linux/drivers/net/wireless/ath/ath5k/pcu.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
   5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   8 *
   9 * Permission to use, copy, modify, and distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 *
  21 */
  22
  23/*********************************\
  24* Protocol Control Unit Functions *
  25\*********************************/
  26
  27#include <asm/unaligned.h>
  28
  29#include "ath5k.h"
  30#include "reg.h"
  31#include "debug.h"
  32
  33/**
  34 * DOC: Protocol Control Unit (PCU) functions
  35 *
  36 * Protocol control unit is responsible to maintain various protocol
  37 * properties before a frame is send and after a frame is received to/from
  38 * baseband. To be more specific, PCU handles:
  39 *
  40 * - Buffering of RX and TX frames (after QCU/DCUs)
  41 *
  42 * - Encrypting and decrypting (using the built-in engine)
  43 *
  44 * - Generating ACKs, RTS/CTS frames
  45 *
  46 * - Maintaining TSF
  47 *
  48 * - FCS
  49 *
  50 * - Updating beacon data (with TSF etc)
  51 *
  52 * - Generating virtual CCA
  53 *
  54 * - RX/Multicast filtering
  55 *
  56 * - BSSID filtering
  57 *
  58 * - Various statistics
  59 *
  60 * -Different operating modes: AP, STA, IBSS
  61 *
  62 * Note: Most of these functions can be tweaked/bypassed so you can do
  63 * them on sw above for debugging or research. For more infos check out PCU
  64 * registers on reg.h.
  65 */
  66
  67/**
  68 * DOC: ACK rates
  69 *
  70 * AR5212+ can use higher rates for ack transmission
  71 * based on current tx rate instead of the base rate.
  72 * It does this to better utilize channel usage.
  73 * There is a mapping between G rates (that cover both
  74 * CCK and OFDM) and ack rates that we use when setting
  75 * rate -> duration table. This mapping is hw-based so
  76 * don't change anything.
  77 *
  78 * To enable this functionality we must set
  79 * ah->ah_ack_bitrate_high to true else base rate is
  80 * used (1Mb for CCK, 6Mb for OFDM).
  81 */
  82static const unsigned int ack_rates_high[] =
  83/* Tx   -> ACK  */
  84/* 1Mb  -> 1Mb  */      { 0,
  85/* 2MB  -> 2Mb  */      1,
  86/* 5.5Mb -> 2Mb */      1,
  87/* 11Mb -> 2Mb  */      1,
  88/* 6Mb  -> 6Mb  */      4,
  89/* 9Mb  -> 6Mb  */      4,
  90/* 12Mb -> 12Mb */      6,
  91/* 18Mb -> 12Mb */      6,
  92/* 24Mb -> 24Mb */      8,
  93/* 36Mb -> 24Mb */      8,
  94/* 48Mb -> 24Mb */      8,
  95/* 54Mb -> 24Mb */      8 };
  96
  97/*******************\
  98* Helper functions *
  99\*******************/
 100
 101/**
 102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
 103 * @ah: The &struct ath5k_hw
 104 * @band: One of enum nl80211_band
 105 * @len: Frame's length in bytes
 106 * @rate: The @struct ieee80211_rate
 107 * @shortpre: Indicate short preample
 108 *
 109 * Calculate tx duration of a frame given it's rate and length
 110 * It extends ieee80211_generic_frame_duration for non standard
 111 * bwmodes.
