linux/drivers/net/fddi/defxx.c
<<
>>
Prefs
   1/*
   2 * File Name:
   3 *   defxx.c
   4 *
   5 * Copyright Information:
   6 *   Copyright Digital Equipment Corporation 1996.
   7 *
   8 *   This software may be used and distributed according to the terms of
   9 *   the GNU General Public License, incorporated herein by reference.
  10 *
  11 * Abstract:
  12 *   A Linux device driver supporting the Digital Equipment Corporation
  13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
  14 *   adapters include:
  15 *
  16 *              DEC FDDIcontroller/TURBOchannel (DEFTA)
  17 *              DEC FDDIcontroller/EISA         (DEFEA)
  18 *              DEC FDDIcontroller/PCI          (DEFPA)
  19 *
  20 * The original author:
  21 *   LVS        Lawrence V. Stefani <lstefani@yahoo.com>
  22 *
  23 * Maintainers:
  24 *   macro      Maciej W. Rozycki <macro@orcam.me.uk>
  25 *
  26 * Credits:
  27 *   I'd like to thank Patricia Cross for helping me get started with
  28 *   Linux, David Davies for a lot of help upgrading and configuring
  29 *   my development system and for answering many OS and driver
  30 *   development questions, and Alan Cox for recommendations and
  31 *   integration help on getting FDDI support into Linux.  LVS
  32 *
  33 * Driver Architecture:
  34 *   The driver architecture is largely based on previous driver work
  35 *   for other operating systems.  The upper edge interface and
  36 *   functions were largely taken from existing Linux device drivers
  37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
  38 *   driver.
  39 *
  40 *   Adapter Probe -
  41 *              The driver scans for supported EISA adapters by reading the
  42 *              SLOT ID register for each EISA slot and making a match
  43 *              against the expected value.
  44 *
  45 *   Bus-Specific Initialization -
  46 *              This driver currently supports both EISA and PCI controller
  47 *              families.  While the custom DMA chip and FDDI logic is similar
  48 *              or identical, the bus logic is very different.  After
  49 *              initialization, the     only bus-specific differences is in how the
  50 *              driver enables and disables interrupts.  Other than that, the
  51 *              run-time critical code behaves the same on both families.
  52 *              It's important to note that both adapter families are configured
  53 *              to I/O map, rather than memory map, the adapter registers.
  54 *
  55 *   Driver Open/Close -
  56 *              In the driver open routine, the driver ISR (interrupt service
  57 *              routine) is registered and the adapter is brought to an
  58 *              operational state.  In the driver close routine, the opposite
  59 *              occurs; the driver ISR is deregistered and the adapter is
  60 *              brought to a safe, but closed state.  Users may use consecutive
  61 *              commands to bring the adapter up and down as in the following
  62 *              example:
  63 *                                      ifconfig fddi0 up
  64 *                                      ifconfig fddi0 down
  65 *                                      ifconfig fddi0 up
  66 *
  67 *   Driver Shutdown -
  68 *              Apparently, there is no shutdown or halt routine support under
  69 *              Linux.  This routine would be called during "reboot" or
  70 *              "shutdown" to allow the driver to place the adapter in a safe
  71 *              state before a warm reboot occurs.  To be really safe, the user
  72 *              should close the adapter before shutdown (eg. ifconfig fddi0 down)
  73 *              to ensure that the adapter DMA engine is taken off-line.  However,
  74 *              the current driver code anticipates this problem and always issues
  75 *              a soft reset of the adapter     at the beginning of driver initialization.
  76 *              A future driver enhancement in this area may occur in 2.1.X where
  77 *              Alan indicated that a shutdown handler may be implemented.
  78 *
  79 *   Interrupt Service Routine -
  80 *              The driver supports shared interrupts, so the ISR is registered for
  81 *              each board with the appropriate flag and the pointer to that board's
  82 *              device structure.  This provides the context during interrupt
  83 *              processing to support shared interrupts and multiple boards.
  84 *
  85 *              Interrupt enabling/disabling can occur at many levels.  At the host
  86 *              end, you can disable system interrupts, or disable interrupts at the
  87 *              PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
  88 *              have a bus-logic chip interrupt enable/disable as well as a DMA
  89 *              controller interrupt enable/disable.
  90 *
  91 *              The driver currently enables and disables adapter interrupts at the
  92 *              bus-logic chip and assumes that Linux will take care of clearing or
  93 *              acknowledging any host-based interrupt chips.
  94 *
  95 *   Control Functions -
  96 *              Control functions are those used to support functions such as adding
  97 *              or deleting multicast addresses, enabling or disabling packet
  98 *              reception filters, or other custom/proprietary commands.  Presently,
  99 *              the driver supports the "get statistics", "set multicast list", and
 100 *              "set mac address" functions defined by Linux.  A list of possible
 101 *              enhancements include:
 102 *
 103 *                              - Custom ioctl interface for executing port interface commands
 104 *                              - Custom ioctl interface for adding unicast addresses to
 105 *                                adapter CAM (to support bridge functions).
 106 *                              - Custom ioctl interface for supporting firmware upgrades.
 107 *
 108 *   Hardware (port interface) Support Routines -
 109 *              The driver function names that start with "dfx_hw_" represent
 110 *              low-level port interface routines that are called frequently.  They
 111 *              include issuing a DMA or port control command to the adapter,
 112 *              resetting the adapter, or reading the adapter state.  Since the
 113 *              driver initialization and run-time code must make calls into the
 114 *              port interface, these routines were written to be as generic and
 115 *              usable as possible.
 116 *
 117 *   Receive Path -
 118 *              The adapter DMA engine supports a 256 entry receive descriptor block
 119 *              of which up to 255 entries can be used at any given time.  The
 120 *              architecture is a standard producer, consumer, completion model in
 121 *              which the driver "produces" receive buffers to the adapter, the
 122 *              adapter "consumes" the receive buffers by DMAing incoming packet data,
 123 *              and the driver "completes" the receive buffers by servicing the
 124 *              incoming packet, then "produces" a new buffer and starts the cycle
 125 *              again.  Receive buffers can be fragmented in up to 16 fragments
 126 *              (descriptor     entries).  For simplicity, this driver posts
 127 *              single-fragment receive buffers of 4608 bytes, then allocates a
 128 *              sk_buff, copies the data, then reposts the buffer.  To reduce CPU
 129 *              utilization, a better approach would be to pass up the receive
 130 *              buffer (no extra copy) then allocate and post a replacement buffer.
 131 *              This is a performance enhancement that should be looked into at
 132 *              some point.
 133 *
 134 *   Transmit Path -
 135 *              Like the receive path, the adapter DMA engine supports a 256 entry
 136 *              transmit descriptor block of which up to 255 entries can be used at
 137 *              any     given time.  Transmit buffers can be fragmented in up to 255
 138 *              fragments (descriptor entries).  This driver always posts one
 139 *              fragment per transmit packet request.
 140 *
 141 *              The fragment contains the entire packet from FC to end of data.
 142 *              Before posting the buffer to the adapter, the driver sets a three-byte
 143 *              packet request header (PRH) which is required by the Motorola MAC chip
 144 *              used on the adapters.  The PRH tells the MAC the type of token to
 145 *              receive/send, whether or not to generate and append the CRC, whether
 146 *              synchronous or asynchronous framing is used, etc.  Since the PRH
 147 *              definition is not necessarily consistent across all FDDI chipsets,
 148 *              the driver, rather than the common FDDI packet handler routines,
 149 *              sets these bytes.
 150 *
 151 *              To reduce the amount of descriptor fetches needed per transmit request,
 152 *              the driver takes advantage of the fact that there are at least three
 153 *              bytes available before the skb->data field on the outgoing transmit
 154 *              request.  This is guaranteed by having fddi_setup() in net_init.c set
 155 *              dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
 156 *              header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
 157 *              bytes which we'll use to store the PRH.
 158 *
 159 *              There's a subtle advantage to adding these pad bytes to the
 160 *              hard_header_len, it ensures that the data portion of the packet for
 161 *              an 802.2 SNAP frame is longword aligned.  Other FDDI driver
 162 *              implementations may not need the extra padding and can start copying
 163 *              or DMAing directly from the FC byte which starts at skb->data.  Should
 164 *              another driver implementation need ADDITIONAL padding, the net_init.c
 165 *              module should be updated and dev->hard_header_len should be increased.
 166 *              NOTE: To maintain the alignment on the data portion of the packet,
 167 *              dev->hard_header_len should always be evenly divisible by 4 and at
 168 *              least 24 bytes in size.
 169 *
 170 * Modification History:
 171 *              Date            Name    Description
 172 *              16-Aug-96       LVS             Created.
 173 *              20-Aug-96       LVS             Updated dfx_probe so that version information
 174 *                                                      string is only displayed if 1 or more cards are
 175 *                                                      found.  Changed dfx_rcv_queue_process to copy
 176 *                                                      3 NULL bytes before FC to ensure that data is
 177 *                                                      longword aligned in receive buffer.
 178 *              09-Sep-96       LVS             Updated dfx_ctl_set_multicast_list to enable
 179 *                                                      LLC group promiscuous mode if multicast list
 180 *                                                      is too large.  LLC individual/group promiscuous
 181 *                                                      mode is now disabled if IFF_PROMISC flag not set.
 182 *                                                      dfx_xmt_queue_pkt no longer checks for NULL skb
 183 *                                                      on Alan Cox recommendation.  Added node address
 184 *                                                      override support.
 185 *              12-Sep-96       LVS             Reset current address to factory address during
 186 *                                                      device open.  Updated transmit path to post a
 187 *                                                      single fragment which includes PRH->end of data.
 188 *              Mar 2000        AC              Did various cleanups for 2.3.x
 189 *              Jun 2000        jgarzik         PCI and resource alloc cleanups
 190 *              Jul 2000        tjeerd          Much cleanup and some bug fixes
 191 *              Sep 2000        tjeerd          Fix leak on unload, cosmetic code cleanup
 192 *              Feb 2001                        Skb allocation fixes
 193 *              Feb 2001        davej           PCI enable cleanups.
 194 *              04 Aug 2003     macro           Converted to the DMA API.
 195 *              14 Aug 2004     macro           Fix device names reported.
 196 *              14 Jun 2005     macro           Use irqreturn_t.
 197 *              23 Oct 2006     macro           Big-endian host support.
 198 *              14 Dec 2006     macro           TURBOchannel support.
 199 *              01 Jul 2014     macro           Fixes for DMA on 64-bit hosts.
 200 *              10 Mar 2021     macro           Dynamic MMIO vs port I/O.
 201 */
 202
 203/* Include files */
 204#include <linux/bitops.h>
 205#include <linux/compiler.h>
 206#include <linux/delay.h>
 207#include <linux/dma-mapping.h>
 208#include <linux/eisa.h>
 209#include <linux/errno.h>
 210#include <linux/fddidevice.h>
 211#include <linux/interrupt.h>
 212#include <linux/ioport.h>
 213#include <linux/kernel.h>
 214#include <linux/module.h>
 215#include <linux/netdevice.h>
 216#include <linux/pci.h>
 217#include <linux/skbuff.h>
 218#include <linux/slab.h>
 219#include <linux/string.h>
 220#include <linux/tc.h>
 221
 222#include <asm/byteorder.h>
 223#include <asm/io.h>
 224
 225#include "defxx.h"
 226
 227/* Version information string should be updated prior to each new release!  */
 228#define DRV_NAME "defxx"
 229#define DRV_VERSION "v1.12"
 230#define DRV_RELDATE "2021/03/10"
 231
 232static const char version[] =
 233        DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
 234        "  Lawrence V. Stefani and others\n";
 235
 236#define DYNAMIC_BUFFERS 1
 237
 238#define SKBUFF_RX_COPYBREAK 200
 239/*
 240 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
 241 * alignment for compatibility with old EISA boards.
 242 */
 243#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
 244
 245#ifdef CONFIG_EISA
 246#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
 247#else
 248#define DFX_BUS_EISA(dev) 0
 249#endif
 250
 251#ifdef CONFIG_TC
 252#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
 253#else
 254#define DFX_BUS_TC(dev) 0
 255#endif
 256
 257#if defined(CONFIG_EISA) || defined(CONFIG_PCI)
 258#define dfx_use_mmio bp->mmio
 259#else
 260#define dfx_use_mmio true
 261#endif
 262
 263/* Define module-wide (static) routines */
 264
 265static void             dfx_bus_init(struct net_device *dev);
 266static void             dfx_bus_uninit(struct net_device *dev);
 267static void             dfx_bus_config_check(DFX_board_t *bp);
 268
 269static int              dfx_driver_init(struct net_device *dev,
 270                                        const char *print_name,
 271                                        resource_size_t bar_start);
 272static int              dfx_adap_init(DFX_board_t *bp, int get_buffers);
 273
 274static int              dfx_open(struct net_device *dev);
 275static int              dfx_close(struct net_device *dev);
 276
 277static void             dfx_int_pr_halt_id(DFX_board_t *bp);
 278static void             dfx_int_type_0_process(DFX_board_t *bp);
 279static void             dfx_int_common(struct net_device *dev);
 280static irqreturn_t      dfx_interrupt(int irq, void *dev_id);
 281
 282static struct           net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
 283static void             dfx_ctl_set_multicast_list(struct net_device *dev);
 284static int              dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
 285static int              dfx_ctl_update_cam(DFX_board_t *bp);
 286static int              dfx_ctl_update_filters(DFX_board_t *bp);
 287
 288static int              dfx_hw_dma_cmd_req(DFX_board_t *bp);
 289static int              dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
 290static void             dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
 291static int              dfx_hw_adap_state_rd(DFX_board_t *bp);
 292static int              dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
 293
 294static int              dfx_rcv_init(DFX_board_t *bp, int get_buffers);
 295static void             dfx_rcv_queue_process(DFX_board_t *bp);
 296#ifdef DYNAMIC_BUFFERS
 297static void             dfx_rcv_flush(DFX_board_t *bp);
 298#else
 299static inline void      dfx_rcv_flush(DFX_board_t *bp) {}
 300#endif
 301
 302static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
 303                                     struct net_device *dev);
 304static int              dfx_xmt_done(DFX_board_t *bp);
 305static void             dfx_xmt_flush(DFX_board_t *bp);
 306
 307/* Define module-wide (static) variables */
 308
 309static struct pci_driver dfx_pci_driver;
 310static struct eisa_driver dfx_eisa_driver;
 311static struct tc_driver dfx_tc_driver;
 312
 313
 314/*
 315 * =======================
 316 * = dfx_port_write_long =
 317 * = dfx_port_read_long  =
 318 * =======================
 319 *
 320 * Overview:
 321 *   Routines for reading and writing values from/to adapter
 322 *
 323 * Returns:
 324 *   None
 325 *
 326 * Arguments:
 327 *   bp         - pointer to board information
 328 *   offset     - register offset from base I/O address
 329 *   data       - for dfx_port_write_long, this is a value to write;
 330 *                for dfx_port_read_long, this is a pointer to store
 331 *                the read value
 332 *
 333 * Functional Description:
 334 *   These routines perform the correct operation to read or write
 335 *   the adapter register.
 336 *
 337 *   EISA port block base addresses are based on the slot number in which the
 338 *   controller is installed.  For example, if the EISA controller is installed
 339 *   in slot 4, the port block base address is 0x4000.  If the controller is
 340 *   installed in slot 2, the port block base address is 0x2000, and so on.
 341 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
 342 *   registers using the register offsets defined in DEFXX.H.
 343 *
 344 *   PCI port block base addresses are assigned by the PCI BIOS or system
 345 *   firmware.  There is one 128 byte port block which can be accessed.  It
 346 *   allows for I/O mapping of both PDQ and PFI registers using the register
 347 *   offsets defined in DEFXX.H.
 348 *
 349 * Return Codes:
 350 *   None
 351 *
 352 * Assumptions:
 353 *   bp->base is a valid base I/O address for this adapter.
