODE_RGMII:
1545        case PHY_INTERFACE_MODE_RGMII_ID:
1546        case PHY_INTERFACE_MODE_RGMII_RXID:
1547        case PHY_INTERFACE_MODE_RGMII_TXID:
1548                phylink_set(mask, 1000baseX_Full);
1549                phylink_set(mask, 1000baseT_Full);
1550                if (state->interface == PHY_INTERFACE_MODE_1000BASEX)
1551                        break;
1552                fallthrough;
1553        case PHY_INTERFACE_MODE_MII:
1554                phylink_set(mask, 100baseT_Full);
1555                phylink_set(mask, 10baseT_Full);
1556                fallthrough;
1557        default:
1558                break;
1559        }
1560
1561        bitmap_and(supported, supported, mask,
1562                   __ETHTOOL_LINK_MODE_MASK_NBITS);
1563        bitmap_and(state->advertising, state->advertising, mask,
1564                   __ETHTOOL_LINK_MODE_MASK_NBITS);
1565}
1566
1567static void axienet_mac_pcs_get_state(struct phylink_config *config,
1568                                      struct phylink_link_state *state)
1569{
1570        struct net_device *ndev = to_net_dev(config->dev);
1571        struct axienet_local *lp = netdev_priv(ndev);
1572
1573        switch (state->interface) {
1574        case PHY_INTERFACE_MODE_SGMII:
1575        case PHY_INTERFACE_MODE_1000BASEX:
1576                phylink_mii_c22_pcs_get_state(lp->pcs_phy, state);
1577                break;
1578        default:
1579                break;
1580        }
1581}
1582
1583static void axienet_mac_an_restart(struct phylink_config *config)
1584{
1585        struct net_device *ndev = to_net_dev(config->dev);
1586        struct axienet_local *lp = netdev_priv(ndev);
1587
1588        phylink_mii_c22_pcs_an_restart(lp->pcs_phy);
1589}
1590
1591static int axienet_mac_prepare(struct phylink_config *config, unsigned int mode,
1592                               phy_interface_t iface)
1593{
1594        struct net_device *ndev = to_net_dev(config->dev);
1595        struct axienet_local *lp = netdev_priv(ndev);
1596        int ret;
1597
1598        switch (iface) {
1599        case PHY_INTERFACE_MODE_SGMII:
1600        case PHY_INTERFACE_MODE_1000BASEX:
1601                if (!lp->switch_x_sgmii)
1602                        return 0;
1603
1604                ret = mdiobus_write(lp->pcs_phy->bus,
1605                                    lp->pcs_phy->addr,
1606                                    XLNX_MII_STD_SELECT_REG,
1607                                    iface == PHY_INTERFACE_MODE_SGMII ?
1608                                        XLNX_MII_STD_SELECT_SGMII : 0);
1609                if (ret < 0)
1610                        netdev_warn(ndev, "Failed to switch PHY interface: %d\n",
1611                                    ret);
1612                return ret;
1613        default:
1614                return 0;
1615        }
1616}
1617
1618static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1619                               const struct phylink_link_state *state)
1620{
1621        struct net_device *ndev = to_net_dev(config->dev);
1622        struct axienet_local *lp = netdev_priv(ndev);
1623        int ret;
1624
1625        switch (state->interface) {
1626        case PHY_INTERFACE_MODE_SGMII:
1627        case PHY_INTERFACE_MODE_1000BASEX:
1628                ret = phylink_mii_c22_pcs_config(lp->pcs_phy, mode,
1629                                                 state->interface,
1630                                                 state->advertising);
1631                if (ret < 0)
1632                        netdev_warn(ndev, "Failed to configure PCS: %d\n",
1633                                    ret);
1634                break;
1635
1636        default:
1637                break;
1638        }
1639}
1640
1641static void axienet_mac_link_down(struct phylink_config *config,
1642                                  unsigned int mode,
1643                                  phy_interface_t interface)
1644{
1645        /* nothing meaningful to do */
1646}
1647
1648static void axienet_mac_link_up(struct phylink_config *config,
1649                                struct phy_device *phy,
1650                                unsigned int mode, phy_interface_t interface,
1651                                int speed, int duplex,
1652                                bool tx_pause, bool rx_pause)
1653{
1654        struct net_device *ndev = to_net_dev(config->dev);
1655        struct axienet_local *lp = netdev_priv(ndev);
1656        u32 emmc_reg, fcc_reg;
1657
1658        emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1659        emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1660
1661        switch (speed) {
1662        case SPEED_1000:
1663                emmc_reg |= XAE_EMMC_LINKSPD_1000;
1664                break;
1665        case SPEED_100:
1666                emmc_reg |= XAE_EMMC_LINKSPD_100;
1667                break;
1668        case SPEED_10:
1669                emmc_reg |= XAE_EMMC_LINKSPD_10;
1670                break;
1671        default:
1672                dev_err(&ndev->dev,
1673                        "Speed other than 10, 100 or 1Gbps is not supported\n");