 112 */
 113int
 114ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum nl80211_band band,
 115                int len, struct ieee80211_rate *rate, bool shortpre)
 116{
 117        int sifs, preamble, plcp_bits, sym_time;
 118        int bitrate, bits, symbols, symbol_bits;
 119        int dur;
 120
 121        /* Fallback */
 122        if (!ah->ah_bwmode) {
 123                __le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
 124                                        NULL, band, len, rate);
 125
 126                /* subtract difference between long and short preamble */
 127                dur = le16_to_cpu(raw_dur);
 128                if (shortpre)
 129                        dur -= 96;
 130
 131                return dur;
 132        }
 133
 134        bitrate = rate->bitrate;
 135        preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
 136        plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
 137        sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
 138
 139        switch (ah->ah_bwmode) {
 140        case AR5K_BWMODE_40MHZ:
 141                sifs = AR5K_INIT_SIFS_TURBO;
 142                preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
 143                break;
 144        case AR5K_BWMODE_10MHZ:
 145                sifs = AR5K_INIT_SIFS_HALF_RATE;
 146                preamble *= 2;
 147                sym_time *= 2;
 148                bitrate = DIV_ROUND_UP(bitrate, 2);
 149                break;
 150        case AR5K_BWMODE_5MHZ:
 151                sifs = AR5K_INIT_SIFS_QUARTER_RATE;
 152                preamble *= 4;
 153                sym_time *= 4;
 154                bitrate = DIV_ROUND_UP(bitrate, 4);
 155                break;
 156        default:
 157                sifs = AR5K_INIT_SIFS_DEFAULT_BG;
 158                break;
 159        }
 160
 161        bits = plcp_bits + (len << 3);
 162        /* Bit rate is in 100Kbits */
 163        symbol_bits = bitrate * sym_time;
 164        symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
 165
 166        dur = sifs + preamble + (sym_time * symbols);
 167
 168        return dur;
 169}
 170
 171/**
 172 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
 173 * @ah: The &struct ath5k_hw
 174 */
 175unsigned int
 176ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
 177{
 178        struct ieee80211_channel *channel = ah->ah_current_channel;
 179        unsigned int slot_time;
 180
 181        switch (ah->ah_bwmode) {
 182        case AR5K_BWMODE_40MHZ:
 183                slot_time = AR5K_INIT_SLOT_TIME_TURBO;
 184                break;
 185        case AR5K_BWMODE_10MHZ:
 186                slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
 187                break;
 188        case AR5K_BWMODE_5MHZ:
 189                slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
 190                break;
 191        case AR5K_BWMODE_DEFAULT:
 192        default:
 193                slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
 194                if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
 195                        slot_time = AR5K_INIT_SLOT_TIME_B;
 196                break;
 197        }
 198
 199        return slot_time;
 200}
 201
 202/**
 203 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
 204 * @ah: The &struct ath5k_hw
 205 */
 206unsigned int
 207ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
 208{
 209        struct ieee80211_channel *channel = ah->ah_current_channel;
 210        unsigned int sifs;
 211
 212        switch (ah->ah_bwmode) {
 213        case AR5K_BWMODE_40MHZ:
 214                sifs = AR5K_INIT_SIFS_TURBO;
 215                break;
 216        case AR5K_BWMODE_10MHZ:
 217                sifs = AR5K_INIT_SIFS_HALF_RATE;
 218                break;
 219        case AR5K_BWMODE_5MHZ:
 220                sifs = AR5K_INIT_SIFS_QUARTER_RATE;
 221                break;
 222        case AR5K_BWMODE_DEFAULT:
 223        default:
 224                sifs = AR5K_INIT_SIFS_DEFAULT_BG;
 225                if (channel->band == NL80211_BAND_5GHZ)
 226                        sifs = AR5K_INIT_SIFS_DEFAULT_A;
 227                break;
 228        }
 229
 230        return sifs;
 231}
 232
 233/**
 234 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
 235 * @ah: The &struct ath5k_hw
 236 *
 237 * Reads MIB counters from PCU and updates sw statistics. Is called after a
 238 * MIB interrupt, because one of these counters might have reached their maximum
 239 * and triggered the MIB interrupt, to let us read and clear the counter.
 240 *
 241 * NOTE: Is called in interrupt context!