 354 *   offset is a valid register offset for this adapter.
 355 *
 356 * Side Effects:
 357 *   Rather than produce macros for these functions, these routines
 358 *   are defined using "inline" to ensure that the compiler will
 359 *   generate inline code and not waste a procedure call and return.
 360 *   This provides all the benefits of macros, but with the
 361 *   advantage of strict data type checking.
 362 */
 363
 364static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
 365{
 366        writel(data, bp->base.mem + offset);
 367        mb();
 368}
 369
 370static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
 371{
 372        outl(data, bp->base.port + offset);
 373}
 374
 375static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
 376{
 377        struct device __maybe_unused *bdev = bp->bus_dev;
 378
 379        if (dfx_use_mmio)
 380                dfx_writel(bp, offset, data);
 381        else
 382                dfx_outl(bp, offset, data);
 383}
 384
 385
 386static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
 387{
 388        mb();
 389        *data = readl(bp->base.mem + offset);
 390}
 391
 392static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
 393{
 394        *data = inl(bp->base.port + offset);
 395}
 396
 397static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
 398{
 399        struct device __maybe_unused *bdev = bp->bus_dev;
 400
 401        if (dfx_use_mmio)
 402                dfx_readl(bp, offset, data);
 403        else
 404                dfx_inl(bp, offset, data);
 405}
 406
 407
 408/*
 409 * ================
 410 * = dfx_get_bars =
 411 * ================
 412 *
 413 * Overview:
 414 *   Retrieves the address ranges used to access control and status
 415 *   registers.
 416 *
 417 * Returns:
 418 *   None
 419 *
 420 * Arguments:
 421 *   bp         - pointer to board information
 422 *   bar_start  - pointer to store the start addresses
 423 *   bar_len    - pointer to store the lengths of the areas
 424 *
 425 * Assumptions:
 426 *   I am sure there are some.
 427 *
 428 * Side Effects:
 429 *   None
 430 */
 431static void dfx_get_bars(DFX_board_t *bp,
 432                         resource_size_t *bar_start, resource_size_t *bar_len)
 433{
 434        struct device *bdev = bp->bus_dev;
 435        int dfx_bus_pci = dev_is_pci(bdev);
 436        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 437        int dfx_bus_tc = DFX_BUS_TC(bdev);
 438
 439        if (dfx_bus_pci) {
 440                int num = dfx_use_mmio ? 0 : 1;
 441
 442                bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
 443                bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
 444                bar_start[2] = bar_start[1] = 0;
 445                bar_len[2] = bar_len[1] = 0;
 446        }
 447        if (dfx_bus_eisa) {
 448                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 449                resource_size_t bar_lo;
 450                resource_size_t bar_hi;
 451
 452                if (dfx_use_mmio) {
 453                        bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
 454                        bar_lo <<= 8;
 455                        bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
 456                        bar_lo <<= 8;
 457                        bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
 458                        bar_lo <<= 8;
 459                        bar_start[0] = bar_lo;
 460                        bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
 461                        bar_hi <<= 8;
 462                        bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
 463                        bar_hi <<= 8;
 464                        bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
 465                        bar_hi <<= 8;
 466                        bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
 467                                     1;
 468                } else {
 469                        bar_start[0] = base_addr;
 470                        bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
 471                }
 472                bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
 473                bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
 474                bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
 475                bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
 476        }
 477        if (dfx_bus_tc) {
 478                bar_start[0] = to_tc_dev(bdev)->resource.start +
 479                               PI_TC_K_CSR_OFFSET;
 480                bar_len[0] = PI_TC_K_CSR_LEN;
 481                bar_start[2] = bar_start[1] = 0;
 482                bar_len[2] = bar_len[1] = 0;
 483        }
 484}
 485
 486static const struct net_device_ops dfx_netdev_ops = {
 487        .ndo_open               = dfx_open,
 488        .ndo_stop               = dfx_close,
 489        .ndo_start_xmit         = dfx_xmt_queue_pkt,
 490        .ndo_get_stats          = dfx_ctl_get_stats,
 491        .ndo_set_rx_mode        = dfx_ctl_set_multicast_list,
 492        .ndo_set_mac_address    = dfx_ctl_set_mac_address,
 493};
 494
 495static void dfx_register_res_err(const char *print_name, bool mmio,
 496                                 unsigned long start, unsigned long len)
 497{
 498        pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
 499               print_name, mmio ? "MMIO" : "I/O", len, start);
 500}
 501
 502/*
 503 * ================
 504 * = dfx_register =
 505 * ================
 506 *
 507 * Overview:
 508 *   Initializes a supported FDDI controller
 509 *
 510 * Returns:
 511 *   Condition code
 512 *
 513 * Arguments:
 514 *   bdev - pointer to device information
 515 *
 516 * Functional Description:
 517 *
 518 * Return Codes:
 519 *   0           - This device (fddi0, fddi1, etc) configured successfully
 520 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
 521 *
 522 * Assumptions:
 523 *   It compiles so it should work :-( (PCI cards do :-)
 524 *
 525 * Side Effects:
 526 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
 527 *   initialized and the board resources are read and stored in
 528 *   the device structure.
 529 */
 530static int dfx_register(struct device *bdev)
 531{
 532        static int version_disp;
 533        int dfx_bus_pci = dev_is_pci(bdev);
 534        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 535        const char *print_name = dev_name(bdev);
 536        struct net_device *dev;
 537        DFX_board_t       *bp;                  /* board pointer */
 538        resource_size_t bar_start[3] = {0};     /* pointers to ports */
 539        resource_size_t bar_len[3] = {0};       /* resource length */
 540        int alloc_size;                         /* total buffer size used */
 541        struct resource *region;
 542        int err = 0;
 543
 544        if (!version_disp) {    /* display version info if adapter is found */
 545                version_disp = 1;       /* set display flag to TRUE so that */
 546                printk(version);        /* we only display this string ONCE */
 547        }
 548
 549        dev = alloc_fddidev(sizeof(*bp));
 550        if (!dev) {
 551                printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
 552                       print_name);
 553                return -ENOMEM;
 554        }
 555
 556        /* Enable PCI device. */
 557        if (dfx_bus_pci) {
 558                err = pci_enable_device(to_pci_dev(bdev));
 559                if (err) {
 560                        pr_err("%s: Cannot enable PCI device, aborting\n",
 561                               print_name);
 562                        goto err_out;
 563                }
 564        }
 565
 566        SET_NETDEV_DEV(dev, bdev);
 567
 568        bp = netdev_priv(dev);
 569        bp->bus_dev = bdev;
 570        dev_set_drvdata(bdev, dev);
 571
 572        bp->mmio = true;
 573
 574        dfx_get_bars(bp, bar_start, bar_len);
 575        if (bar_len[0] == 0 ||
 576            (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0)) {
 577                bp->mmio = false;
 578                dfx_get_bars(bp, bar_start, bar_len);
 579        }
 580
 581        if (dfx_use_mmio) {
 582                region = request_mem_region(bar_start[0], bar_len[0],
 583                                            bdev->driver->name);
 584                if (!region && (dfx_bus_eisa || dfx_bus_pci)) {
 585                        bp->mmio = false;
 586                        dfx_get_bars(bp, bar_start, bar_len);
 587                }
 588        }
 589        if (!dfx_use_mmio)
 590                region = request_region(bar_start[0], bar_len[0],
 591                                        bdev->driver->name);
 592        if (!region) {
 593                dfx_register_res_err(print_name, dfx_use_mmio,
 594                                     bar_start[0], bar_len[0]);
 595                err = -EBUSY;
 596                goto err_out_disable;
 597        }
 598        if (bar_start[1] != 0) {
 599                region = request_region(bar_start[1], bar_len[1],
 600                                        bdev->driver->name);
 601                if (!region) {
 602                        dfx_register_res_err(print_name, 0,
 603                                             bar_start[1], bar_len[1]);
 604                        err = -EBUSY;
 605                        goto err_out_csr_region;
 606                }
 607        }
 608        if (bar_start[2] != 0) {
 609                region = request_region(bar_start[2], bar_len[2],
 610                                        bdev->driver->name);
 611                if (!region) {
 612                        dfx_register_res_err(print_name, 0,
 613                                             bar_start[2], bar_len[2]);
 614                        err = -EBUSY;
 615                        goto err_out_bh_region;
 616                }
 617        }
 618
 619        /* Set up I/O base address. */
 620        if (dfx_use_mmio) {
 621                bp->base.mem = ioremap(bar_start[0], bar_len[0]);
 622                if (!bp->base.mem) {
 623                        printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
 624                        err = -ENOMEM;
 625                        goto err_out_esic_region;
 626                }
 627        } else {
 628                bp->base.port = bar_start[0];
 629                dev->base_addr = bar_start[0];
 630        }
 631
 632        /* Initialize new device structure */
 633        dev->netdev_ops                 = &dfx_netdev_ops;
 634
 635        if (dfx_bus_pci)
 636                pci_set_master(to_pci_dev(bdev));
 637
 638        if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
 639                err = -ENODEV;
 640                goto err_out_unmap;
 641        }
 642
 643        err = register_netdev(dev);
 644        if (err)
 645                goto err_out_kfree;
 646
 647        printk("%s: registered as %s\n", print_name, dev->name);
 648        return 0;
 649
 650err_out_kfree:
 651        alloc_size = sizeof(PI_DESCR_BLOCK) +
 652                     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
 653#ifndef DYNAMIC_BUFFERS
 654                     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
 655#endif
 656                     sizeof(PI_CONSUMER_BLOCK) +
 657                     (PI_ALIGN_K_DESC_BLK - 1);
 658        if (bp->kmalloced)
 659                dma_free_coherent(bdev, alloc_size,
 660                                  bp->kmalloced, bp->kmalloced_dma);
 661
 662err_out_unmap:
 663        if (dfx_use_mmio)
 664                iounmap(bp->base.mem);
 665
 666err_out_esic_region:
 667        if (bar_start[2] != 0)
 668                release_region(bar_start[2], bar_len[2]);
 669
 670err_out_bh_region:
 671        if (bar_start[1] != 0)
 672                release_region(bar_start[1], bar_len[1]);
 673
 674err_out_csr_region:
 675        if (dfx_use_mmio)
 676                release_mem_region(bar_start[0], bar_len[0]);
 677        else
 678                release_region(bar_start[0], bar_len[0]);
 679
 680err_out_disable:
 681        if (dfx_bus_pci)
 682                pci_disable_device(to_pci_dev(bdev));
 683
 684err_out:
 685        free_netdev(dev);
 686        return err;
 687}
 688
 689
 690/*
 691 * ================
 692 * = dfx_bus_init =
 693 * ================
 694 *
 695 * Overview:
 696 *   Initializes the bus-specific controller logic.
 697 *
 698 * Returns:
 699 *   None
 700 *
 701 * Arguments:
 702 *   dev - pointer to device information
 703 *
 704 * Functional Description:
 705 *   Determine and save adapter IRQ in device table,
 706 *   then perform bus-specific logic initialization.
 707 *
 708 * Return Codes:
 709 *   None
 710 *
 711 * Assumptions:
 712 *   bp->base has already been set with the proper
 713 *       base I/O address for this device.
 714 *
 715 * Side Effects:
 716 *   Interrupts are enabled at the adapter bus-specific logic.
 717 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
 718 *   enabled yet.
 719 */
 720
 721static void dfx_bus_init(struct net_device *dev)
 722{
 723        DFX_board_t *bp = netdev_priv(dev);
 724        struct device *bdev = bp->bus_dev;
 725        int dfx_bus_pci = dev_is_pci(bdev);
 726        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 727        int dfx_bus_tc = DFX_BUS_TC(bdev);
 728        u8 val;
 729
 730        DBG_printk("In dfx_bus_init...\n");
 731
 732        /* Initialize a pointer back to the net_device struct */
 733        bp->dev = dev;
 734
 735        /* Initialize adapter based on bus type */
 736
 737        if (dfx_bus_tc)
 738                dev->irq = to_tc_dev(bdev)->interrupt;
 739        if (dfx_bus_eisa) {
 740                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 741
 742                /* Disable the board before fiddling with the decoders.  */
 743                outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
 744
 745                /* Get the interrupt level from the ESIC chip.  */
 746                val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 747                val &= PI_CONFIG_STAT_0_M_IRQ;
 748                val >>= PI_CONFIG_STAT_0_V_IRQ;
 749
 750                switch (val) {
 751                case PI_CONFIG_STAT_0_IRQ_K_9:
 752                        dev->irq = 9;
 753                        break;
 754
 755                case PI_CONFIG_STAT_0_IRQ_K_10:
 756                        dev->irq = 10;
 757                        break;
 758
 759                case PI_CONFIG_STAT_0_IRQ_K_11:
 760                        dev->irq = 11;
 761                        break;
 762
 763                case PI_CONFIG_STAT_0_IRQ_K_15:
 764                        dev->irq = 15;
 765                        break;
 766                }
 767
 768                /*
 769                 * Enable memory decoding (MEMCS1) and/or port decoding
 770                 * (IOCS1/IOCS0) as appropriate in Function Control
 771                 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
 772                 * taking 16 32-bit words, while IOCS1 is used for the
 773                 * Burst Holdoff register, taking a single 32-bit word
 774                 * only.  We use the slot-specific I/O range as per the
 775                 * ESIC spec, that is set bits 15:12 in the mask registers
 776                 * to mask them out.
 777                 */
 778
 779                /* Set the decode range of the board.  */
 780                val = 0;
 781                outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
 782                val = PI_DEFEA_K_CSR_IO;
 783                outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
 784
 785                val = PI_IO_CMP_M_SLOT;
 786                outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
 787                val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
 788                outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
 789
 790                val = 0;
 791                outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
 792                val = PI_DEFEA_K_BURST_HOLDOFF;
 793                outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
 794
 795                val = PI_IO_CMP_M_SLOT;
 796                outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
 797                val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
 798                outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
 799
 800                /* Enable the decoders.  */
 801                val = PI_FUNCTION_CNTRL_M_IOCS1;
 802                if (dfx_use_mmio)
 803                        val |= PI_FUNCTION_CNTRL_M_MEMCS1;
 804                else
 805                        val |= PI_FUNCTION_CNTRL_M_IOCS0;
 806                outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
 807
 808                /*
 809                 * Enable access to the rest of the module
 810                 * (including PDQ and packet memory).
 811                 */
 812                val = PI_SLOT_CNTRL_M_ENB;
 813                outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
 814
 815                /*
 816                 * Map PDQ registers into memory or port space.  This is
 817                 * done with a bit in the Burst Holdoff register.
 818                 */
 819                val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
 820                if (dfx_use_mmio)
 821                        val |= PI_BURST_HOLDOFF_M_MEM_MAP;
 822                else
 823                        val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
 824                outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
 825
 826                /* Enable interrupts at EISA bus interface chip (ESIC) */
 827                val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 828                val |= PI_CONFIG_STAT_0_M_INT_ENB;
 829                outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 830        }
 831        if (dfx_bus_pci) {
 832                struct pci_dev *pdev = to_pci_dev(bdev);
 833
 834                /* Get the interrupt level from the PCI Configuration Table */
 835
 836                dev->irq = pdev->irq;
 837
 838                /* Check Latency Timer and set if less than minimal */
 839
 840                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
 841                if (val < PFI_K_LAT_TIMER_MIN) {
 842                        val = PFI_K_LAT_TIMER_DEF;
 843                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
 844                }
 845
 846                /* Enable interrupts at PCI bus interface chip (PFI) */
 847                val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
 848                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
 849        }
 850}
 851
 852/*
 853 * ==================
 854 * = dfx_bus_uninit =
 855 * ==================
 856 *
 857 * Overview:
 858 *   Uninitializes the bus-specific controller logic.
