linux/drivers/net/wireless/ath/ath5k/phy.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
   6 *
   7 * Permission to use, copy, modify, and distribute this software for any
   8 * purpose with or without fee is hereby granted, provided that the above
   9 * copyright notice and this permission notice appear in all copies.
  10 *
  11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  18 *
  19 */
  20
  21/***********************\
  22* PHY related functions *
  23\***********************/
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/delay.h>
  28#include <linux/slab.h>
  29#include <asm/unaligned.h>
  30
  31#include "ath5k.h"
  32#include "reg.h"
  33#include "rfbuffer.h"
  34#include "rfgain.h"
  35#include "../regd.h"
  36
  37
  38/**
  39 * DOC: PHY related functions
  40 *
  41 * Here we handle the low-level functions related to baseband
  42 * and analog frontend (RF) parts. This is by far the most complex
  43 * part of the hw code so make sure you know what you are doing.
  44 *
  45 * Here is a list of what this is all about:
  46 *
  47 * - Channel setting/switching
  48 *
  49 * - Automatic Gain Control (AGC) calibration
  50 *
  51 * - Noise Floor calibration
  52 *
  53 * - I/Q imbalance calibration (QAM correction)
  54 *
  55 * - Calibration due to thermal changes (gain_F)
  56 *
  57 * - Spur noise mitigation
  58 *
  59 * - RF/PHY initialization for the various operating modes and bwmodes
  60 *
  61 * - Antenna control
  62 *
  63 * - TX power control per channel/rate/packet type
  64 *
  65 * Also have in mind we never got documentation for most of these
  66 * functions, what we have comes mostly from Atheros's code, reverse
  67 * engineering and patent docs/presentations etc.
  68 */
  69
  70
  71/******************\
  72* Helper functions *
  73\******************/
  74
  75/**
  76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
  77 * @ah: The &struct ath5k_hw
  78 * @band: One of enum nl80211_band
  79 *
  80 * Returns the revision number of a 2GHz, 5GHz or single chip
  81 * radio.
  82 */
  83u16
  84ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
  85{
  86        unsigned int i;
  87        u32 srev;
  88        u16 ret;
  89
  90        /*
  91         * Set the radio chip access register
  92         */
  93        switch (band) {
  94        case NL80211_BAND_2GHZ:
  95                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
  96                break;
  97        case NL80211_BAND_5GHZ:
  98                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
  99                break;
 100        default:
 101                return 0;
 102        }
 103
 104        usleep_range(2000, 2500);
 105
 106        /* ...wait until PHY is ready and read the selected radio revision */
 107        ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
 108
 109        for (i = 0; i < 8; i++)
 110                ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
 111
 112        if (ah->ah_version == AR5K_AR5210) {
 113                srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
 114                ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
 115        } else {
 116                srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
 117                ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
 118                                ((srev & 0x0f) << 4), 8);
 119        }
 120
 121        /* Reset to the 5GHz mode */
 122        ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
 123
 124        return ret;
 125}
 126
 127/**
 128 * ath5k_channel_ok() - Check if a channel is supported by the hw
 129 * @ah: The &struct ath5k_hw
 130 * @channel: The &struct ieee80211_channel
 131 *
 132 * Note: We don't do any regulatory domain checks here, it's just
 133 * a sanity check.
 134 */
 135bool
 136ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
 137{
 138        u16 freq = channel->center_freq;
 139
 140        /* Check if the channel is in our supported range */
 141        if (channel->band == NL80211_BAND_2GHZ) {
 142                if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
 143                    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
 144                        return true;
 145        } else if (channel->band == NL80211_BAND_5GHZ)
 146                if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
 147                    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
 148                        return true;
 149
 150        return false;
 151}
 152
 153/**
 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
 155 * @ah: The &struct ath5k_hw
 156 * @channel: The &struct ieee80211_channel
 157 */
 158bool
 159ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
 160                                struct ieee80211_channel *channel)
 161{
 162        u8 refclk_freq;
 163
 164        if ((ah->ah_radio == AR5K_RF5112) ||
 165        (ah->ah_radio == AR5K_RF5413) ||
 166        (ah->ah_radio == AR5K_RF2413) ||
 167        (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
 168                refclk_freq = 40;
 169        else
 170                refclk_freq = 32;
 171
 172        if ((channel->center_freq % refclk_freq != 0) &&
 173        ((channel->center_freq % refclk_freq < 10) ||
 174        (channel->center_freq % refclk_freq > 22)))
 175                return true;
 176        else
 177                return false;
 178}
 179
 180/**
 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
 182 * @ah: The &struct ath5k_hw
 183 * @rf_regs: The struct ath5k_rf_reg
 184 * @val: New value
 185 * @reg_id: RF register ID
 186 * @set: Indicate we need to swap data
 187 *
 188 * This is an internal function used to modify RF Banks before
 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
 190 * infos.
 191 */
 192static unsigned int
 193ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
 194                                        u32 val, u8 reg_id, bool set)
 195{
 196        const struct ath5k_rf_reg *rfreg = NULL;
 197        u8 offset, bank, num_bits, col, position;
 198        u16 entry;
 199        u32 mask, data, last_bit, bits_shifted, first_bit;
 200        u32 *rfb;
 201        s32 bits_left;
 202        int i;
 203
 204        data = 0;
 205        rfb = ah->ah_rf_banks;
 206
 207        for (i = 0; i < ah->ah_rf_regs_count; i++) {
 208                if (rf_regs[i].index == reg_id) {
 209                        rfreg = &rf_regs[i];
 210                        break;
 211                }
 212        }
 213
 214        if (rfb == NULL || rfreg == NULL) {
 215                ATH5K_PRINTF("Rf register not found!\n");
 216                /* should not happen */
 217                return 0;
 218        }
 219
 220        bank = rfreg->bank;
 221        num_bits = rfreg->field.len;
 222        first_bit = rfreg->field.pos;
 223        col = rfreg->field.col;
 224
 225        /* first_bit is an offset from bank's
 226         * start. Since we have all banks on
 227         * the same array, we use this offset
 228         * to mark each bank's start */
 229        offset = ah->ah_offset[bank];
 230
 231        /* Boundary check */
 232        if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
 233                ATH5K_PRINTF("invalid values at offset %u\n", offset);
 234                return 0;
 235        }
 236
 237        entry = ((first_bit - 1) / 8) + offset;
 238        position = (first_bit - 1) % 8;
 239
 240        if (set)
 241                data = ath5k_hw_bitswap(val, num_bits);
 242
 243        for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
 244             position = 0, entry++) {
 245
 246                last_bit = (position + bits_left > 8) ? 8 :
 247                                        position + bits_left;
 248
 249                mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
 250                                                                (col * 8);
 251
 252                if (set) {
 253                        rfb[entry] &= ~mask;
 254                        rfb[entry] |= ((data << position) << (col * 8)) & mask;
 255                        data >>= (8 - position);
 256                } else {
 257                        data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
 258                                << bits_shifted;
 259                        bits_shifted += last_bit - position;
 260                }
 261
 262                bits_left -= 8 - position;
 263        }
 264
 265        data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
 266
 267        return data;
 268}
 269
 270/**
 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
 272 * @ah: the &struct ath5k_hw
 273 * @channel: the currently set channel upon reset
 274 *
 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
 277 *
 278 * Since delta slope is floating point we split it on its exponent and
 279 * mantissa and provide these values on hw.
 280 *
 281 * For more infos i think this patent is related
 282 * "http://www.freepatentsonline.com/7184495.html"
 283 */
 284static inline int
 285ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
 286                                struct ieee80211_channel *channel)
 287{
 288        /* Get exponent and mantissa and set it */
 289        u32 coef_scaled, coef_exp, coef_man,
 290                ds_coef_exp, ds_coef_man, clock;
 291
 292        BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
 293                (channel->hw_value == AR5K_MODE_11B));
 294
 295        /* Get coefficient
 296         * ALGO: coef = (5 * clock / carrier_freq) / 2
 297         * we scale coef by shifting clock value by 24 for
 298         * better precision since we use integers */
 299        switch (ah->ah_bwmode) {
 300        case AR5K_BWMODE_40MHZ:
 301                clock = 40 * 2;
 302                break;
 303        case AR5K_BWMODE_10MHZ:
 304                clock = 40 / 2;
 305                break;
 306        case AR5K_BWMODE_5MHZ:
 307                clock = 40 / 4;
 308                break;
 309        default:
 310                clock = 40;
 311                break;
 312        }
 313        coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
 314
 315        /* Get exponent
 316         * ALGO: coef_exp = 14 - highest set bit position */
 317        coef_exp = ilog2(coef_scaled);
 318
 319        /* Doesn't make sense if it's zero*/
 320        if (!coef_scaled || !coef_exp)
 321                return -EINVAL;
 322
 323        /* Note: we've shifted coef_scaled by 24 */
 324        coef_exp = 14 - (coef_exp - 24);
 325
 326
 327        /* Get mantissa (significant digits)
 328         * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
 329        coef_man = coef_scaled +
 330                (1 << (24 - coef_exp - 1));
 331
 332        /* Calculate delta slope coefficient exponent
 333         * and mantissa (remove scaling) and set them on hw */
 334        ds_coef_man = coef_man >> (24 - coef_exp);
 335        ds_coef_exp = coef_exp - 16;
 336
 337        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 338                AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
 339        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
 340                AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
 341
 342        return 0;
 343}
 344
 345/**
 346 * ath5k_hw_phy_disable() - Disable PHY
 347 * @ah: The &struct ath5k_hw
 348 */
 349int ath5k_hw_phy_disable(struct ath5k_hw *ah)
 350{
 351        /*Just a try M.F.*/
 352        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
 353
 354        return 0;
 355}
 356
 357/**
 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
 359 * @ah: The &struct ath5k_hw
 360 * @channel: The &struct ieee80211_channel
 361 */
 362static void
 363ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
 364                        struct ieee80211_channel *channel)
 365{
 366        /*
 367         * On 5211+ read activation -> rx delay
 368         * and use it (100ns steps).
 369         */
 370        if (ah->ah_version != AR5K_AR5210) {
 371                u32 delay;
 372                delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
 373                        AR5K_PHY_RX_DELAY_M;
 374                delay = (channel->hw_value == AR5K_MODE_11B) ?
 375                        ((delay << 2) / 22) : (delay / 10);
 376                if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
 377                        delay = delay << 1;
 378                if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
 379                        delay = delay << 2;
 380                /* XXX: /2 on turbo ? Let's be safe
 381                 * for now */
 382                usleep_range(100 + delay, 100 + (2 * delay));
 383        } else {
 384                usleep_range(1000, 1500);
 385        }
 386}
 387
 388
 389/**********************\
 390* RF Gain optimization *
 391\**********************/
 392
 393/**
 394 * DOC: RF Gain optimization
 395 *
 396 * This code is used to optimize RF gain on different environments
 397 * (temperature mostly) based on feedback from a power detector.