 242 */
 243void
 244ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
 245{
 246        struct ath5k_statistics *stats = &ah->stats;
 247
 248        /* Read-And-Clear */
 249        stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
 250        stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
 251        stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
 252        stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
 253        stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
 254}
 255
 256
 257/******************\
 258* ACK/CTS Timeouts *
 259\******************/
 260
 261/**
 262 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
 263 * @ah: The &struct ath5k_hw
 264 *
 265 * Write the rate code to duration table upon hw reset. This is a helper for
 266 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
 267 * the hardware, based on current mode, for each rate. The rates which are
 268 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
 269 * different rate code so we write their value twice (one for long preamble
 270 * and one for short).
 271 *
 272 * Note: Band doesn't matter here, if we set the values for OFDM it works
 273 * on both a and g modes. So all we have to do is set values for all g rates
 274 * that include all OFDM and CCK rates.
 275 *
 276 */
 277static inline void
 278ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
 279{
 280        struct ieee80211_rate *rate;
 281        unsigned int i;
 282        /* 802.11g covers both OFDM and CCK */
 283        u8 band = NL80211_BAND_2GHZ;
 284
 285        /* Write rate duration table */
 286        for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
 287                u32 reg;
 288                u16 tx_time;
 289
 290                if (ah->ah_ack_bitrate_high)
 291                        rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
 292                /* CCK -> 1Mb */
 293                else if (i < 4)
 294                        rate = &ah->sbands[band].bitrates[0];
 295                /* OFDM -> 6Mb */
 296                else
 297                        rate = &ah->sbands[band].bitrates[4];
 298
 299                /* Set ACK timeout */
 300                reg = AR5K_RATE_DUR(rate->hw_value);
 301
 302                /* An ACK frame consists of 10 bytes. If you add the FCS,
 303                 * which ieee80211_generic_frame_duration() adds,
 304                 * its 14 bytes. Note we use the control rate and not the
 305                 * actual rate for this rate. See mac80211 tx.c
 306                 * ieee80211_duration() for a brief description of
 307                 * what rate we should choose to TX ACKs. */
 308                tx_time = ath5k_hw_get_frame_duration(ah, band, 10,
 309                                        rate, false);
 310
 311                ath5k_hw_reg_write(ah, tx_time, reg);
 312
 313                if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
 314                        continue;
 315
 316                tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true);
 317                ath5k_hw_reg_write(ah, tx_time,
 318                        reg + (AR5K_SET_SHORT_PREAMBLE << 2));
 319        }
 320}
 321
 322/**
 323 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
 324 * @ah: The &struct ath5k_hw
 325 * @timeout: Timeout in usec
 326 */
 327static int
 328ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
 329{
 330        if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
 331                        <= timeout)
 332                return -EINVAL;
 333
 334        AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
 335                ath5k_hw_htoclock(ah, timeout));
 336
 337        return 0;
 338}
 339
 340/**
 341 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
 342 * @ah: The &struct ath5k_hw
 343 * @timeout: Timeout in usec
 344 */
 345static int
 346ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
 347{
 348        if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
 349                        <= timeout)
 350                return -EINVAL;
 351
 352        AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
 353                        ath5k_hw_htoclock(ah, timeout));
 354
 355        return 0;
 356}
 357
 358
 359/*******************\
 360* RX filter Control *
 361\*******************/
 362
 363/**
 364 * ath5k_hw_set_lladdr() - Set station id
 365 * @ah: The &struct ath5k_hw
 366 * @mac: The card's mac address (array of octets)
 367 *
 368 * Set station id on hw using the provided mac address
 369 */
 370int
 371ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
 372{
 373        struct ath_common *common = ath5k_hw_common(ah);