 859 *
 860 * Returns:
 861 *   None
 862 *
 863 * Arguments:
 864 *   dev - pointer to device information
 865 *
 866 * Functional Description:
 867 *   Perform bus-specific logic uninitialization.
 868 *
 869 * Return Codes:
 870 *   None
 871 *
 872 * Assumptions:
 873 *   bp->base has already been set with the proper
 874 *       base I/O address for this device.
 875 *
 876 * Side Effects:
 877 *   Interrupts are disabled at the adapter bus-specific logic.
 878 */
 879
 880static void dfx_bus_uninit(struct net_device *dev)
 881{
 882        DFX_board_t *bp = netdev_priv(dev);
 883        struct device *bdev = bp->bus_dev;
 884        int dfx_bus_pci = dev_is_pci(bdev);
 885        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 886        u8 val;
 887
 888        DBG_printk("In dfx_bus_uninit...\n");
 889
 890        /* Uninitialize adapter based on bus type */
 891
 892        if (dfx_bus_eisa) {
 893                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
 894
 895                /* Disable interrupts at EISA bus interface chip (ESIC) */
 896                val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 897                val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
 898                outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
 899
 900                /* Disable the board.  */
 901                outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
 902
 903                /* Disable memory and port decoders.  */
 904                outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
 905        }
 906        if (dfx_bus_pci) {
 907                /* Disable interrupts at PCI bus interface chip (PFI) */
 908                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
 909        }
 910}
 911
 912
 913/*
 914 * ========================
 915 * = dfx_bus_config_check =
 916 * ========================
 917 *
 918 * Overview:
 919 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
 920 *   are illegal, then this routine will set new defaults.
 921 *
 922 * Returns:
 923 *   None
 924 *
 925 * Arguments:
 926 *   bp - pointer to board information
 927 *
 928 * Functional Description:
 929 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
 930 *   PDQ, and all FDDI PCI controllers, all values are legal.
 931 *
 932 * Return Codes:
 933 *   None
 934 *
 935 * Assumptions:
 936 *   dfx_adap_init has NOT been called yet so burst size and other items have
 937 *   not been set.
 938 *
 939 * Side Effects:
 940 *   None
 941 */
 942
 943static void dfx_bus_config_check(DFX_board_t *bp)
 944{
 945        struct device __maybe_unused *bdev = bp->bus_dev;
 946        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
 947        int     status;                         /* return code from adapter port control call */
 948        u32     host_data;                      /* LW data returned from port control call */
 949
 950        DBG_printk("In dfx_bus_config_check...\n");
 951
 952        /* Configuration check only valid for EISA adapter */
 953
 954        if (dfx_bus_eisa) {
 955                /*
 956                 * First check if revision 2 EISA controller.  Rev. 1 cards used
 957                 * PDQ revision B, so no workaround needed in this case.  Rev. 3
 958                 * cards used PDQ revision E, so no workaround needed in this
 959                 * case, either.  Only Rev. 2 cards used either Rev. D or E
 960                 * chips, so we must verify the chip revision on Rev. 2 cards.
 961                 */
 962                if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
 963                        /*
 964                         * Revision 2 FDDI EISA controller found,
 965                         * so let's check PDQ revision of adapter.
 966                         */
 967                        status = dfx_hw_port_ctrl_req(bp,
 968                                                                                        PI_PCTRL_M_SUB_CMD,
 969                                                                                        PI_SUB_CMD_K_PDQ_REV_GET,
 970                                                                                        0,
 971                                                                                        &host_data);
 972                        if ((status != DFX_K_SUCCESS) || (host_data == 2))
 973                                {
 974                                /*
 975                                 * Either we couldn't determine the PDQ revision, or
 976                                 * we determined that it is at revision D.  In either case,
 977                                 * we need to implement the workaround.
 978                                 */
 979
 980                                /* Ensure that the burst size is set to 8 longwords or less */
 981
 982                                switch (bp->burst_size)
 983                                        {
 984                                        case PI_PDATA_B_DMA_BURST_SIZE_32:
 985                                        case PI_PDATA_B_DMA_BURST_SIZE_16:
 986                                                bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
 987                                                break;
 988
 989                                        default:
 990                                                break;
 991                                        }
 992
 993                                /* Ensure that full-duplex mode is not enabled */
 994
 995                                bp->full_duplex_enb = PI_SNMP_K_FALSE;
 996                                }
 997                        }
 998                }
 999        }
1000
1001
1002/*
1003 * ===================
1004 * = dfx_driver_init =
1005 * ===================
1006 *
1007 * Overview:
1008 *   Initializes remaining adapter board structure information
1009 *   and makes sure adapter is in a safe state prior to dfx_open().
1010 *
1011 * Returns:
1012 *   Condition code
1013 *
1014 * Arguments:
1015 *   dev - pointer to device information
1016 *   print_name - printable device name
1017 *
1018 * Functional Description:
1019 *   This function allocates additional resources such as the host memory
1020 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1021 *       Remaining bus initialization steps are also completed.  The adapter
1022 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1023 *   must call dfx_open() to open the adapter and bring it on-line.
1024 *
1025 * Return Codes:
1026 *   DFX_K_SUCCESS      - initialization succeeded
1027 *   DFX_K_FAILURE      - initialization failed - could not allocate memory
1028 *                                              or read adapter MAC address
1029 *
1030 * Assumptions:
1031 *   Memory allocated from pci_alloc_consistent() call is physically
1032 *   contiguous, locked memory.
1033 *
1034 * Side Effects:
1035 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1036 *   returning from this routine.
1037 */
1038
1039static int dfx_driver_init(struct net_device *dev, const char *print_name,
1040                           resource_size_t bar_start)
1041{
1042        DFX_board_t *bp = netdev_priv(dev);
1043        struct device *bdev = bp->bus_dev;
1044        int dfx_bus_pci = dev_is_pci(bdev);
1045        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1046        int dfx_bus_tc = DFX_BUS_TC(bdev);
1047        int alloc_size;                 /* total buffer size needed */
1048        char *top_v, *curr_v;           /* virtual addrs into memory block */
1049        dma_addr_t top_p, curr_p;       /* physical addrs into memory block */
1050        u32 data;                       /* host data register value */
1051        __le32 le32;
1052        char *board_name = NULL;
1053
1054        DBG_printk("In dfx_driver_init...\n");
1055
1056        /* Initialize bus-specific hardware registers */
1057
1058        dfx_bus_init(dev);
1059
1060        /*
1061         * Initialize default values for configurable parameters
1062         *
1063         * Note: All of these parameters are ones that a user may
1064         *       want to customize.  It'd be nice to break these
1065         *               out into Space.c or someplace else that's more
1066         *               accessible/understandable than this file.
1067         */
1068
1069        bp->full_duplex_enb             = PI_SNMP_K_FALSE;
1070        bp->req_ttrt                    = 8 * 12500;            /* 8ms in 80 nanosec units */
1071        bp->burst_size                  = PI_PDATA_B_DMA_BURST_SIZE_DEF;
1072        bp->rcv_bufs_to_post    = RCV_BUFS_DEF;
1073
1074        /*
1075         * Ensure that HW configuration is OK
1076         *
1077         * Note: Depending on the hardware revision, we may need to modify
1078         *       some of the configurable parameters to workaround hardware
1079         *       limitations.  We'll perform this configuration check AFTER
1080         *       setting the parameters to their default values.
1081         */
1082
1083        dfx_bus_config_check(bp);
1084
1085        /* Disable PDQ interrupts first */
1086
1087        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1088
1089        /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1090
1091        (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1092
1093        /*  Read the factory MAC address from the adapter then save it */
1094
1095        if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1096                                 &data) != DFX_K_SUCCESS) {
1097                printk("%s: Could not read adapter factory MAC address!\n",
1098                       print_name);
1099                return DFX_K_FAILURE;
1100        }
1101        le32 = cpu_to_le32(data);
1102        memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1103
1104        if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1105                                 &data) != DFX_K_SUCCESS) {
1106                printk("%s: Could not read adapter factory MAC address!\n",
1107                       print_name);
1108                return DFX_K_FAILURE;
1109        }
1110        le32 = cpu_to_le32(data);
1111        memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1112
1113        /*
1114         * Set current address to factory address
1115         *
1116         * Note: Node address override support is handled through
1117         *       dfx_ctl_set_mac_address.
1118         */
1119
1120        memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1121        if (dfx_bus_tc)
1122                board_name = "DEFTA";
1123        if (dfx_bus_eisa)
1124                board_name = "DEFEA";
1125        if (dfx_bus_pci)
1126                board_name = "DEFPA";
1127        pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1128                print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1129                (long long)bar_start, dev->irq, dev->dev_addr);
1130
1131        /*
1132         * Get memory for descriptor block, consumer block, and other buffers
1133         * that need to be DMA read or written to by the adapter.
1134         */
1135
1136        alloc_size = sizeof(PI_DESCR_BLOCK) +
1137                                        PI_CMD_REQ_K_SIZE_MAX +
1138                                        PI_CMD_RSP_K_SIZE_MAX +
1139#ifndef DYNAMIC_BUFFERS
1140                                        (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1141#endif
1142                                        sizeof(PI_CONSUMER_BLOCK) +
1143                                        (PI_ALIGN_K_DESC_BLK - 1);
1144        bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size,
1145                                                   &bp->kmalloced_dma,
1146                                                   GFP_ATOMIC);
1147        if (top_v == NULL)
1148                return DFX_K_FAILURE;
1149
1150        top_p = bp->kmalloced_dma;      /* get physical address of buffer */
1151
1152        /*
1153         *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1154         *  plus the amount of memory needed was allocated.  The physical address
1155         *      is now 8K aligned.  By carving up the memory in a specific order,
1156         *  we'll guarantee the alignment requirements for all other structures.
1157         *
1158         *  Note: If the assumptions change regarding the non-paged, non-cached,
1159         *                physically contiguous nature of the memory block or the address
1160         *                alignments, then we'll need to implement a different algorithm
1161         *                for allocating the needed memory.
1162         */
1163
1164        curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1165        curr_v = top_v + (curr_p - top_p);
1166
1167        /* Reserve space for descriptor block */
1168
1169        bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1170        bp->descr_block_phys = curr_p;
1171        curr_v += sizeof(PI_DESCR_BLOCK);
1172        curr_p += sizeof(PI_DESCR_BLOCK);
1173
1174        /* Reserve space for command request buffer */
1175
1176        bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1177        bp->cmd_req_phys = curr_p;
1178        curr_v += PI_CMD_REQ_K_SIZE_MAX;
1179        curr_p += PI_CMD_REQ_K_SIZE_MAX;
1180
1181        /* Reserve space for command response buffer */
1182
1183        bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1184        bp->cmd_rsp_phys = curr_p;
1185        curr_v += PI_CMD_RSP_K_SIZE_MAX;
1186        curr_p += PI_CMD_RSP_K_SIZE_MAX;
1187
1188        /* Reserve space for the LLC host receive queue buffers */
1189
1190        bp->rcv_block_virt = curr_v;
1191        bp->rcv_block_phys = curr_p;
1192
1193#ifndef DYNAMIC_BUFFERS
1194        curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1195        curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1196#endif
1197
1198        /* Reserve space for the consumer block */
1199
1200        bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1201        bp->cons_block_phys = curr_p;
1202
1203        /* Display virtual and physical addresses if debug driver */
1204
1205        DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1206                   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1207        DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1208                   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1209        DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1210                   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1211        DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1212                   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1213        DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1214                   print_name, bp->cons_block_virt, &bp->cons_block_phys);
1215
1216        return DFX_K_SUCCESS;
1217}
1218
1219
1220/*
1221 * =================
1222 * = dfx_adap_init =
1223 * =================
1224 *
1225 * Overview:
1226 *   Brings the adapter to the link avail/link unavailable state.
1227 *
1228 * Returns:
1229 *   Condition code
1230 *
1231 * Arguments:
1232 *   bp - pointer to board information
1233 *   get_buffers - non-zero if buffers to be allocated
1234 *
1235 * Functional Description:
1236 *   Issues the low-level firmware/hardware calls necessary to bring
1237 *   the adapter up, or to properly reset and restore adapter during
1238 *   run-time.
1239 *
1240 * Return Codes:
1241 *   DFX_K_SUCCESS - Adapter brought up successfully
1242 *   DFX_K_FAILURE - Adapter initialization failed
1243 *
1244 * Assumptions:
1245 *   bp->reset_type should be set to a valid reset type value before
1246 *   calling this routine.
1247 *
1248 * Side Effects:
1249 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1250 *   upon a successful return of this routine.
1251 */
1252
1253static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1254        {
1255        DBG_printk("In dfx_adap_init...\n");
1256
1257        /* Disable PDQ interrupts first */
1258
1259        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1260
1261        /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1262
1263        if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1264                {
1265                printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1266                return DFX_K_FAILURE;
1267                }
1268
1269        /*
1270         * When the PDQ is reset, some false Type 0 interrupts may be pending,
1271         * so we'll acknowledge all Type 0 interrupts now before continuing.
1272         */
1273
1274        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1275
1276        /*
1277         * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1278         *
1279         * Note: We only need to clear host copies of these registers.  The PDQ reset
1280         *       takes care of the on-board register values.
1281         */
1282
1283        bp->cmd_req_reg.lword   = 0;
1284        bp->cmd_rsp_reg.lword   = 0;
1285        bp->rcv_xmt_reg.lword   = 0;
1286
1287        /* Clear consumer block before going to DMA_AVAILABLE state */
1288
1289        memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1290
1291        /* Initialize the DMA Burst Size */
1292
1293        if (dfx_hw_port_ctrl_req(bp,
1294                                                        PI_PCTRL_M_SUB_CMD,
1295                                                        PI_SUB_CMD_K_BURST_SIZE_SET,
1296                                                        bp->burst_size,
1297                                                        NULL) != DFX_K_SUCCESS)
1298                {
1299                printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1300                return DFX_K_FAILURE;
1301                }
1302
1303        /*
1304         * Set base address of Consumer Block
1305         *
1306         * Assumption: 32-bit physical address of consumer block is 64 byte
1307         *                         aligned.  That is, bits 0-5 of the address must be zero.
1308         */
1309
1310        if (dfx_hw_port_ctrl_req(bp,
1311                                                        PI_PCTRL_M_CONS_BLOCK,
1312                                                        bp->cons_block_phys,
1313                                                        0,
1314                                                        NULL) != DFX_K_SUCCESS)
1315                {
1316                printk("%s: Could not set consumer block address!\n", bp->dev->name);
1317                return DFX_K_FAILURE;
1318                }
1319
1320        /*
1321         * Set the base address of Descriptor Block and bring adapter
1322         * to DMA_AVAILABLE state.
1323         *
1324         * Note: We also set the literal and data swapping requirements
1325         *       in this command.
1326         *
1327         * Assumption: 32-bit physical address of descriptor block
1328         *       is 8Kbyte aligned.