1674                break;
1675        }
1676
1677        axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1678
1679        fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1680        if (tx_pause)
1681                fcc_reg |= XAE_FCC_FCTX_MASK;
1682        else
1683                fcc_reg &= ~XAE_FCC_FCTX_MASK;
1684        if (rx_pause)
1685                fcc_reg |= XAE_FCC_FCRX_MASK;
1686        else
1687                fcc_reg &= ~XAE_FCC_FCRX_MASK;
1688        axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1689}
1690
1691static const struct phylink_mac_ops axienet_phylink_ops = {
1692        .validate = axienet_validate,
1693        .mac_pcs_get_state = axienet_mac_pcs_get_state,
1694        .mac_an_restart = axienet_mac_an_restart,
1695        .mac_prepare = axienet_mac_prepare,
1696        .mac_config = axienet_mac_config,
1697        .mac_link_down = axienet_mac_link_down,
1698        .mac_link_up = axienet_mac_link_up,
1699};
1700
1701/**
1702 * axienet_dma_err_handler - Work queue task for Axi DMA Error
1703 * @work:       pointer to work_struct
1704 *
1705 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1706 * Tx/Rx BDs.
1707 */
1708static void axienet_dma_err_handler(struct work_struct *work)
1709{
1710        u32 axienet_status;
1711        u32 cr, i;
1712        struct axienet_local *lp = container_of(work, struct axienet_local,
1713                                                dma_err_task);
1714        struct net_device *ndev = lp->ndev;
1715        struct axidma_bd *cur_p;
1716
1717        axienet_setoptions(ndev, lp->options &
1718                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1719        /* When we do an Axi Ethernet reset, it resets the complete core
1720         * including the MDIO. MDIO must be disabled before resetting.
1721         * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1722         */
1723        axienet_lock_mii(lp);
1724        __axienet_device_reset(lp);
1725        axienet_unlock_mii(lp);
1726
1727        for (i = 0; i < lp->tx_bd_num; i++) {
1728                cur_p = &lp->tx_bd_v[i];
1729                if (cur_p->cntrl) {
1730                        dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1731
1732                        dma_unmap_single(ndev->dev.parent, addr,
1733                                         (cur_p->cntrl &
1734                                          XAXIDMA_BD_CTRL_LENGTH_MASK),
1735                                         DMA_TO_DEVICE);
1736                }
1737                if (cur_p->skb)
1738                        dev_kfree_skb_irq(cur_p->skb);
1739                cur_p->phys = 0;
1740                cur_p->phys_msb = 0;
1741                cur_p->cntrl = 0;
1742                cur_p->status = 0;
1743                cur_p->app0 = 0;
1744                cur_p->app1 = 0;
1745                cur_p->app2 = 0;
1746                cur_p->app3 = 0;
1747                cur_p->app4 = 0;
1748                cur_p->skb = NULL;
1749        }
1750
1751        for (i = 0; i < lp->rx_bd_num; i++) {
1752                cur_p = &lp->rx_bd_v[i];
1753                cur_p->status = 0;
1754                cur_p->app0 = 0;
1755                cur_p->app1 = 0;
1756                cur_p->app2 = 0;
1757                cur_p->app3 = 0;
1758                cur_p->app4 = 0;
1759        }
1760
1761        lp->tx_bd_ci = 0;
1762        lp->tx_bd_tail = 0;
1763        lp->rx_bd_ci = 0;
1764
1765        /* Start updating the Rx channel control register */
1766        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1767        /* Update the interrupt coalesce count */
1768        cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1769              (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1770        /* Update the delay timer count */
1771        cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1772              (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1773        /* Enable coalesce, delay timer and error interrupts */
1774        cr |= XAXIDMA_IRQ_ALL_MASK;
1775        /* Finally write to the Rx channel control register */
1776        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1777
1778        /* Start updating the Tx channel control register */
1779        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1780        /* Update the interrupt coalesce count */
1781        cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1782              (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1783        /* Update the delay timer count */
1784        cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1785              (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1786        /* Enable coalesce, delay timer and error interrupts */
1787        cr |= XAXIDMA_IRQ_ALL_MASK;
1788        /* Finally write to the Tx channel control register */
1789        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1790
1791        /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1792         * halted state. This will make the Rx side ready for reception.