 398 *
 399 * It's only used on RF5111 and RF5112, later RF chips seem to have
 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
 401 * no gain optimization ladder-.
 402 *
 403 * For more infos check out this patent doc
 404 * "http://www.freepatentsonline.com/7400691.html"
 405 *
 406 * This paper describes power drops as seen on the receiver due to
 407 * probe packets
 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
 409 * %20of%20Power%20Control.pdf"
 410 *
 411 * And this is the MadWiFi bug entry related to the above
 412 * "http://madwifi-project.org/ticket/1659"
 413 * with various measurements and diagrams
 414 */
 415
 416/**
 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
 418 * @ah: The &struct ath5k_hw
 419 */
 420int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
 421{
 422        /* Initialize the gain optimization values */
 423        switch (ah->ah_radio) {
 424        case AR5K_RF5111:
 425                ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
 426                ah->ah_gain.g_low = 20;
 427                ah->ah_gain.g_high = 35;
 428                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 429                break;
 430        case AR5K_RF5112:
 431                ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
 432                ah->ah_gain.g_low = 20;
 433                ah->ah_gain.g_high = 85;
 434                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 435                break;
 436        default:
 437                return -EINVAL;
 438        }
 439
 440        return 0;
 441}
 442
 443/**
 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
 445 * @ah: The &struct ath5k_hw
 446 *
 447 * Schedules a gain probe check on the next transmitted packet.
 448 * That means our next packet is going to be sent with lower
 449 * tx power and a Peak to Average Power Detector (PAPD) will try
 450 * to measure the gain.
 451 *
 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
 453 * just after we enable the probe so that we don't mess with
 454 * standard traffic.
 455 */
 456static void
 457ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
 458{
 459
 460        /* Skip if gain calibration is inactive or
 461         * we already handle a probe request */
 462        if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
 463                return;
 464
 465        /* Send the packet with 2dB below max power as
 466         * patent doc suggest */
 467        ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
 468                        AR5K_PHY_PAPD_PROBE_TXPOWER) |
 469                        AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
 470
 471        ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
 472
 473}
 474
 475/**
 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
 477 * @ah: The &struct ath5k_hw
 478 *
 479 * Calculate Gain_F measurement correction
 480 * based on the current step for RF5112 rev. 2
 481 */
 482static u32
 483ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
 484{
 485        u32 mix, step;
 486        const struct ath5k_gain_opt *go;
 487        const struct ath5k_gain_opt_step *g_step;
 488        const struct ath5k_rf_reg *rf_regs;
 489
 490        /* Only RF5112 Rev. 2 supports it */
 491        if ((ah->ah_radio != AR5K_RF5112) ||
 492        (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
 493                return 0;
 494
 495        go = &rfgain_opt_5112;
 496        rf_regs = rf_regs_5112a;
 497        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 498
 499        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 500
 501        if (ah->ah_rf_banks == NULL)
 502                return 0;
 503
 504        ah->ah_gain.g_f_corr = 0;
 505
 506        /* No VGA (Variable Gain Amplifier) override, skip */
 507        if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
 508                return 0;
 509
 510        /* Mix gain stepping */
 511        step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
 512
 513        /* Mix gain override */
 514        mix = g_step->gos_param[0];
 515
 516        switch (mix) {
 517        case 3:
 518                ah->ah_gain.g_f_corr = step * 2;
 519                break;
 520        case 2:
 521                ah->ah_gain.g_f_corr = (step - 5) * 2;
 522                break;
 523        case 1:
 524                ah->ah_gain.g_f_corr = step;
 525                break;
 526        default:
 527                ah->ah_gain.g_f_corr = 0;
 528                break;
 529        }
 530
 531        return ah->ah_gain.g_f_corr;
 532}
 533
 534/**
 535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
 536 * @ah: The &struct ath5k_hw
 537 *
 538 * Check if current gain_F measurement is in the range of our
 539 * power detector windows. If we get a measurement outside range
 540 * we know it's not accurate (detectors can't measure anything outside
 541 * their detection window) so we must ignore it.
 542 *
 543 * Returns true if readback was O.K. or false on failure
 544 */
 545static bool
 546ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
 547{
 548        const struct ath5k_rf_reg *rf_regs;
 549        u32 step, mix_ovr, level[4];
 550
 551        if (ah->ah_rf_banks == NULL)
 552                return false;
 553
 554        if (ah->ah_radio == AR5K_RF5111) {
 555
 556                rf_regs = rf_regs_5111;
 557                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 558
 559                step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
 560                        false);
 561
 562                level[0] = 0;
 563                level[1] = (step == 63) ? 50 : step + 4;
 564                level[2] = (step != 63) ? 64 : level[0];
 565                level[3] = level[2] + 50;
 566
 567                ah->ah_gain.g_high = level[3] -
 568                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
 569                ah->ah_gain.g_low = level[0] +
 570                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
 571        } else {
 572
 573                rf_regs = rf_regs_5112;
 574                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 575
 576                mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
 577                        false);
 578
 579                level[0] = level[2] = 0;
 580
 581                if (mix_ovr == 1) {
 582                        level[1] = level[3] = 83;
 583                } else {
 584                        level[1] = level[3] = 107;
 585                        ah->ah_gain.g_high = 55;
 586                }
 587        }
 588
 589        return (ah->ah_gain.g_current >= level[0] &&
 590                        ah->ah_gain.g_current <= level[1]) ||
 591                (ah->ah_gain.g_current >= level[2] &&
 592                        ah->ah_gain.g_current <= level[3]);
 593}
 594
 595/**
 596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
 597 * @ah: The &struct ath5k_hw
 598 *
 599 * Choose the right target gain based on current gain
 600 * and RF gain optimization ladder
 601 */
 602static s8
 603ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
 604{
 605        const struct ath5k_gain_opt *go;
 606        const struct ath5k_gain_opt_step *g_step;
 607        int ret = 0;
 608
 609        switch (ah->ah_radio) {
 610        case AR5K_RF5111:
 611                go = &rfgain_opt_5111;
 612                break;
 613        case AR5K_RF5112:
 614                go = &rfgain_opt_5112;
 615                break;
 616        default:
 617                return 0;
 618        }
 619
 620        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 621
 622        if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
 623
 624                /* Reached maximum */
 625                if (ah->ah_gain.g_step_idx == 0)
 626                        return -1;
 627
 628                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 629                                ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
 630                                ah->ah_gain.g_step_idx > 0;
 631                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
 632                        ah->ah_gain.g_target -= 2 *
 633                            (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
 634                            g_step->gos_gain);
 635
 636                ret = 1;
 637                goto done;
 638        }
 639
 640        if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
 641
 642                /* Reached minimum */
 643                if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
 644                        return -2;
 645
 646                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
 647                                ah->ah_gain.g_target <= ah->ah_gain.g_low &&
 648                                ah->ah_gain.g_step_idx < go->go_steps_count - 1;
 649                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
 650                        ah->ah_gain.g_target -= 2 *
 651                            (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
 652                            g_step->gos_gain);
 653
 654                ret = 2;
 655                goto done;
 656        }
 657
 658done:
 659        ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
 660                "ret %d, gain step %u, current gain %u, target gain %u\n",
 661                ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
 662                ah->ah_gain.g_target);
 663
 664        return ret;
 665}
 666
 667/**
 668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
 669 * @ah: The &struct ath5k_hw
 670 *
 671 * Main callback for thermal RF gain calibration engine
 672 * Check for a new gain reading and schedule an adjustment
 673 * if needed.
 674 *
 675 * Returns one of enum ath5k_rfgain codes
 676 */
 677enum ath5k_rfgain
 678ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
 679{
 680        u32 data, type;
 681        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 682
 683        if (ah->ah_rf_banks == NULL ||
 684        ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
 685                return AR5K_RFGAIN_INACTIVE;
 686
 687        /* No check requested, either engine is inactive
 688         * or an adjustment is already requested */
 689        if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
 690                goto done;
 691
 692        /* Read the PAPD (Peak to Average Power Detector)
 693         * register */
 694        data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
 695
 696        /* No probe is scheduled, read gain_F measurement */
 697        if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
 698                ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
 699                type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
 700
 701                /* If tx packet is CCK correct the gain_F measurement
 702                 * by cck ofdm gain delta */
 703                if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
 704                        if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
 705                                ah->ah_gain.g_current +=
 706                                        ee->ee_cck_ofdm_gain_delta;
 707                        else
 708                                ah->ah_gain.g_current +=
 709                                        AR5K_GAIN_CCK_PROBE_CORR;
 710                }
 711
 712                /* Further correct gain_F measurement for
 713                 * RF5112A radios */
 714                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 715                        ath5k_hw_rf_gainf_corr(ah);
 716                        ah->ah_gain.g_current =
 717                                ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
 718                                (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
 719                                0;
 720                }
 721
 722                /* Check if measurement is ok and if we need
 723                 * to adjust gain, schedule a gain adjustment,
 724                 * else switch back to the active state */
 725                if (ath5k_hw_rf_check_gainf_readback(ah) &&
 726                AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
 727                ath5k_hw_rf_gainf_adjust(ah)) {
 728                        ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
 729                } else {
 730                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 731                }
 732        }
 733
 734done:
 735        return ah->ah_gain.g_state;
 736}
 737
 738/**
 739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
 740 * @ah: The &struct ath5k_hw
 741 * @band: One of enum nl80211_band
 742 *
 743 * Write initial RF gain table to set the RF sensitivity.