1329         */
1330        if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1331                                 (u32)(bp->descr_block_phys |
1332                                       PI_PDATA_A_INIT_M_BSWAP_INIT),
1333                                 0, NULL) != DFX_K_SUCCESS) {
1334                printk("%s: Could not set descriptor block address!\n",
1335                       bp->dev->name);
1336                return DFX_K_FAILURE;
1337        }
1338
1339        /* Set transmit flush timeout value */
1340
1341        bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1342        bp->cmd_req_virt->char_set.item[0].item_code    = PI_ITEM_K_FLUSH_TIME;
1343        bp->cmd_req_virt->char_set.item[0].value                = 3;    /* 3 seconds */
1344        bp->cmd_req_virt->char_set.item[0].item_index   = 0;
1345        bp->cmd_req_virt->char_set.item[1].item_code    = PI_ITEM_K_EOL;
1346        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1347                {
1348                printk("%s: DMA command request failed!\n", bp->dev->name);
1349                return DFX_K_FAILURE;
1350                }
1351
1352        /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1353
1354        bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1355        bp->cmd_req_virt->snmp_set.item[0].item_code    = PI_ITEM_K_FDX_ENB_DIS;
1356        bp->cmd_req_virt->snmp_set.item[0].value                = bp->full_duplex_enb;
1357        bp->cmd_req_virt->snmp_set.item[0].item_index   = 0;
1358        bp->cmd_req_virt->snmp_set.item[1].item_code    = PI_ITEM_K_MAC_T_REQ;
1359        bp->cmd_req_virt->snmp_set.item[1].value                = bp->req_ttrt;
1360        bp->cmd_req_virt->snmp_set.item[1].item_index   = 0;
1361        bp->cmd_req_virt->snmp_set.item[2].item_code    = PI_ITEM_K_EOL;
1362        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1363                {
1364                printk("%s: DMA command request failed!\n", bp->dev->name);
1365                return DFX_K_FAILURE;
1366                }
1367
1368        /* Initialize adapter CAM */
1369
1370        if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1371                {
1372                printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1373                return DFX_K_FAILURE;
1374                }
1375
1376        /* Initialize adapter filters */
1377
1378        if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1379                {
1380                printk("%s: Adapter filters update failed!\n", bp->dev->name);
1381                return DFX_K_FAILURE;
1382                }
1383
1384        /*
1385         * Remove any existing dynamic buffers (i.e. if the adapter is being
1386         * reinitialized)
1387         */
1388
1389        if (get_buffers)
1390                dfx_rcv_flush(bp);
1391
1392        /* Initialize receive descriptor block and produce buffers */
1393
1394        if (dfx_rcv_init(bp, get_buffers))
1395                {
1396                printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1397                if (get_buffers)
1398                        dfx_rcv_flush(bp);
1399                return DFX_K_FAILURE;
1400                }
1401
1402        /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1403
1404        bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1405        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1406                {
1407                printk("%s: Start command failed\n", bp->dev->name);
1408                if (get_buffers)
1409                        dfx_rcv_flush(bp);
1410                return DFX_K_FAILURE;
1411                }
1412
1413        /* Initialization succeeded, reenable PDQ interrupts */
1414
1415        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1416        return DFX_K_SUCCESS;
1417        }
1418
1419
1420/*
1421 * ============
1422 * = dfx_open =
1423 * ============
1424 *
1425 * Overview:
1426 *   Opens the adapter
1427 *
1428 * Returns:
1429 *   Condition code
1430 *
1431 * Arguments:
1432 *   dev - pointer to device information
1433 *
1434 * Functional Description:
1435 *   This function brings the adapter to an operational state.
1436 *
1437 * Return Codes:
1438 *   0           - Adapter was successfully opened
1439 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1440 *
1441 * Assumptions:
1442 *   This routine should only be called for a device that was
1443 *   initialized successfully.
1444 *
1445 * Side Effects:
1446 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1447 *   if the open is successful.
1448 */
1449
1450static int dfx_open(struct net_device *dev)
1451{
1452        DFX_board_t *bp = netdev_priv(dev);
1453        int ret;
1454
1455        DBG_printk("In dfx_open...\n");
1456
1457        /* Register IRQ - support shared interrupts by passing device ptr */
1458
1459        ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1460                          dev);
1461        if (ret) {
1462                printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1463                return ret;
1464        }
1465
1466        /*
1467         * Set current address to factory MAC address
1468         *
1469         * Note: We've already done this step in dfx_driver_init.
1470         *       However, it's possible that a user has set a node
1471         *               address override, then closed and reopened the
1472         *               adapter.  Unless we reset the device address field
1473         *               now, we'll continue to use the existing modified
1474         *               address.
1475         */
1476
1477        memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1478
1479        /* Clear local unicast/multicast address tables and counts */
1480
1481        memset(bp->uc_table, 0, sizeof(bp->uc_table));
1482        memset(bp->mc_table, 0, sizeof(bp->mc_table));
1483        bp->uc_count = 0;
1484        bp->mc_count = 0;
1485
1486        /* Disable promiscuous filter settings */
1487
1488        bp->ind_group_prom      = PI_FSTATE_K_BLOCK;
1489        bp->group_prom          = PI_FSTATE_K_BLOCK;
1490
1491        spin_lock_init(&bp->lock);
1492
1493        /* Reset and initialize adapter */
1494
1495        bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;    /* skip self-test */
1496        if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1497        {
1498                printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1499                free_irq(dev->irq, dev);
1500                return -EAGAIN;
1501        }
1502
1503        /* Set device structure info */
1504        netif_start_queue(dev);
1505        return 0;
1506}
1507
1508
1509/*
1510 * =============
1511 * = dfx_close =
1512 * =============
1513 *
1514 * Overview:
1515 *   Closes the device/module.
1516 *
1517 * Returns:
1518 *   Condition code
1519 *
1520 * Arguments:
1521 *   dev - pointer to device information
1522 *
1523 * Functional Description:
1524 *   This routine closes the adapter and brings it to a safe state.
1525 *   The interrupt service routine is deregistered with the OS.
1526 *   The adapter can be opened again with another call to dfx_open().
1527 *
1528 * Return Codes:
1529 *   Always return 0.
1530 *
1531 * Assumptions:
1532 *   No further requests for this adapter are made after this routine is
1533 *   called.  dfx_open() can be called to reset and reinitialize the
1534 *   adapter.
1535 *
1536 * Side Effects:
1537 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1538 *   routine.
1539 */
1540
1541static int dfx_close(struct net_device *dev)
1542{
1543        DFX_board_t *bp = netdev_priv(dev);
1544
1545        DBG_printk("In dfx_close...\n");
1546
1547        /* Disable PDQ interrupts first */
1548
1549        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1550
1551        /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1552
1553        (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1554
1555        /*
1556         * Flush any pending transmit buffers
1557         *
1558         * Note: It's important that we flush the transmit buffers
1559         *               BEFORE we clear our copy of the Type 2 register.
1560         *               Otherwise, we'll have no idea how many buffers
1561         *               we need to free.
1562         */
1563
1564        dfx_xmt_flush(bp);
1565
1566        /*
1567         * Clear Type 1 and Type 2 registers after adapter reset
1568         *
1569         * Note: Even though we're closing the adapter, it's
1570         *       possible that an interrupt will occur after
1571         *               dfx_close is called.  Without some assurance to
1572         *               the contrary we want to make sure that we don't
1573         *               process receive and transmit LLC frames and update
1574         *               the Type 2 register with bad information.
1575         */
1576
1577        bp->cmd_req_reg.lword   = 0;
1578        bp->cmd_rsp_reg.lword   = 0;
1579        bp->rcv_xmt_reg.lword   = 0;
1580
1581        /* Clear consumer block for the same reason given above */
1582
1583        memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1584
1585        /* Release all dynamically allocate skb in the receive ring. */
1586
1587        dfx_rcv_flush(bp);
1588
1589        /* Clear device structure flags */
1590
1591        netif_stop_queue(dev);
1592
1593        /* Deregister (free) IRQ */
1594
1595        free_irq(dev->irq, dev);
1596
1597        return 0;
1598}
1599
1600
1601/*
1602 * ======================
1603 * = dfx_int_pr_halt_id =
1604 * ======================
1605 *
1606 * Overview:
1607 *   Displays halt id's in string form.
1608 *
1609 * Returns:
1610 *   None
1611 *
1612 * Arguments:
1613 *   bp - pointer to board information
1614 *
1615 * Functional Description:
1616 *   Determine current halt id and display appropriate string.
1617 *
1618 * Return Codes:
1619 *   None
1620 *
1621 * Assumptions:
1622 *   None
1623 *
1624 * Side Effects:
1625 *   None
1626 */
1627
1628static void dfx_int_pr_halt_id(DFX_board_t      *bp)
1629        {
1630        PI_UINT32       port_status;                    /* PDQ port status register value */
1631        PI_UINT32       halt_id;                                /* PDQ port status halt ID */
1632
1633        /* Read the latest port status */
1634
1635        dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1636
1637        /* Display halt state transition information */
1638
1639        halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1640        switch (halt_id)
1641                {
1642                case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1643                        printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1644                        break;
1645
1646                case PI_HALT_ID_K_PARITY_ERROR:
1647                        printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1648                        break;
1649
1650                case PI_HALT_ID_K_HOST_DIR_HALT:
1651                        printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1652                        break;
1653
1654                case PI_HALT_ID_K_SW_FAULT:
1655                        printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1656                        break;
1657
1658                case PI_HALT_ID_K_HW_FAULT:
1659                        printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1660                        break;
1661
1662                case PI_HALT_ID_K_PC_TRACE:
1663                        printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1664                        break;
1665
1666                case PI_HALT_ID_K_DMA_ERROR:
1667                        printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1668                        break;
1669
1670                case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1671                        printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1672                        break;
1673
1674                case PI_HALT_ID_K_BUS_EXCEPTION:
1675                        printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1676                        break;
1677
1678                default:
1679                        printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1680                        break;
1681                }
1682        }
1683
1684
1685/*
1686 * ==========================
1687 * = dfx_int_type_0_process =
1688 * ==========================
1689 *
1690 * Overview:
1691 *   Processes Type 0 interrupts.
1692 *
1693 * Returns:
1694 *   None
1695 *
1696 * Arguments:
1697 *   bp - pointer to board information
1698 *
1699 * Functional Description:
1700 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1701 *   is a serious fault on the adapter, then an error message is displayed
1702 *   and the adapter is reset.
1703 *
1704 *   One tricky potential timing window is the rapid succession of "link avail"
1705 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1706 *   interrupt must be done before reading the state from the Port Status
1707 *   register.  This is true because a state change could occur after reading
1708 *   the data, but before acknowledging the interrupt.  If this state change
1709 *   does happen, it would be lost because the driver is using the old state,
1710 *   and it will never know about the new state because it subsequently
1711 *   acknowledges the state change interrupt.
1712 *
1713 *          INCORRECT                                      CORRECT
1714 *      read type 0 int reasons                   read type 0 int reasons
1715 *      read adapter state                        ack type 0 interrupts
1716 *      ack type 0 interrupts                     read adapter state
1717 *      ... process interrupt ...                 ... process interrupt ...
1718 *
1719 * Return Codes:
1720 *   None
1721 *
1722 * Assumptions:
1723 *   None
1724 *
1725 * Side Effects:
1726 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1727 *   or if the port status indicates that the adapter is halted.  The driver
1728 *   is responsible for reinitializing the adapter with the current CAM
1729 *   contents and adapter filter settings.
1730 */
1731
1732static void dfx_int_type_0_process(DFX_board_t  *bp)
1733
1734        {
1735        PI_UINT32       type_0_status;          /* Host Interrupt Type 0 register */
1736        PI_UINT32       state;                          /* current adap state (from port status) */
1737
1738        /*
1739         * Read host interrupt Type 0 register to determine which Type 0
1740         * interrupts are pending.  Immediately write it back out to clear
1741         * those interrupts.
1742         */
1743
1744        dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1745        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1746
1747        /* Check for Type 0 error interrupts */
1748
1749        if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1750                                                        PI_TYPE_0_STAT_M_PM_PAR_ERR |
1751                                                        PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1752                {
1753                /* Check for Non-Existent Memory error */
1754
1755                if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1756                        printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1757
1758                /* Check for Packet Memory Parity error */
1759
1760                if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1761                        printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1762
1763                /* Check for Host Bus Parity error */
1764
1765                if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1766                        printk("%s: Host Bus Parity Error\n", bp->dev->name);
1767
1768                /* Reset adapter and bring it back on-line */
1769
1770                bp->link_available = PI_K_FALSE;        /* link is no longer available */
1771                bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1772                printk("%s: Resetting adapter...\n", bp->dev->name);
1773                if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1774                        {
1775                        printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1776                        dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1777                        return;
1778                        }
1779                printk("%s: Adapter reset successful!\n", bp->dev->name);
1780                return;
1781                }
1782
1783        /* Check for transmit flush interrupt */
1784
1785        if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1786                {
1787                /* Flush any pending xmt's and acknowledge the flush interrupt */
1788
1789                bp->link_available = PI_K_FALSE;                /* link is no longer available */
1790                dfx_xmt_flush(bp);                                              /* flush any outstanding packets */
1791                (void) dfx_hw_port_ctrl_req(bp,
1792                                                                        PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1793                                                                        0,
1794                                                                        0,
1795                                                                        NULL);
1796                }
1797
1798        /* Check for adapter state change */
1799
1800        if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1801                {
1802                /* Get latest adapter state */
1803
1804                state = dfx_hw_adap_state_rd(bp);       /* get adapter state */
1805                if (state == PI_STATE_K_HALTED)
1806                        {
1807                        /*
1808                         * Adapter has transitioned to HALTED state, try to reset
1809                         * adapter to bring it back on-line.  If reset fails,
1810                         * leave the adapter in the broken state.
1811                         */
1812
1813                        printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1814                        dfx_int_pr_halt_id(bp);                 /* display halt id as string */
1815
1816                        /* Reset adapter and bring it back on-line */
1817
1818                        bp->link_available = PI_K_FALSE;        /* link is no longer available */
1819                        bp->reset_type = 0;                                     /* rerun on-board diagnostics */
1820                        printk("%s: Resetting adapter...\n", bp->dev->name);
1821                        if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1822                                {
1823                                printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1824                                dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1825                                return;
1826                                }
1827                        printk("%s: Adapter reset successful!\n", bp->dev->name);
1828                        }
1829                else if (state == PI_STATE_K_LINK_AVAIL)
1830                        {
1831                        bp->link_available = PI_K_TRUE;         /* set link available flag */
1832                        }
1833                }
1834        }
1835
1836
1837/*
1838 * ==================
1839 * = dfx_int_common =
1840 * ==================
1841 *
1842 * Overview:
1843 *   Interrupt service routine (ISR)
1844 *
1845 * Returns:
1846 *   None
1847 *
1848 * Arguments:
1849 *   bp - pointer to board information
1850 *
1851 * Functional Description:
1852 *   This is the ISR which processes incoming adapter interrupts.
1853 *
1854 * Return Codes:
1855 *   None
1856 *
1857 * Assumptions:
1858 *   This routine assumes PDQ interrupts have not been disabled.
1859 *   When interrupts are disabled at the PDQ, the Port Status register
1860 *   is automatically cleared.  This routine uses the Port Status
1861 *   register value to determine whether a Type 0 interrupt occurred,
1862 *   so it's important that adapter interrupts are not normally
1863 *   enabled/disabled at the PDQ.
1864 *
1865 *   It's vital that this routine is NOT reentered for the
1866 *   same board and that the OS is not in another section of
1867 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1868 *   different thread.
1869 *
1870 * Side Effects:
1871 *   Pending interrupts are serviced.  Depending on the type of
1872 *   interrupt, acknowledging and clearing the interrupt at the
1873 *   PDQ involves writing a register to clear the interrupt bit
1874 *   or updating completion indices.
1875 */
1876
1877static void dfx_int_common(struct net_device *dev)
1878{
1879        DFX_board_t *bp = netdev_priv(dev);
1880        PI_UINT32       port_status;            /* Port Status register */
1881
1882        /* Process xmt interrupts - frequent case, so always call this routine */
1883
1884        if(dfx_xmt_done(bp))                            /* free consumed xmt packets */
1885                netif_wake_queue(dev);
1886
1887        /* Process rcv interrupts - frequent case, so always call this routine */
1888
1889        dfx_rcv_queue_process(bp);              /* service received LLC frames */
1890
1891        /*
1892         * Transmit and receive producer and completion indices are updated on the
1893         * adapter by writing to the Type 2 Producer register.  Since the frequent
1894         * case is that we'll be processing either LLC transmit or receive buffers,
1895         * we'll optimize I/O writes by doing a single register write here.