1793         */
1794        axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1795        cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1796        axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1797                          cr | XAXIDMA_CR_RUNSTOP_MASK);
1798        axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1799                             (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1800
1801        /* Write to the RS (Run-stop) bit in the Tx channel control register.
1802         * Tx channel is now ready to run. But only after we write to the
1803         * tail pointer register that the Tx channel will start transmitting
1804         */
1805        axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1806        cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1807        axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1808                          cr | XAXIDMA_CR_RUNSTOP_MASK);
1809
1810        axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1811        axienet_status &= ~XAE_RCW1_RX_MASK;
1812        axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1813
1814        axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1815        if (axienet_status & XAE_INT_RXRJECT_MASK)
1816                axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1817        axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1818                    XAE_INT_RECV_ERROR_MASK : 0);
1819        axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1820
1821        /* Sync default options with HW but leave receiver and
1822         * transmitter disabled.
1823         */
1824        axienet_setoptions(ndev, lp->options &
1825                           ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1826        axienet_set_mac_address(ndev, NULL);
1827        axienet_set_multicast_list(ndev);
1828        axienet_setoptions(ndev, lp->options);
1829}
1830
1831/**
1832 * axienet_probe - Axi Ethernet probe function.
1833 * @pdev:       Pointer to platform device structure.
1834 *
1835 * Return: 0, on success
1836 *          Non-zero error value on failure.
1837 *
1838 * This is the probe routine for Axi Ethernet driver. This is called before
1839 * any other driver routines are invoked. It allocates and sets up the Ethernet
1840 * device. Parses through device tree and populates fields of
1841 * axienet_local. It registers the Ethernet device.
1842 */
1843static int axienet_probe(struct platform_device *pdev)
1844{
1845        int ret;
1846        struct device_node *np;
1847        struct axienet_local *lp;
1848        struct net_device *ndev;
1849        struct resource *ethres;
1850        u8 mac_addr[ETH_ALEN];
1851        int addr_width = 32;
1852        u32 value;
1853
1854        ndev = alloc_etherdev(sizeof(*lp));
1855        if (!ndev)
1856                return -ENOMEM;
1857
1858        platform_set_drvdata(pdev, ndev);
1859
1860        SET_NETDEV_DEV(ndev, &pdev->dev);
1861        ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1862        ndev->features = NETIF_F_SG;
1863        ndev->netdev_ops = &axienet_netdev_ops;
1864        ndev->ethtool_ops = &axienet_ethtool_ops;
1865
1866        /* MTU range: 64 - 9000 */
1867        ndev->min_mtu = 64;
1868        ndev->max_mtu = XAE_JUMBO_MTU;
1869
1870        lp = netdev_priv(ndev);
1871        lp->ndev = ndev;
1872        lp->dev = &pdev->dev;
1873        lp->options = XAE_OPTION_DEFAULTS;
1874        lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1875        lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1876
1877        lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
1878        if (!lp->axi_clk) {
1879                /* For backward compatibility, if named AXI clock is not present,
1880                 * treat the first clock specified as the AXI clock.