 744 *
 745 * NOTE: This one works on all RF chips and has nothing to do
 746 * with Gain_F calibration
 747 */
 748static int
 749ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
 750{
 751        const struct ath5k_ini_rfgain *ath5k_rfg;
 752        unsigned int i, size, index;
 753
 754        switch (ah->ah_radio) {
 755        case AR5K_RF5111:
 756                ath5k_rfg = rfgain_5111;
 757                size = ARRAY_SIZE(rfgain_5111);
 758                break;
 759        case AR5K_RF5112:
 760                ath5k_rfg = rfgain_5112;
 761                size = ARRAY_SIZE(rfgain_5112);
 762                break;
 763        case AR5K_RF2413:
 764                ath5k_rfg = rfgain_2413;
 765                size = ARRAY_SIZE(rfgain_2413);
 766                break;
 767        case AR5K_RF2316:
 768                ath5k_rfg = rfgain_2316;
 769                size = ARRAY_SIZE(rfgain_2316);
 770                break;
 771        case AR5K_RF5413:
 772                ath5k_rfg = rfgain_5413;
 773                size = ARRAY_SIZE(rfgain_5413);
 774                break;
 775        case AR5K_RF2317:
 776        case AR5K_RF2425:
 777                ath5k_rfg = rfgain_2425;
 778                size = ARRAY_SIZE(rfgain_2425);
 779                break;
 780        default:
 781                return -EINVAL;
 782        }
 783
 784        index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
 785
 786        for (i = 0; i < size; i++) {
 787                AR5K_REG_WAIT(i);
 788                ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
 789                        (u32)ath5k_rfg[i].rfg_register);
 790        }
 791
 792        return 0;
 793}
 794
 795
 796/********************\
 797* RF Registers setup *
 798\********************/
 799
 800/**
 801 * ath5k_hw_rfregs_init() - Initialize RF register settings
 802 * @ah: The &struct ath5k_hw
 803 * @channel: The &struct ieee80211_channel
 804 * @mode: One of enum ath5k_driver_mode
 805 *
 806 * Setup RF registers by writing RF buffer on hw. For
 807 * more infos on this, check out rfbuffer.h
 808 */
 809static int
 810ath5k_hw_rfregs_init(struct ath5k_hw *ah,
 811                        struct ieee80211_channel *channel,
 812                        unsigned int mode)
 813{
 814        const struct ath5k_rf_reg *rf_regs;
 815        const struct ath5k_ini_rfbuffer *ini_rfb;
 816        const struct ath5k_gain_opt *go = NULL;
 817        const struct ath5k_gain_opt_step *g_step;
 818        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
 819        u8 ee_mode = 0;
 820        u32 *rfb;
 821        int i, obdb = -1, bank = -1;
 822
 823        switch (ah->ah_radio) {
 824        case AR5K_RF5111:
 825                rf_regs = rf_regs_5111;
 826                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
 827                ini_rfb = rfb_5111;
 828                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
 829                go = &rfgain_opt_5111;
 830                break;
 831        case AR5K_RF5112:
 832                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
 833                        rf_regs = rf_regs_5112a;
 834                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
 835                        ini_rfb = rfb_5112a;
 836                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
 837                } else {
 838                        rf_regs = rf_regs_5112;
 839                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
 840                        ini_rfb = rfb_5112;
 841                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
 842                }
 843                go = &rfgain_opt_5112;
 844                break;
 845        case AR5K_RF2413:
 846                rf_regs = rf_regs_2413;
 847                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
 848                ini_rfb = rfb_2413;
 849                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
 850                break;
 851        case AR5K_RF2316:
 852                rf_regs = rf_regs_2316;
 853                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
 854                ini_rfb = rfb_2316;
 855                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
 856                break;
 857        case AR5K_RF5413:
 858                rf_regs = rf_regs_5413;
 859                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
 860                ini_rfb = rfb_5413;
 861                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
 862                break;
 863        case AR5K_RF2317:
 864                rf_regs = rf_regs_2425;
 865                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 866                ini_rfb = rfb_2317;
 867                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
 868                break;
 869        case AR5K_RF2425:
 870                rf_regs = rf_regs_2425;
 871                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
 872                if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
 873                        ini_rfb = rfb_2425;
 874                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
 875                } else {
 876                        ini_rfb = rfb_2417;
 877                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
 878                }
 879                break;
 880        default:
 881                return -EINVAL;
 882        }
 883
 884        /* If it's the first time we set RF buffer, allocate
 885         * ah->ah_rf_banks based on ah->ah_rf_banks_size
 886         * we set above */
 887        if (ah->ah_rf_banks == NULL) {
 888                ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
 889                                                                sizeof(u32),
 890                                                                GFP_KERNEL);
 891                if (ah->ah_rf_banks == NULL) {
 892                        ATH5K_ERR(ah, "out of memory\n");
 893                        return -ENOMEM;
 894                }
 895        }
 896
 897        /* Copy values to modify them */
 898        rfb = ah->ah_rf_banks;
 899
 900        for (i = 0; i < ah->ah_rf_banks_size; i++) {
 901                if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
 902                        ATH5K_ERR(ah, "invalid bank\n");
 903                        return -EINVAL;
 904                }
 905
 906                /* Bank changed, write down the offset */
 907                if (bank != ini_rfb[i].rfb_bank) {
 908                        bank = ini_rfb[i].rfb_bank;
 909                        ah->ah_offset[bank] = i;
 910                }
 911
 912                rfb[i] = ini_rfb[i].rfb_mode_data[mode];
 913        }
 914
 915        /* Set Output and Driver bias current (OB/DB) */
 916        if (channel->band == NL80211_BAND_2GHZ) {
 917
 918                if (channel->hw_value == AR5K_MODE_11B)
 919                        ee_mode = AR5K_EEPROM_MODE_11B;
 920                else
 921                        ee_mode = AR5K_EEPROM_MODE_11G;
 922
 923                /* For RF511X/RF211X combination we
 924                 * use b_OB and b_DB parameters stored
 925                 * in eeprom on ee->ee_ob[ee_mode][0]
 926                 *
 927                 * For all other chips we use OB/DB for 2GHz
 928                 * stored in the b/g modal section just like
 929                 * 802.11a on ee->ee_ob[ee_mode][1] */
 930                if ((ah->ah_radio == AR5K_RF5111) ||
 931                (ah->ah_radio == AR5K_RF5112))
 932                        obdb = 0;
 933                else
 934                        obdb = 1;
 935
 936                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 937                                                AR5K_RF_OB_2GHZ, true);
 938
 939                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 940                                                AR5K_RF_DB_2GHZ, true);
 941
 942        /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
 943        } else if ((channel->band == NL80211_BAND_5GHZ) ||
 944                        (ah->ah_radio == AR5K_RF5111)) {
 945
 946                /* For 11a, Turbo and XR we need to choose
 947                 * OB/DB based on frequency range */
 948                ee_mode = AR5K_EEPROM_MODE_11A;
 949                obdb =   channel->center_freq >= 5725 ? 3 :
 950                        (channel->center_freq >= 5500 ? 2 :
 951                        (channel->center_freq >= 5260 ? 1 :
 952                         (channel->center_freq > 4000 ? 0 : -1)));
 953
 954                if (obdb < 0)
 955                        return -EINVAL;
 956
 957                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
 958                                                AR5K_RF_OB_5GHZ, true);
 959
 960                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
 961                                                AR5K_RF_DB_5GHZ, true);
 962        }
 963
 964        g_step = &go->go_step[ah->ah_gain.g_step_idx];
 965
 966        /* Set turbo mode (N/A on RF5413) */
 967        if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
 968        (ah->ah_radio != AR5K_RF5413))
 969                ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
 970
 971        /* Bank Modifications (chip-specific) */
 972        if (ah->ah_radio == AR5K_RF5111) {
 973
 974                /* Set gain_F settings according to current step */
 975                if (channel->hw_value != AR5K_MODE_11B) {
 976
 977                        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
 978                                        AR5K_PHY_FRAME_CTL_TX_CLIP,
 979                                        g_step->gos_param[0]);
 980
 981                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
 982                                                        AR5K_RF_PWD_90, true);
 983
 984                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
 985                                                        AR5K_RF_PWD_84, true);
 986
 987                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
 988                                                AR5K_RF_RFGAIN_SEL, true);
 989
 990                        /* We programmed gain_F parameters, switch back
 991                         * to active state */
 992                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
 993
 994                }
 995
 996                /* Bank 6/7 setup */
 997
 998                ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
 999                                                AR5K_RF_PWD_XPD, true);
1000
1001                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1002                                                AR5K_RF_XPD_GAIN, true);
1003
1004                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1005                                                AR5K_RF_GAIN_I, true);
1006
1007                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1008                                                AR5K_RF_PLO_SEL, true);
1009
1010                /* Tweak power detectors for half/quarter rate support */
1011                if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1012                ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1013                        u8 wait_i;
1014
1015                        ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1016                                                AR5K_RF_WAIT_S, true);
1017
1018                        wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1019                                                        0x1f : 0x10;
1020
1021                        ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1022                                                AR5K_RF_WAIT_I, true);
1023                        ath5k_hw_rfb_op(ah, rf_regs, 3,
1024                                                AR5K_RF_MAX_TIME, true);
1025
1026                }
1027        }
1028
1029        if (ah->ah_radio == AR5K_RF5112) {
1030
1031                /* Set gain_F settings according to current step */
1032                if (channel->hw_value != AR5K_MODE_11B) {
1033
1034                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1035                                                AR5K_RF_MIXGAIN_OVR, true);
1036
1037                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1038                                                AR5K_RF_PWD_138, true);
1039
1040                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1041                                                AR5K_RF_PWD_137, true);
1042
1043                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1044                                                AR5K_RF_PWD_136, true);
1045
1046                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1047                                                AR5K_RF_PWD_132, true);
1048
1049                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1050                                                AR5K_RF_PWD_131, true);
1051
1052                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1053                                                AR5K_RF_PWD_130, true);
1054
1055                        /* We programmed gain_F parameters, switch back
1056                         * to active state */
1057                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1058                }
1059
1060                /* Bank 6/7 setup */
1061
1062                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1063                                                AR5K_RF_XPD_SEL, true);
1064
1065                if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1066                        /* Rev. 1 supports only one xpd */
1067                        ath5k_hw_rfb_op(ah, rf_regs,
1068                                                ee->ee_x_gain[ee_mode],
1069                                                AR5K_RF_XPD_GAIN, true);
1070
1071                } else {
1072                        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1073                        if (ee->ee_pd_gains[ee_mode] > 1) {
1074                                ath5k_hw_rfb_op(ah, rf_regs,
1075                                                pdg_curve_to_idx[0],
1076                                                AR5K_RF_PD_GAIN_LO, true);
1077                                ath5k_hw_rfb_op(ah, rf_regs,
1078                                                pdg_curve_to_idx[1],
1079                                                AR5K_RF_PD_GAIN_HI, true);
1080                        } else {
1081                                ath5k_hw_rfb_op(ah, rf_regs,
1082                                                pdg_curve_to_idx[0],
1083                                                AR5K_RF_PD_GAIN_LO, true);
1084                                ath5k_hw_rfb_op(ah, rf_regs,
1085                                                pdg_curve_to_idx[0],
1086                                                AR5K_RF_PD_GAIN_HI, true);
1087                        }
1088
1089                        /* Lower synth voltage on Rev 2 */
1090                        if (ah->ah_radio == AR5K_RF5112 &&
1091                            (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1092                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1093                                                AR5K_RF_HIGH_VC_CP, true);
1094
1095                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1096                                                AR5K_RF_MID_VC_CP, true);
1097
1098                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1099                                                AR5K_RF_LOW_VC_CP, true);
1100
1101                                ath5k_hw_rfb_op(ah, rf_regs, 2,
1102                                                AR5K_RF_PUSH_UP, true);
1103                        }
1104
1105                        /* Decrease power consumption on 5213+ BaseBand */
1106                        if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1107                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1108                                                AR5K_RF_PAD2GND, true);
1109
1110                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1111                                                AR5K_RF_XB2_LVL, true);
1112
1113                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1114                                                AR5K_RF_XB5_LVL, true);
1115
1116                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1117                                                AR5K_RF_PWD_167, true);
1118
1119                                ath5k_hw_rfb_op(ah, rf_regs, 1,
1120                                                AR5K_RF_PWD_166, true);
1121                        }
1122                }
1123
1124                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1125                                                AR5K_RF_GAIN_I, true);
1126
1127                /* Tweak power detector for half/quarter rates */
1128                if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1129                ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1130                        u8 pd_delay;
1131
1132                        pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1133                                                        0xf : 0x8;
1134
1135                        ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1136                                                AR5K_RF_PD_PERIOD_A, true);
1137                        ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1138                                                AR5K_RF_PD_DELAY_A, true);
1139
1140                }
1141        }
1142
1143        if (ah->ah_radio == AR5K_RF5413 &&
1144        channel->band == NL80211_BAND_2GHZ) {
1145
1146                ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1147                                                                        true);
1148
1149                /* Set optimum value for early revisions (on pci-e chips) */
1150                if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1151                ah->ah_mac_srev < AR5K_SREV_AR5413)
1152                        ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1153                                                AR5K_RF_PWD_ICLOBUF_2G, true);
1154
1155        }
1156
1157        /* Write RF banks on hw */
1158        for (i = 0; i < ah->ah_rf_banks_size; i++) {
1159                AR5K_REG_WAIT(i);
1160                ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1161        }
1162
1163        return 0;
1164}
1165
1166
1167/**************************\
1168  PHY/RF channel functions
1169\**************************/
1170
1171/**
1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173 * @channel: The &struct ieee80211_channel
1174 *
1175 * Map channel frequency to IEEE channel number and convert it
1176 * to an internal channel value used by the RF5110 chipset.
