linux/drivers/net/phy/sfp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/acpi.h>
   3#include <linux/ctype.h>
   4#include <linux/debugfs.h>
   5#include <linux/delay.h>
   6#include <linux/gpio/consumer.h>
   7#include <linux/hwmon.h>
   8#include <linux/i2c.h>
   9#include <linux/interrupt.h>
  10#include <linux/jiffies.h>
  11#include <linux/mdio/mdio-i2c.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/of.h>
  15#include <linux/phy.h>
  16#include <linux/platform_device.h>
  17#include <linux/rtnetlink.h>
  18#include <linux/slab.h>
  19#include <linux/workqueue.h>
  20
  21#include "sfp.h"
  22#include "swphy.h"
  23
  24enum {
  25        GPIO_MODDEF0,
  26        GPIO_LOS,
  27        GPIO_TX_FAULT,
  28        GPIO_TX_DISABLE,
  29        GPIO_RATE_SELECT,
  30        GPIO_MAX,
  31
  32        SFP_F_PRESENT = BIT(GPIO_MODDEF0),
  33        SFP_F_LOS = BIT(GPIO_LOS),
  34        SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
  35        SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
  36        SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
  37
  38        SFP_E_INSERT = 0,
  39        SFP_E_REMOVE,
  40        SFP_E_DEV_ATTACH,
  41        SFP_E_DEV_DETACH,
  42        SFP_E_DEV_DOWN,
  43        SFP_E_DEV_UP,
  44        SFP_E_TX_FAULT,
  45        SFP_E_TX_CLEAR,
  46        SFP_E_LOS_HIGH,
  47        SFP_E_LOS_LOW,
  48        SFP_E_TIMEOUT,
  49
  50        SFP_MOD_EMPTY = 0,
  51        SFP_MOD_ERROR,
  52        SFP_MOD_PROBE,
  53        SFP_MOD_WAITDEV,
  54        SFP_MOD_HPOWER,
  55        SFP_MOD_WAITPWR,
  56        SFP_MOD_PRESENT,
  57
  58        SFP_DEV_DETACHED = 0,
  59        SFP_DEV_DOWN,
  60        SFP_DEV_UP,
  61
  62        SFP_S_DOWN = 0,
  63        SFP_S_FAIL,
  64        SFP_S_WAIT,
  65        SFP_S_INIT,
  66        SFP_S_INIT_PHY,
  67        SFP_S_INIT_TX_FAULT,
  68        SFP_S_WAIT_LOS,
  69        SFP_S_LINK_UP,
  70        SFP_S_TX_FAULT,
  71        SFP_S_REINIT,
  72        SFP_S_TX_DISABLE,
  73};
  74
  75static const char  * const mod_state_strings[] = {
  76        [SFP_MOD_EMPTY] = "empty",
  77        [SFP_MOD_ERROR] = "error",
  78        [SFP_MOD_PROBE] = "probe",
  79        [SFP_MOD_WAITDEV] = "waitdev",
  80        [SFP_MOD_HPOWER] = "hpower",
  81        [SFP_MOD_WAITPWR] = "waitpwr",
  82        [SFP_MOD_PRESENT] = "present",
  83};
  84
  85static const char *mod_state_to_str(unsigned short mod_state)
  86{
  87        if (mod_state >= ARRAY_SIZE(mod_state_strings))
  88                return "Unknown module state";
  89        return mod_state_strings[mod_state];
  90}
  91
  92static const char * const dev_state_strings[] = {
  93        [SFP_DEV_DETACHED] = "detached",
  94        [SFP_DEV_DOWN] = "down",
  95        [SFP_DEV_UP] = "up",
  96};
  97
  98static const char *dev_state_to_str(unsigned short dev_state)
  99{
 100        if (dev_state >= ARRAY_SIZE(dev_state_strings))
 101                return "Unknown device state";
 102        return dev_state_strings[dev_state];
 103}
 104
 105static const char * const event_strings[] = {
 106        [SFP_E_INSERT] = "insert",
 107        [SFP_E_REMOVE] = "remove",
 108        [SFP_E_DEV_ATTACH] = "dev_attach",
 109        [SFP_E_DEV_DETACH] = "dev_detach",
 110        [SFP_E_DEV_DOWN] = "dev_down",
 111        [SFP_E_DEV_UP] = "dev_up",
 112        [SFP_E_TX_FAULT] = "tx_fault",
 113        [SFP_E_TX_CLEAR] = "tx_clear",
 114        [SFP_E_LOS_HIGH] = "los_high",
 115        [SFP_E_LOS_LOW] = "los_low",
 116        [SFP_E_TIMEOUT] = "timeout",
 117};
 118
 119static const char *event_to_str(unsigned short event)
 120{
 121        if (event >= ARRAY_SIZE(event_strings))
 122                return "Unknown event";
 123        return event_strings[event];
 124}
 125
 126static const char * const sm_state_strings[] = {
 127        [SFP_S_DOWN] = "down",
 128        [SFP_S_FAIL] = "fail",
 129        [SFP_S_WAIT] = "wait",
 130        [SFP_S_INIT] = "init",
 131        [SFP_S_INIT_PHY] = "init_phy",
 132        [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
 133        [SFP_S_WAIT_LOS] = "wait_los",
 134        [SFP_S_LINK_UP] = "link_up",
 135        [SFP_S_TX_FAULT] = "tx_fault",
 136        [SFP_S_REINIT] = "reinit",
 137        [SFP_S_TX_DISABLE] = "tx_disable",
 138};
 139
 140static const char *sm_state_to_str(unsigned short sm_state)
 141{
 142        if (sm_state >= ARRAY_SIZE(sm_state_strings))
 143                return "Unknown state";
 144        return sm_state_strings[sm_state];
 145}
 146
 147static const char *gpio_of_names[] = {
 148        "mod-def0",
 149        "los",
 150        "tx-fault",
 151        "tx-disable",
 152        "rate-select0",
 153};
 154
 155static const enum gpiod_flags gpio_flags[] = {
 156        GPIOD_IN,
 157        GPIOD_IN,
 158        GPIOD_IN,
 159        GPIOD_ASIS,
 160        GPIOD_ASIS,
 161};
 162
 163/* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
 164 * non-cooled module to initialise its laser safety circuitry. We wait
 165 * an initial T_WAIT period before we check the tx fault to give any PHY
 166 * on board (for a copper SFP) time to initialise.
 167 */
 168#define T_WAIT                  msecs_to_jiffies(50)
 169#define T_START_UP              msecs_to_jiffies(300)
 170#define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
 171
 172/* t_reset is the time required to assert the TX_DISABLE signal to reset
 173 * an indicated TX_FAULT.
 174 */
 175#define T_RESET_US              10
 176#define T_FAULT_RECOVER         msecs_to_jiffies(1000)
 177
 178/* N_FAULT_INIT is the number of recovery attempts at module initialisation
 179 * time. If the TX_FAULT signal is not deasserted after this number of
 180 * attempts at clearing it, we decide that the module is faulty.
 181 * N_FAULT is the same but after the module has initialised.
 182 */
 183#define N_FAULT_INIT            5
 184#define N_FAULT                 5
 185
 186/* T_PHY_RETRY is the time interval between attempts to probe the PHY.
 187 * R_PHY_RETRY is the number of attempts.
 188 */
 189#define T_PHY_RETRY             msecs_to_jiffies(50)
 190#define R_PHY_RETRY             12
 191
 192/* SFP module presence detection is poor: the three MOD DEF signals are
 193 * the same length on the PCB, which means it's possible for MOD DEF 0 to
 194 * connect before the I2C bus on MOD DEF 1/2.
 195 *
 196 * The SFF-8472 specifies t_serial ("Time from power on until module is
 197 * ready for data transmission over the two wire serial bus.") as 300ms.
 198 */
 199#define T_SERIAL                msecs_to_jiffies(300)
 200#define T_HPOWER_LEVEL          msecs_to_jiffies(300)
 201#define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
 202#define R_PROBE_RETRY_INIT      10
 203#define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
 204#define R_PROBE_RETRY_SLOW      12
 205
 206/* SFP modules appear to always have their PHY configured for bus address
 207 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
 208 */
 209#define SFP_PHY_ADDR    22
 210
 211struct sff_data {
 212        unsigned int gpios;
 213        bool (*module_supported)(const struct sfp_eeprom_id *id);
 214};
 215
 216struct sfp {
 217        struct device *dev;
 218        struct i2c_adapter *i2c;
 219        struct mii_bus *i2c_mii;
 220        struct sfp_bus *sfp_bus;
 221        struct phy_device *mod_phy;
 222        const struct sff_data *type;
 223        size_t i2c_block_size;
 224        u32 max_power_mW;
 225
 226        unsigned int (*get_state)(struct sfp *);
 227        void (*set_state)(struct sfp *, unsigned int);
 228        int (*read)(struct sfp *, bool, u8, void *, size_t);
 229        int (*write)(struct sfp *, bool, u8, void *, size_t);
 230
 231        struct gpio_desc *gpio[GPIO_MAX];
 232        int gpio_irq[GPIO_MAX];
 233
 234        bool need_poll;
 235
 236        struct mutex st_mutex;                  /* Protects state */
 237        unsigned int state_soft_mask;
 238        unsigned int state;
 239        struct delayed_work poll;
 240        struct delayed_work timeout;
 241        struct mutex sm_mutex;                  /* Protects state machine */
 242        unsigned char sm_mod_state;
 243        unsigned char sm_mod_tries_init;
 244        unsigned char sm_mod_tries;
 245        unsigned char sm_dev_state;
 246        unsigned short sm_state;
 247        unsigned char sm_fault_retries;
 248        unsigned char sm_phy_retries;
 249
 250        struct sfp_eeprom_id id;
 251        unsigned int module_power_mW;
 252        unsigned int module_t_start_up;
 253
 254#if IS_ENABLED(CONFIG_HWMON)
 255        struct sfp_diag diag;
 256        struct delayed_work hwmon_probe;
 257        unsigned int hwmon_tries;
 258        struct device *hwmon_dev;
 259        char *hwmon_name;
 260#endif
 261
 262#if IS_ENABLED(CONFIG_DEBUG_FS)
 263        struct dentry *debugfs_dir;
 264#endif
 265};
 266
 267static bool sff_module_supported(const struct sfp_eeprom_id *id)
 268{
 269        return id->base.phys_id == SFF8024_ID_SFF_8472 &&
 270               id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
 271}
 272
 273static const struct sff_data sff_data = {
 274        .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
 275        .module_supported = sff_module_supported,
 276};
 277
 278static bool sfp_module_supported(const struct sfp_eeprom_id *id)
 279{
 280        if (id->base.phys_id == SFF8024_ID_SFP &&
 281            id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
 282                return true;
 283
 284        /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
 285         * phys id SFF instead of SFP. Therefore mark this module explicitly
 286         * as supported based on vendor name and pn match.