1881                 */
1882                lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
1883        }
1884        if (IS_ERR(lp->axi_clk)) {
1885                ret = PTR_ERR(lp->axi_clk);
1886                goto free_netdev;
1887        }
1888        ret = clk_prepare_enable(lp->axi_clk);
1889        if (ret) {
1890                dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
1891                goto free_netdev;
1892        }
1893
1894        lp->misc_clks[0].id = "axis_clk";
1895        lp->misc_clks[1].id = "ref_clk";
1896        lp->misc_clks[2].id = "mgt_clk";
1897
1898        ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1899        if (ret)
1900                goto cleanup_clk;
1901
1902        ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
1903        if (ret)
1904                goto cleanup_clk;
1905
1906        /* Map device registers */
1907        lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &ethres);
1908        if (IS_ERR(lp->regs)) {
1909                ret = PTR_ERR(lp->regs);
1910                goto cleanup_clk;
1911        }
1912        lp->regs_start = ethres->start;
1913
1914        /* Setup checksum offload, but default to off if not specified */
1915        lp->features = 0;
1916
1917        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1918        if (!ret) {
1919                switch (value) {
1920                case 1:
1921                        lp->csum_offload_on_tx_path =
1922                                XAE_FEATURE_PARTIAL_TX_CSUM;
1923                        lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1924                        /* Can checksum TCP/UDP over IPv4. */
1925                        ndev->features |= NETIF_F_IP_CSUM;
1926                        break;
1927                case 2:
1928                        lp->csum_offload_on_tx_path =
1929                                XAE_FEATURE_FULL_TX_CSUM;
1930                        lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1931                        /* Can checksum TCP/UDP over IPv4. */
1932                        ndev->features |= NETIF_F_IP_CSUM;
1933                        break;
1934                default:
1935                        lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1936                }
1937        }
1938        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1939        if (!ret) {
1940                switch (value) {
1941                case 1:
1942                        lp->csum_offload_on_rx_path =
1943                                XAE_FEATURE_PARTIAL_RX_CSUM;
1944                        lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1945                        break;
1946                case 2:
1947                        lp->csum_offload_on_rx_path =
1948                                XAE_FEATURE_FULL_RX_CSUM;
1949                        lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1950                        break;
1951                default:
1952                        lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1953                }
1954        }
1955        /* For supporting jumbo frames, the Axi Ethernet hardware must have
1956         * a larger Rx/Tx Memory. Typically, the size must be large so that
1957         * we can enable jumbo option and start supporting jumbo frames.
1958         * Here we check for memory allocated for Rx/Tx in the hardware from
1959         * the device-tree and accordingly set flags.
1960         */
1961        of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1962
1963        lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
1964                                                   "xlnx,switch-x-sgmii");
1965
1966        /* Start with the proprietary, and broken phy_type */
1967        ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1968        if (!ret) {
1969                netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1970                switch (value) {
1971                case XAE_PHY_TYPE_MII:
1972                        lp->phy_mode = PHY_INTERFACE_MODE_MII;
1973                        break;
1974                case XAE_PHY_TYPE_GMII:
1975                        lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1976                        break;
1977                case XAE_PHY_TYPE_RGMII_2_0:
1978                        lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1979                        break;
1980                case XAE_PHY_TYPE_SGMII:
1981                        lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1982                        break;
1983                case XAE_PHY_TYPE_1000BASE_X:
1984                        lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1985                        break;
1986                default:
1987                        ret = -EINVAL;
1988                        goto cleanup_clk;
1989                }
1990        } else {
1991                ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1992                if (ret)
1993                        goto cleanup_clk;
1994        }
1995        if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
1996            lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
1997                dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
1998                ret = -EINVAL;
1999                goto cleanup_clk;
2000        }
2001
2002        /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2003        np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2004        if (np) {
2005                struct resource dmares;
2006
2007                ret = of_address_to_resource(np, 0, &dmares);
2008                if (ret) {
2009                        dev_err(&pdev->dev,
2010                                "unable to get DMA resource\n");
2011                        of_node_put(np);
2012                        goto cleanup_clk;
2013                }
2014                lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2015                                                     &dmares);
2016                lp->rx_irq = irq_of_parse_and_map(np, 1);
2017                lp->tx_irq = irq_of_parse_and_map(np, 0);
2018                of_node_put(np);
2019                lp->eth_irq = platform_get_irq_optional(pdev, 0);
2020        } else {
2021                /* Check for these resources directly on the Ethernet node. */
2022                lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2023                lp->rx_irq = platform_get_irq(pdev, 1);
2024                lp->tx_irq = platform_get_irq(pdev, 0);
2025                lp->eth_irq = platform_get_irq_optional(pdev, 2);
2026        }
2027        if (IS_ERR(lp->dma_regs)) {
2028                dev_err(&pdev->dev, "could not map DMA regs\n");
2029                ret = PTR_ERR(lp->dma_regs);
2030                goto cleanup_clk;
2031        }
2032        if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
2033                dev_err(&pdev->dev, "could not determine irqs\n");
2034                ret = -ENOMEM;
2035                goto cleanup_clk;
2036        }
2037
2038        /* Autodetect the need for 64-bit DMA pointers.
2039         * When the IP is configured for a bus width bigger than 32 bits,
2040         * writing the MSB registers is mandatory, even if they are all 0.
2041         * We can detect this case by writing all 1's to one such register
2042         * and see if that sticks: when the IP is configured for 32 bits
2043         * only, those registers are RES0.
2044         * Those MSB registers were introduced in IP v7.1, which we check first.