1177 */
1178static u32
1179ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1180{
1181        u32 athchan;
1182
1183        athchan = (ath5k_hw_bitswap(
1184                        (ieee80211_frequency_to_channel(
1185                                channel->center_freq) - 24) / 2, 5)
1186                                << 1) | (1 << 6) | 0x1;
1187        return athchan;
1188}
1189
1190/**
1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192 * @ah: The &struct ath5k_hw
1193 * @channel: The &struct ieee80211_channel
1194 */
1195static int
1196ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1197                struct ieee80211_channel *channel)
1198{
1199        u32 data;
1200
1201        /*
1202         * Set the channel and wait
1203         */
1204        data = ath5k_hw_rf5110_chan2athchan(channel);
1205        ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1206        ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1207        usleep_range(1000, 1500);
1208
1209        return 0;
1210}
1211
1212/**
1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214 * @ieee: IEEE channel number
1215 * @athchan: The &struct ath5k_athchan_2ghz
1216 *
1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218 * we need to add some offsets and extra flags to the data values we pass
1219 * on to the PHY. So for every 2GHz channel this function gets called
1220 * to do the conversion.
1221 */
1222static int
1223ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1224                struct ath5k_athchan_2ghz *athchan)
1225{
1226        int channel;
1227
1228        /* Cast this value to catch negative channel numbers (>= -19) */
1229        channel = (int)ieee;
1230
1231        /*
1232         * Map 2GHz IEEE channel to 5GHz Atheros channel
1233         */
1234        if (channel <= 13) {
1235                athchan->a2_athchan = 115 + channel;
1236                athchan->a2_flags = 0x46;
1237        } else if (channel == 14) {
1238                athchan->a2_athchan = 124;
1239                athchan->a2_flags = 0x44;
1240        } else if (channel >= 15 && channel <= 26) {
1241                athchan->a2_athchan = ((channel - 14) * 4) + 132;
1242                athchan->a2_flags = 0x46;
1243        } else
1244                return -EINVAL;
1245
1246        return 0;
1247}
1248
1249/**
1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251 * @ah: The &struct ath5k_hw
1252 * @channel: The &struct ieee80211_channel
1253 */
1254static int
1255ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1256                struct ieee80211_channel *channel)
1257{
1258        struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1259        unsigned int ath5k_channel =
1260                ieee80211_frequency_to_channel(channel->center_freq);
1261        u32 data0, data1, clock;
1262        int ret;
1263
1264        /*
1265         * Set the channel on the RF5111 radio
1266         */
1267        data0 = data1 = 0;
1268
1269        if (channel->band == NL80211_BAND_2GHZ) {
1270                /* Map 2GHz channel to 5GHz Atheros channel ID */
1271                ret = ath5k_hw_rf5111_chan2athchan(
1272                        ieee80211_frequency_to_channel(channel->center_freq),
1273                        &ath5k_channel_2ghz);
1274                if (ret)
1275                        return ret;
1276
1277                ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1278                data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1279                    << 5) | (1 << 4);
1280        }
1281
1282        if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1283                clock = 1;
1284                data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1285                        (clock << 1) | (1 << 10) | 1;
1286        } else {
1287                clock = 0;
1288                data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1289                        << 2) | (clock << 1) | (1 << 10) | 1;
1290        }
1291
1292        ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1293                        AR5K_RF_BUFFER);
1294        ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1295                        AR5K_RF_BUFFER_CONTROL_3);
1296
1297        return 0;
1298}
1299
1300/**
1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302 * @ah: The &struct ath5k_hw
1303 * @channel: The &struct ieee80211_channel
1304 *
1305 * On RF5112/2112 and newer we don't need to do any conversion.
1306 * We pass the frequency value after a few modifications to the
1307 * chip directly.
1308 *
1309 * NOTE: Make sure channel frequency given is within our range or else
1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1311 */
1312static int
1313ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1314                struct ieee80211_channel *channel)
1315{
1316        u32 data, data0, data1, data2;
1317        u16 c;
1318
1319        data = data0 = data1 = data2 = 0;
1320        c = channel->center_freq;
1321
1322        /* My guess based on code:
1323         * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324         * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325         * (3040/2). data0 is used to set the PLL divider and data1
1326         * selects synth mode. */
1327        if (c < 4800) {
1328                /* Channel 14 and all frequencies with 2Hz spacing
1329                 * below/above (non-standard channels) */
1330                if (!((c - 2224) % 5)) {
1331                        /* Same as (c - 2224) / 5 */
1332                        data0 = ((2 * (c - 704)) - 3040) / 10;
1333                        data1 = 1;
1334                /* Channel 1 and all frequencies with 5Hz spacing
1335                 * below/above (standard channels without channel 14) */
1336                } else if (!((c - 2192) % 5)) {
1337                        /* Same as (c - 2192) / 5 */
1338                        data0 = ((2 * (c - 672)) - 3040) / 10;
1339                        data1 = 0;
1340                } else
1341                        return -EINVAL;
1342
1343                data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1344        /* This is more complex, we have a single synthesizer with
1345         * 4 reference clock settings (?) based on frequency spacing
1346         * and set using data2. LO is at 4800Hz and data0 is again used
1347         * to set some divider.
1348         *
1349         * NOTE: There is an old atheros presentation at Stanford
1350         * that mentions a method called dual direct conversion
1351         * with 1GHz sliding IF for RF5110. Maybe that's what we
1352         * have here, or an updated version. */
1353        } else if ((c % 5) != 2 || c > 5435) {
1354                if (!(c % 20) && c >= 5120) {
1355                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1356                        data2 = ath5k_hw_bitswap(3, 2);
1357                } else if (!(c % 10)) {
1358                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1359                        data2 = ath5k_hw_bitswap(2, 2);
1360                } else if (!(c % 5)) {
1361                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1362                        data2 = ath5k_hw_bitswap(1, 2);
1363                } else
1364                        return -EINVAL;
1365        } else {
1366                data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1367                data2 = ath5k_hw_bitswap(0, 2);
1368        }
1369
1370        data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1371
1372        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1373        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1374
1375        return 0;
1376}
1377
1378/**
1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380 * @ah: The &struct ath5k_hw
1381 * @channel: The &struct ieee80211_channel
1382 *
1383 * AR2425/2417 have a different 2GHz RF so code changes
1384 * a little bit from RF5112.
1385 */
1386static int
1387ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1388                struct ieee80211_channel *channel)
1389{
1390        u32 data, data0, data2;
1391        u16 c;
1392
1393        data = data0 = data2 = 0;
1394        c = channel->center_freq;
1395
1396        if (c < 4800) {
1397                data0 = ath5k_hw_bitswap((c - 2272), 8);
1398                data2 = 0;
1399        /* ? 5GHz ? */
1400        } else if ((c % 5) != 2 || c > 5435) {
1401                if (!(c % 20) && c < 5120)
1402                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1403                else if (!(c % 10))
1404                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1405                else if (!(c % 5))
1406                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1407                else
1408                        return -EINVAL;
1409                data2 = ath5k_hw_bitswap(1, 2);
1410        } else {
1411                data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1412                data2 = ath5k_hw_bitswap(0, 2);
1413        }
1414
1415        data = (data0 << 4) | data2 << 2 | 0x1001;
1416
1417        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1418        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1419
1420        return 0;
1421}
1422
1423/**
1424 * ath5k_hw_channel() - Set a channel on the radio chip
1425 * @ah: The &struct ath5k_hw
1426 * @channel: The &struct ieee80211_channel
1427 *
1428 * This is the main function called to set a channel on the
1429 * radio chip based on the radio chip version.
1430 */
1431static int
1432ath5k_hw_channel(struct ath5k_hw *ah,
1433                struct ieee80211_channel *channel)
1434{
1435        int ret;
1436        /*
1437         * Check bounds supported by the PHY (we don't care about regulatory
1438         * restrictions at this point).
1439         */
1440        if (!ath5k_channel_ok(ah, channel)) {
1441                ATH5K_ERR(ah,
1442                        "channel frequency (%u MHz) out of supported "
1443                        "band range\n",
1444                        channel->center_freq);
1445                return -EINVAL;
1446        }
1447
1448        /*
1449         * Set the channel and wait
1450         */
1451        switch (ah->ah_radio) {
1452        case AR5K_RF5110:
1453                ret = ath5k_hw_rf5110_channel(ah, channel);
1454                break;
1455        case AR5K_RF5111:
1456                ret = ath5k_hw_rf5111_channel(ah, channel);
1457                break;
1458        case AR5K_RF2317:
1459        case AR5K_RF2425:
1460                ret = ath5k_hw_rf2425_channel(ah, channel);
1461                break;
1462        default:
1463                ret = ath5k_hw_rf5112_channel(ah, channel);
1464                break;
1465        }
1466
1467        if (ret)
1468                return ret;
1469
1470        /* Set JAPAN setting for channel 14 */
1471        if (channel->center_freq == 2484) {
1472                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1473                                AR5K_PHY_CCKTXCTL_JAPAN);
1474        } else {
1475                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1476                                AR5K_PHY_CCKTXCTL_WORLD);
1477        }
1478
1479        ah->ah_current_channel = channel;
1480
1481        return 0;
1482}
1483
1484
1485/*****************\
1486  PHY calibration
1487\*****************/
1488
1489/**
1490 * DOC: PHY Calibration routines
1491 *
1492 * Noise floor calibration: When we tell the hardware to
1493 * perform a noise floor calibration by setting the
1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495 * sample-and-hold the minimum noise level seen at the antennas.