 287         */
 288        if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
 289            id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
 290            !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
 291            !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
 292                return true;
 293
 294        return false;
 295}
 296
 297static const struct sff_data sfp_data = {
 298        .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
 299                 SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
 300        .module_supported = sfp_module_supported,
 301};
 302
 303static const struct of_device_id sfp_of_match[] = {
 304        { .compatible = "sff,sff", .data = &sff_data, },
 305        { .compatible = "sff,sfp", .data = &sfp_data, },
 306        { },
 307};
 308MODULE_DEVICE_TABLE(of, sfp_of_match);
 309
 310static unsigned long poll_jiffies;
 311
 312static unsigned int sfp_gpio_get_state(struct sfp *sfp)
 313{
 314        unsigned int i, state, v;
 315
 316        for (i = state = 0; i < GPIO_MAX; i++) {
 317                if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
 318                        continue;
 319
 320                v = gpiod_get_value_cansleep(sfp->gpio[i]);
 321                if (v)
 322                        state |= BIT(i);
 323        }
 324
 325        return state;
 326}
 327
 328static unsigned int sff_gpio_get_state(struct sfp *sfp)
 329{
 330        return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
 331}
 332
 333static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
 334{
 335        if (state & SFP_F_PRESENT) {
 336                /* If the module is present, drive the signals */
 337                if (sfp->gpio[GPIO_TX_DISABLE])
 338                        gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
 339                                               state & SFP_F_TX_DISABLE);
 340                if (state & SFP_F_RATE_SELECT)
 341                        gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
 342                                               state & SFP_F_RATE_SELECT);
 343        } else {
 344                /* Otherwise, let them float to the pull-ups */
 345                if (sfp->gpio[GPIO_TX_DISABLE])
 346                        gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
 347                if (state & SFP_F_RATE_SELECT)
 348                        gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
 349        }
 350}
 351
 352static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 353                        size_t len)
 354{
 355        struct i2c_msg msgs[2];
 356        u8 bus_addr = a2 ? 0x51 : 0x50;
 357        size_t block_size = sfp->i2c_block_size;
 358        size_t this_len;
 359        int ret;
 360
 361        msgs[0].addr = bus_addr;
 362        msgs[0].flags = 0;
 363        msgs[0].len = 1;
 364        msgs[0].buf = &dev_addr;
 365        msgs[1].addr = bus_addr;
 366        msgs[1].flags = I2C_M_RD;
 367        msgs[1].len = len;
 368        msgs[1].buf = buf;
 369
 370        while (len) {
 371                this_len = len;
 372                if (this_len > block_size)
 373                        this_len = block_size;
 374
 375                msgs[1].len = this_len;
 376
 377                ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 378                if (ret < 0)
 379                        return ret;
 380
 381                if (ret != ARRAY_SIZE(msgs))
 382                        break;
 383
 384                msgs[1].buf += this_len;
 385                dev_addr += this_len;
 386                len -= this_len;
 387        }
 388
 389        return msgs[1].buf - (u8 *)buf;
 390}
 391
 392static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
 393        size_t len)
 394{
 395        struct i2c_msg msgs[1];
 396        u8 bus_addr = a2 ? 0x51 : 0x50;
 397        int ret;
 398
 399        msgs[0].addr = bus_addr;
 400        msgs[0].flags = 0;
 401        msgs[0].len = 1 + len;
 402        msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
 403        if (!msgs[0].buf)
 404                return -ENOMEM;
 405
 406        msgs[0].buf[0] = dev_addr;
 407        memcpy(&msgs[0].buf[1], buf, len);
 408
 409        ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
 410
 411        kfree(msgs[0].buf);
 412
 413        if (ret < 0)
 414                return ret;
 415
 416        return ret == ARRAY_SIZE(msgs) ? len : 0;
 417}
 418
 419static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
 420{
 421        struct mii_bus *i2c_mii;
 422        int ret;
 423
 424        if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
 425                return -EINVAL;
 426
 427        sfp->i2c = i2c;
 428        sfp->read = sfp_i2c_read;
 429        sfp->write = sfp_i2c_write;
 430
 431        i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
 432        if (IS_ERR(i2c_mii))
 433                return PTR_ERR(i2c_mii);
 434
 435        i2c_mii->name = "SFP I2C Bus";
 436        i2c_mii->phy_mask = ~0;
 437
 438        ret = mdiobus_register(i2c_mii);
 439        if (ret < 0) {
 440                mdiobus_free(i2c_mii);
 441                return ret;
 442        }
 443
 444        sfp->i2c_mii = i2c_mii;
 445
 446        return 0;
 447}
 448
 449/* Interface */
 450static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 451{
 452        return sfp->read(sfp, a2, addr, buf, len);
 453}
 454
 455static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
 456{
 457        return sfp->write(sfp, a2, addr, buf, len);
 458}
 459
 460static unsigned int sfp_soft_get_state(struct sfp *sfp)
 461{
 462        unsigned int state = 0;
 463        u8 status;
 464        int ret;
 465
 466        ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
 467        if (ret == sizeof(status)) {
 468                if (status & SFP_STATUS_RX_LOS)
 469                        state |= SFP_F_LOS;
 470                if (status & SFP_STATUS_TX_FAULT)
 471                        state |= SFP_F_TX_FAULT;
 472        } else {
 473                dev_err_ratelimited(sfp->dev,
 474                                    "failed to read SFP soft status: %d\n",
 475                                    ret);
 476                /* Preserve the current state */
 477                state = sfp->state;
 478        }
 479
 480        return state & sfp->state_soft_mask;
 481}
 482
 483static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
 484{
 485        u8 status;
 486
 487        if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
 488                     sizeof(status)) {
 489                if (state & SFP_F_TX_DISABLE)
 490                        status |= SFP_STATUS_TX_DISABLE_FORCE;
 491                else
 492                        status &= ~SFP_STATUS_TX_DISABLE_FORCE;
 493
 494                sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
 495        }
 496}
 497
 498static void sfp_soft_start_poll(struct sfp *sfp)
 499{
 500        const struct sfp_eeprom_id *id = &sfp->id;
 501
 502        sfp->state_soft_mask = 0;
 503        if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
 504            !sfp->gpio[GPIO_TX_DISABLE])
 505                sfp->state_soft_mask |= SFP_F_TX_DISABLE;
 506        if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
 507            !sfp->gpio[GPIO_TX_FAULT])
 508                sfp->state_soft_mask |= SFP_F_TX_FAULT;
 509        if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
 510            !sfp->gpio[GPIO_LOS])
 511                sfp->state_soft_mask |= SFP_F_LOS;
 512
 513        if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
 514            !sfp->need_poll)
 515                mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
 516}
 517
 518static void sfp_soft_stop_poll(struct sfp *sfp)
 519{
 520        sfp->state_soft_mask = 0;
 521}
 522
 523static unsigned int sfp_get_state(struct sfp *sfp)
 524{
 525        unsigned int state = sfp->get_state(sfp);
 526
 527        if (state & SFP_F_PRESENT &&
 528            sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
 529                state |= sfp_soft_get_state(sfp);
 530
 531        return state;
 532}
 533
 534static void sfp_set_state(struct sfp *sfp, unsigned int state)
 535{
 536        sfp->set_state(sfp, state);
 537
 538        if (state & SFP_F_PRESENT &&
 539            sfp->state_soft_mask & SFP_F_TX_DISABLE)
 540                sfp_soft_set_state(sfp, state);
 541}
 542
 543static unsigned int sfp_check(void *buf, size_t len)
 544{
 545        u8 *p, check;
 546
 547        for (p = buf, check = 0; len; p++, len--)
 548                check += *p;
 549
 550        return check;
 551}
 552
 553/* hwmon */
 554#if IS_ENABLED(CONFIG_HWMON)
 555static umode_t sfp_hwmon_is_visible(const void *data,
 556                                    enum hwmon_sensor_types type,
 557                                    u32 attr, int channel)
 558{
 559        const struct sfp *sfp = data;
 560
 561        switch (type) {
 562        case hwmon_temp:
 563                switch (attr) {
 564                case hwmon_temp_min_alarm:
 565                case hwmon_temp_max_alarm:
 566                case hwmon_temp_lcrit_alarm:
 567                case hwmon_temp_crit_alarm:
 568                case hwmon_temp_min:
 569                case hwmon_temp_max:
 570                case hwmon_temp_lcrit:
 571                case hwmon_temp_crit:
 572                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 573                                return 0;
 574                        fallthrough;
 575                case hwmon_temp_input:
 576                case hwmon_temp_label:
 577                        return 0444;
 578                default:
 579                        return 0;
 580                }
 581        case hwmon_in:
 582                switch (attr) {
 583                case hwmon_in_min_alarm:
 584                case hwmon_in_max_alarm:
 585                case hwmon_in_lcrit_alarm:
 586                case hwmon_in_crit_alarm:
 587                case hwmon_in_min:
 588                case hwmon_in_max:
 589                case hwmon_in_lcrit:
 590                case hwmon_in_crit:
 591                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 592                                return 0;
 593                        fallthrough;
 594                case hwmon_in_input:
 595                case hwmon_in_label:
 596                        return 0444;
 597                default:
 598                        return 0;
 599                }
 600        case hwmon_curr:
 601                switch (attr) {
 602                case hwmon_curr_min_alarm:
 603                case hwmon_curr_max_alarm:
 604                case hwmon_curr_lcrit_alarm:
 605                case hwmon_curr_crit_alarm:
 606                case hwmon_curr_min:
 607                case hwmon_curr_max:
 608                case hwmon_curr_lcrit:
 609                case hwmon_curr_crit:
 610                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 611                                return 0;
 612                        fallthrough;
 613                case hwmon_curr_input:
 614                case hwmon_curr_label:
 615                        return 0444;
 616                default:
 617                        return 0;
 618                }
 619        case hwmon_power:
 620                /* External calibration of receive power requires
 621                 * floating point arithmetic. Doing that in the kernel
 622                 * is not easy, so just skip it. If the module does
 623                 * not require external calibration, we can however
 624                 * show receiver power, since FP is then not needed.