 374        u32 low_id, high_id;
 375        u32 pcu_reg;
 376
 377        /* Set new station ID */
 378        memcpy(common->macaddr, mac, ETH_ALEN);
 379
 380        pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
 381
 382        low_id = get_unaligned_le32(mac);
 383        high_id = get_unaligned_le16(mac + 4);
 384
 385        ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
 386        ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
 387
 388        return 0;
 389}
 390
 391/**
 392 * ath5k_hw_set_bssid() - Set current BSSID on hw
 393 * @ah: The &struct ath5k_hw
 394 *
 395 * Sets the current BSSID and BSSID mask we have from the
 396 * common struct into the hardware
 397 */
 398void
 399ath5k_hw_set_bssid(struct ath5k_hw *ah)
 400{
 401        struct ath_common *common = ath5k_hw_common(ah);
 402        u16 tim_offset = 0;
 403
 404        /*
 405         * Set BSSID mask on 5212
 406         */
 407        if (ah->ah_version == AR5K_AR5212)
 408                ath_hw_setbssidmask(common);
 409
 410        /*
 411         * Set BSSID
 412         */
 413        ath5k_hw_reg_write(ah,
 414                           get_unaligned_le32(common->curbssid),
 415                           AR5K_BSS_ID0);
 416        ath5k_hw_reg_write(ah,
 417                           get_unaligned_le16(common->curbssid + 4) |
 418                           ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
 419                           AR5K_BSS_ID1);
 420
 421        if (common->curaid == 0) {
 422                ath5k_hw_disable_pspoll(ah);
 423                return;
 424        }
 425
 426        AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
 427                            tim_offset ? tim_offset + 4 : 0);
 428
 429        ath5k_hw_enable_pspoll(ah, NULL, 0);
 430}
 431
 432/**
 433 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
 434 * @ah: The &struct ath5k_hw
 435 * @mask: The BSSID mask to set (array of octets)
 436 *
 437 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
 438 * which bits of the interface's MAC address should be looked at when trying
 439 * to decide which packets to ACK. In station mode and AP mode with a single
 440 * BSS every bit matters since we lock to only one BSS. In AP mode with
 441 * multiple BSSes (virtual interfaces) not every bit matters because hw must
 442 * accept frames for all BSSes and so we tweak some bits of our mac address
 443 * in order to have multiple BSSes.
 444 *
 445 * For more information check out ../hw.c of the common ath module.
 446 */
 447void
 448ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
 449{
 450        struct ath_common *common = ath5k_hw_common(ah);
 451
 452        /* Cache bssid mask so that we can restore it
 453         * on reset */
 454        memcpy(common->bssidmask, mask, ETH_ALEN);
 455        if (ah->ah_version == AR5K_AR5212)
 456                ath_hw_setbssidmask(common);
 457}
 458
 459/**
 460 * ath5k_hw_set_mcast_filter() - Set multicast filter
 461 * @ah: The &struct ath5k_hw
 462 * @filter0: Lower 32bits of muticast filter
 463 * @filter1: Higher 16bits of multicast filter
 464 */
 465void
 466ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
 467{
 468        ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
 469        ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
 470}
 471
 472/**
 473 * ath5k_hw_get_rx_filter() - Get current rx filter
 474 * @ah: The &struct ath5k_hw
 475 *
 476 * Returns the RX filter by reading rx filter and
 477 * phy error filter registers. RX filter is used
 478 * to set the allowed frame types that PCU will accept
 479 * and pass to the driver. For a list of frame types
 480 * check out reg.h.
 481 */
 482u32
 483ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
 484{
 485        u32 data, filter = 0;
 486
 487        filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
 488
 489        /*Radar detection for 5212*/
 490        if (ah->ah_version == AR5K_AR5212) {
 491                data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
 492
 493                if (data & AR5K_PHY_ERR_FIL_RADAR)
 494                        filter |= AR5K_RX_FILTER_RADARERR;
 495                if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
 496                        filter |= AR5K_RX_FILTER_PHYERR;
 497        }
 498
 499        return filter;
 500}
 501
 502/**
 503 * ath5k_hw_set_rx_filter() - Set rx filter
 504 * @ah: The &struct ath5k_hw
 505 * @filter: RX filter mask (see reg.h)
 506 *
 507 * Sets RX filter register and also handles PHY error filter
 508 * register on 5212 and newer chips so that we have proper PHY
 509 * error reporting.