1896         */
1897
1898        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1899
1900        /* Read PDQ Port Status register to find out which interrupts need processing */
1901
1902        dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1903
1904        /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1905
1906        if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1907                dfx_int_type_0_process(bp);     /* process Type 0 interrupts */
1908        }
1909
1910
1911/*
1912 * =================
1913 * = dfx_interrupt =
1914 * =================
1915 *
1916 * Overview:
1917 *   Interrupt processing routine
1918 *
1919 * Returns:
1920 *   Whether a valid interrupt was seen.
1921 *
1922 * Arguments:
1923 *   irq        - interrupt vector
1924 *   dev_id     - pointer to device information
1925 *
1926 * Functional Description:
1927 *   This routine calls the interrupt processing routine for this adapter.  It
1928 *   disables and reenables adapter interrupts, as appropriate.  We can support
1929 *   shared interrupts since the incoming dev_id pointer provides our device
1930 *   structure context.
1931 *
1932 * Return Codes:
1933 *   IRQ_HANDLED - an IRQ was handled.
1934 *   IRQ_NONE    - no IRQ was handled.
1935 *
1936 * Assumptions:
1937 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1938 *   on Intel-based systems) is done by the operating system outside this
1939 *   routine.
1940 *
1941 *       System interrupts are enabled through this call.
1942 *
1943 * Side Effects:
1944 *   Interrupts are disabled, then reenabled at the adapter.
1945 */
1946
1947static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1948{
1949        struct net_device *dev = dev_id;
1950        DFX_board_t *bp = netdev_priv(dev);
1951        struct device *bdev = bp->bus_dev;
1952        int dfx_bus_pci = dev_is_pci(bdev);
1953        int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1954        int dfx_bus_tc = DFX_BUS_TC(bdev);
1955
1956        /* Service adapter interrupts */
1957
1958        if (dfx_bus_pci) {
1959                u32 status;
1960
1961                dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1962                if (!(status & PFI_STATUS_M_PDQ_INT))
1963                        return IRQ_NONE;
1964
1965                spin_lock(&bp->lock);
1966
1967                /* Disable PDQ-PFI interrupts at PFI */
1968                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1969                                    PFI_MODE_M_DMA_ENB);
1970
1971                /* Call interrupt service routine for this adapter */
1972                dfx_int_common(dev);
1973
1974                /* Clear PDQ interrupt status bit and reenable interrupts */
1975                dfx_port_write_long(bp, PFI_K_REG_STATUS,
1976                                    PFI_STATUS_M_PDQ_INT);
1977                dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1978                                    (PFI_MODE_M_PDQ_INT_ENB |
1979                                     PFI_MODE_M_DMA_ENB));
1980
1981                spin_unlock(&bp->lock);
1982        }
1983        if (dfx_bus_eisa) {
1984                unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1985                u8 status;
1986
1987                status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1988                if (!(status & PI_CONFIG_STAT_0_M_PEND))
1989                        return IRQ_NONE;
1990
1991                spin_lock(&bp->lock);
1992
1993                /* Disable interrupts at the ESIC */
1994                status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1995                outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1996
1997                /* Call interrupt service routine for this adapter */
1998                dfx_int_common(dev);
1999
2000                /* Reenable interrupts at the ESIC */
2001                status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002                status |= PI_CONFIG_STAT_0_M_INT_ENB;
2003                outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2004
2005                spin_unlock(&bp->lock);
2006        }
2007        if (dfx_bus_tc) {
2008                u32 status;
2009
2010                dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2011                if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2012                                PI_PSTATUS_M_XMT_DATA_PENDING |
2013                                PI_PSTATUS_M_SMT_HOST_PENDING |
2014                                PI_PSTATUS_M_UNSOL_PENDING |
2015                                PI_PSTATUS_M_CMD_RSP_PENDING |
2016                                PI_PSTATUS_M_CMD_REQ_PENDING |
2017                                PI_PSTATUS_M_TYPE_0_PENDING)))
2018                        return IRQ_NONE;
2019
2020                spin_lock(&bp->lock);
2021
2022                /* Call interrupt service routine for this adapter */
2023                dfx_int_common(dev);
2024
2025                spin_unlock(&bp->lock);
2026        }
2027
2028        return IRQ_HANDLED;
2029}
2030
2031
2032/*
2033 * =====================
2034 * = dfx_ctl_get_stats =
2035 * =====================
2036 *
2037 * Overview:
2038 *   Get statistics for FDDI adapter
2039 *
2040 * Returns:
2041 *   Pointer to FDDI statistics structure
2042 *
2043 * Arguments:
2044 *   dev - pointer to device information
2045 *
2046 * Functional Description:
2047 *   Gets current MIB objects from adapter, then
2048 *   returns FDDI statistics structure as defined
2049 *   in if_fddi.h.
2050 *
2051 *   Note: Since the FDDI statistics structure is
2052 *   still new and the device structure doesn't
2053 *   have an FDDI-specific get statistics handler,
2054 *   we'll return the FDDI statistics structure as
2055 *   a pointer to an Ethernet statistics structure.
2056 *   That way, at least the first part of the statistics
2057 *   structure can be decoded properly, and it allows
2058 *   "smart" applications to perform a second cast to
2059 *   decode the FDDI-specific statistics.
2060 *
2061 *   We'll have to pay attention to this routine as the
2062 *   device structure becomes more mature and LAN media
2063 *   independent.
2064 *
2065 * Return Codes:
2066 *   None
2067 *
2068 * Assumptions:
2069 *   None
2070 *
2071 * Side Effects:
2072 *   None
2073 */
2074
2075static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2076        {
2077        DFX_board_t *bp = netdev_priv(dev);
2078
2079        /* Fill the bp->stats structure with driver-maintained counters */
2080
2081        bp->stats.gen.rx_packets = bp->rcv_total_frames;
2082        bp->stats.gen.tx_packets = bp->xmt_total_frames;
2083        bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2084        bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2085        bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2086                                   bp->rcv_frame_status_errors +
2087                                   bp->rcv_length_errors;
2088        bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2089        bp->stats.gen.rx_dropped = bp->rcv_discards;
2090        bp->stats.gen.tx_dropped = bp->xmt_discards;
2091        bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2092        bp->stats.gen.collisions = 0;           /* always zero (0) for FDDI */
2093
2094        /* Get FDDI SMT MIB objects */
2095
2096        bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2097        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2098                return (struct net_device_stats *)&bp->stats;
2099
2100        /* Fill the bp->stats structure with the SMT MIB object values */
2101
2102        memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2103        bp->stats.smt_op_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2104        bp->stats.smt_hi_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2105        bp->stats.smt_lo_version_id                                     = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2106        memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2107        bp->stats.smt_mib_version_id                            = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2108        bp->stats.smt_mac_cts                                           = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2109        bp->stats.smt_non_master_cts                            = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2110        bp->stats.smt_master_cts                                        = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2111        bp->stats.smt_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2112        bp->stats.smt_config_capabilities                       = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2113        bp->stats.smt_config_policy                                     = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2114        bp->stats.smt_connection_policy                         = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2115        bp->stats.smt_t_notify                                          = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2116        bp->stats.smt_stat_rpt_policy                           = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2117        bp->stats.smt_trace_max_expiration                      = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2118        bp->stats.smt_bypass_present                            = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2119        bp->stats.smt_ecm_state                                         = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2120        bp->stats.smt_cf_state                                          = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2121        bp->stats.smt_remote_disconnect_flag            = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2122        bp->stats.smt_station_status                            = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2123        bp->stats.smt_peer_wrap_flag                            = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2124        bp->stats.smt_time_stamp                                        = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2125        bp->stats.smt_transition_time_stamp                     = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2126        bp->stats.mac_frame_status_functions            = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2127        bp->stats.mac_t_max_capability                          = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2128        bp->stats.mac_tvx_capability                            = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2129        bp->stats.mac_available_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2130        bp->stats.mac_current_path                                      = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2131        memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2132        memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2133        memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2134        memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2135        bp->stats.mac_dup_address_test                          = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2136        bp->stats.mac_requested_paths                           = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2137        bp->stats.mac_downstream_port_type                      = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2138        memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2139        bp->stats.mac_t_req                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2140        bp->stats.mac_t_neg                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2141        bp->stats.mac_t_max                                                     = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2142        bp->stats.mac_tvx_value                                         = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2143        bp->stats.mac_frame_error_threshold                     = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2144        bp->stats.mac_frame_error_ratio                         = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2145        bp->stats.mac_rmt_state                                         = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2146        bp->stats.mac_da_flag                                           = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2147        bp->stats.mac_una_da_flag                                       = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2148        bp->stats.mac_frame_error_flag                          = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2149        bp->stats.mac_ma_unitdata_available                     = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2150        bp->stats.mac_hardware_present                          = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2151        bp->stats.mac_ma_unitdata_enable                        = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2152        bp->stats.path_tvx_lower_bound                          = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2153        bp->stats.path_t_max_lower_bound                        = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2154        bp->stats.path_max_t_req                                        = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2155        memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2156        bp->stats.port_my_type[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2157        bp->stats.port_my_type[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2158        bp->stats.port_neighbor_type[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2159        bp->stats.port_neighbor_type[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2160        bp->stats.port_connection_policies[0]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2161        bp->stats.port_connection_policies[1]           = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2162        bp->stats.port_mac_indicated[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2163        bp->stats.port_mac_indicated[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2164        bp->stats.port_current_path[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2165        bp->stats.port_current_path[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2166        memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2167        memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2168        bp->stats.port_mac_placement[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2169        bp->stats.port_mac_placement[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2170        bp->stats.port_available_paths[0]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2171        bp->stats.port_available_paths[1]                       = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2172        bp->stats.port_pmd_class[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2173        bp->stats.port_pmd_class[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2174        bp->stats.port_connection_capabilities[0]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2175        bp->stats.port_connection_capabilities[1]       = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2176        bp->stats.port_bs_flag[0]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2177        bp->stats.port_bs_flag[1]                                       = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2178        bp->stats.port_ler_estimate[0]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2179        bp->stats.port_ler_estimate[1]                          = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2180        bp->stats.port_ler_cutoff[0]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2181        bp->stats.port_ler_cutoff[1]                            = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2182        bp->stats.port_ler_alarm[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2183        bp->stats.port_ler_alarm[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2184        bp->stats.port_connect_state[0]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2185        bp->stats.port_connect_state[1]                         = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2186        bp->stats.port_pcm_state[0]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2187        bp->stats.port_pcm_state[1]                                     = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2188        bp->stats.port_pc_withhold[0]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2189        bp->stats.port_pc_withhold[1]                           = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2190        bp->stats.port_ler_flag[0]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2191        bp->stats.port_ler_flag[1]                                      = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2192        bp->stats.port_hardware_present[0]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2193        bp->stats.port_hardware_present[1]                      = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2194
2195        /* Get FDDI counters */
2196
2197        bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2198        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2199                return (struct net_device_stats *)&bp->stats;
2200
2201        /* Fill the bp->stats structure with the FDDI counter values */
2202
2203        bp->stats.mac_frame_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2204        bp->stats.mac_copied_cts                        = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2205        bp->stats.mac_transmit_cts                      = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2206        bp->stats.mac_error_cts                         = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2207        bp->stats.mac_lost_cts                          = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2208        bp->stats.port_lct_fail_cts[0]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2209        bp->stats.port_lct_fail_cts[1]          = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2210        bp->stats.port_lem_reject_cts[0]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2211        bp->stats.port_lem_reject_cts[1]        = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2212        bp->stats.port_lem_cts[0]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2213        bp->stats.port_lem_cts[1]                       = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2214
2215        return (struct net_device_stats *)&bp->stats;
2216        }
2217
2218
2219/*
2220 * ==============================
2221 * = dfx_ctl_set_multicast_list =
2222 * ==============================
2223 *
2224 * Overview:
2225 *   Enable/Disable LLC frame promiscuous mode reception
2226 *   on the adapter and/or update multicast address table.
2227 *
2228 * Returns:
2229 *   None
2230 *
2231 * Arguments:
2232 *   dev - pointer to device information
2233 *
2234 * Functional Description:
2235 *   This routine follows a fairly simple algorithm for setting the
2236 *   adapter filters and CAM:
2237 *
2238 *              if IFF_PROMISC flag is set
2239 *                      enable LLC individual/group promiscuous mode
2240 *              else
2241 *                      disable LLC individual/group promiscuous mode
2242 *                      if number of incoming multicast addresses >
2243 *                                      (CAM max size - number of unicast addresses in CAM)
2244 *                              enable LLC group promiscuous mode
2245 *                              set driver-maintained multicast address count to zero
2246 *                      else
2247 *                              disable LLC group promiscuous mode
2248 *                              set driver-maintained multicast address count to incoming count
2249 *                      update adapter CAM
2250 *              update adapter filters
2251 *
2252 * Return Codes:
2253 *   None
2254 *
2255 * Assumptions:
2256 *   Multicast addresses are presented in canonical (LSB) format.
2257 *
2258 * Side Effects:
2259 *   On-board adapter CAM and filters are updated.
2260 */
2261
2262static void dfx_ctl_set_multicast_list(struct net_device *dev)
2263{
2264        DFX_board_t *bp = netdev_priv(dev);
2265        int                                     i;                      /* used as index in for loop */
2266        struct netdev_hw_addr *ha;
2267
2268        /* Enable LLC frame promiscuous mode, if necessary */
2269
2270        if (dev->flags & IFF_PROMISC)
2271                bp->ind_group_prom = PI_FSTATE_K_PASS;          /* Enable LLC ind/group prom mode */
2272
2273        /* Else, update multicast address table */
2274
2275        else
2276                {
2277                bp->ind_group_prom = PI_FSTATE_K_BLOCK;         /* Disable LLC ind/group prom mode */
2278                /*
2279                 * Check whether incoming multicast address count exceeds table size
2280                 *
2281                 * Note: The adapters utilize an on-board 64 entry CAM for
2282                 *       supporting perfect filtering of multicast packets
2283                 *               and bridge functions when adding unicast addresses.
2284                 *               There is no hash function available.  To support
2285                 *               additional multicast addresses, the all multicast
2286                 *               filter (LLC group promiscuous mode) must be enabled.
2287                 *
2288                 *               The firmware reserves two CAM entries for SMT-related
2289                 *               multicast addresses, which leaves 62 entries available.
2290                 *               The following code ensures that we're not being asked
2291                 *               to add more than 62 addresses to the CAM.  If we are,
2292                 *               the driver will enable the all multicast filter.
2293                 *               Should the number of multicast addresses drop below
2294                 *               the high water mark, the filter will be disabled and
2295                 *               perfect filtering will be used.
2296                 */
2297
2298                if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2299                        {
2300                        bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2301                        bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2302                        }
2303                else
2304                        {
2305                        bp->group_prom  = PI_FSTATE_K_BLOCK;    /* Disable LLC group prom mode */
2306                        bp->mc_count    = netdev_mc_count(dev);         /* Add mc addrs to CAM */
2307                        }
2308
2309                /* Copy addresses to multicast address table, then update adapter CAM */
2310
2311                i = 0;
2312                netdev_for_each_mc_addr(ha, dev)
2313                        memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2314                               ha->addr, FDDI_K_ALEN);
2315
2316                if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2317                        {
2318                        DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2319                        }
2320                else
2321                        {
2322                        DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2323                        }
2324                }
2325
2326        /* Update adapter filters */
2327
2328        if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2329                {
2330                DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2331                }
2332        else
2333                {
2334                DBG_printk("%s: Adapter filters updated!\n", dev->name);
2335                }
2336        }
2337
2338
2339/*
2340 * ===========================
2341 * = dfx_ctl_set_mac_address =
2342 * ===========================
2343 *
2344 * Overview:
2345 *   Add node address override (unicast address) to adapter
2346 *   CAM and update dev_addr field in device table.