 625                 */
 626                if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
 627                    channel == 1)
 628                        return 0;
 629                switch (attr) {
 630                case hwmon_power_min_alarm:
 631                case hwmon_power_max_alarm:
 632                case hwmon_power_lcrit_alarm:
 633                case hwmon_power_crit_alarm:
 634                case hwmon_power_min:
 635                case hwmon_power_max:
 636                case hwmon_power_lcrit:
 637                case hwmon_power_crit:
 638                        if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
 639                                return 0;
 640                        fallthrough;
 641                case hwmon_power_input:
 642                case hwmon_power_label:
 643                        return 0444;
 644                default:
 645                        return 0;
 646                }
 647        default:
 648                return 0;
 649        }
 650}
 651
 652static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
 653{
 654        __be16 val;
 655        int err;
 656
 657        err = sfp_read(sfp, true, reg, &val, sizeof(val));
 658        if (err < 0)
 659                return err;
 660
 661        *value = be16_to_cpu(val);
 662
 663        return 0;
 664}
 665
 666static void sfp_hwmon_to_rx_power(long *value)
 667{
 668        *value = DIV_ROUND_CLOSEST(*value, 10);
 669}
 670
 671static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
 672                                long *value)
 673{
 674        if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
 675                *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
 676}
 677
 678static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
 679{
 680        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
 681                            be16_to_cpu(sfp->diag.cal_t_offset), value);
 682
 683        if (*value >= 0x8000)
 684                *value -= 0x10000;
 685
 686        *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
 687}
 688
 689static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
 690{
 691        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
 692                            be16_to_cpu(sfp->diag.cal_v_offset), value);
 693
 694        *value = DIV_ROUND_CLOSEST(*value, 10);
 695}
 696
 697static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
 698{
 699        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
 700                            be16_to_cpu(sfp->diag.cal_txi_offset), value);
 701
 702        *value = DIV_ROUND_CLOSEST(*value, 500);
 703}
 704
 705static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
 706{
 707        sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
 708                            be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
 709
 710        *value = DIV_ROUND_CLOSEST(*value, 10);
 711}
 712
 713static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
 714{
 715        int err;
 716
 717        err = sfp_hwmon_read_sensor(sfp, reg, value);
 718        if (err < 0)
 719                return err;
 720
 721        sfp_hwmon_calibrate_temp(sfp, value);
 722
 723        return 0;
 724}
 725
 726static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
 727{
 728        int err;
 729
 730        err = sfp_hwmon_read_sensor(sfp, reg, value);
 731        if (err < 0)
 732                return err;
 733
 734        sfp_hwmon_calibrate_vcc(sfp, value);
 735
 736        return 0;
 737}
 738
 739static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
 740{
 741        int err;
 742
 743        err = sfp_hwmon_read_sensor(sfp, reg, value);
 744        if (err < 0)
 745                return err;
 746
 747        sfp_hwmon_calibrate_bias(sfp, value);
 748
 749        return 0;
 750}
 751
 752static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
 753{
 754        int err;
 755
 756        err = sfp_hwmon_read_sensor(sfp, reg, value);
 757        if (err < 0)
 758                return err;
 759
 760        sfp_hwmon_calibrate_tx_power(sfp, value);
 761
 762        return 0;
 763}
 764
 765static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
 766{
 767        int err;
 768
 769        err = sfp_hwmon_read_sensor(sfp, reg, value);
 770        if (err < 0)
 771                return err;
 772
 773        sfp_hwmon_to_rx_power(value);
 774
 775        return 0;
 776}
 777
 778static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
 779{
 780        u8 status;
 781        int err;
 782
 783        switch (attr) {
 784        case hwmon_temp_input:
 785                return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
 786
 787        case hwmon_temp_lcrit:
 788                *value = be16_to_cpu(sfp->diag.temp_low_alarm);
 789                sfp_hwmon_calibrate_temp(sfp, value);
 790                return 0;
 791
 792        case hwmon_temp_min:
 793                *value = be16_to_cpu(sfp->diag.temp_low_warn);
 794                sfp_hwmon_calibrate_temp(sfp, value);
 795                return 0;
 796        case hwmon_temp_max:
 797                *value = be16_to_cpu(sfp->diag.temp_high_warn);
 798                sfp_hwmon_calibrate_temp(sfp, value);
 799                return 0;
 800
 801        case hwmon_temp_crit:
 802                *value = be16_to_cpu(sfp->diag.temp_high_alarm);
 803                sfp_hwmon_calibrate_temp(sfp, value);
 804                return 0;
 805
 806        case hwmon_temp_lcrit_alarm:
 807                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 808                if (err < 0)
 809                        return err;
 810
 811                *value = !!(status & SFP_ALARM0_TEMP_LOW);
 812                return 0;
 813
 814        case hwmon_temp_min_alarm:
 815                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 816                if (err < 0)
 817                        return err;
 818
 819                *value = !!(status & SFP_WARN0_TEMP_LOW);
 820                return 0;
 821
 822        case hwmon_temp_max_alarm:
 823                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 824                if (err < 0)
 825                        return err;
 826
 827                *value = !!(status & SFP_WARN0_TEMP_HIGH);
 828                return 0;
 829
 830        case hwmon_temp_crit_alarm:
 831                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 832                if (err < 0)
 833                        return err;
 834
 835                *value = !!(status & SFP_ALARM0_TEMP_HIGH);
 836                return 0;
 837        default:
 838                return -EOPNOTSUPP;
 839        }
 840
 841        return -EOPNOTSUPP;
 842}
 843
 844static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
 845{
 846        u8 status;
 847        int err;
 848
 849        switch (attr) {
 850        case hwmon_in_input:
 851                return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
 852
 853        case hwmon_in_lcrit:
 854                *value = be16_to_cpu(sfp->diag.volt_low_alarm);
 855                sfp_hwmon_calibrate_vcc(sfp, value);
 856                return 0;
 857
 858        case hwmon_in_min:
 859                *value = be16_to_cpu(sfp->diag.volt_low_warn);
 860                sfp_hwmon_calibrate_vcc(sfp, value);
 861                return 0;
 862
 863        case hwmon_in_max:
 864                *value = be16_to_cpu(sfp->diag.volt_high_warn);
 865                sfp_hwmon_calibrate_vcc(sfp, value);
 866                return 0;
 867
 868        case hwmon_in_crit:
 869                *value = be16_to_cpu(sfp->diag.volt_high_alarm);
 870                sfp_hwmon_calibrate_vcc(sfp, value);
 871                return 0;
 872
 873        case hwmon_in_lcrit_alarm:
 874                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 875                if (err < 0)
 876                        return err;
 877
 878                *value = !!(status & SFP_ALARM0_VCC_LOW);
 879                return 0;
 880
 881        case hwmon_in_min_alarm:
 882                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 883                if (err < 0)
 884                        return err;
 885
 886                *value = !!(status & SFP_WARN0_VCC_LOW);
 887                return 0;
 888
 889        case hwmon_in_max_alarm:
 890                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 891                if (err < 0)
 892                        return err;
 893
 894                *value = !!(status & SFP_WARN0_VCC_HIGH);
 895                return 0;
 896
 897        case hwmon_in_crit_alarm:
 898                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 899                if (err < 0)
 900                        return err;
 901
 902                *value = !!(status & SFP_ALARM0_VCC_HIGH);
 903                return 0;
 904        default:
 905                return -EOPNOTSUPP;
 906        }
 907
 908        return -EOPNOTSUPP;
 909}
 910
 911static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
 912{
 913        u8 status;
 914        int err;
 915
 916        switch (attr) {
 917        case hwmon_curr_input:
 918                return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
 919
 920        case hwmon_curr_lcrit:
 921                *value = be16_to_cpu(sfp->diag.bias_low_alarm);
 922                sfp_hwmon_calibrate_bias(sfp, value);
 923                return 0;
 924
 925        case hwmon_curr_min:
 926                *value = be16_to_cpu(sfp->diag.bias_low_warn);
 927                sfp_hwmon_calibrate_bias(sfp, value);
 928                return 0;
 929
 930        case hwmon_curr_max:
 931                *value = be16_to_cpu(sfp->diag.bias_high_warn);
 932                sfp_hwmon_calibrate_bias(sfp, value);
 933                return 0;
 934
 935        case hwmon_curr_crit:
 936                *value = be16_to_cpu(sfp->diag.bias_high_alarm);
 937                sfp_hwmon_calibrate_bias(sfp, value);
 938                return 0;
 939
 940        case hwmon_curr_lcrit_alarm:
 941                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 942                if (err < 0)
 943                        return err;
 944
 945                *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
 946                return 0;
 947
 948        case hwmon_curr_min_alarm:
 949                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 950                if (err < 0)
 951                        return err;
 952
 953                *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
 954                return 0;
 955
 956        case hwmon_curr_max_alarm:
 957                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
 958                if (err < 0)
 959                        return err;
 960
 961                *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
 962                return 0;
 963
 964        case hwmon_curr_crit_alarm:
 965                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
 966                if (err < 0)
 967                        return err;
 968
 969                *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
 970                return 0;