 510 */
 511void
 512ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
 513{
 514        u32 data = 0;
 515
 516        /* Set PHY error filter register on 5212*/
 517        if (ah->ah_version == AR5K_AR5212) {
 518                if (filter & AR5K_RX_FILTER_RADARERR)
 519                        data |= AR5K_PHY_ERR_FIL_RADAR;
 520                if (filter & AR5K_RX_FILTER_PHYERR)
 521                        data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
 522        }
 523
 524        /*
 525         * The AR5210 uses promiscuous mode to detect radar activity
 526         */
 527        if (ah->ah_version == AR5K_AR5210 &&
 528                        (filter & AR5K_RX_FILTER_RADARERR)) {
 529                filter &= ~AR5K_RX_FILTER_RADARERR;
 530                filter |= AR5K_RX_FILTER_PROM;
 531        }
 532
 533        /*Zero length DMA (phy error reporting) */
 534        if (data)
 535                AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
 536        else
 537                AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
 538
 539        /*Write RX Filter register*/
 540        ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
 541
 542        /*Write PHY error filter register on 5212*/
 543        if (ah->ah_version == AR5K_AR5212)
 544                ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
 545
 546}
 547
 548
 549/****************\
 550* Beacon control *
 551\****************/
 552
 553#define ATH5K_MAX_TSF_READ 10
 554
 555/**
 556 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
 557 * @ah: The &struct ath5k_hw
 558 *
 559 * Returns the current TSF
 560 */
 561u64
 562ath5k_hw_get_tsf64(struct ath5k_hw *ah)
 563{
 564        u32 tsf_lower, tsf_upper1, tsf_upper2;
 565        int i;
 566        unsigned long flags;
 567
 568        /* This code is time critical - we don't want to be interrupted here */
 569        local_irq_save(flags);
 570
 571        /*
 572         * While reading TSF upper and then lower part, the clock is still
 573         * counting (or jumping in case of IBSS merge) so we might get
 574         * inconsistent values. To avoid this, we read the upper part again
 575         * and check it has not been changed. We make the hypothesis that a
 576         * maximum of 3 changes can happens in a row (we use 10 as a safe
 577         * value).
 578         *
 579         * Impact on performance is pretty small, since in most cases, only
 580         * 3 register reads are needed.
 581         */
 582
 583        tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
 584        for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
 585                tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
 586                tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
 587                if (tsf_upper2 == tsf_upper1)
 588                        break;
 589                tsf_upper1 = tsf_upper2;
 590        }
 591
 592        local_irq_restore(flags);
 593
 594        WARN_ON(i == ATH5K_MAX_TSF_READ);
 595
 596        return ((u64)tsf_upper1 << 32) | tsf_lower;
 597}
 598
 599#undef ATH5K_MAX_TSF_READ
 600
 601/**
 602 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
 603 * @ah: The &struct ath5k_hw
 604 * @tsf64: The new 64bit TSF
 605 *
 606 * Sets the new TSF
 607 */
 608void
 609ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
 610{
 611        ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
 612        ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
 613}
 614
 615/**
 616 * ath5k_hw_reset_tsf() - Force a TSF reset
 617 * @ah: The &struct ath5k_hw
 618 *
 619 * Forces a TSF reset on PCU
 620 */
 621void
 622ath5k_hw_reset_tsf(struct ath5k_hw *ah)
 623{
 624        u32 val;
 625
 626        val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
 627
 628        /*
 629         * Each write to the RESET_TSF bit toggles a hardware internal
 630         * signal to reset TSF, but if left high it will cause a TSF reset
 631         * on the next chip reset as well.  Thus we always write the value
 632         * twice to clear the signal.
 633         */
 634        ath5k_hw_reg_write(ah, val, AR5K_BEACON);
 635        ath5k_hw_reg_write(ah, val, AR5K_BEACON);
 636}
 637
 638/**
 639 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
 640 * @ah: The &struct ath5k_hw
 641 * @next_beacon: Next TBTT
 642 * @interval: Current beacon interval
 643 *
 644 * This function is used to initialize beacon timers based on current
 645 * operation mode and settings.