2347 *
2348 * Returns:
2349 *   None
2350 *
2351 * Arguments:
2352 *   dev  - pointer to device information
2353 *   addr - pointer to sockaddr structure containing unicast address to add
2354 *
2355 * Functional Description:
2356 *   The adapter supports node address overrides by adding one or more
2357 *   unicast addresses to the adapter CAM.  This is similar to adding
2358 *   multicast addresses.  In this routine we'll update the driver and
2359 *   device structures with the new address, then update the adapter CAM
2360 *   to ensure that the adapter will copy and strip frames destined and
2361 *   sourced by that address.
2362 *
2363 * Return Codes:
2364 *   Always returns zero.
2365 *
2366 * Assumptions:
2367 *   The address pointed to by addr->sa_data is a valid unicast
2368 *   address and is presented in canonical (LSB) format.
2369 *
2370 * Side Effects:
2371 *   On-board adapter CAM is updated.  On-board adapter filters
2372 *   may be updated.
2373 */
2374
2375static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2376        {
2377        struct sockaddr *p_sockaddr = (struct sockaddr *)addr;
2378        DFX_board_t *bp = netdev_priv(dev);
2379
2380        /* Copy unicast address to driver-maintained structs and update count */
2381
2382        memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);        /* update device struct */
2383        memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);     /* update driver struct */
2384        bp->uc_count = 1;
2385
2386        /*
2387         * Verify we're not exceeding the CAM size by adding unicast address
2388         *
2389         * Note: It's possible that before entering this routine we've
2390         *       already filled the CAM with 62 multicast addresses.
2391         *               Since we need to place the node address override into
2392         *               the CAM, we have to check to see that we're not
2393         *               exceeding the CAM size.  If we are, we have to enable
2394         *               the LLC group (multicast) promiscuous mode filter as
2395         *               in dfx_ctl_set_multicast_list.
2396         */
2397
2398        if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2399                {
2400                bp->group_prom  = PI_FSTATE_K_PASS;             /* Enable LLC group prom mode */
2401                bp->mc_count    = 0;                                    /* Don't add mc addrs to CAM */
2402
2403                /* Update adapter filters */
2404
2405                if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2406                        {
2407                        DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2408                        }
2409                else
2410                        {
2411                        DBG_printk("%s: Adapter filters updated!\n", dev->name);
2412                        }
2413                }
2414
2415        /* Update adapter CAM with new unicast address */
2416
2417        if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2418                {
2419                DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2420                }
2421        else
2422                {
2423                DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2424                }
2425        return 0;                       /* always return zero */
2426        }
2427
2428
2429/*
2430 * ======================
2431 * = dfx_ctl_update_cam =
2432 * ======================
2433 *
2434 * Overview:
2435 *   Procedure to update adapter CAM (Content Addressable Memory)
2436 *   with desired unicast and multicast address entries.
2437 *
2438 * Returns:
2439 *   Condition code
2440 *
2441 * Arguments:
2442 *   bp - pointer to board information
2443 *
2444 * Functional Description:
2445 *   Updates adapter CAM with current contents of board structure
2446 *   unicast and multicast address tables.  Since there are only 62
2447 *   free entries in CAM, this routine ensures that the command
2448 *   request buffer is not overrun.
2449 *
2450 * Return Codes:
2451 *   DFX_K_SUCCESS - Request succeeded
2452 *   DFX_K_FAILURE - Request failed
2453 *
2454 * Assumptions:
2455 *   All addresses being added (unicast and multicast) are in canonical
2456 *   order.
2457 *
2458 * Side Effects:
2459 *   On-board adapter CAM is updated.
2460 */
2461
2462static int dfx_ctl_update_cam(DFX_board_t *bp)
2463        {
2464        int                     i;                              /* used as index */
2465        PI_LAN_ADDR     *p_addr;                /* pointer to CAM entry */
2466
2467        /*
2468         * Fill in command request information
2469         *
2470         * Note: Even though both the unicast and multicast address
2471         *       table entries are stored as contiguous 6 byte entries,
2472         *               the firmware address filter set command expects each
2473         *               entry to be two longwords (8 bytes total).  We must be
2474         *               careful to only copy the six bytes of each unicast and
2475         *               multicast table entry into each command entry.  This
2476         *               is also why we must first clear the entire command
2477         *               request buffer.
2478         */
2479
2480        memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);     /* first clear buffer */
2481        bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2482        p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2483
2484        /* Now add unicast addresses to command request buffer, if any */
2485
2486        for (i=0; i < (int)bp->uc_count; i++)
2487                {
2488                if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2489                        {
2490                        memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2491                        p_addr++;                       /* point to next command entry */
2492                        }
2493                }
2494
2495        /* Now add multicast addresses to command request buffer, if any */
2496
2497        for (i=0; i < (int)bp->mc_count; i++)
2498                {
2499                if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2500                        {
2501                        memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2502                        p_addr++;                       /* point to next command entry */
2503                        }
2504                }
2505
2506        /* Issue command to update adapter CAM, then return */
2507
2508        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2509                return DFX_K_FAILURE;
2510        return DFX_K_SUCCESS;
2511        }
2512
2513
2514/*
2515 * ==========================
2516 * = dfx_ctl_update_filters =
2517 * ==========================
2518 *
2519 * Overview:
2520 *   Procedure to update adapter filters with desired
2521 *   filter settings.
2522 *
2523 * Returns:
2524 *   Condition code
2525 *
2526 * Arguments:
2527 *   bp - pointer to board information
2528 *
2529 * Functional Description:
2530 *   Enables or disables filter using current filter settings.
2531 *
2532 * Return Codes:
2533 *   DFX_K_SUCCESS - Request succeeded.
2534 *   DFX_K_FAILURE - Request failed.
2535 *
2536 * Assumptions:
2537 *   We must always pass up packets destined to the broadcast
2538 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2539 *   broadcast filter enabled.
2540 *
2541 * Side Effects:
2542 *   On-board adapter filters are updated.
2543 */
2544
2545static int dfx_ctl_update_filters(DFX_board_t *bp)
2546        {
2547        int     i = 0;                                  /* used as index */
2548
2549        /* Fill in command request information */
2550
2551        bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2552
2553        /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2554
2555        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_BROADCAST;
2556        bp->cmd_req_virt->filter_set.item[i++].value    = PI_FSTATE_K_PASS;
2557
2558        /* Initialize LLC Individual/Group Promiscuous filter */
2559
2560        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_IND_GROUP_PROM;
2561        bp->cmd_req_virt->filter_set.item[i++].value    = bp->ind_group_prom;
2562
2563        /* Initialize LLC Group Promiscuous filter */
2564
2565        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_GROUP_PROM;
2566        bp->cmd_req_virt->filter_set.item[i++].value    = bp->group_prom;
2567
2568        /* Terminate the item code list */
2569
2570        bp->cmd_req_virt->filter_set.item[i].item_code  = PI_ITEM_K_EOL;
2571
2572        /* Issue command to update adapter filters, then return */
2573
2574        if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2575                return DFX_K_FAILURE;
2576        return DFX_K_SUCCESS;
2577        }
2578
2579
2580/*
2581 * ======================
2582 * = dfx_hw_dma_cmd_req =
2583 * ======================
2584 *
2585 * Overview:
2586 *   Sends PDQ DMA command to adapter firmware
2587 *
2588 * Returns:
2589 *   Condition code
2590 *
2591 * Arguments:
2592 *   bp - pointer to board information
2593 *
2594 * Functional Description:
2595 *   The command request and response buffers are posted to the adapter in the manner
2596 *   described in the PDQ Port Specification:
2597 *
2598 *              1. Command Response Buffer is posted to adapter.
2599 *              2. Command Request Buffer is posted to adapter.
2600 *              3. Command Request consumer index is polled until it indicates that request
2601 *         buffer has been DMA'd to adapter.
2602 *              4. Command Response consumer index is polled until it indicates that response
2603 *         buffer has been DMA'd from adapter.
2604 *
2605 *   This ordering ensures that a response buffer is already available for the firmware
2606 *   to use once it's done processing the request buffer.
2607 *
2608 * Return Codes:
2609 *   DFX_K_SUCCESS        - DMA command succeeded
2610 *       DFX_K_OUTSTATE   - Adapter is NOT in proper state
2611 *   DFX_K_HW_TIMEOUT - DMA command timed out
2612 *
2613 * Assumptions:
2614 *   Command request buffer has already been filled with desired DMA command.
2615 *
2616 * Side Effects:
2617 *   None
2618 */
2619
2620static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2621        {
2622        int status;                     /* adapter status */
2623        int timeout_cnt;        /* used in for loops */
2624
2625        /* Make sure the adapter is in a state that we can issue the DMA command in */
2626
2627        status = dfx_hw_adap_state_rd(bp);
2628        if ((status == PI_STATE_K_RESET)                ||
2629                (status == PI_STATE_K_HALTED)           ||
2630                (status == PI_STATE_K_DMA_UNAVAIL)      ||
2631                (status == PI_STATE_K_UPGRADE))
2632                return DFX_K_OUTSTATE;
2633
2634        /* Put response buffer on the command response queue */
2635
2636        bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2637                        ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2638        bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2639
2640        /* Bump (and wrap) the producer index and write out to register */
2641
2642        bp->cmd_rsp_reg.index.prod += 1;
2643        bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2644        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2645
2646        /* Put request buffer on the command request queue */
2647
2648        bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2649                        PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2650        bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2651
2652        /* Bump (and wrap) the producer index and write out to register */
2653
2654        bp->cmd_req_reg.index.prod += 1;
2655        bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2656        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2657
2658        /*
2659         * Here we wait for the command request consumer index to be equal
2660         * to the producer, indicating that the adapter has DMAed the request.
2661         */
2662
2663        for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2664                {
2665                if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2666                        break;
2667                udelay(100);                    /* wait for 100 microseconds */
2668                }
2669        if (timeout_cnt == 0)
2670                return DFX_K_HW_TIMEOUT;
2671
2672        /* Bump (and wrap) the completion index and write out to register */
2673
2674        bp->cmd_req_reg.index.comp += 1;
2675        bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2676        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2677
2678        /*
2679         * Here we wait for the command response consumer index to be equal
2680         * to the producer, indicating that the adapter has DMAed the response.
2681         */
2682
2683        for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2684                {
2685                if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2686                        break;
2687                udelay(100);                    /* wait for 100 microseconds */
2688                }
2689        if (timeout_cnt == 0)
2690                return DFX_K_HW_TIMEOUT;
2691
2692        /* Bump (and wrap) the completion index and write out to register */
2693
2694        bp->cmd_rsp_reg.index.comp += 1;
2695        bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2696        dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2697        return DFX_K_SUCCESS;
2698        }
2699
2700
2701/*
2702 * ========================
2703 * = dfx_hw_port_ctrl_req =
2704 * ========================
2705 *
2706 * Overview:
2707 *   Sends PDQ port control command to adapter firmware
2708 *
2709 * Returns:
2710 *   Host data register value in host_data if ptr is not NULL
2711 *
2712 * Arguments:
2713 *   bp                 - pointer to board information
2714 *       command        - port control command
2715 *       data_a         - port data A register value
2716 *       data_b         - port data B register value
2717 *       host_data      - ptr to host data register value
2718 *
2719 * Functional Description:
2720 *   Send generic port control command to adapter by writing
2721 *   to various PDQ port registers, then polling for completion.
2722 *
2723 * Return Codes:
2724 *   DFX_K_SUCCESS        - port control command succeeded
2725 *   DFX_K_HW_TIMEOUT - port control command timed out
2726 *
2727 * Assumptions:
2728 *   None
2729 *
2730 * Side Effects:
2731 *   None
2732 */
2733
2734static int dfx_hw_port_ctrl_req(
2735        DFX_board_t     *bp,
2736        PI_UINT32       command,
2737        PI_UINT32       data_a,
2738        PI_UINT32       data_b,
2739        PI_UINT32       *host_data
2740        )
2741
2742        {
2743        PI_UINT32       port_cmd;               /* Port Control command register value */
2744        int                     timeout_cnt;    /* used in for loops */
2745
2746        /* Set Command Error bit in command longword */
2747
2748        port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2749
2750        /* Issue port command to the adapter */
2751
2752        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2753        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2754        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2755
2756        /* Now wait for command to complete */
2757
2758        if (command == PI_PCTRL_M_BLAST_FLASH)
2759                timeout_cnt = 600000;   /* set command timeout count to 60 seconds */
2760        else
2761                timeout_cnt = 20000;    /* set command timeout count to 2 seconds */
2762
2763        for (; timeout_cnt > 0; timeout_cnt--)
2764                {
2765                dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2766                if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2767                        break;
2768                udelay(100);                    /* wait for 100 microseconds */
2769                }
2770        if (timeout_cnt == 0)
2771                return DFX_K_HW_TIMEOUT;
2772
2773        /*
2774         * If the address of host_data is non-zero, assume caller has supplied a
2775         * non NULL pointer, and return the contents of the HOST_DATA register in
2776         * it.
2777         */
2778
2779        if (host_data != NULL)
2780                dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2781        return DFX_K_SUCCESS;
2782        }
2783
2784
2785/*
2786 * =====================
2787 * = dfx_hw_adap_reset =
2788 * =====================
2789 *
2790 * Overview:
2791 *   Resets adapter
2792 *
2793 * Returns:
2794 *   None
2795 *
2796 * Arguments:
2797 *   bp   - pointer to board information
2798 *   type - type of reset to perform
2799 *
2800 * Functional Description:
2801 *   Issue soft reset to adapter by writing to PDQ Port Reset
2802 *   register.  Use incoming reset type to tell adapter what
2803 *   kind of reset operation to perform.
2804 *
2805 * Return Codes:
2806 *   None
2807 *
2808 * Assumptions:
2809 *   This routine merely issues a soft reset to the adapter.
2810 *   It is expected that after this routine returns, the caller
2811 *   will appropriately poll the Port Status register for the
2812 *   adapter to enter the proper state.
2813 *
2814 * Side Effects:
2815 *   Internal adapter registers are cleared.
2816 */
2817
2818static void dfx_hw_adap_reset(
2819        DFX_board_t     *bp,
2820        PI_UINT32       type
2821        )
2822
2823        {
2824        /* Set Reset type and assert reset */
2825
2826        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);        /* tell adapter type of reset */
2827        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2828
2829        /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2830
2831        udelay(20);
2832
2833        /* Deassert reset */
2834
2835        dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2836        }
2837
2838
2839/*
2840 * ========================
2841 * = dfx_hw_adap_state_rd =
2842 * ========================
2843 *
2844 * Overview:
2845 *   Returns current adapter state
2846 *
2847 * Returns:
2848 *   Adapter state per PDQ Port Specification
2849 *
2850 * Arguments:
2851 *   bp - pointer to board information
2852 *
2853 * Functional Description:
2854 *   Reads PDQ Port Status register and returns adapter state.
2855 *
2856 * Return Codes:
2857 *   None
2858 *
2859 * Assumptions:
2860 *   None
2861 *
2862 * Side Effects:
2863 *   None
2864 */
2865
2866static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2867        {
2868        PI_UINT32 port_status;          /* Port Status register value */
2869
2870        dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2871        return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2872        }
2873
2874
2875/*
2876 * =====================
2877 * = dfx_hw_dma_uninit =
2878 * =====================
2879 *
2880 * Overview:
2881 *   Brings adapter to DMA_UNAVAILABLE state
2882 *
2883 * Returns:
2884 *   Condition code
2885 *
2886 * Arguments:
2887 *   bp   - pointer to board information
2888 *   type - type of reset to perform
2889 *
2890 * Functional Description:
2891 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2892 *              1. Set reset type bit in Port Data A Register then reset adapter.
2893 *              2. Check that adapter is in DMA_UNAVAILABLE state.
2894 *
2895 * Return Codes:
2896 *   DFX_K_SUCCESS        - adapter is in DMA_UNAVAILABLE state
2897 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2898 *
2899 * Assumptions:
2900 *   None
2901 *
2902 * Side Effects:
2903 *   Internal adapter registers are cleared.