 971        default:
 972                return -EOPNOTSUPP;
 973        }
 974
 975        return -EOPNOTSUPP;
 976}
 977
 978static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
 979{
 980        u8 status;
 981        int err;
 982
 983        switch (attr) {
 984        case hwmon_power_input:
 985                return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
 986
 987        case hwmon_power_lcrit:
 988                *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
 989                sfp_hwmon_calibrate_tx_power(sfp, value);
 990                return 0;
 991
 992        case hwmon_power_min:
 993                *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
 994                sfp_hwmon_calibrate_tx_power(sfp, value);
 995                return 0;
 996
 997        case hwmon_power_max:
 998                *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
 999                sfp_hwmon_calibrate_tx_power(sfp, value);
1000                return 0;
1001
1002        case hwmon_power_crit:
1003                *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1004                sfp_hwmon_calibrate_tx_power(sfp, value);
1005                return 0;
1006
1007        case hwmon_power_lcrit_alarm:
1008                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1009                if (err < 0)
1010                        return err;
1011
1012                *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1013                return 0;
1014
1015        case hwmon_power_min_alarm:
1016                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1017                if (err < 0)
1018                        return err;
1019
1020                *value = !!(status & SFP_WARN0_TXPWR_LOW);
1021                return 0;
1022
1023        case hwmon_power_max_alarm:
1024                err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1025                if (err < 0)
1026                        return err;
1027
1028                *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1029                return 0;
1030
1031        case hwmon_power_crit_alarm:
1032                err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1033                if (err < 0)
1034                        return err;
1035
1036                *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1037                return 0;
1038        default:
1039                return -EOPNOTSUPP;
1040        }
1041
1042        return -EOPNOTSUPP;
1043}
1044
1045static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1046{
1047        u8 status;
1048        int err;
1049
1050        switch (attr) {
1051        case hwmon_power_input:
1052                return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1053
1054        case hwmon_power_lcrit:
1055                *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1056                sfp_hwmon_to_rx_power(value);
1057                return 0;
1058
1059        case hwmon_power_min:
1060                *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1061                sfp_hwmon_to_rx_power(value);
1062                return 0;
1063
1064        case hwmon_power_max:
1065                *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1066                sfp_hwmon_to_rx_power(value);
1067                return 0;
1068
1069        case hwmon_power_crit:
1070                *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1071                sfp_hwmon_to_rx_power(value);
1072                return 0;
1073
1074        case hwmon_power_lcrit_alarm:
1075                err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1076                if (err < 0)
1077                        return err;
1078
1079                *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1080                return 0;
1081
1082        case hwmon_power_min_alarm:
1083                err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1084                if (err < 0)
1085                        return err;
1086
1087                *value = !!(status & SFP_WARN1_RXPWR_LOW);
1088                return 0;
1089
1090        case hwmon_power_max_alarm:
1091                err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1092                if (err < 0)
1093                        return err;
1094
1095                *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1096                return 0;
1097
1098        case hwmon_power_crit_alarm:
1099                err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1100                if (err < 0)
1101                        return err;
1102
1103                *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1104                return 0;
1105        default:
1106                return -EOPNOTSUPP;
1107        }
1108
1109        return -EOPNOTSUPP;
1110}
1111
1112static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1113                          u32 attr, int channel, long *value)
1114{
1115        struct sfp *sfp = dev_get_drvdata(dev);
1116
1117        switch (type) {
1118        case hwmon_temp:
1119                return sfp_hwmon_temp(sfp, attr, value);
1120        case hwmon_in:
1121                return sfp_hwmon_vcc(sfp, attr, value);
1122        case hwmon_curr:
1123                return sfp_hwmon_bias(sfp, attr, value);
1124        case hwmon_power:
1125                switch (channel) {
1126                case 0:
1127                        return sfp_hwmon_tx_power(sfp, attr, value);
1128                case 1:
1129                        return sfp_hwmon_rx_power(sfp, attr, value);
1130                default:
1131                        return -EOPNOTSUPP;
1132                }
1133        default:
1134                return -EOPNOTSUPP;
1135        }
1136}
1137
1138static const char *const sfp_hwmon_power_labels[] = {
1139        "TX_power",
1140        "RX_power",
1141};
1142
1143static int sfp_hwmon_read_string(struct device *dev,
1144                                 enum hwmon_sensor_types type,
1145                                 u32 attr, int channel, const char **str)
1146{
1147        switch (type) {
1148        case hwmon_curr:
1149                switch (attr) {
1150                case hwmon_curr_label:
1151                        *str = "bias";
1152                        return 0;
1153                default:
1154                        return -EOPNOTSUPP;
1155                }
1156                break;
1157        case hwmon_temp:
1158                switch (attr) {
1159                case hwmon_temp_label:
1160                        *str = "temperature";
1161                        return 0;
1162                default:
1163                        return -EOPNOTSUPP;
1164                }
1165                break;
1166        case hwmon_in:
1167                switch (attr) {
1168                case hwmon_in_label:
1169                        *str = "VCC";
1170                        return 0;
1171                default:
1172                        return -EOPNOTSUPP;
1173                }
1174                break;
1175        case hwmon_power:
1176                switch (attr) {
1177                case hwmon_power_label:
1178                        *str = sfp_hwmon_power_labels[channel];
1179                        return 0;
1180                default:
1181                        return -EOPNOTSUPP;
1182                }
1183                break;
1184        default:
1185                return -EOPNOTSUPP;
1186        }
1187
1188        return -EOPNOTSUPP;
1189}
1190
1191static const struct hwmon_ops sfp_hwmon_ops = {
1192        .is_visible = sfp_hwmon_is_visible,
1193        .read = sfp_hwmon_read,
1194        .read_string = sfp_hwmon_read_string,
1195};
1196
1197static u32 sfp_hwmon_chip_config[] = {
1198        HWMON_C_REGISTER_TZ,
1199        0,
1200};
1201
1202static const struct hwmon_channel_info sfp_hwmon_chip = {
1203        .type = hwmon_chip,
1204        .config = sfp_hwmon_chip_config,
1205};
1206
1207static u32 sfp_hwmon_temp_config[] = {
1208        HWMON_T_INPUT |
1209        HWMON_T_MAX | HWMON_T_MIN |
1210        HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1211        HWMON_T_CRIT | HWMON_T_LCRIT |
1212        HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1213        HWMON_T_LABEL,
1214        0,
1215};
1216
1217static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1218        .type = hwmon_temp,
1219        .config = sfp_hwmon_temp_config,
1220};
1221
1222static u32 sfp_hwmon_vcc_config[] = {
1223        HWMON_I_INPUT |
1224        HWMON_I_MAX | HWMON_I_MIN |
1225        HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1226        HWMON_I_CRIT | HWMON_I_LCRIT |
1227        HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1228        HWMON_I_LABEL,
1229        0,
1230};
1231
1232static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1233        .type = hwmon_in,
1234        .config = sfp_hwmon_vcc_config,
1235};
1236
1237static u32 sfp_hwmon_bias_config[] = {
1238        HWMON_C_INPUT |
1239        HWMON_C_MAX | HWMON_C_MIN |
1240        HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1241        HWMON_C_CRIT | HWMON_C_LCRIT |
1242        HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1243        HWMON_C_LABEL,
1244        0,
1245};
1246
1247static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1248        .type = hwmon_curr,
1249        .config = sfp_hwmon_bias_config,
1250};
1251
1252static u32 sfp_hwmon_power_config[] = {
1253        /* Transmit power */
1254        HWMON_P_INPUT |
1255        HWMON_P_MAX | HWMON_P_MIN |
1256        HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1257        HWMON_P_CRIT | HWMON_P_LCRIT |
1258        HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1259        HWMON_P_LABEL,
1260        /* Receive power */
1261        HWMON_P_INPUT |
1262        HWMON_P_MAX | HWMON_P_MIN |
1263        HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1264        HWMON_P_CRIT | HWMON_P_LCRIT |
1265        HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1266        HWMON_P_LABEL,
1267        0,
1268};
1269
1270static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1271        .type = hwmon_power,
1272        .config = sfp_hwmon_power_config,
1273};
1274
1275static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1276        &sfp_hwmon_chip,
1277        &sfp_hwmon_vcc_channel_info,
1278        &sfp_hwmon_temp_channel_info,
1279        &sfp_hwmon_bias_channel_info,
1280        &sfp_hwmon_power_channel_info,
1281        NULL,
1282};
1283
1284static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1285        .ops = &sfp_hwmon_ops,
1286        .info = sfp_hwmon_info,
1287};
1288
1289static void sfp_hwmon_probe(struct work_struct *work)
1290{
1291        struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1292        int err, i;
1293
1294        /* hwmon interface needs to access 16bit registers in atomic way to
1295         * guarantee coherency of the diagnostic monitoring data. If it is not
1296         * possible to guarantee coherency because EEPROM is broken in such way
1297         * that does not support atomic 16bit read operation then we have to
1298         * skip registration of hwmon device.