1496 * This value is then stored in a ring buffer of recently measured
1497 * noise floor values so we have a moving window of the last few
1498 * samples. The median of the values in the history is then loaded
1499 * into the hardware for its own use for RSSI and CCA measurements.
1500 * This type of calibration doesn't interfere with traffic.
1501 *
1502 * AGC calibration: When we tell the hardware to perform
1503 * an AGC (Automatic Gain Control) calibration by setting the
1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505 * a calibration on the DC offsets of ADCs. During this period
1506 * rx/tx gets disabled so we have to deal with it on the driver
1507 * part.
1508 *
1509 * I/Q calibration: When we tell the hardware to perform
1510 * an I/Q calibration, it tries to correct I/Q imbalance and
1511 * fix QAM constellation by sampling data from rxed frames.
1512 * It doesn't interfere with traffic.
1513 *
1514 * For more infos on AGC and I/Q calibration check out patent doc
1515 * #03/094463.
1516 */
1517
1518/**
1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520 * @ah: The &struct ath5k_hw
1521 */
1522static s32
1523ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1524{
1525        s32 val;
1526
1527        val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1528        return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1529}
1530
1531/**
1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533 * @ah: The &struct ath5k_hw
1534 */
1535void
1536ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1537{
1538        int i;
1539
1540        ah->ah_nfcal_hist.index = 0;
1541        for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1542                ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1543}
1544
1545/**
1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547 * @ah: The &struct ath5k_hw
1548 * @noise_floor: The NF we got from hw
1549 */
1550static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1551{
1552        struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1553        hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1554        hist->nfval[hist->index] = noise_floor;
1555}
1556
1557/**
1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559 * @ah: The &struct ath5k_hw
1560 */
1561static s16
1562ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1563{
1564        s16 sort[ATH5K_NF_CAL_HIST_MAX];
1565        s16 tmp;
1566        int i, j;
1567
1568        memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1569        for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1570                for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1571                        if (sort[j] > sort[j - 1]) {
1572                                tmp = sort[j];
1573                                sort[j] = sort[j - 1];
1574                                sort[j - 1] = tmp;
1575                        }
1576                }
1577        }
1578        for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1579                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1580                        "cal %d:%d\n", i, sort[i]);
1581        }
1582        return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1583}
1584
1585/**
1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
1587 * @ah: The &struct ath5k_hw
1588 *
1589 * This is the main function we call to perform a NF calibration,
1590 * it reads NF from hardware, calculates the median and updates
1591 * NF on hw.
1592 */
1593void
1594ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1595{
1596        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1597        u32 val;
1598        s16 nf, threshold;
1599        u8 ee_mode;
1600
1601        /* keep last value if calibration hasn't completed */
1602        if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1603                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1604                        "NF did not complete in calibration window\n");
1605
1606                return;
1607        }
1608
1609        ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1610
1611        ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1612
1613        /* completed NF calibration, test threshold */
1614        nf = ath5k_hw_read_measured_noise_floor(ah);
1615        threshold = ee->ee_noise_floor_thr[ee_mode];
1616
1617        if (nf > threshold) {
1618                ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1619                        "noise floor failure detected; "
1620                        "read %d, threshold %d\n",
1621                        nf, threshold);
1622
1623                nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1624        }
1625
1626        ath5k_hw_update_nfcal_hist(ah, nf);
1627        nf = ath5k_hw_get_median_noise_floor(ah);
1628
1629        /* load noise floor (in .5 dBm) so the hardware will use it */
1630        val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1631        val |= (nf * 2) & AR5K_PHY_NF_M;
1632        ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1633
1634        AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635                ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1636
1637        ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1638                0, false);
1639
1640        /*
1641         * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642         * so that we're not capped by the median we just loaded.
1643         * This will be used as the initial value for the next noise
1644         * floor calibration.
1645         */
1646        val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1647        ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1648        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1649                AR5K_PHY_AGCCTL_NF_EN |
1650                AR5K_PHY_AGCCTL_NF_NOUPDATE |
1651                AR5K_PHY_AGCCTL_NF);
1652
1653        ah->ah_noise_floor = nf;
1654
1655        ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1656
1657        ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1658                "noise floor calibrated: %d\n", nf);
1659}
1660
1661/**
1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663 * @ah: The &struct ath5k_hw
1664 * @channel: The &struct ieee80211_channel
1665 *
1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1667 */
1668static int
1669ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1670                struct ieee80211_channel *channel)
1671{
1672        u32 phy_sig, phy_agc, phy_sat, beacon;
1673        int ret;
1674
1675        if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1676                return 0;
1677
1678        /*
1679         * Disable beacons and RX/TX queues, wait
1680         */
1681        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1682                AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1683        beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1684        ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1685
1686        usleep_range(2000, 2500);
1687
1688        /*
1689         * Set the channel (with AGC turned off)
1690         */
1691        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1692        udelay(10);
1693        ret = ath5k_hw_channel(ah, channel);
1694
1695        /*
1696         * Activate PHY and wait
1697         */
1698        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1699        usleep_range(1000, 1500);
1700
1701        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1702
1703        if (ret)
1704                return ret;
1705
1706        /*
1707         * Calibrate the radio chip
1708         */
1709
1710        /* Remember normal state */
1711        phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1712        phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1713        phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1714
1715        /* Update radio registers */
1716        ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1717                AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1718
1719        ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1720                        AR5K_PHY_AGCCOARSE_LO)) |
1721                AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1722                AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1723
1724        ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1725                        AR5K_PHY_ADCSAT_THR)) |
1726                AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1727                AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1728
1729        udelay(20);
1730
1731        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732        udelay(10);
1733        ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1734        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1735
1736        usleep_range(1000, 1500);
1737
1738        /*
1739         * Enable calibration and wait until completion
1740         */
1741        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1742
1743        ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1744                        AR5K_PHY_AGCCTL_CAL, 0, false);
1745
1746        /* Reset to normal state */
1747        ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1748        ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1749        ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1750
1751        if (ret) {
1752                ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1753                                channel->center_freq);
1754                return ret;
1755        }
1756
1757        /*
1758         * Re-enable RX/TX and beacons
1759         */
1760        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1761                AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1762        ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1763
1764        return 0;
1765}
1766
1767/**
1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769 * @ah: The &struct ath5k_hw
1770 */
1771static int
1772ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1773{
1774        u32 i_pwr, q_pwr;
1775        s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1776        int i;
1777
1778        /* Skip if I/Q calibration is not needed or if it's still running */
1779        if (!ah->ah_iq_cal_needed)
1780                return -EINVAL;
1781        else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1782                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1783                                "I/Q calibration still running");
1784                return -EBUSY;
1785        }
1786
1787        /* Calibration has finished, get the results and re-run */
1788
1789        /* Work around for empty results which can apparently happen on 5212:
1790         * Read registers up to 10 times until we get both i_pr and q_pwr */
1791        for (i = 0; i <= 10; i++) {
1792                iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1793                i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1794                q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1795                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1796                        "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1797                if (i_pwr && q_pwr)
1798                        break;
1799        }
1800
1801        i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1802
1803        if (ah->ah_version == AR5K_AR5211)
1804                q_coffd = q_pwr >> 6;
1805        else
1806                q_coffd = q_pwr >> 7;
1807
1808        /* In case i_coffd became zero, cancel calibration
1809         * not only it's too small, it'll also result a divide
1810         * by zero later on. */
1811        if (i_coffd == 0 || q_coffd < 2)
1812                return -ECANCELED;
1813
1814        /* Protect against loss of sign bits */
1815
1816        i_coff = (-iq_corr) / i_coffd;
1817        i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1818
1819        if (ah->ah_version == AR5K_AR5211)
1820                q_coff = (i_pwr / q_coffd) - 64;
1821        else
1822                q_coff = (i_pwr / q_coffd) - 128;
1823        q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1824
1825        ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1826                        "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827                        i_coff, q_coff, i_coffd, q_coffd);
1828
1829        /* Commit new I/Q values (set enable bit last to match HAL sources) */
1830        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1831        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1832        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1833
1834        /* Re-enable calibration -if we don't we'll commit
1835         * the same values again and again */
1836        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1837                        AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1838        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1839
1840        return 0;
1841}
1842
1843/**
1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845 * @ah: The &struct ath5k_hw
1846 * @channel: The &struct ieee80211_channel
1847 *
1848 * The main function we call from above to perform
1849 * a short or full PHY calibration based on RF chip
1850 * and current channel
1851 */
1852int
1853ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1854                struct ieee80211_channel *channel)
1855{
1856        int ret;
1857
1858        if (ah->ah_radio == AR5K_RF5110)
1859                return ath5k_hw_rf5110_calibrate(ah, channel);
1860
1861        ret = ath5k_hw_rf511x_iq_calibrate(ah);
1862        if (ret) {
1863                ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1864                        "No I/Q correction performed (%uMHz)\n",
1865                        channel->center_freq);
1866
1867                /* Happens all the time if there is not much
1868                 * traffic, consider it normal behaviour. */
1869                ret = 0;
1870        }
1871
1872        /* On full calibration request a PAPD probe for
1873         * gainf calibration if needed */
1874        if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1875            (ah->ah_radio == AR5K_RF5111 ||
1876             ah->ah_radio == AR5K_RF5112) &&
1877            channel->hw_value != AR5K_MODE_11B)
1878                ath5k_hw_request_rfgain_probe(ah);
1879
1880        /* Update noise floor */
1881        if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1882                ath5k_hw_update_noise_floor(ah);
1883
1884        return ret;
1885}
1886
1887
1888/***************************\
1889* Spur mitigation functions *
1890\***************************/
1891
1892/**
1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894 * @ah: The &struct ath5k_hw
1895 * @channel: The &struct ieee80211_channel
1896 *
1897 * This function gets called during PHY initialization to
1898 * configure the spur filter for the given channel. Spur is noise
1899 * generated due to "reflection" effects, for more information on this
1900 * method check out patent US7643810
1901 */
1902static void
1903ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1904                                struct ieee80211_channel *channel)
1905{
1906        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1907        u32 mag_mask[4] = {0, 0, 0, 0};
1908        u32 pilot_mask[2] = {0, 0};
1909        /* Note: fbin values are scaled up by 2 */
1910        u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1911        s32 spur_delta_phase, spur_freq_sigma_delta;
1912        s32 spur_offset, num_symbols_x16;
1913        u8 num_symbol_offsets, i, freq_band;
1914
1915        /* Convert current frequency to fbin value (the same way channels
1916         * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917         * up by 2 so we can compare it later */
1918        if (channel->band == NL80211_BAND_2GHZ) {
1919                chan_fbin = (channel->center_freq - 2300) * 10;
1920                freq_band = AR5K_EEPROM_BAND_2GHZ;
1921        } else {
1922                chan_fbin = (channel->center_freq - 4900) * 10;
1923                freq_band = AR5K_EEPROM_BAND_5GHZ;