2904 */
2905
2906static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2907        {
2908        int timeout_cnt;        /* used in for loops */
2909
2910        /* Set reset type bit and reset adapter */
2911
2912        dfx_hw_adap_reset(bp, type);
2913
2914        /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2915
2916        for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2917                {
2918                if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2919                        break;
2920                udelay(100);                                    /* wait for 100 microseconds */
2921                }
2922        if (timeout_cnt == 0)
2923                return DFX_K_HW_TIMEOUT;
2924        return DFX_K_SUCCESS;
2925        }
2926
2927/*
2928 *      Align an sk_buff to a boundary power of 2
2929 *
2930 */
2931#ifdef DYNAMIC_BUFFERS
2932static void my_skb_align(struct sk_buff *skb, int n)
2933{
2934        unsigned long x = (unsigned long)skb->data;
2935        unsigned long v;
2936
2937        v = ALIGN(x, n);        /* Where we want to be */
2938
2939        skb_reserve(skb, v - x);
2940}
2941#endif
2942
2943/*
2944 * ================
2945 * = dfx_rcv_init =
2946 * ================
2947 *
2948 * Overview:
2949 *   Produces buffers to adapter LLC Host receive descriptor block
2950 *
2951 * Returns:
2952 *   None
2953 *
2954 * Arguments:
2955 *   bp - pointer to board information
2956 *   get_buffers - non-zero if buffers to be allocated
2957 *
2958 * Functional Description:
2959 *   This routine can be called during dfx_adap_init() or during an adapter
2960 *       reset.  It initializes the descriptor block and produces all allocated
2961 *   LLC Host queue receive buffers.
2962 *
2963 * Return Codes:
2964 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2965 *   dynamic buffer allocation). If the buffer allocation failed, the
2966 *   already allocated buffers will not be released and the caller should do
2967 *   this.
2968 *
2969 * Assumptions:
2970 *   The PDQ has been reset and the adapter and driver maintained Type 2
2971 *   register indices are cleared.
2972 *
2973 * Side Effects:
2974 *   Receive buffers are posted to the adapter LLC queue and the adapter
2975 *   is notified.
2976 */
2977
2978static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2979        {
2980        int     i, j;                                   /* used in for loop */
2981
2982        /*
2983         *  Since each receive buffer is a single fragment of same length, initialize
2984         *  first longword in each receive descriptor for entire LLC Host descriptor
2985         *  block.  Also initialize second longword in each receive descriptor with
2986         *  physical address of receive buffer.  We'll always allocate receive
2987         *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2988         *  block and produce new receive buffers by simply updating the receive
2989         *  producer index.
2990         *
2991         *      Assumptions:
2992         *              To support all shipping versions of PDQ, the receive buffer size
2993         *              must be mod 128 in length and the physical address must be 128 byte
2994         *              aligned.  In other words, bits 0-6 of the length and address must
2995         *              be zero for the following descriptor field entries to be correct on
2996         *              all PDQ-based boards.  We guaranteed both requirements during
2997         *              driver initialization when we allocated memory for the receive buffers.
2998         */
2999
3000        if (get_buffers) {
3001#ifdef DYNAMIC_BUFFERS
3002        for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3003                for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3004                {
3005                        struct sk_buff *newskb;
3006                        dma_addr_t dma_addr;
3007
3008                        newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3009                                                    GFP_NOIO);
3010                        if (!newskb)
3011                                return -ENOMEM;
3012                        /*
3013                         * align to 128 bytes for compatibility with
3014                         * the old EISA boards.
3015                         */
3016
3017                        my_skb_align(newskb, 128);
3018                        dma_addr = dma_map_single(bp->bus_dev,
3019                                                  newskb->data,
3020                                                  PI_RCV_DATA_K_SIZE_MAX,
3021                                                  DMA_FROM_DEVICE);
3022                        if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3023                                dev_kfree_skb(newskb);
3024                                return -ENOMEM;
3025                        }
3026                        bp->descr_block_virt->rcv_data[i + j].long_0 =
3027                                (u32)(PI_RCV_DESCR_M_SOP |
3028                                      ((PI_RCV_DATA_K_SIZE_MAX /
3029                                        PI_ALIGN_K_RCV_DATA_BUFF) <<
3030                                       PI_RCV_DESCR_V_SEG_LEN));
3031                        bp->descr_block_virt->rcv_data[i + j].long_1 =
3032                                (u32)dma_addr;
3033
3034                        /*
3035                         * p_rcv_buff_va is only used inside the
3036                         * kernel so we put the skb pointer here.
3037                         */
3038                        bp->p_rcv_buff_va[i+j] = (char *) newskb;
3039                }
3040#else
3041        for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3042                for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3043                        {
3044                        bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3045                                ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3046                        bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3047                        bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3048                        }
3049#endif
3050        }
3051
3052        /* Update receive producer and Type 2 register */
3053
3054        bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3055        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3056        return 0;
3057        }
3058
3059
3060/*
3061 * =========================
3062 * = dfx_rcv_queue_process =
3063 * =========================
3064 *
3065 * Overview:
3066 *   Process received LLC frames.
3067 *
3068 * Returns:
3069 *   None
3070 *
3071 * Arguments:
3072 *   bp - pointer to board information
3073 *
3074 * Functional Description:
3075 *   Received LLC frames are processed until there are no more consumed frames.
3076 *   Once all frames are processed, the receive buffers are returned to the
3077 *   adapter.  Note that this algorithm fixes the length of time that can be spent
3078 *   in this routine, because there are a fixed number of receive buffers to
3079 *   process and buffers are not produced until this routine exits and returns
3080 *   to the ISR.
3081 *
3082 * Return Codes:
3083 *   None
3084 *
3085 * Assumptions:
3086 *   None
3087 *
3088 * Side Effects:
3089 *   None
3090 */
3091
3092static void dfx_rcv_queue_process(
3093        DFX_board_t *bp
3094        )
3095
3096        {
3097        PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3098        char                            *p_buff;                        /* ptr to start of packet receive buffer (FMC descriptor) */
3099        u32                                     descr, pkt_len;         /* FMC descriptor field and packet length */
3100        struct sk_buff          *skb = NULL;                    /* pointer to a sk_buff to hold incoming packet data */
3101
3102        /* Service all consumed LLC receive frames */
3103
3104        p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3105        while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3106                {
3107                /* Process any errors */
3108                dma_addr_t dma_addr;
3109                int entry;
3110
3111                entry = bp->rcv_xmt_reg.index.rcv_comp;
3112#ifdef DYNAMIC_BUFFERS
3113                p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3114#else
3115                p_buff = bp->p_rcv_buff_va[entry];
3116#endif
3117                dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3118                dma_sync_single_for_cpu(bp->bus_dev,
3119                                        dma_addr + RCV_BUFF_K_DESCR,
3120                                        sizeof(u32),
3121                                        DMA_FROM_DEVICE);
3122                memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3123
3124                if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3125                        {
3126                        if (descr & PI_FMC_DESCR_M_RCC_CRC)
3127                                bp->rcv_crc_errors++;
3128                        else
3129                                bp->rcv_frame_status_errors++;
3130                        }
3131                else
3132                {
3133                        int rx_in_place = 0;
3134
3135                        /* The frame was received without errors - verify packet length */
3136
3137                        pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3138                        pkt_len -= 4;                           /* subtract 4 byte CRC */
3139                        if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3140                                bp->rcv_length_errors++;
3141                        else{
3142#ifdef DYNAMIC_BUFFERS
3143                                struct sk_buff *newskb = NULL;
3144
3145                                if (pkt_len > SKBUFF_RX_COPYBREAK) {
3146                                        dma_addr_t new_dma_addr;
3147
3148                                        newskb = netdev_alloc_skb(bp->dev,
3149                                                                  NEW_SKB_SIZE);
3150                                        if (newskb){
3151                                                my_skb_align(newskb, 128);
3152                                                new_dma_addr = dma_map_single(
3153                                                                bp->bus_dev,
3154                                                                newskb->data,
3155                                                                PI_RCV_DATA_K_SIZE_MAX,
3156                                                                DMA_FROM_DEVICE);
3157                                                if (dma_mapping_error(
3158                                                                bp->bus_dev,
3159                                                                new_dma_addr)) {
3160                                                        dev_kfree_skb(newskb);
3161                                                        newskb = NULL;
3162                                                }
3163                                        }
3164                                        if (newskb) {
3165                                                rx_in_place = 1;
3166
3167                                                skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3168                                                dma_unmap_single(bp->bus_dev,
3169                                                        dma_addr,
3170                                                        PI_RCV_DATA_K_SIZE_MAX,
3171                                                        DMA_FROM_DEVICE);
3172                                                skb_reserve(skb, RCV_BUFF_K_PADDING);
3173                                                bp->p_rcv_buff_va[entry] = (char *)newskb;
3174                                                bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3175                                        }
3176                                }
3177                                if (!newskb)
3178#endif
3179                                        /* Alloc new buffer to pass up,
3180                                         * add room for PRH. */
3181                                        skb = netdev_alloc_skb(bp->dev,
3182                                                               pkt_len + 3);
3183                                if (skb == NULL)
3184                                        {
3185                                        printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3186                                        bp->rcv_discards++;
3187                                        break;
3188                                        }
3189                                else {
3190                                        if (!rx_in_place) {
3191                                                /* Receive buffer allocated, pass receive packet up */
3192                                                dma_sync_single_for_cpu(
3193                                                        bp->bus_dev,
3194                                                        dma_addr +
3195                                                        RCV_BUFF_K_PADDING,
3196                                                        pkt_len + 3,
3197                                                        DMA_FROM_DEVICE);
3198
3199                                                skb_copy_to_linear_data(skb,
3200                                                               p_buff + RCV_BUFF_K_PADDING,
3201                                                               pkt_len + 3);
3202                                        }
3203
3204                                        skb_reserve(skb,3);             /* adjust data field so that it points to FC byte */
3205                                        skb_put(skb, pkt_len);          /* pass up packet length, NOT including CRC */
3206                                        skb->protocol = fddi_type_trans(skb, bp->dev);
3207                                        bp->rcv_total_bytes += skb->len;
3208                                        netif_rx(skb);
3209
3210                                        /* Update the rcv counters */
3211                                        bp->rcv_total_frames++;
3212                                        if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3213                                                bp->rcv_multicast_frames++;
3214                                }
3215                        }
3216                        }
3217
3218                /*
3219                 * Advance the producer (for recycling) and advance the completion
3220                 * (for servicing received frames).  Note that it is okay to
3221                 * advance the producer without checking that it passes the
3222                 * completion index because they are both advanced at the same
3223                 * rate.
3224                 */
3225
3226                bp->rcv_xmt_reg.index.rcv_prod += 1;
3227                bp->rcv_xmt_reg.index.rcv_comp += 1;
3228                }
3229        }
3230
3231
3232/*
3233 * =====================
3234 * = dfx_xmt_queue_pkt =
3235 * =====================
3236 *
3237 * Overview:
3238 *   Queues packets for transmission
3239 *
3240 * Returns:
3241 *   Condition code
3242 *
3243 * Arguments:
3244 *   skb - pointer to sk_buff to queue for transmission
3245 *   dev - pointer to device information
3246 *
3247 * Functional Description:
3248 *   Here we assume that an incoming skb transmit request
3249 *   is contained in a single physically contiguous buffer
3250 *   in which the virtual address of the start of packet
3251 *   (skb->data) can be converted to a physical address
3252 *   by using pci_map_single().
3253 *
3254 *   Since the adapter architecture requires a three byte
3255 *   packet request header to prepend the start of packet,
3256 *   we'll write the three byte field immediately prior to
3257 *   the FC byte.  This assumption is valid because we've
3258 *   ensured that dev->hard_header_len includes three pad
3259 *   bytes.  By posting a single fragment to the adapter,
3260 *   we'll reduce the number of descriptor fetches and
3261 *   bus traffic needed to send the request.
3262 *
3263 *   Also, we can't free the skb until after it's been DMA'd
3264 *   out by the adapter, so we'll queue it in the driver and
3265 *   return it in dfx_xmt_done.
3266 *
3267 * Return Codes:
3268 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3269 *       1 - caller should requeue the sk_buff for later transmission
3270 *
3271 * Assumptions:
3272 *       First and foremost, we assume the incoming skb pointer
3273 *   is NOT NULL and is pointing to a valid sk_buff structure.
3274 *
3275 *   The outgoing packet is complete, starting with the
3276 *   frame control byte including the last byte of data,
3277 *   but NOT including the 4 byte CRC.  We'll let the
3278 *   adapter hardware generate and append the CRC.
3279 *
3280 *   The entire packet is stored in one physically
3281 *   contiguous buffer which is not cached and whose
3282 *   32-bit physical address can be determined.
3283 *
3284 *   It's vital that this routine is NOT reentered for the
3285 *   same board and that the OS is not in another section of
3286 *   code (eg. dfx_int_common) for the same board on a
3287 *   different thread.
3288 *
3289 * Side Effects:
3290 *   None
3291 */
3292
3293static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3294                                     struct net_device *dev)
3295        {
3296        DFX_board_t             *bp = netdev_priv(dev);
3297        u8                      prod;                           /* local transmit producer index */
3298        PI_XMT_DESCR            *p_xmt_descr;           /* ptr to transmit descriptor block entry */
3299        XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3300        dma_addr_t              dma_addr;
3301        unsigned long           flags;
3302
3303        netif_stop_queue(dev);
3304
3305        /*
3306         * Verify that incoming transmit request is OK
3307         *
3308         * Note: The packet size check is consistent with other
3309         *               Linux device drivers, although the correct packet
3310         *               size should be verified before calling the
3311         *               transmit routine.
3312         */
3313
3314        if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3315        {
3316                printk("%s: Invalid packet length - %u bytes\n",
3317                        dev->name, skb->len);
3318                bp->xmt_length_errors++;                /* bump error counter */
3319                netif_wake_queue(dev);
3320                dev_kfree_skb(skb);
3321                return NETDEV_TX_OK;                    /* return "success" */
3322        }
3323        /*
3324         * See if adapter link is available, if not, free buffer
3325         *
3326         * Note: If the link isn't available, free buffer and return 0
3327         *               rather than tell the upper layer to requeue the packet.
3328         *               The methodology here is that by the time the link
3329         *               becomes available, the packet to be sent will be
3330         *               fairly stale.  By simply dropping the packet, the
3331         *               higher layer protocols will eventually time out
3332         *               waiting for response packets which it won't receive.
3333         */
3334
3335        if (bp->link_available == PI_K_FALSE)
3336                {
3337                if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)  /* is link really available? */
3338                        bp->link_available = PI_K_TRUE;         /* if so, set flag and continue */
3339                else
3340                        {
3341                        bp->xmt_discards++;                                     /* bump error counter */
3342                        dev_kfree_skb(skb);             /* free sk_buff now */
3343                        netif_wake_queue(dev);
3344                        return NETDEV_TX_OK;            /* return "success" */
3345                        }
3346                }
3347
3348        /* Write the three PRH bytes immediately before the FC byte */
3349
3350        skb_push(skb, 3);
3351        skb->data[0] = DFX_PRH0_BYTE;   /* these byte values are defined */
3352        skb->data[1] = DFX_PRH1_BYTE;   /* in the Motorola FDDI MAC chip */
3353        skb->data[2] = DFX_PRH2_BYTE;   /* specification */
3354
3355        dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3356                                  DMA_TO_DEVICE);
3357        if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3358                skb_pull(skb, 3);
3359                return NETDEV_TX_BUSY;
3360        }
3361
3362        spin_lock_irqsave(&bp->lock, flags);
3363
3364        /* Get the current producer and the next free xmt data descriptor */
3365
3366        prod            = bp->rcv_xmt_reg.index.xmt_prod;
3367        p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3368
3369        /*
3370         * Get pointer to auxiliary queue entry to contain information
3371         * for this packet.