1299         */
1300        if (sfp->i2c_block_size < 2) {
1301                dev_info(sfp->dev,
1302                         "skipping hwmon device registration due to broken EEPROM\n");
1303                dev_info(sfp->dev,
1304                         "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1305                return;
1306        }
1307
1308        err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1309        if (err < 0) {
1310                if (sfp->hwmon_tries--) {
1311                        mod_delayed_work(system_wq, &sfp->hwmon_probe,
1312                                         T_PROBE_RETRY_SLOW);
1313                } else {
1314                        dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1315                }
1316                return;
1317        }
1318
1319        sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1320        if (!sfp->hwmon_name) {
1321                dev_err(sfp->dev, "out of memory for hwmon name\n");
1322                return;
1323        }
1324
1325        for (i = 0; sfp->hwmon_name[i]; i++)
1326                if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1327                        sfp->hwmon_name[i] = '_';
1328
1329        sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1330                                                         sfp->hwmon_name, sfp,
1331                                                         &sfp_hwmon_chip_info,
1332                                                         NULL);
1333        if (IS_ERR(sfp->hwmon_dev))
1334                dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1335                        PTR_ERR(sfp->hwmon_dev));
1336}
1337
1338static int sfp_hwmon_insert(struct sfp *sfp)
1339{
1340        if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1341                return 0;
1342
1343        if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1344                return 0;
1345
1346        if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1347                /* This driver in general does not support address
1348                 * change.
1349                 */
1350                return 0;
1351
1352        mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1353        sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1354
1355        return 0;
1356}
1357
1358static void sfp_hwmon_remove(struct sfp *sfp)
1359{
1360        cancel_delayed_work_sync(&sfp->hwmon_probe);
1361        if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1362                hwmon_device_unregister(sfp->hwmon_dev);
1363                sfp->hwmon_dev = NULL;
1364                kfree(sfp->hwmon_name);
1365        }
1366}
1367
1368static int sfp_hwmon_init(struct sfp *sfp)
1369{
1370        INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1371
1372        return 0;
1373}
1374
1375static void sfp_hwmon_exit(struct sfp *sfp)
1376{
1377        cancel_delayed_work_sync(&sfp->hwmon_probe);
1378}
1379#else
1380static int sfp_hwmon_insert(struct sfp *sfp)
1381{
1382        return 0;
1383}
1384
1385static void sfp_hwmon_remove(struct sfp *sfp)
1386{
1387}
1388
1389static int sfp_hwmon_init(struct sfp *sfp)
1390{
1391        return 0;
1392}
1393
1394static void sfp_hwmon_exit(struct sfp *sfp)
1395{
1396}
1397#endif
1398
1399/* Helpers */
1400static void sfp_module_tx_disable(struct sfp *sfp)
1401{
1402        dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1403                sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1404        sfp->state |= SFP_F_TX_DISABLE;
1405        sfp_set_state(sfp, sfp->state);
1406}
1407
1408static void sfp_module_tx_enable(struct sfp *sfp)
1409{
1410        dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1411                sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1412        sfp->state &= ~SFP_F_TX_DISABLE;
1413        sfp_set_state(sfp, sfp->state);
1414}
1415
1416#if IS_ENABLED(CONFIG_DEBUG_FS)
1417static int sfp_debug_state_show(struct seq_file *s, void *data)
1418{
1419        struct sfp *sfp = s->private;
1420
1421        seq_printf(s, "Module state: %s\n",
1422                   mod_state_to_str(sfp->sm_mod_state));
1423        seq_printf(s, "Module probe attempts: %d %d\n",
1424                   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1425                   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1426        seq_printf(s, "Device state: %s\n",
1427                   dev_state_to_str(sfp->sm_dev_state));
1428        seq_printf(s, "Main state: %s\n",
1429                   sm_state_to_str(sfp->sm_state));
1430        seq_printf(s, "Fault recovery remaining retries: %d\n",
1431                   sfp->sm_fault_retries);
1432        seq_printf(s, "PHY probe remaining retries: %d\n",
1433                   sfp->sm_phy_retries);
1434        seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1435        seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1436        seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1437        seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1438        return 0;
1439}
1440DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1441
1442static void sfp_debugfs_init(struct sfp *sfp)
1443{
1444        sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1445
1446        debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1447                            &sfp_debug_state_fops);
1448}
1449
1450static void sfp_debugfs_exit(struct sfp *sfp)
1451{
1452        debugfs_remove_recursive(sfp->debugfs_dir);
1453}
1454#else
1455static void sfp_debugfs_init(struct sfp *sfp)
1456{
1457}
1458
1459static void sfp_debugfs_exit(struct sfp *sfp)
1460{
1461}
1462#endif
1463
1464static void sfp_module_tx_fault_reset(struct sfp *sfp)
1465{
1466        unsigned int state = sfp->state;
1467
1468        if (state & SFP_F_TX_DISABLE)
1469                return;
1470
1471        sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1472
1473        udelay(T_RESET_US);
1474
1475        sfp_set_state(sfp, state);
1476}
1477
1478/* SFP state machine */
1479static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1480{
1481        if (timeout)
1482                mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1483                                 timeout);
1484        else
1485                cancel_delayed_work(&sfp->timeout);
1486}
1487
1488static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1489                        unsigned int timeout)
1490{
1491        sfp->sm_state = state;
1492        sfp_sm_set_timer(sfp, timeout);
1493}
1494
1495static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1496                            unsigned int timeout)
1497{
1498        sfp->sm_mod_state = state;
1499        sfp_sm_set_timer(sfp, timeout);
1500}
1501
1502static void sfp_sm_phy_detach(struct sfp *sfp)
1503{
1504        sfp_remove_phy(sfp->sfp_bus);
1505        phy_device_remove(sfp->mod_phy);
1506        phy_device_free(sfp->mod_phy);
1507        sfp->mod_phy = NULL;
1508}
1509
1510static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1511{
1512        struct phy_device *phy;
1513        int err;
1514
1515        phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1516        if (phy == ERR_PTR(-ENODEV))
1517                return PTR_ERR(phy);
1518        if (IS_ERR(phy)) {
1519                dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1520                return PTR_ERR(phy);
1521        }
1522
1523        err = phy_device_register(phy);
1524        if (err) {
1525                phy_device_free(phy);
1526                dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1527                return err;
1528        }
1529
1530        err = sfp_add_phy(sfp->sfp_bus, phy);
1531        if (err) {
1532                phy_device_remove(phy);
1533                phy_device_free(phy);
1534                dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1535                return err;
1536        }
1537
1538        sfp->mod_phy = phy;
1539
1540        return 0;
1541}
1542
1543static void sfp_sm_link_up(struct sfp *sfp)
1544{
1545        sfp_link_up(sfp->sfp_bus);
1546        sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1547}
1548
1549static void sfp_sm_link_down(struct sfp *sfp)
1550{
1551        sfp_link_down(sfp->sfp_bus);
1552}
1553
1554static void sfp_sm_link_check_los(struct sfp *sfp)
1555{
1556        const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1557        const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1558        __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1559        bool los = false;
1560
1561        /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1562         * are set, we assume that no LOS signal is available. If both are
1563         * set, we assume LOS is not implemented (and is meaningless.)
1564         */
1565        if (los_options == los_inverted)
1566                los = !(sfp->state & SFP_F_LOS);
1567        else if (los_options == los_normal)
1568                los = !!(sfp->state & SFP_F_LOS);
1569
1570        if (los)
1571                sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1572        else
1573                sfp_sm_link_up(sfp);
1574}
1575
1576static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1577{
1578        const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1579        const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1580        __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1581
1582        return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1583               (los_options == los_normal && event == SFP_E_LOS_HIGH);
1584}
1585
1586static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1587{
1588        const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1589        const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1590        __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1591
1592        return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1593               (los_options == los_normal && event == SFP_E_LOS_LOW);
1594}
1595
1596static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1597{
1598        if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1599                dev_err(sfp->dev,
1600                        "module persistently indicates fault, disabling\n");
1601                sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1602        } else {
1603                if (warn)
1604                        dev_err(sfp->dev, "module transmit fault indicated\n");
1605
1606                sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1607        }
1608}
1609
1610/* Probe a SFP for a PHY device if the module supports copper - the PHY
1611 * normally sits at I2C bus address 0x56, and may either be a clause 22
1612 * or clause 45 PHY.
1613 *
1614 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1615 * negotiation enabled, but some may be in 1000base-X - which is for the
1616 * PHY driver to determine.
1617 *
1618 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1619 * mode according to the negotiated line speed.
1620 */
1621static int sfp_sm_probe_for_phy(struct sfp *sfp)
1622{
1623        int err = 0;
1624
1625        switch (sfp->id.base.extended_cc) {
1626        case SFF8024_ECC_10GBASE_T_SFI:
1627        case SFF8024_ECC_10GBASE_T_SR:
1628        case SFF8024_ECC_5GBASE_T:
1629        case SFF8024_ECC_2_5GBASE_T:
1630                err = sfp_sm_probe_phy(sfp, true);
1631                break;
1632
1633        default:
1634                if (sfp->id.base.e1000_base_t)
1635                        err = sfp_sm_probe_phy(sfp, false);
1636                break;
1637        }
1638        return err;
1639}
1640
1641static int sfp_module_parse_power(struct sfp *sfp)
1642{
1643        u32 power_mW = 1000;
1644
1645        if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1646                power_mW = 1500;
1647        if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1648                power_mW = 2000;
1649
1650        if (power_mW > sfp->max_power_mW) {
1651                /* Module power specification exceeds the allowed maximum. */
1652                if (sfp->id.ext.sff8472_compliance ==
1653                        SFP_SFF8472_COMPLIANCE_NONE &&
1654                    !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1655                        /* The module appears not to implement bus address
1656                         * 0xa2, so assume that the module powers up in the
1657                         * indicated mode.
1658                         */
1659                        dev_err(sfp->dev,
1660                                "Host does not support %u.%uW modules\n",
1661                                power_mW / 1000, (power_mW / 100) % 10);
1662                        return -EINVAL;
1663                } else {
1664                        dev_warn(sfp->dev,
1665                                 "Host does not support %u.%uW modules, module left in power mode 1\n",
1666                                 power_mW / 1000, (power_mW / 100) % 10);
1667                        return 0;
1668                }
1669        }
1670
1671        /* If the module requires a higher power mode, but also requires
1672         * an address change sequence, warn the user that the module may
1673         * not be functional.