1924        }
1925
1926        /* Check if any spur_chan_fbin from EEPROM is
1927         * within our current channel's spur detection range */
1928        spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1929        spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1930        /* XXX: Half/Quarter channels ?*/
1931        if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1932                spur_detection_window *= 2;
1933
1934        for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1935                spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1936
1937                /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938                 * so it's zero if we got nothing from EEPROM */
1939                if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1940                        spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1941                        break;
1942                }
1943
1944                if ((chan_fbin - spur_detection_window <=
1945                (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1946                (chan_fbin + spur_detection_window >=
1947                (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1948                        spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1949                        break;
1950                }
1951        }
1952
1953        /* We need to enable spur filter for this channel */
1954        if (spur_chan_fbin) {
1955                spur_offset = spur_chan_fbin - chan_fbin;
1956                /*
1957                 * Calculate deltas:
1958                 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959                 * spur_delta_phase -> spur_offset / chip_freq << 11
1960                 * Note: Both values have 100Hz resolution
1961                 */
1962                switch (ah->ah_bwmode) {
1963                case AR5K_BWMODE_40MHZ:
1964                        /* Both sample_freq and chip_freq are 80MHz */
1965                        spur_delta_phase = (spur_offset << 16) / 25;
1966                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1967                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1968                        break;
1969                case AR5K_BWMODE_10MHZ:
1970                        /* Both sample_freq and chip_freq are 20MHz (?) */
1971                        spur_delta_phase = (spur_offset << 18) / 25;
1972                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1973                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1974                        break;
1975                case AR5K_BWMODE_5MHZ:
1976                        /* Both sample_freq and chip_freq are 10MHz (?) */
1977                        spur_delta_phase = (spur_offset << 19) / 25;
1978                        spur_freq_sigma_delta = (spur_delta_phase >> 10);
1979                        symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1980                        break;
1981                default:
1982                        if (channel->band == NL80211_BAND_5GHZ) {
1983                                /* Both sample_freq and chip_freq are 40MHz */
1984                                spur_delta_phase = (spur_offset << 17) / 25;
1985                                spur_freq_sigma_delta =
1986                                                (spur_delta_phase >> 10);
1987                                symbol_width =
1988                                        AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1989                        } else {
1990                                /* sample_freq -> 40MHz chip_freq -> 44MHz
1991                                 * (for b compatibility) */
1992                                spur_delta_phase = (spur_offset << 17) / 25;
1993                                spur_freq_sigma_delta =
1994                                                (spur_offset << 8) / 55;
1995                                symbol_width =
1996                                        AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1997                        }
1998                        break;
1999                }
2000
2001                /* Calculate pilot and magnitude masks */
2002
2003                /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004                 * and divide by symbol_width to find how many symbols we have
2005                 * Note: number of symbols is scaled up by 16 */
2006                num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2007
2008                /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009                if (!(num_symbols_x16 & 0xF))
2010                        /* _X_ */
2011                        num_symbol_offsets = 3;
2012                else
2013                        /* _xx_ */
2014                        num_symbol_offsets = 4;
2015
2016                for (i = 0; i < num_symbol_offsets; i++) {
2017
2018                        /* Calculate pilot mask */
2019                        s32 curr_sym_off =
2020                                (num_symbols_x16 / 16) + i + 25;
2021
2022                        /* Pilot magnitude mask seems to be a way to
2023                         * declare the boundaries for our detection
2024                         * window or something, it's 2 for the middle
2025                         * value(s) where the symbol is expected to be
2026                         * and 1 on the boundary values */
2027                        u8 plt_mag_map =
2028                                (i == 0 || i == (num_symbol_offsets - 1))
2029                                                                ? 1 : 2;
2030
2031                        if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2032                                if (curr_sym_off <= 25)
2033                                        pilot_mask[0] |= 1 << curr_sym_off;
2034                                else if (curr_sym_off >= 27)
2035                                        pilot_mask[0] |= 1 << (curr_sym_off - 1);
2036                        } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2037                                pilot_mask[1] |= 1 << (curr_sym_off - 33);
2038
2039                        /* Calculate magnitude mask (for viterbi decoder) */
2040                        if (curr_sym_off >= -1 && curr_sym_off <= 14)
2041                                mag_mask[0] |=
2042                                        plt_mag_map << (curr_sym_off + 1) * 2;
2043                        else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2044                                mag_mask[1] |=
2045                                        plt_mag_map << (curr_sym_off - 15) * 2;
2046                        else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2047                                mag_mask[2] |=
2048                                        plt_mag_map << (curr_sym_off - 31) * 2;
2049                        else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2050                                mag_mask[3] |=
2051                                        plt_mag_map << (curr_sym_off - 47) * 2;
2052
2053                }
2054
2055                /* Write settings on hw to enable spur filter */
2056                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2057                                        AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2058                /* XXX: Self correlator also ? */
2059                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2060                                        AR5K_PHY_IQ_PILOT_MASK_EN |
2061                                        AR5K_PHY_IQ_CHAN_MASK_EN |
2062                                        AR5K_PHY_IQ_SPUR_FILT_EN);
2063
2064                /* Set delta phase and freq sigma delta */
2065                ath5k_hw_reg_write(ah,
2066                                AR5K_REG_SM(spur_delta_phase,
2067                                        AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2068                                AR5K_REG_SM(spur_freq_sigma_delta,
2069                                AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2070                                AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2071                                AR5K_PHY_TIMING_11);
2072
2073                /* Write pilot masks */
2074                ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2075                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2076                                        AR5K_PHY_TIMING_8_PILOT_MASK_2,
2077                                        pilot_mask[1]);
2078
2079                ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2080                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2081                                        AR5K_PHY_TIMING_10_PILOT_MASK_2,
2082                                        pilot_mask[1]);
2083
2084                /* Write magnitude masks */
2085                ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2086                ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2087                ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2088                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2089                                        AR5K_PHY_BIN_MASK_CTL_MASK_4,
2090                                        mag_mask[3]);
2091
2092                ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2093                ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2094                ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2095                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2096                                        AR5K_PHY_BIN_MASK2_4_MASK_4,
2097                                        mag_mask[3]);
2098
2099        } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2100        AR5K_PHY_IQ_SPUR_FILT_EN) {
2101                /* Clean up spur mitigation settings and disable filter */
2102                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2103                                        AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2104                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2105                                        AR5K_PHY_IQ_PILOT_MASK_EN |
2106                                        AR5K_PHY_IQ_CHAN_MASK_EN |
2107                                        AR5K_PHY_IQ_SPUR_FILT_EN);
2108                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2109
2110                /* Clear pilot masks */
2111                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2112                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2113                                        AR5K_PHY_TIMING_8_PILOT_MASK_2,
2114                                        0);
2115
2116                ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2117                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2118                                        AR5K_PHY_TIMING_10_PILOT_MASK_2,
2119                                        0);
2120
2121                /* Clear magnitude masks */
2122                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2123                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2124                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2125                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2126                                        AR5K_PHY_BIN_MASK_CTL_MASK_4,
2127                                        0);
2128
2129                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2130                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2131                ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2132                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2133                                        AR5K_PHY_BIN_MASK2_4_MASK_4,
2134                                        0);
2135        }
2136}
2137
2138
2139/*****************\
2140* Antenna control *
2141\*****************/
2142
2143/**
2144 * DOC: Antenna control
2145 *
2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2150 *
2151 * We can have a single antenna for RX and multiple antennas for TX.
2152 * RX antenna is our "default" antenna (usually antenna 1) set on
2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154 * (0 for automatic selection, 1 - 14 antenna number).
2155 *
2156 * We can let hw do all the work doing fast antenna diversity for both
2157 * tx and rx or we can do things manually. Here are the options we have
2158 * (all are bits of STA_ID1 register):
2159 *
2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161 * control descriptor, use the default antenna to transmit or else use the last
2162 * antenna on which we received an ACK.
2163 *
2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165 * the antenna on which we got the ACK for that frame.
2166 *
2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168 * one on the TX descriptor.
2169 *
2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
2172 *
2173 * Using the above we support the following scenarios:
2174 *
2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2176 *
2177 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2178 *
2179 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2180 *
2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2182 *
2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2184 *
2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2186 *
2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2188 *
2189 * Also note that when setting antenna to F on tx descriptor card inverts
2190 * current tx antenna.
2191 */
2192
2193/**
2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195 * @ah: The &struct ath5k_hw
2196 * @ant: Antenna number
2197 */
2198static void
2199ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2200{
2201        if (ah->ah_version != AR5K_AR5210)
2202                ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2203}
2204
2205/**
2206 * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2207 * @ah: The &struct ath5k_hw
2208 * @ee_mode: One of enum ath5k_driver_mode
2209 * @enable: True to enable, false to disable
2210 */
2211static void
2212ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2213{
2214        switch (ee_mode) {
2215        case AR5K_EEPROM_MODE_11G:
2216                /* XXX: This is set to
2217                 * disabled on initvals !!! */
2218        case AR5K_EEPROM_MODE_11A:
2219                if (enable)
2220                        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222                else
2223                        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2224                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2225                break;
2226        case AR5K_EEPROM_MODE_11B:
2227                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2228                                        AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2229                break;
2230        default:
2231                return;
2232        }
2233
2234        if (enable) {
2235                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2236                                AR5K_PHY_RESTART_DIV_GC, 4);
2237
2238                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2239                                        AR5K_PHY_FAST_ANT_DIV_EN);
2240        } else {
2241                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2242                                AR5K_PHY_RESTART_DIV_GC, 0);
2243
2244                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2245                                        AR5K_PHY_FAST_ANT_DIV_EN);
2246        }
2247}
2248
2249/**
2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251 * @ah: The &struct ath5k_hw
2252 * @ee_mode: One of enum ath5k_driver_mode
2253 *
2254 * Switch table comes from EEPROM and includes information on controlling
2255 * the 2 antenna RX attenuators
2256 */
2257void
2258ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2259{
2260        u8 ant0, ant1;
2261
2262        /*
2263         * In case a fixed antenna was set as default
2264         * use the same switch table twice.