3372         *
3373         * Note: The current xmt producer index will become the
3374         *       current xmt completion index when we complete this
3375         *       packet later on.  So, we'll get the pointer to the
3376         *       next auxiliary queue entry now before we bump the
3377         *       producer index.
3378         */
3379
3380        p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);     /* also bump producer index */
3381
3382        /*
3383         * Write the descriptor with buffer info and bump producer
3384         *
3385         * Note: Since we need to start DMA from the packet request
3386         *               header, we'll add 3 bytes to the DMA buffer length,
3387         *               and we'll determine the physical address of the
3388         *               buffer from the PRH, not skb->data.
3389         *
3390         * Assumptions:
3391         *               1. Packet starts with the frame control (FC) byte
3392         *                  at skb->data.
3393         *               2. The 4-byte CRC is not appended to the buffer or
3394         *                      included in the length.
3395         *               3. Packet length (skb->len) is from FC to end of
3396         *                      data, inclusive.
3397         *               4. The packet length does not exceed the maximum
3398         *                      FDDI LLC frame length of 4491 bytes.
3399         *               5. The entire packet is contained in a physically
3400         *                      contiguous, non-cached, locked memory space
3401         *                      comprised of a single buffer pointed to by
3402         *                      skb->data.
3403         *               6. The physical address of the start of packet
3404         *                      can be determined from the virtual address
3405         *                      by using pci_map_single() and is only 32-bits
3406         *                      wide.
3407         */
3408
3409        p_xmt_descr->long_0     = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3410        p_xmt_descr->long_1 = (u32)dma_addr;
3411
3412        /*
3413         * Verify that descriptor is actually available
3414         *
3415         * Note: If descriptor isn't available, return 1 which tells
3416         *       the upper layer to requeue the packet for later
3417         *       transmission.
3418         *
3419         *       We need to ensure that the producer never reaches the
3420         *       completion, except to indicate that the queue is empty.
3421         */
3422
3423        if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3424        {
3425                skb_pull(skb,3);
3426                spin_unlock_irqrestore(&bp->lock, flags);
3427                return NETDEV_TX_BUSY;  /* requeue packet for later */
3428        }
3429
3430        /*
3431         * Save info for this packet for xmt done indication routine
3432         *
3433         * Normally, we'd save the producer index in the p_xmt_drv_descr
3434         * structure so that we'd have it handy when we complete this
3435         * packet later (in dfx_xmt_done).  However, since the current
3436         * transmit architecture guarantees a single fragment for the
3437         * entire packet, we can simply bump the completion index by
3438         * one (1) for each completed packet.
3439         *
3440         * Note: If this assumption changes and we're presented with
3441         *       an inconsistent number of transmit fragments for packet
3442         *       data, we'll need to modify this code to save the current
3443         *       transmit producer index.
3444         */
3445
3446        p_xmt_drv_descr->p_skb = skb;
3447
3448        /* Update Type 2 register */
3449
3450        bp->rcv_xmt_reg.index.xmt_prod = prod;
3451        dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3452        spin_unlock_irqrestore(&bp->lock, flags);
3453        netif_wake_queue(dev);
3454        return NETDEV_TX_OK;    /* packet queued to adapter */
3455        }
3456
3457
3458/*
3459 * ================
3460 * = dfx_xmt_done =
3461 * ================
3462 *
3463 * Overview:
3464 *   Processes all frames that have been transmitted.
3465 *
3466 * Returns:
3467 *   None
3468 *
3469 * Arguments:
3470 *   bp - pointer to board information
3471 *
3472 * Functional Description:
3473 *   For all consumed transmit descriptors that have not
3474 *   yet been completed, we'll free the skb we were holding
3475 *   onto using dev_kfree_skb and bump the appropriate
3476 *   counters.
3477 *
3478 * Return Codes:
3479 *   None
3480 *
3481 * Assumptions:
3482 *   The Type 2 register is not updated in this routine.  It is
3483 *   assumed that it will be updated in the ISR when dfx_xmt_done
3484 *   returns.
3485 *
3486 * Side Effects:
3487 *   None
3488 */
3489
3490static int dfx_xmt_done(DFX_board_t *bp)
3491        {
3492        XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3493        PI_TYPE_2_CONSUMER      *p_type_2_cons;         /* ptr to rcv/xmt consumer block register */
3494        u8                      comp;                   /* local transmit completion index */
3495        int                     freed = 0;              /* buffers freed */
3496
3497        /* Service all consumed transmit frames */
3498
3499        p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3500        while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3501                {
3502                /* Get pointer to the transmit driver descriptor block information */
3503
3504                p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3505
3506                /* Increment transmit counters */
3507
3508                bp->xmt_total_frames++;
3509                bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3510
3511                /* Return skb to operating system */
3512                comp = bp->rcv_xmt_reg.index.xmt_comp;
3513                dma_unmap_single(bp->bus_dev,
3514                                 bp->descr_block_virt->xmt_data[comp].long_1,
3515                                 p_xmt_drv_descr->p_skb->len,
3516                                 DMA_TO_DEVICE);
3517                dev_consume_skb_irq(p_xmt_drv_descr->p_skb);
3518
3519                /*
3520                 * Move to start of next packet by updating completion index
3521                 *
3522                 * Here we assume that a transmit packet request is always
3523                 * serviced by posting one fragment.  We can therefore
3524                 * simplify the completion code by incrementing the
3525                 * completion index by one.  This code will need to be
3526                 * modified if this assumption changes.  See comments
3527                 * in dfx_xmt_queue_pkt for more details.
3528                 */
3529
3530                bp->rcv_xmt_reg.index.xmt_comp += 1;
3531                freed++;
3532                }
3533        return freed;
3534        }
3535
3536
3537/*
3538 * =================
3539 * = dfx_rcv_flush =
3540 * =================
3541 *
3542 * Overview:
3543 *   Remove all skb's in the receive ring.
3544 *
3545 * Returns:
3546 *   None
3547 *
3548 * Arguments:
3549 *   bp - pointer to board information
3550 *
3551 * Functional Description:
3552 *   Free's all the dynamically allocated skb's that are
3553 *   currently attached to the device receive ring. This
3554 *   function is typically only used when the device is
3555 *   initialized or reinitialized.
3556 *
3557 * Return Codes:
3558 *   None
3559 *
3560 * Side Effects:
3561 *   None
3562 */
3563#ifdef DYNAMIC_BUFFERS
3564static void dfx_rcv_flush( DFX_board_t *bp )
3565        {
3566        int i, j;
3567
3568        for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3569                for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3570                {
3571                        struct sk_buff *skb;
3572                        skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3573                        if (skb) {
3574                                dma_unmap_single(bp->bus_dev,
3575                                                 bp->descr_block_virt->rcv_data[i+j].long_1,
3576                                                 PI_RCV_DATA_K_SIZE_MAX,
3577                                                 DMA_FROM_DEVICE);
3578                                dev_kfree_skb(skb);
3579                        }
3580                        bp->p_rcv_buff_va[i+j] = NULL;
3581                }
3582
3583        }
3584#endif /* DYNAMIC_BUFFERS */
3585
3586/*
3587 * =================
3588 * = dfx_xmt_flush =
3589 * =================
3590 *
3591 * Overview:
3592 *   Processes all frames whether they've been transmitted
3593 *   or not.
3594 *
3595 * Returns:
3596 *   None
3597 *
3598 * Arguments:
3599 *   bp - pointer to board information
3600 *
3601 * Functional Description:
3602 *   For all produced transmit descriptors that have not
3603 *   yet been completed, we'll free the skb we were holding
3604 *   onto using dev_kfree_skb and bump the appropriate
3605 *   counters.  Of course, it's possible that some of
3606 *   these transmit requests actually did go out, but we
3607 *   won't make that distinction here.  Finally, we'll
3608 *   update the consumer index to match the producer.
3609 *
3610 * Return Codes:
3611 *   None
3612 *
3613 * Assumptions:
3614 *   This routine does NOT update the Type 2 register.  It
3615 *   is assumed that this routine is being called during a
3616 *   transmit flush interrupt, or a shutdown or close routine.
3617 *
3618 * Side Effects:
3619 *   None
3620 */
3621
3622static void dfx_xmt_flush( DFX_board_t *bp )
3623        {
3624        u32                     prod_cons;              /* rcv/xmt consumer block longword */
3625        XMT_DRIVER_DESCR        *p_xmt_drv_descr;       /* ptr to transmit driver descriptor */
3626        u8                      comp;                   /* local transmit completion index */
3627
3628        /* Flush all outstanding transmit frames */
3629
3630        while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3631                {
3632                /* Get pointer to the transmit driver descriptor block information */
3633
3634                p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3635
3636                /* Return skb to operating system */
3637                comp = bp->rcv_xmt_reg.index.xmt_comp;
3638                dma_unmap_single(bp->bus_dev,
3639                                 bp->descr_block_virt->xmt_data[comp].long_1,
3640                                 p_xmt_drv_descr->p_skb->len,
3641                                 DMA_TO_DEVICE);
3642                dev_kfree_skb(p_xmt_drv_descr->p_skb);
3643
3644                /* Increment transmit error counter */
3645
3646                bp->xmt_discards++;
3647
3648                /*
3649                 * Move to start of next packet by updating completion index
3650                 *
3651                 * Here we assume that a transmit packet request is always
3652                 * serviced by posting one fragment.  We can therefore
3653                 * simplify the completion code by incrementing the
3654                 * completion index by one.  This code will need to be
3655                 * modified if this assumption changes.  See comments
3656                 * in dfx_xmt_queue_pkt for more details.
3657                 */
3658
3659                bp->rcv_xmt_reg.index.xmt_comp += 1;
3660                }
3661
3662        /* Update the transmit consumer index in the consumer block */
3663
3664        prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3665        prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3666        bp->cons_block_virt->xmt_rcv_data = prod_cons;
3667        }
3668
3669/*
3670 * ==================
3671 * = dfx_unregister =
3672 * ==================
3673 *
3674 * Overview:
3675 *   Shuts down an FDDI controller
3676 *
3677 * Returns:
3678 *   Condition code
3679 *
3680 * Arguments:
3681 *   bdev - pointer to device information
3682 *
3683 * Functional Description:
3684 *
3685 * Return Codes:
3686 *   None
3687 *
3688 * Assumptions:
3689 *   It compiles so it should work :-( (PCI cards do :-)
3690 *
3691 * Side Effects:
3692 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3693 *   freed.
3694 */
3695static void dfx_unregister(struct device *bdev)
3696{
3697        struct net_device *dev = dev_get_drvdata(bdev);
3698        DFX_board_t *bp = netdev_priv(dev);
3699        int dfx_bus_pci = dev_is_pci(bdev);
3700        resource_size_t bar_start[3] = {0};     /* pointers to ports */
3701        resource_size_t bar_len[3] = {0};       /* resource lengths */
3702        int             alloc_size;             /* total buffer size used */
3703
3704        unregister_netdev(dev);
3705
3706        alloc_size = sizeof(PI_DESCR_BLOCK) +
3707                     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708#ifndef DYNAMIC_BUFFERS
3709                     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710#endif
3711                     sizeof(PI_CONSUMER_BLOCK) +
3712                     (PI_ALIGN_K_DESC_BLK - 1);
3713        if (bp->kmalloced)
3714                dma_free_coherent(bdev, alloc_size,
3715                                  bp->kmalloced, bp->kmalloced_dma);
3716
3717        dfx_bus_uninit(dev);
3718
3719        dfx_get_bars(bp, bar_start, bar_len);
3720        if (bar_start[2] != 0)
3721                release_region(bar_start[2], bar_len[2]);
3722        if (bar_start[1] != 0)
3723                release_region(bar_start[1], bar_len[1]);
3724        if (dfx_use_mmio) {
3725                iounmap(bp->base.mem);
3726                release_mem_region(bar_start[0], bar_len[0]);
3727        } else
3728                release_region(bar_start[0], bar_len[0]);
3729
3730        if (dfx_bus_pci)
3731                pci_disable_device(to_pci_dev(bdev));
3732
3733        free_netdev(dev);
3734}
3735
3736
3737static int __maybe_unused dfx_dev_register(struct device *);
3738static int __maybe_unused dfx_dev_unregister(struct device *);
3739
3740#ifdef CONFIG_PCI
3741static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742static void dfx_pci_unregister(struct pci_dev *);
3743
3744static const struct pci_device_id dfx_pci_table[] = {
3745        { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746        { }
3747};
3748MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749
3750static struct pci_driver dfx_pci_driver = {
3751        .name           = DRV_NAME,
3752        .id_table       = dfx_pci_table,
3753        .probe          = dfx_pci_register,
3754        .remove         = dfx_pci_unregister,
3755};
3756
3757static int dfx_pci_register(struct pci_dev *pdev,
3758                            const struct pci_device_id *ent)
3759{
3760        return dfx_register(&pdev->dev);
3761}
3762
3763static void dfx_pci_unregister(struct pci_dev *pdev)
3764{
3765        dfx_unregister(&pdev->dev);
3766}
3767#endif /* CONFIG_PCI */
3768
3769#ifdef CONFIG_EISA
3770static const struct eisa_device_id dfx_eisa_table[] = {
3771        { "DEC3001", DEFEA_PROD_ID_1 },
3772        { "DEC3002", DEFEA_PROD_ID_2 },
3773        { "DEC3003", DEFEA_PROD_ID_3 },
3774        { "DEC3004", DEFEA_PROD_ID_4 },
3775        { }
3776};
3777MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778
3779static struct eisa_driver dfx_eisa_driver = {
3780        .id_table       = dfx_eisa_table,
3781        .driver         = {
3782                .name   = DRV_NAME,
3783                .bus    = &eisa_bus_type,
3784                .probe  = dfx_dev_register,
3785                .remove = dfx_dev_unregister,
3786        },
3787};
3788#endif /* CONFIG_EISA */
3789
3790#ifdef CONFIG_TC
3791static struct tc_device_id const dfx_tc_table[] = {
3792        { "DEC     ", "PMAF-FA " },
3793        { "DEC     ", "PMAF-FD " },
3794        { "DEC     ", "PMAF-FS " },
3795        { "DEC     ", "PMAF-FU " },
3796        { }
3797};
3798MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799
3800static struct tc_driver dfx_tc_driver = {
3801        .id_table       = dfx_tc_table,
3802        .driver         = {
3803                .name   = DRV_NAME,
3804                .bus    = &tc_bus_type,
3805                .probe  = dfx_dev_register,
3806                .remove = dfx_dev_unregister,
3807        },
3808};
3809#endif /* CONFIG_TC */
3810
3811static int __maybe_unused dfx_dev_register(struct device *dev)
3812{
3813        int status;
3814
3815        status = dfx_register(dev);
3816        if (!status)
3817                get_device(dev);
3818        return status;
3819}
3820
3821static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822{
3823        put_device(dev);
3824        dfx_unregister(dev);
3825        return 0;
3826}
3827
3828
3829static int dfx_init(void)
3830{
3831        int status;
3832
3833        status = pci_register_driver(&dfx_pci_driver);
3834        if (!status)
3835                status = eisa_driver_register(&dfx_eisa_driver);
3836        if (!status)
3837                status = tc_register_driver(&dfx_tc_driver);
3838        return status;
3839}
3840
3841static void dfx_cleanup(void)
3842{
3843        tc_unregister_driver(&dfx_tc_driver);
3844        eisa_driver_unregister(&dfx_eisa_driver);
3845        pci_unregister_driver(&dfx_pci_driver);
3846}
3847
3848module_init(dfx_init);
3849module_exit(dfx_cleanup);
3850MODULE_AUTHOR("Lawrence V. Stefani");
3851MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852                   DRV_VERSION " " DRV_RELDATE);
3853MODULE_LICENSE("GPL");
3854