1674         */
1675        if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1676                dev_warn(sfp->dev,
1677                         "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1678                         power_mW / 1000, (power_mW / 100) % 10);
1679                return 0;
1680        }
1681
1682        sfp->module_power_mW = power_mW;
1683
1684        return 0;
1685}
1686
1687static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1688{
1689        u8 val;
1690        int err;
1691
1692        err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1693        if (err != sizeof(val)) {
1694                dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1695                return -EAGAIN;
1696        }
1697
1698        /* DM7052 reports as a high power module, responds to reads (with
1699         * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1700         * if the bit is already set, we're already in high power mode.
1701         */
1702        if (!!(val & BIT(0)) == enable)
1703                return 0;
1704
1705        if (enable)
1706                val |= BIT(0);
1707        else
1708                val &= ~BIT(0);
1709
1710        err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1711        if (err != sizeof(val)) {
1712                dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1713                return -EAGAIN;
1714        }
1715
1716        if (enable)
1717                dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1718                         sfp->module_power_mW / 1000,
1719                         (sfp->module_power_mW / 100) % 10);
1720
1721        return 0;
1722}
1723
1724/* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
1725 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
1726 * not support multibyte reads from the EEPROM. Each multi-byte read
1727 * operation returns just one byte of EEPROM followed by zeros. There is
1728 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
1729 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
1730 * name and vendor id into EEPROM, so there is even no way to detect if
1731 * module is V-SOL V2801F. Therefore check for those zeros in the read
1732 * data and then based on check switch to reading EEPROM to one byte
1733 * at a time.
1734 */
1735static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
1736{
1737        size_t i, block_size = sfp->i2c_block_size;
1738
1739        /* Already using byte IO */
1740        if (block_size == 1)
1741                return false;
1742
1743        for (i = 1; i < len; i += block_size) {
1744                if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
1745                        return false;
1746        }
1747        return true;
1748}
1749
1750static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
1751{
1752        u8 check;
1753        int err;
1754
1755        if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
1756            id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
1757            id->base.connector != SFF8024_CONNECTOR_LC) {
1758                dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
1759                id->base.phys_id = SFF8024_ID_SFF_8472;
1760                id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
1761                id->base.connector = SFF8024_CONNECTOR_LC;
1762                err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
1763                if (err != 3) {
1764                        dev_err(sfp->dev, "Failed to rewrite module EEPROM: %d\n", err);
1765                        return err;
1766                }
1767
1768                /* Cotsworks modules have been found to require a delay between write operations. */
1769                mdelay(50);
1770
1771                /* Update base structure checksum */
1772                check = sfp_check(&id->base, sizeof(id->base) - 1);
1773                err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
1774                if (err != 1) {
1775                        dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %d\n", err);
1776                        return err;
1777                }
1778        }
1779        return 0;
1780}
1781
1782static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1783{
1784        /* SFP module inserted - read I2C data */
1785        struct sfp_eeprom_id id;
1786        bool cotsworks_sfbg;
1787        bool cotsworks;
1788        u8 check;
1789        int ret;
1790
1791        /* Some SFP modules and also some Linux I2C drivers do not like reads
1792         * longer than 16 bytes, so read the EEPROM in chunks of 16 bytes at
1793         * a time.
1794         */
1795        sfp->i2c_block_size = 16;
1796
1797        ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1798        if (ret < 0) {
1799                if (report)
1800                        dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1801                return -EAGAIN;
1802        }
1803
1804        if (ret != sizeof(id.base)) {
1805                dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1806                return -EAGAIN;
1807        }
1808
1809        /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
1810         * address 0x51 is just one byte at a time. Also SFF-8472 requires
1811         * that EEPROM supports atomic 16bit read operation for diagnostic
1812         * fields, so do not switch to one byte reading at a time unless it
1813         * is really required and we have no other option.
1814         */
1815        if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
1816                dev_info(sfp->dev,
1817                         "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
1818                dev_info(sfp->dev,
1819                         "Switching to reading EEPROM to one byte at a time\n");
1820                sfp->i2c_block_size = 1;
1821
1822                ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
1823                if (ret < 0) {
1824                        if (report)
1825                                dev_err(sfp->dev, "failed to read EEPROM: %d\n",
1826                                        ret);
1827                        return -EAGAIN;
1828                }
1829
1830                if (ret != sizeof(id.base)) {
1831                        dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1832                        return -EAGAIN;
1833                }
1834        }
1835
1836        /* Cotsworks do not seem to update the checksums when they
1837         * do the final programming with the final module part number,
1838         * serial number and date code.
1839         */
1840        cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1841        cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
1842
1843        /* Cotsworks SFF module EEPROM do not always have valid phys_id,
1844         * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
1845         * Cotsworks PN matches and bytes are not correct.
1846         */
1847        if (cotsworks && cotsworks_sfbg) {
1848                ret = sfp_cotsworks_fixup_check(sfp, &id);
1849                if (ret < 0)
1850                        return ret;
1851        }
1852
1853        /* Validate the checksum over the base structure */
1854        check = sfp_check(&id.base, sizeof(id.base) - 1);
1855        if (check != id.base.cc_base) {
1856                if (cotsworks) {
1857                        dev_warn(sfp->dev,
1858                                 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1859                                 check, id.base.cc_base);
1860                } else {
1861                        dev_err(sfp->dev,
1862                                "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1863                                check, id.base.cc_base);
1864                        print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1865                                       16, 1, &id, sizeof(id), true);
1866                        return -EINVAL;
1867                }
1868        }
1869
1870        ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
1871        if (ret < 0) {
1872                if (report)
1873                        dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1874                return -EAGAIN;
1875        }
1876
1877        if (ret != sizeof(id.ext)) {
1878                dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1879                return -EAGAIN;
1880        }
1881
1882        check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1883        if (check != id.ext.cc_ext) {
1884                if (cotsworks) {
1885                        dev_warn(sfp->dev,
1886                                 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1887                                 check, id.ext.cc_ext);
1888                } else {
1889                        dev_err(sfp->dev,
1890                                "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1891                                check, id.ext.cc_ext);
1892                        print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1893                                       16, 1, &id, sizeof(id), true);
1894                        memset(&id.ext, 0, sizeof(id.ext));
1895                }
1896        }
1897
1898        sfp->id = id;
1899
1900        dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1901                 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1902                 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1903                 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1904                 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1905                 (int)sizeof(id.ext.datecode), id.ext.datecode);
1906
1907        /* Check whether we support this module */
1908        if (!sfp->type->module_supported(&id)) {
1909                dev_err(sfp->dev,
1910                        "module is not supported - phys id 0x%02x 0x%02x\n",
1911                        sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1912                return -EINVAL;
1913        }
1914
1915        /* If the module requires address swap mode, warn about it */
1916        if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1917                dev_warn(sfp->dev,
1918                         "module address swap to access page 0xA2 is not supported.\n");
1919
1920        /* Parse the module power requirement */
1921        ret = sfp_module_parse_power(sfp);
1922        if (ret < 0)
1923                return ret;
1924
1925        if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1926            !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1927                sfp->module_t_start_up = T_START_UP_BAD_GPON;
1928        else
1929                sfp->module_t_start_up = T_START_UP;
1930
1931        return 0;
1932}
1933
1934static void sfp_sm_mod_remove(struct sfp *sfp)
1935{
1936        if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1937                sfp_module_remove(sfp->sfp_bus);
1938
1939        sfp_hwmon_remove(sfp);
1940
1941        memset(&sfp->id, 0, sizeof(sfp->id));
1942        sfp->module_power_mW = 0;
1943
1944        dev_info(sfp->dev, "module removed\n");
1945}
1946
1947/* This state machine tracks the upstream's state */
1948static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1949{
1950        switch (sfp->sm_dev_state) {
1951        default:
1952                if (event == SFP_E_DEV_ATTACH)
1953                        sfp->sm_dev_state = SFP_DEV_DOWN;
1954                break;
1955
1956        case SFP_DEV_DOWN:
1957                if (event == SFP_E_DEV_DETACH)
1958                        sfp->sm_dev_state = SFP_DEV_DETACHED;
1959                else if (event == SFP_E_DEV_UP)
1960                        sfp->sm_dev_state = SFP_DEV_UP;
1961                break;
1962
1963        case SFP_DEV_UP:
1964                if (event == SFP_E_DEV_DETACH)
1965                        sfp->sm_dev_state = SFP_DEV_DETACHED;
1966                else if (event == SFP_E_DEV_DOWN)
1967                        sfp->sm_dev_state = SFP_DEV_DOWN;
1968                break;
1969        }
1970}
1971
1972/* This state machine tracks the insert/remove state of the module, probes
1973 * the on-board EEPROM, and sets up the power level.