2265         */
2266        if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2267                ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2268        else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2269                ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2270        else {
2271                ant0 = AR5K_ANT_SWTABLE_A;
2272                ant1 = AR5K_ANT_SWTABLE_B;
2273        }
2274
2275        /* Set antenna idle switch table */
2276        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2277                        AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2278                        (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2279                        AR5K_PHY_ANT_CTL_TXRX_EN));
2280
2281        /* Set antenna switch tables */
2282        ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2283                AR5K_PHY_ANT_SWITCH_TABLE_0);
2284        ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2285                AR5K_PHY_ANT_SWITCH_TABLE_1);
2286}
2287
2288/**
2289 * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2290 * @ah: The &struct ath5k_hw
2291 * @ant_mode: One of enum ath5k_ant_mode
2292 */
2293void
2294ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2295{
2296        struct ieee80211_channel *channel = ah->ah_current_channel;
2297        bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2298        bool use_def_for_sg;
2299        int ee_mode;
2300        u8 def_ant, tx_ant;
2301        u32 sta_id1 = 0;
2302
2303        /* if channel is not initialized yet we can't set the antennas
2304         * so just store the mode. it will be set on the next reset */
2305        if (channel == NULL) {
2306                ah->ah_ant_mode = ant_mode;
2307                return;
2308        }
2309
2310        def_ant = ah->ah_def_ant;
2311
2312        ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2313
2314        switch (ant_mode) {
2315        case AR5K_ANTMODE_DEFAULT:
2316                tx_ant = 0;
2317                use_def_for_tx = false;
2318                update_def_on_tx = false;
2319                use_def_for_rts = false;
2320                use_def_for_sg = false;
2321                fast_div = true;
2322                break;
2323        case AR5K_ANTMODE_FIXED_A:
2324                def_ant = 1;
2325                tx_ant = 1;
2326                use_def_for_tx = true;
2327                update_def_on_tx = false;
2328                use_def_for_rts = true;
2329                use_def_for_sg = true;
2330                fast_div = false;
2331                break;
2332        case AR5K_ANTMODE_FIXED_B:
2333                def_ant = 2;
2334                tx_ant = 2;
2335                use_def_for_tx = true;
2336                update_def_on_tx = false;
2337                use_def_for_rts = true;
2338                use_def_for_sg = true;
2339                fast_div = false;
2340                break;
2341        case AR5K_ANTMODE_SINGLE_AP:
2342                def_ant = 1;    /* updated on tx */
2343                tx_ant = 0;
2344                use_def_for_tx = true;
2345                update_def_on_tx = true;
2346                use_def_for_rts = true;
2347                use_def_for_sg = true;
2348                fast_div = true;
2349                break;
2350        case AR5K_ANTMODE_SECTOR_AP:
2351                tx_ant = 1;     /* variable */
2352                use_def_for_tx = false;
2353                update_def_on_tx = false;
2354                use_def_for_rts = true;
2355                use_def_for_sg = false;
2356                fast_div = false;
2357                break;
2358        case AR5K_ANTMODE_SECTOR_STA:
2359                tx_ant = 1;     /* variable */
2360                use_def_for_tx = true;
2361                update_def_on_tx = false;
2362                use_def_for_rts = true;
2363                use_def_for_sg = false;
2364                fast_div = true;
2365                break;
2366        case AR5K_ANTMODE_DEBUG:
2367                def_ant = 1;
2368                tx_ant = 2;
2369                use_def_for_tx = false;
2370                update_def_on_tx = false;
2371                use_def_for_rts = false;
2372                use_def_for_sg = false;
2373                fast_div = false;
2374                break;
2375        default:
2376                return;
2377        }
2378
2379        ah->ah_tx_ant = tx_ant;
2380        ah->ah_ant_mode = ant_mode;
2381        ah->ah_def_ant = def_ant;
2382
2383        sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2384        sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2385        sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2386        sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2387
2388        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2389
2390        if (sta_id1)
2391                AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2392
2393        ath5k_hw_set_antenna_switch(ah, ee_mode);
2394        /* Note: set diversity before default antenna
2395         * because it won't work correctly */
2396        ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2397        ath5k_hw_set_def_antenna(ah, def_ant);
2398}
2399
2400
2401/****************\
2402* TX power setup *
2403\****************/
2404
2405/*
2406 * Helper functions
2407 */
2408
2409/**
2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411 * @target: X value of the middle point
2412 * @x_left: X value of the left point
2413 * @x_right: X value of the right point
2414 * @y_left: Y value of the left point
2415 * @y_right: Y value of the right point
2416 */
2417static s16
2418ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2419                                        s16 y_left, s16 y_right)
2420{
2421        s16 ratio, result;
2422
2423        /* Avoid divide by zero and skip interpolation
2424         * if we have the same point */
2425        if ((x_left == x_right) || (y_left == y_right))
2426                return y_left;
2427
2428        /*
2429         * Since we use ints and not fps, we need to scale up in
2430         * order to get a sane ratio value (or else we 'll eg. get
2431         * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432         * to have some accuracy both for 0.5 and 0.25 steps.
2433         */
2434        ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2435
2436        /* Now scale down to be in range */
2437        result = y_left + (ratio * (target - x_left) / 100);
2438
2439        return result;
2440}
2441
2442/**
2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444 * linear PCDAC curve
2445 * @stepL: Left array with y values (pcdac steps)
2446 * @stepR: Right array with y values (pcdac steps)
2447 * @pwrL: Left array with x values (power steps)
2448 * @pwrR: Right array with x values (power steps)
2449 *
2450 * Since we have the top of the curve and we draw the line below
2451 * until we reach 1 (1 pcdac step) we need to know which point
2452 * (x value) that is so that we don't go below x axis and have negative
2453 * pcdac values when creating the curve, or fill the table with zeros.
2454 */
2455static s16
2456ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2457                                const s16 *pwrL, const s16 *pwrR)
2458{
2459        s8 tmp;
2460        s16 min_pwrL, min_pwrR;
2461        s16 pwr_i;
2462
2463        /* Some vendors write the same pcdac value twice !!! */
2464        if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2465                return max(pwrL[0], pwrR[0]);
2466
2467        if (pwrL[0] == pwrL[1])
2468                min_pwrL = pwrL[0];
2469        else {
2470                pwr_i = pwrL[0];
2471                do {
2472                        pwr_i--;
2473                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2474                                                        pwrL[0], pwrL[1],
2475                                                        stepL[0], stepL[1]);
2476                } while (tmp > 1);
2477
2478                min_pwrL = pwr_i;
2479        }
2480
2481        if (pwrR[0] == pwrR[1])
2482                min_pwrR = pwrR[0];
2483        else {
2484                pwr_i = pwrR[0];
2485                do {
2486                        pwr_i--;
2487                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2488                                                        pwrR[0], pwrR[1],
2489                                                        stepR[0], stepR[1]);
2490                } while (tmp > 1);
2491
2492                min_pwrR = pwr_i;
2493        }
2494
2495        /* Keep the right boundary so that it works for both curves */
2496        return max(min_pwrL, min_pwrR);
2497}
2498
2499/**
2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501 * @pmin: Minimum power value (xmin)
2502 * @pmax: Maximum power value (xmax)
2503 * @pwr: Array of power steps (x values)
2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505 * @num_points: Number of provided points
2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
2508 *
2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510 * Power to PCDAC curve.
2511 *
2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
2515 * one curves on hw so we can go up to 128 (which is the max step we
2516 * can write on the final table).
2517 *
2518 * We write y values (PCDAC/PDADC steps) on hw.
2519 */
2520static void
2521ath5k_create_power_curve(s16 pmin, s16 pmax,
2522                        const s16 *pwr, const u8 *vpd,
2523                        u8 num_points,
2524                        u8 *vpd_table, u8 type)
2525{
2526        u8 idx[2] = { 0, 1 };
2527        s16 pwr_i = 2 * pmin;
2528        int i;
2529
2530        if (num_points < 2)
2531                return;
2532
2533        /* We want the whole line, so adjust boundaries
2534         * to cover the entire power range. Note that
2535         * power values are already 0.25dB so no need
2536         * to multiply pwr_i by 2 */
2537        if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2538                pwr_i = pmin;
2539                pmin = 0;
2540                pmax = 63;
2541        }
2542
2543        /* Find surrounding turning points (TPs)
2544         * and interpolate between them */
2545        for (i = 0; (i <= (u16) (pmax - pmin)) &&
2546        (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2547
2548                /* We passed the right TP, move to the next set of TPs
2549                 * if we pass the last TP, extrapolate above using the last
2550                 * two TPs for ratio */
2551                if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2552                        idx[0]++;
2553                        idx[1]++;
2554                }
2555
2556                vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2557                                                pwr[idx[0]], pwr[idx[1]],
2558                                                vpd[idx[0]], vpd[idx[1]]);
2559
2560                /* Increase by 0.5dB
2561                 * (0.25 dB units) */
2562                pwr_i += 2;
2563        }
2564}
2565
2566/**
2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568 * for a given channel.
2569 * @ah: The &struct ath5k_hw
2570 * @channel: The &struct ieee80211_channel
2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2573 *
2574 * Get the surrounding per-channel power calibration piers
2575 * for a given frequency so that we can interpolate between
2576 * them and come up with an appropriate dataset for our current
2577 * channel.
2578 */
2579static void
2580ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2581                        struct ieee80211_channel *channel,
2582                        struct ath5k_chan_pcal_info **pcinfo_l,
2583                        struct ath5k_chan_pcal_info **pcinfo_r)
2584{
2585        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2586        struct ath5k_chan_pcal_info *pcinfo;
2587        u8 idx_l, idx_r;
2588        u8 mode, max, i;
2589        u32 target = channel->center_freq;
2590
2591        idx_l = 0;
2592        idx_r = 0;
2593
2594        switch (channel->hw_value) {
2595        case AR5K_EEPROM_MODE_11A:
2596                pcinfo = ee->ee_pwr_cal_a;
2597                mode = AR5K_EEPROM_MODE_11A;
2598                break;
2599        case AR5K_EEPROM_MODE_11B:
2600                pcinfo = ee->ee_pwr_cal_b;
2601                mode = AR5K_EEPROM_MODE_11B;
2602                break;
2603        case AR5K_EEPROM_MODE_11G:
2604        default:
2605                pcinfo = ee->ee_pwr_cal_g;
2606                mode = AR5K_EEPROM_MODE_11G;
2607                break;
2608        }
2609        max = ee->ee_n_piers[mode] - 1;
2610
2611        /* Frequency is below our calibrated
2612         * range. Use the lowest power curve
2613         * we have */
2614        if (target < pcinfo[0].freq) {
2615                idx_l = idx_r = 0;
2616                goto done;
2617        }
2618
2619        /* Frequency is above our calibrated
2620         * range. Use the highest power curve
2621         * we have */
2622        if (target > pcinfo[max].freq) {
2623                idx_l = idx_r = max;
2624                goto done;
2625        }
2626
2627        /* Frequency is inside our calibrated
2628         * channel range. Pick the surrounding
2629         * calibration piers so that we can
2630         * interpolate */
2631        for (i = 0; i <= max; i++) {
2632
2633                /* Frequency matches one of our calibration
2634                 * piers, no need to interpolate, just use
2635                 * that calibration pier */
2636                if (pcinfo[i].freq == target) {
2637                        idx_l = idx_r = i;
2638                        goto done;
2639                }
2640
2641                /* We found a calibration pier that's above
2642                 * frequency, use this pier and the previous
2643                 * one to interpolate */
2644                if (target < pcinfo[i].freq) {
2645                        idx_r = i;
2646                        idx_l = idx_r - 1;
2647                        goto done;
2648                }
2649        }
2650
2651done:
2652        *pcinfo_l = &pcinfo[idx_l];
2653        *pcinfo_r = &pcinfo[idx_r];
2654}
2655
2656/**
2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2658 * calibration data
2659 * @ah: The &struct ath5k_hw *ah,
2660 * @channel: The &struct ieee80211_channel
2661 * @rates: The &struct ath5k_rate_pcal_info to fill
2662 *
2663 * Get the surrounding per-rate power calibration data
2664 * for a given frequency and interpolate between power
2665 * values to set max target power supported by hw for
2666 * each rate on this frequency.