 646 */
 647void
 648ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
 649{
 650        u32 timer1, timer2, timer3;
 651
 652        /*
 653         * Set the additional timers by mode
 654         */
 655        switch (ah->opmode) {
 656        case NL80211_IFTYPE_MONITOR:
 657        case NL80211_IFTYPE_STATION:
 658                /* In STA mode timer1 is used as next wakeup
 659                 * timer and timer2 as next CFP duration start
 660                 * timer. Both in 1/8TUs. */
 661                /* TODO: PCF handling */
 662                if (ah->ah_version == AR5K_AR5210) {
 663                        timer1 = 0xffffffff;
 664                        timer2 = 0xffffffff;
 665                } else {
 666                        timer1 = 0x0000ffff;
 667                        timer2 = 0x0007ffff;
 668                }
 669                /* Mark associated AP as PCF incapable for now */
 670                AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
 671                break;
 672        case NL80211_IFTYPE_ADHOC:
 673                AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
 674                fallthrough;
 675        default:
 676                /* On non-STA modes timer1 is used as next DMA
 677                 * beacon alert (DBA) timer and timer2 as next
 678                 * software beacon alert. Both in 1/8TUs. */
 679                timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
 680                timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
 681                break;
 682        }
 683
 684        /* Timer3 marks the end of our ATIM window
 685         * a zero length window is not allowed because
 686         * we 'll get no beacons */
 687        timer3 = next_beacon + 1;
 688
 689        /*
 690         * Set the beacon register and enable all timers.
 691         */
 692        /* When in AP or Mesh Point mode zero timer0 to start TSF */
 693        if (ah->opmode == NL80211_IFTYPE_AP ||
 694            ah->opmode == NL80211_IFTYPE_MESH_POINT)
 695                ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
 696
 697        ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
 698        ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
 699        ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
 700        ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
 701
 702        /* Force a TSF reset if requested and enable beacons */
 703        if (interval & AR5K_BEACON_RESET_TSF)
 704                ath5k_hw_reset_tsf(ah);
 705
 706        ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
 707                                        AR5K_BEACON_ENABLE),
 708                                                AR5K_BEACON);
 709
 710        /* Flush any pending BMISS interrupts on ISR by
 711         * performing a clear-on-write operation on PISR
 712         * register for the BMISS bit (writing a bit on
 713         * ISR toggles a reset for that bit and leaves
 714         * the remaining bits intact) */
 715        if (ah->ah_version == AR5K_AR5210)
 716                ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
 717        else
 718                ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
 719
 720        /* TODO: Set enhanced sleep registers on AR5212
 721         * based on vif->bss_conf params, until then
 722         * disable power save reporting.*/
 723        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
 724
 725}
 726
 727/**
 728 * ath5k_check_timer_win() - Check if timer B is timer A + window
 729 * @a: timer a (before b)
 730 * @b: timer b (after a)
 731 * @window: difference between a and b
 732 * @intval: timers are increased by this interval
 733 *
 734 * This helper function checks if timer B is timer A + window and covers
 735 * cases where timer A or B might have already been updated or wrapped
 736 * around (Timers are 16 bit).
 737 *
 738 * Returns true if O.K.
 739 */
 740static inline bool
 741ath5k_check_timer_win(int a, int b, int window, int intval)
 742{
 743        /*
 744         * 1.) usually B should be A + window
 745         * 2.) A already updated, B not updated yet
 746         * 3.) A already updated and has wrapped around
 747         * 4.) B has wrapped around
 748         */
 749        if ((b - a == window) ||                                /* 1.) */
 750            (a - b == intval - window) ||                       /* 2.) */
 751            ((a | 0x10000) - b == intval - window) ||           /* 3.) */
 752            ((b | 0x10000) - a == window))                      /* 4.) */
 753                return true; /* O.K. */
 754        return false;
 755}
 756
 757/**
 758 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
 759 * @ah: The &struct ath5k_hw
 760 * @intval: beacon interval
 761 *
 762 * This is a workaround for IBSS mode
 763 *
 764 * The need for this function arises from the fact that we have 4 separate
 765 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
 766 * next beacon target time (NBTT), and that the HW updates these timers
 767 * separately based on the current TSF value. The hardware increments each
 768 * timer by the beacon interval, when the local TSF converted to TU is equal
 769 * to the value stored in the timer.