1974 */
1975static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1976{
1977        int err;
1978
1979        /* Handle remove event globally, it resets this state machine */
1980        if (event == SFP_E_REMOVE) {
1981                if (sfp->sm_mod_state > SFP_MOD_PROBE)
1982                        sfp_sm_mod_remove(sfp);
1983                sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1984                return;
1985        }
1986
1987        /* Handle device detach globally */
1988        if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1989            sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1990                if (sfp->module_power_mW > 1000 &&
1991                    sfp->sm_mod_state > SFP_MOD_HPOWER)
1992                        sfp_sm_mod_hpower(sfp, false);
1993                sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1994                return;
1995        }
1996
1997        switch (sfp->sm_mod_state) {
1998        default:
1999                if (event == SFP_E_INSERT) {
2000                        sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2001                        sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2002                        sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2003                }
2004                break;
2005
2006        case SFP_MOD_PROBE:
2007                /* Wait for T_PROBE_INIT to time out */
2008                if (event != SFP_E_TIMEOUT)
2009                        break;
2010
2011                err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2012                if (err == -EAGAIN) {
2013                        if (sfp->sm_mod_tries_init &&
2014                           --sfp->sm_mod_tries_init) {
2015                                sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2016                                break;
2017                        } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2018                                if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2019                                        dev_warn(sfp->dev,
2020                                                 "please wait, module slow to respond\n");
2021                                sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2022                                break;
2023                        }
2024                }
2025                if (err < 0) {
2026                        sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2027                        break;
2028                }
2029
2030                err = sfp_hwmon_insert(sfp);
2031                if (err)
2032                        dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
2033
2034                sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2035                fallthrough;
2036        case SFP_MOD_WAITDEV:
2037                /* Ensure that the device is attached before proceeding */
2038                if (sfp->sm_dev_state < SFP_DEV_DOWN)
2039                        break;
2040
2041                /* Report the module insertion to the upstream device */
2042                err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
2043                if (err < 0) {
2044                        sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2045                        break;
2046                }
2047
2048                /* If this is a power level 1 module, we are done */
2049                if (sfp->module_power_mW <= 1000)
2050                        goto insert;
2051
2052                sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2053                fallthrough;
2054        case SFP_MOD_HPOWER:
2055                /* Enable high power mode */
2056                err = sfp_sm_mod_hpower(sfp, true);
2057                if (err < 0) {
2058                        if (err != -EAGAIN) {
2059                                sfp_module_remove(sfp->sfp_bus);
2060                                sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2061                        } else {
2062                                sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2063                        }
2064                        break;
2065                }
2066
2067                sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2068                break;
2069
2070        case SFP_MOD_WAITPWR:
2071                /* Wait for T_HPOWER_LEVEL to time out */
2072                if (event != SFP_E_TIMEOUT)
2073                        break;
2074
2075        insert:
2076                sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2077                break;
2078
2079        case SFP_MOD_PRESENT:
2080        case SFP_MOD_ERROR:
2081                break;
2082        }
2083}
2084
2085static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2086{
2087        unsigned long timeout;
2088        int ret;
2089
2090        /* Some events are global */
2091        if (sfp->sm_state != SFP_S_DOWN &&
2092            (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2093             sfp->sm_dev_state != SFP_DEV_UP)) {
2094                if (sfp->sm_state == SFP_S_LINK_UP &&
2095                    sfp->sm_dev_state == SFP_DEV_UP)
2096                        sfp_sm_link_down(sfp);
2097                if (sfp->sm_state > SFP_S_INIT)
2098                        sfp_module_stop(sfp->sfp_bus);
2099                if (sfp->mod_phy)
2100                        sfp_sm_phy_detach(sfp);
2101                sfp_module_tx_disable(sfp);
2102                sfp_soft_stop_poll(sfp);
2103                sfp_sm_next(sfp, SFP_S_DOWN, 0);
2104                return;
2105        }
2106
2107        /* The main state machine */
2108        switch (sfp->sm_state) {
2109        case SFP_S_DOWN:
2110                if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2111                    sfp->sm_dev_state != SFP_DEV_UP)
2112                        break;
2113
2114                if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
2115                        sfp_soft_start_poll(sfp);
2116
2117                sfp_module_tx_enable(sfp);
2118
2119                /* Initialise the fault clearance retries */
2120                sfp->sm_fault_retries = N_FAULT_INIT;
2121
2122                /* We need to check the TX_FAULT state, which is not defined
2123                 * while TX_DISABLE is asserted. The earliest we want to do
2124                 * anything (such as probe for a PHY) is 50ms.
2125                 */
2126                sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
2127                break;
2128
2129        case SFP_S_WAIT:
2130                if (event != SFP_E_TIMEOUT)
2131                        break;
2132
2133                if (sfp->state & SFP_F_TX_FAULT) {
2134                        /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2135                         * from the TX_DISABLE deassertion for the module to
2136                         * initialise, which is indicated by TX_FAULT
2137                         * deasserting.
2138                         */
2139                        timeout = sfp->module_t_start_up;
2140                        if (timeout > T_WAIT)
2141                                timeout -= T_WAIT;
2142                        else
2143                                timeout = 1;
2144
2145                        sfp_sm_next(sfp, SFP_S_INIT, timeout);
2146                } else {
2147                        /* TX_FAULT is not asserted, assume the module has
2148                         * finished initialising.
2149                         */
2150                        goto init_done;
2151                }
2152                break;
2153
2154        case SFP_S_INIT:
2155                if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2156                        /* TX_FAULT is still asserted after t_init
2157                         * or t_start_up, so assume there is a fault.
2158                         */
2159                        sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2160                                     sfp->sm_fault_retries == N_FAULT_INIT);
2161                } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2162        init_done:
2163                        sfp->sm_phy_retries = R_PHY_RETRY;
2164                        goto phy_probe;
2165                }
2166                break;
2167
2168        case SFP_S_INIT_PHY:
2169                if (event != SFP_E_TIMEOUT)
2170                        break;
2171        phy_probe:
2172                /* TX_FAULT deasserted or we timed out with TX_FAULT
2173                 * clear.  Probe for the PHY and check the LOS state.
2174                 */
2175                ret = sfp_sm_probe_for_phy(sfp);
2176                if (ret == -ENODEV) {
2177                        if (--sfp->sm_phy_retries) {
2178                                sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2179                                break;
2180                        } else {
2181                                dev_info(sfp->dev, "no PHY detected\n");
2182                        }
2183                } else if (ret) {
2184                        sfp_sm_next(sfp, SFP_S_FAIL, 0);
2185                        break;
2186                }
2187                if (sfp_module_start(sfp->sfp_bus)) {
2188                        sfp_sm_next(sfp, SFP_S_FAIL, 0);
2189                        break;
2190                }
2191                sfp_sm_link_check_los(sfp);
2192
2193                /* Reset the fault retry count */
2194                sfp->sm_fault_retries = N_FAULT;
2195                break;
2196
2197        case SFP_S_INIT_TX_FAULT:
2198                if (event == SFP_E_TIMEOUT) {
2199                        sfp_module_tx_fault_reset(sfp);
2200                        sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2201                }
2202                break;
2203
2204        case SFP_S_WAIT_LOS:
2205                if (event == SFP_E_TX_FAULT)
2206                        sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2207                else if (sfp_los_event_inactive(sfp, event))
2208                        sfp_sm_link_up(sfp);
2209                break;
2210
2211        case SFP_S_LINK_UP:
2212                if (event == SFP_E_TX_FAULT) {
2213                        sfp_sm_link_down(sfp);
2214                        sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2215                } else if (sfp_los_event_active(sfp, event)) {
2216                        sfp_sm_link_down(sfp);
2217                        sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2218                }
2219                break;
2220
2221        case SFP_S_TX_FAULT:
2222                if (event == SFP_E_TIMEOUT) {
2223                        sfp_module_tx_fault_reset(sfp);
2224                        sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2225                }
2226                break;
2227
2228        case SFP_S_REINIT:
2229                if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2230                        sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2231                } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2232                        dev_info(sfp->dev, "module transmit fault recovered\n");
2233                        sfp_sm_link_check_los(sfp);
2234                }
2235                break;
2236
2237        case SFP_S_TX_DISABLE:
2238                break;
2239        }
2240}
2241
2242static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2243{
2244        mutex_lock(&sfp->sm_mutex);
2245
2246        dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2247                mod_state_to_str(sfp->sm_mod_state),
2248                dev_state_to_str(sfp->sm_dev_state),
2249                sm_state_to_str(sfp->sm_state),
2250                event_to_str(event));
2251
2252        sfp_sm_device(sfp, event);
2253        sfp_sm_module(sfp, event);
2254        sfp_sm_main(sfp, event);
2255
2256        dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2257                mod_state_to_str(sfp->sm_mod_state),
2258                dev_state_to_str(sfp->sm_dev_state),
2259                sm_state_to_str(sfp->sm_state));
2260
2261        mutex_unlock(&sfp->sm_mutex);
2262}
2263
2264static void sfp_attach(struct sfp *sfp)
2265{
2266        sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2267}
2268
2269static void sfp_detach(struct sfp *sfp)
2270{
2271        sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2272}
2273
2274static void sfp_start(struct sfp *sfp)
2275{
2276        sfp_sm_event(sfp, SFP_E_DEV_UP);
2277}
2278
2279static void sfp_stop(struct sfp *sfp)
2280{
2281        sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2282}
2283
2284static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2285{
2286        /* locking... and check module is present */
2287
2288        if (sfp->id.ext.sff8472_compliance &&
2289            !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2290                modinfo->type = ETH_MODULE_SFF_8472;
2291                modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2292        } else {
2293                modinfo->type = ETH_MODULE_SFF_8079;
2294                modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2295        }
2296        return 0;
2297}
2298
2299static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2300                             u8 *data)
2301{
2302        unsigned int first, last, len;
2303        int ret;
2304
2305        if (ee->len == 0)
2306                return -EINVAL;
2307
2308        first = ee->offset;
2309        last = ee->offset + ee->len;
2310        if (first < ETH_MODULE_SFF_8079_LEN) {
2311                len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2312                len -= first;
2313
2314                ret = sfp_read(sfp, false, first, data, len);
2315                if (ret < 0)
2316                        return ret;
2317
2318                first += len;
2319                data += len;
2320        }
2321        if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2322                len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2323                len -= first;
2324                first -= ETH_MODULE_SFF_8079_LEN;
2325
2326                ret = sfp_read(sfp, true, first, data, len);
2327                if (ret < 0)
2328                        return ret;
2329        }
2330        return 0;
2331}
2332
2333static int sfp_module_eeprom_by_page(struct sfp *sfp,
2334                                     const struct ethtool_module_eeprom *page,
2335                                     struct netlink_ext_ack *extack)
2336{
2337        if (page->bank) {
2338                NL_SET_ERR_MSG(extack, "Banks not supported");
2339                return -EOPNOTSUPP;
2340        }
2341
2342        if (page->page) {
2343                NL_SET_ERR_MSG(extack, "Only page 0 supported");
2344                return -EOPNOTSUPP;
2345        }
2346
2347        if (page->i2c_address != 0x50 &&
2348            page->i2c_address != 0x51) {
2349                NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2350                return -EOPNOTSUPP;
2351        }
2352
2353        return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2354                        page->data, page->length);
2355};
2356
2357static const struct sfp_socket_ops sfp_module_ops = {
2358        .attach = sfp_attach,
2359        .detach = sfp_detach,
2360        .start = sfp_start,
2361        .stop = sfp_stop,
2362        .module_info = sfp_module_info,
2363        .module_eeprom = sfp_module_eeprom,
2364        .module_eeprom_by_page = sfp_module_eeprom_by_page,
2365};
2366
2367static void sfp_timeout(struct work_struct *work)
2368{
2369        struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2370
2371        rtnl_lock();
2372        sfp_sm_event(sfp, SFP_E_TIMEOUT);
2373        rtnl_unlock();
2374}
2375
2376static void sfp_check_state(struct sfp *sfp)
2377{
2378        unsigned int state, i, changed;
2379
2380        mutex_lock(&sfp->st_mutex);
2381        state = sfp_get_state(sfp);
2382        changed = state ^ sfp->state;
2383        changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2384
2385        for (i = 0; i < GPIO_MAX; i++)
2386                if (changed & BIT(i))
2387                        dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2388                                !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2389
2390        state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2391        sfp->state = state;
2392
2393        rtnl_lock();
2394        if (changed & SFP_F_PRESENT)
2395                sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2396                                SFP_E_INSERT : SFP_E_REMOVE);
2397
2398        if (changed & SFP_F_TX_FAULT)
2399                sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2400                                SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2401
2402        if (changed & SFP_F_LOS)
2403                sfp_sm_event(sfp, state & SFP_F_LOS ?