2045         */
2046        if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2047                void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2048
2049                iowrite32(0x0, desc);
2050                if (ioread32(desc) == 0) {      /* sanity check */
2051                        iowrite32(0xffffffff, desc);
2052                        if (ioread32(desc) > 0) {
2053                                lp->features |= XAE_FEATURE_DMA_64BIT;
2054                                addr_width = 64;
2055                                dev_info(&pdev->dev,
2056                                         "autodetected 64-bit DMA range\n");
2057                        }
2058                        iowrite32(0x0, desc);
2059                }
2060        }
2061
2062        ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2063        if (ret) {
2064                dev_err(&pdev->dev, "No suitable DMA available\n");
2065                goto cleanup_clk;
2066        }
2067
2068        /* Check for Ethernet core IRQ (optional) */
2069        if (lp->eth_irq <= 0)
2070                dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2071
2072        /* Retrieve the MAC address */
2073        ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2074        if (!ret) {
2075                axienet_set_mac_address(ndev, mac_addr);
2076        } else {
2077                dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2078                         ret);
2079                axienet_set_mac_address(ndev, NULL);
2080        }
2081
2082        lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2083        lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2084
2085        lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2086        if (lp->phy_node) {
2087                ret = axienet_mdio_setup(lp);
2088                if (ret)
2089                        dev_warn(&pdev->dev,
2090                                 "error registering MDIO bus: %d\n", ret);
2091        }
2092        if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2093            lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2094                if (!lp->phy_node) {
2095                        dev_err(&pdev->dev, "phy-handle required for 1000BaseX/SGMII\n");
2096                        ret = -EINVAL;
2097                        goto cleanup_mdio;
2098                }
2099                lp->pcs_phy = of_mdio_find_device(lp->phy_node);
2100                if (!lp->pcs_phy) {
2101                        ret = -EPROBE_DEFER;
2102                        goto cleanup_mdio;
2103                }
2104                lp->phylink_config.pcs_poll = true;
2105        }
2106
2107        lp->phylink_config.dev = &ndev->dev;
2108        lp->phylink_config.type = PHYLINK_NETDEV;
2109
2110        lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2111                                     lp->phy_mode,
2112                                     &axienet_phylink_ops);
2113        if (IS_ERR(lp->phylink)) {
2114                ret = PTR_ERR(lp->phylink);
2115                dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2116                goto cleanup_mdio;
2117        }
2118
2119        ret = register_netdev(lp->ndev);
2120        if (ret) {
2121                dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2122                goto cleanup_phylink;
2123        }
2124
2125        return 0;
2126
2127cleanup_phylink:
2128        phylink_destroy(lp->phylink);
2129
2130cleanup_mdio:
2131        if (lp->pcs_phy)
2132                put_device(&lp->pcs_phy->dev);
2133        if (lp->mii_bus)
2134                axienet_mdio_teardown(lp);
2135        of_node_put(lp->phy_node);
2136
2137cleanup_clk:
2138        clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2139        clk_disable_unprepare(lp->axi_clk);
2140
2141free_netdev:
2142        free_netdev(ndev);
2143
2144        return ret;
2145}
2146
2147static int axienet_remove(struct platform_device *pdev)
2148{
2149        struct net_device *ndev = platform_get_drvdata(pdev);
2150        struct axienet_local *lp = netdev_priv(ndev);
2151
2152        unregister_netdev(ndev);
2153
2154        if (lp->phylink)
2155                phylink_destroy(lp->phylink);
2156
2157        if (lp->pcs_phy)
2158                put_device(&lp->pcs_phy->dev);
2159
2160        axienet_mdio_teardown(lp);
2161
2162        clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2163        clk_disable_unprepare(lp->axi_clk);
2164
2165        of_node_put(lp->phy_node);
2166        lp->phy_node = NULL;
2167
2168        free_netdev(ndev);
2169
2170        return 0;
2171}
2172
2173static void axienet_shutdown(struct platform_device *pdev)
2174{
2175        struct net_device *ndev = platform_get_drvdata(pdev);
2176
2177        rtnl_lock();
2178        netif_device_detach(ndev);
2179
2180        if (netif_running(ndev))
2181                dev_close(ndev);
2182
2183        rtnl_unlock();
2184}
2185
2186static struct platform_driver axienet_driver = {
2187        .probe = axienet_probe,
2188        .remove = axienet_remove,
2189        .shutdown = axienet_shutdown,
2190        .driver = {
2191                 .name = "xilinx_axienet",
2192                 .of_match_table = axienet_of_match,
2193        },
2194};
2195
2196module_platform_driver(axienet_driver);
2197
2198MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2199MODULE_AUTHOR("Xilinx");
2200MODULE_LICENSE("GPL");
2201