 770 *
 771 * The reception of a beacon with the same BSSID can update the local HW TSF
 772 * at any time - this is something we can't avoid. If the TSF jumps to a
 773 * time which is later than the time stored in a timer, this timer will not
 774 * be updated until the TSF in TU wraps around at 16 bit (the size of the
 775 * timers) and reaches the time which is stored in the timer.
 776 *
 777 * The problem is that these timers are closely related to TIMER0 (NBTT) and
 778 * that they define a time "window". When the TSF jumps between two timers
 779 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
 780 * updated), while the one in the future will be updated every beacon
 781 * interval. This causes the window to get larger, until the TSF wraps
 782 * around as described above and the timer which was left behind gets
 783 * updated again. But - because the beacon interval is usually not an exact
 784 * divisor of the size of the timers (16 bit), an unwanted "window" between
 785 * these timers has developed!
 786 *
 787 * This is especially important with the ATIM window, because during
 788 * the ATIM window only ATIM frames and no data frames are allowed to be
 789 * sent, which creates transmission pauses after each beacon. This symptom
 790 * has been described as "ramping ping" because ping times increase linearly
 791 * for some time and then drop down again. A wrong window on the DMA beacon
 792 * timer has the same effect, so we check for these two conditions.
 793 *
 794 * Returns true if O.K.
 795 */
 796bool
 797ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
 798{
 799        unsigned int nbtt, atim, dma;
 800
 801        nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
 802        atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
 803        dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
 804
 805        /* NOTE: SWBA is different. Having a wrong window there does not
 806         * stop us from sending data and this condition is caught by
 807         * other means (SWBA interrupt) */
 808
 809        if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
 810            ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
 811                                  intval))
 812                return true; /* O.K. */
 813        return false;
 814}
 815
 816/**
 817 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
 818 * @ah: The &struct ath5k_hw
 819 * @coverage_class: IEEE 802.11 coverage class number
 820 *
 821 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
 822 */
 823void
 824ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
 825{
 826        /* As defined by IEEE 802.11-2007 17.3.8.6 */
 827        int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
 828        int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
 829        int cts_timeout = ack_timeout;
 830
 831        ath5k_hw_set_ifs_intervals(ah, slot_time);
 832        ath5k_hw_set_ack_timeout(ah, ack_timeout);
 833        ath5k_hw_set_cts_timeout(ah, cts_timeout);
 834
 835        ah->ah_coverage_class = coverage_class;
 836}
 837
 838/***************************\
 839* Init/Start/Stop functions *
 840\***************************/
 841
 842/**
 843 * ath5k_hw_start_rx_pcu() - Start RX engine
 844 * @ah: The &struct ath5k_hw
 845 *
 846 * Starts RX engine on PCU so that hw can process RXed frames
 847 * (ACK etc).
 848 *
 849 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
 850 */
 851void
 852ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
 853{
 854        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
 855}
 856
 857/**
 858 * ath5k_hw_stop_rx_pcu() - Stop RX engine
 859 * @ah: The &struct ath5k_hw
 860 *
 861 * Stops RX engine on PCU
 862 */
 863void
 864ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
 865{
 866        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
 867}
 868
 869/**
 870 * ath5k_hw_set_opmode() - Set PCU operating mode
 871 * @ah: The &struct ath5k_hw
 872 * @op_mode: One of enum nl80211_iftype
 873 *
 874 * Configure PCU for the various operating modes (AP/STA etc)
 875 */
 876int
 877ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
 878{
 879        struct ath_common *common = ath5k_hw_common(ah);
 880        u32 pcu_reg, beacon_reg, low_id, high_id;
 881
 882        ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
 883
 884        /* Preserve rest settings */
 885        pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
 886        pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
 887                        | AR5K_STA_ID1_KEYSRCH_MODE
 888                        | (ah->ah_version == AR5K_AR5210 ?