2404                                SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2405        rtnl_unlock();
2406        mutex_unlock(&sfp->st_mutex);
2407}
2408
2409static irqreturn_t sfp_irq(int irq, void *data)
2410{
2411        struct sfp *sfp = data;
2412
2413        sfp_check_state(sfp);
2414
2415        return IRQ_HANDLED;
2416}
2417
2418static void sfp_poll(struct work_struct *work)
2419{
2420        struct sfp *sfp = container_of(work, struct sfp, poll.work);
2421
2422        sfp_check_state(sfp);
2423
2424        if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2425            sfp->need_poll)
2426                mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2427}
2428
2429static struct sfp *sfp_alloc(struct device *dev)
2430{
2431        struct sfp *sfp;
2432
2433        sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2434        if (!sfp)
2435                return ERR_PTR(-ENOMEM);
2436
2437        sfp->dev = dev;
2438
2439        mutex_init(&sfp->sm_mutex);
2440        mutex_init(&sfp->st_mutex);
2441        INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2442        INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2443
2444        sfp_hwmon_init(sfp);
2445
2446        return sfp;
2447}
2448
2449static void sfp_cleanup(void *data)
2450{
2451        struct sfp *sfp = data;
2452
2453        sfp_hwmon_exit(sfp);
2454
2455        cancel_delayed_work_sync(&sfp->poll);
2456        cancel_delayed_work_sync(&sfp->timeout);
2457        if (sfp->i2c_mii) {
2458                mdiobus_unregister(sfp->i2c_mii);
2459                mdiobus_free(sfp->i2c_mii);
2460        }
2461        if (sfp->i2c)
2462                i2c_put_adapter(sfp->i2c);
2463        kfree(sfp);
2464}
2465
2466static int sfp_probe(struct platform_device *pdev)
2467{
2468        const struct sff_data *sff;
2469        struct i2c_adapter *i2c;
2470        char *sfp_irq_name;
2471        struct sfp *sfp;
2472        int err, i;
2473
2474        sfp = sfp_alloc(&pdev->dev);
2475        if (IS_ERR(sfp))
2476                return PTR_ERR(sfp);
2477
2478        platform_set_drvdata(pdev, sfp);
2479
2480        err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2481        if (err < 0)
2482                return err;
2483
2484        sff = sfp->type = &sfp_data;
2485
2486        if (pdev->dev.of_node) {
2487                struct device_node *node = pdev->dev.of_node;
2488                const struct of_device_id *id;
2489                struct device_node *np;
2490
2491                id = of_match_node(sfp_of_match, node);
2492                if (WARN_ON(!id))
2493                        return -EINVAL;
2494
2495                sff = sfp->type = id->data;
2496
2497                np = of_parse_phandle(node, "i2c-bus", 0);
2498                if (!np) {
2499                        dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2500                        return -ENODEV;
2501                }
2502
2503                i2c = of_find_i2c_adapter_by_node(np);
2504                of_node_put(np);
2505        } else if (has_acpi_companion(&pdev->dev)) {
2506                struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2507                struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2508                struct fwnode_reference_args args;
2509                struct acpi_handle *acpi_handle;
2510                int ret;
2511
2512                ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2513                if (ret || !is_acpi_device_node(args.fwnode)) {
2514                        dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2515                        return -ENODEV;
2516                }
2517
2518                acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2519                i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2520        } else {
2521                return -EINVAL;
2522        }
2523
2524        if (!i2c)
2525                return -EPROBE_DEFER;
2526
2527        err = sfp_i2c_configure(sfp, i2c);
2528        if (err < 0) {
2529                i2c_put_adapter(i2c);
2530                return err;
2531        }
2532
2533        for (i = 0; i < GPIO_MAX; i++)
2534                if (sff->gpios & BIT(i)) {
2535                        sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2536                                           gpio_of_names[i], gpio_flags[i]);
2537                        if (IS_ERR(sfp->gpio[i]))
2538                                return PTR_ERR(sfp->gpio[i]);
2539                }
2540
2541        sfp->get_state = sfp_gpio_get_state;
2542        sfp->set_state = sfp_gpio_set_state;
2543
2544        /* Modules that have no detect signal are always present */
2545        if (!(sfp->gpio[GPIO_MODDEF0]))
2546                sfp->get_state = sff_gpio_get_state;
2547
2548        device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2549                                 &sfp->max_power_mW);
2550        if (!sfp->max_power_mW)
2551                sfp->max_power_mW = 1000;
2552
2553        dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2554                 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2555
2556        /* Get the initial state, and always signal TX disable,
2557         * since the network interface will not be up.
2558         */
2559        sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2560
2561        if (sfp->gpio[GPIO_RATE_SELECT] &&
2562            gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2563                sfp->state |= SFP_F_RATE_SELECT;
2564        sfp_set_state(sfp, sfp->state);
2565        sfp_module_tx_disable(sfp);
2566        if (sfp->state & SFP_F_PRESENT) {
2567                rtnl_lock();
2568                sfp_sm_event(sfp, SFP_E_INSERT);
2569                rtnl_unlock();
2570        }
2571
2572        for (i = 0; i < GPIO_MAX; i++) {
2573                if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2574                        continue;
2575
2576                sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2577                if (sfp->gpio_irq[i] < 0) {
2578                        sfp->gpio_irq[i] = 0;
2579                        sfp->need_poll = true;
2580                        continue;
2581                }
2582
2583                sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
2584                                              "%s-%s", dev_name(sfp->dev),
2585                                              gpio_of_names[i]);
2586
2587                if (!sfp_irq_name)
2588                        return -ENOMEM;
2589
2590                err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2591                                                NULL, sfp_irq,
2592                                                IRQF_ONESHOT |
2593                                                IRQF_TRIGGER_RISING |
2594                                                IRQF_TRIGGER_FALLING,
2595                                                sfp_irq_name, sfp);
2596                if (err) {
2597                        sfp->gpio_irq[i] = 0;
2598                        sfp->need_poll = true;
2599                }
2600        }
2601
2602        if (sfp->need_poll)
2603                mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2604
2605        /* We could have an issue in cases no Tx disable pin is available or
2606         * wired as modules using a laser as their light source will continue to
2607         * be active when the fiber is removed. This could be a safety issue and
2608         * we should at least warn the user about that.
2609         */
2610        if (!sfp->gpio[GPIO_TX_DISABLE])
2611                dev_warn(sfp->dev,
2612                         "No tx_disable pin: SFP modules will always be emitting.\n");
2613
2614        sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2615        if (!sfp->sfp_bus)
2616                return -ENOMEM;
2617
2618        sfp_debugfs_init(sfp);
2619
2620        return 0;
2621}
2622
2623static int sfp_remove(struct platform_device *pdev)
2624{
2625        struct sfp *sfp = platform_get_drvdata(pdev);
2626
2627        sfp_debugfs_exit(sfp);
2628        sfp_unregister_socket(sfp->sfp_bus);
2629
2630        rtnl_lock();
2631        sfp_sm_event(sfp, SFP_E_REMOVE);
2632        rtnl_unlock();
2633
2634        return 0;
2635}
2636
2637static void sfp_shutdown(struct platform_device *pdev)
2638{
2639        struct sfp *sfp = platform_get_drvdata(pdev);
2640        int i;
2641
2642        for (i = 0; i < GPIO_MAX; i++) {
2643                if (!sfp->gpio_irq[i])
2644                        continue;
2645
2646                devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2647        }
2648
2649        cancel_delayed_work_sync(&sfp->poll);
2650        cancel_delayed_work_sync(&sfp->timeout);
2651}
2652
2653static struct platform_driver sfp_driver = {
2654        .probe = sfp_probe,
2655        .remove = sfp_remove,
2656        .shutdown = sfp_shutdown,
2657        .driver = {
2658                .name = "sfp",
2659                .of_match_table = sfp_of_match,
2660        },
2661};
2662
2663static int sfp_init(void)
2664{
2665        poll_jiffies = msecs_to_jiffies(100);
2666
2667        return platform_driver_register(&sfp_driver);
2668}
2669module_init(sfp_init);
2670
2671static void sfp_exit(void)
2672{
2673        platform_driver_unregister(&sfp_driver);
2674}
2675module_exit(sfp_exit);
2676
2677MODULE_ALIAS("platform:sfp");
2678MODULE_AUTHOR("Russell King");
2679MODULE_LICENSE("GPL v2");
2680