 889                        (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
 890
 891        beacon_reg = 0;
 892
 893        switch (op_mode) {
 894        case NL80211_IFTYPE_ADHOC:
 895                pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
 896                beacon_reg |= AR5K_BCR_ADHOC;
 897                if (ah->ah_version == AR5K_AR5210)
 898                        pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
 899                else
 900                        AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
 901                break;
 902
 903        case NL80211_IFTYPE_AP:
 904        case NL80211_IFTYPE_MESH_POINT:
 905                pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
 906                beacon_reg |= AR5K_BCR_AP;
 907                if (ah->ah_version == AR5K_AR5210)
 908                        pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
 909                else
 910                        AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
 911                break;
 912
 913        case NL80211_IFTYPE_STATION:
 914                pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
 915                        | (ah->ah_version == AR5K_AR5210 ?
 916                                AR5K_STA_ID1_PWR_SV : 0);
 917                fallthrough;
 918        case NL80211_IFTYPE_MONITOR:
 919                pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
 920                        | (ah->ah_version == AR5K_AR5210 ?
 921                                AR5K_STA_ID1_NO_PSPOLL : 0);
 922                break;
 923
 924        default:
 925                return -EINVAL;
 926        }
 927
 928        /*
 929         * Set PCU registers
 930         */
 931        low_id = get_unaligned_le32(common->macaddr);
 932        high_id = get_unaligned_le16(common->macaddr + 4);
 933        ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
 934        ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
 935
 936        /*
 937         * Set Beacon Control Register on 5210
 938         */
 939        if (ah->ah_version == AR5K_AR5210)
 940                ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
 941
 942        return 0;
 943}
 944
 945/**
 946 * ath5k_hw_pcu_init() - Initialize PCU
 947 * @ah: The &struct ath5k_hw
 948 * @op_mode: One of enum nl80211_iftype
 949 *
 950 * This function is used to initialize PCU by setting current
 951 * operation mode and various other settings.
 952 */
 953void
 954ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
 955{
 956        /* Set bssid and bssid mask */
 957        ath5k_hw_set_bssid(ah);
 958
 959        /* Set PCU config */
 960        ath5k_hw_set_opmode(ah, op_mode);
 961
 962        /* Write rate duration table only on AR5212 and if
 963         * virtual interface has already been brought up
 964         * XXX: rethink this after new mode changes to
 965         * mac80211 are integrated */
 966        if (ah->ah_version == AR5K_AR5212 &&
 967                ah->nvifs)
 968                ath5k_hw_write_rate_duration(ah);
 969
 970        /* Set RSSI/BRSSI thresholds
 971         *
 972         * Note: If we decide to set this value
 973         * dynamically, have in mind that when AR5K_RSSI_THR
 974         * register is read it might return 0x40 if we haven't
 975         * wrote anything to it plus BMISS RSSI threshold is zeroed.
 976         * So doing a save/restore procedure here isn't the right
 977         * choice. Instead store it on ath5k_hw */
 978        ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
 979                                AR5K_TUNE_BMISS_THRES <<
 980                                AR5K_RSSI_THR_BMISS_S),
 981                                AR5K_RSSI_THR);
 982
 983        /* MIC QoS support */
 984        if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
 985                ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
 986                ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
 987        }
 988
 989        /* QoS NOACK Policy */
 990        if (ah->ah_version == AR5K_AR5212) {
 991                ath5k_hw_reg_write(ah,
 992                        AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
 993                        AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
 994                        AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
 995                        AR5K_QOS_NOACK);
 996        }
 997
 998        /* Restore slot time and ACK timeouts */
 999        if (ah->ah_coverage_class > 0)
1000                ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
1001
1002        /* Set ACK bitrate mode (see ack_rates_high) */
1003        if (ah->ah_version == AR5K_AR5212) {
1004                u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1005                if (ah->ah_ack_bitrate_high)
1006                        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1007                else
1008                        AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1009        }
1010        return;
1011}
1012