2667 */
2668static void
2669ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2670                        struct ieee80211_channel *channel,
2671                        struct ath5k_rate_pcal_info *rates)
2672{
2673        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2674        struct ath5k_rate_pcal_info *rpinfo;
2675        u8 idx_l, idx_r;
2676        u8 mode, max, i;
2677        u32 target = channel->center_freq;
2678
2679        idx_l = 0;
2680        idx_r = 0;
2681
2682        switch (channel->hw_value) {
2683        case AR5K_MODE_11A:
2684                rpinfo = ee->ee_rate_tpwr_a;
2685                mode = AR5K_EEPROM_MODE_11A;
2686                break;
2687        case AR5K_MODE_11B:
2688                rpinfo = ee->ee_rate_tpwr_b;
2689                mode = AR5K_EEPROM_MODE_11B;
2690                break;
2691        case AR5K_MODE_11G:
2692        default:
2693                rpinfo = ee->ee_rate_tpwr_g;
2694                mode = AR5K_EEPROM_MODE_11G;
2695                break;
2696        }
2697        max = ee->ee_rate_target_pwr_num[mode] - 1;
2698
2699        /* Get the surrounding calibration
2700         * piers - same as above */
2701        if (target < rpinfo[0].freq) {
2702                idx_l = idx_r = 0;
2703                goto done;
2704        }
2705
2706        if (target > rpinfo[max].freq) {
2707                idx_l = idx_r = max;
2708                goto done;
2709        }
2710
2711        for (i = 0; i <= max; i++) {
2712
2713                if (rpinfo[i].freq == target) {
2714                        idx_l = idx_r = i;
2715                        goto done;
2716                }
2717
2718                if (target < rpinfo[i].freq) {
2719                        idx_r = i;
2720                        idx_l = idx_r - 1;
2721                        goto done;
2722                }
2723        }
2724
2725done:
2726        /* Now interpolate power value, based on the frequency */
2727        rates->freq = target;
2728
2729        rates->target_power_6to24 =
2730                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2731                                        rpinfo[idx_r].freq,
2732                                        rpinfo[idx_l].target_power_6to24,
2733                                        rpinfo[idx_r].target_power_6to24);
2734
2735        rates->target_power_36 =
2736                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2737                                        rpinfo[idx_r].freq,
2738                                        rpinfo[idx_l].target_power_36,
2739                                        rpinfo[idx_r].target_power_36);
2740
2741        rates->target_power_48 =
2742                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2743                                        rpinfo[idx_r].freq,
2744                                        rpinfo[idx_l].target_power_48,
2745                                        rpinfo[idx_r].target_power_48);
2746
2747        rates->target_power_54 =
2748                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2749                                        rpinfo[idx_r].freq,
2750                                        rpinfo[idx_l].target_power_54,
2751                                        rpinfo[idx_r].target_power_54);
2752}
2753
2754/**
2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756 * @ah: the &struct ath5k_hw
2757 * @channel: The &struct ieee80211_channel
2758 *
2759 * Get the max edge power for this channel if
2760 * we have such data from EEPROM's Conformance Test
2761 * Limits (CTL), and limit max power if needed.
2762 */
2763static void
2764ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2765                        struct ieee80211_channel *channel)
2766{
2767        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2768        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2769        struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2770        u8 *ctl_val = ee->ee_ctl;
2771        s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2772        s16 edge_pwr = 0;
2773        u8 rep_idx;
2774        u8 i, ctl_mode;
2775        u8 ctl_idx = 0xFF;
2776        u32 target = channel->center_freq;
2777
2778        ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2779
2780        switch (channel->hw_value) {
2781        case AR5K_MODE_11A:
2782                if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2783                        ctl_mode |= AR5K_CTL_TURBO;
2784                else
2785                        ctl_mode |= AR5K_CTL_11A;
2786                break;
2787        case AR5K_MODE_11G:
2788                if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2789                        ctl_mode |= AR5K_CTL_TURBOG;
2790                else
2791                        ctl_mode |= AR5K_CTL_11G;
2792                break;
2793        case AR5K_MODE_11B:
2794                ctl_mode |= AR5K_CTL_11B;
2795                break;
2796        default:
2797                return;
2798        }
2799
2800        for (i = 0; i < ee->ee_ctls; i++) {
2801                if (ctl_val[i] == ctl_mode) {
2802                        ctl_idx = i;
2803                        break;
2804                }
2805        }
2806
2807        /* If we have a CTL dataset available grab it and find the
2808         * edge power for our frequency */
2809        if (ctl_idx == 0xFF)
2810                return;
2811
2812        /* Edge powers are sorted by frequency from lower
2813         * to higher. Each CTL corresponds to 8 edge power
2814         * measurements. */
2815        rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2816
2817        /* Don't do boundaries check because we
2818         * might have more that one bands defined
2819         * for this mode */
2820
2821        /* Get the edge power that's closer to our
2822         * frequency */
2823        for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2824                rep_idx += i;
2825                if (target <= rep[rep_idx].freq)
2826                        edge_pwr = (s16) rep[rep_idx].edge;
2827        }
2828
2829        if (edge_pwr)
2830                ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2831}
2832
2833
2834/*
2835 * Power to PCDAC table functions
2836 */
2837
2838/**
2839 * DOC: Power to PCDAC table functions
2840 *
2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
2842 * for each calibrated channel. Each curve has 0,5dB Power steps
2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844 * exponential function. To recreate the curve we read 11 points
2845 * from eeprom (eeprom.c) and interpolate here.
2846 *
2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850 * power steps on x axis and PCDAC steps on y axis and looks like a
2851 * linear function. To recreate the curve and pass the power values
2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854 * and interpolate here.
2855 *
2856 * For a given channel we get the calibrated points (piers) for it or
2857 * -if we don't have calibration data for this specific channel- from the
2858 * available surrounding channels we have calibration data for, after we do a
2859 * linear interpolation between them. Then since we have our calibrated points
2860 * for this channel, we do again a linear interpolation between them to get the
2861 * whole curve.
2862 *
2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2864 */
2865
2866/**
2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868 * @ah: The &struct ath5k_hw
2869 * @table_min: Minimum power (x min)
2870 * @table_max: Maximum power (x max)
2871 *
2872 * No further processing is needed for RF5111, the only thing we have to
2873 * do is fill the values below and above calibration range since eeprom data
2874 * may not cover the entire PCDAC table.
2875 */
2876static void
2877ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2878                                                        s16 *table_max)
2879{
2880        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2881        u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2882        u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2883        s16     min_pwr, max_pwr;
2884
2885        /* Get table boundaries */
2886        min_pwr = table_min[0];
2887        pcdac_0 = pcdac_tmp[0];
2888
2889        max_pwr = table_max[0];
2890        pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2891
2892        /* Extrapolate below minimum using pcdac_0 */
2893        pcdac_i = 0;
2894        for (i = 0; i < min_pwr; i++)
2895                pcdac_out[pcdac_i++] = pcdac_0;
2896
2897        /* Copy values from pcdac_tmp */
2898        pwr_idx = min_pwr;
2899        for (i = 0; pwr_idx <= max_pwr &&
2900                    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2901                pcdac_out[pcdac_i++] = pcdac_tmp[i];
2902                pwr_idx++;
2903        }
2904
2905        /* Extrapolate above maximum */
2906        while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2907                pcdac_out[pcdac_i++] = pcdac_n;
2908
2909}
2910
2911/**
2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913 * @ah: The &struct ath5k_hw
2914 * @table_min: Minimum power (x min)
2915 * @table_max: Maximum power (x max)
2916 * @pdcurves: Number of pd curves
2917 *
2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
2920 * higher txpower range). We need to put them both on pcdac_out and place
2921 * them in the correct location. In case we only have one curve available
2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
2923 * available pwr levels since it's always the higher power curve). Extrapolate
2924 * below and above final table if needed.
2925 */
2926static void
2927ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2928                                                s16 *table_max, u8 pdcurves)
2929{
2930        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2931        u8      *pcdac_low_pwr;
2932        u8      *pcdac_high_pwr;
2933        u8      *pcdac_tmp;
2934        u8      pwr;
2935        s16     max_pwr_idx;
2936        s16     min_pwr_idx;
2937        s16     mid_pwr_idx = 0;
2938        /* Edge flag turns on the 7nth bit on the PCDAC
2939         * to declare the higher power curve (force values
2940         * to be greater than 64). If we only have one curve
2941         * we don't need to set this, if we have 2 curves and
2942         * fill the table backwards this can also be used to
2943         * switch from higher power curve to lower power curve */
2944        u8      edge_flag;
2945        int     i;
2946
2947        /* When we have only one curve available
2948         * that's the higher power curve. If we have
2949         * two curves the first is the high power curve
2950         * and the next is the low power curve. */
2951        if (pdcurves > 1) {
2952                pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2953                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2954                mid_pwr_idx = table_max[1] - table_min[1] - 1;
2955                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2956
2957                /* If table size goes beyond 31.5dB, keep the
2958                 * upper 31.5dB range when setting tx power.
2959                 * Note: 126 = 31.5 dB in quarter dB steps */
2960                if (table_max[0] - table_min[1] > 126)
2961                        min_pwr_idx = table_max[0] - 126;
2962                else
2963                        min_pwr_idx = table_min[1];
2964
2965                /* Since we fill table backwards
2966                 * start from high power curve */
2967                pcdac_tmp = pcdac_high_pwr;
2968
2969                edge_flag = 0x40;
2970        } else {
2971                pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2972                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2973                min_pwr_idx = table_min[0];
2974                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2975                pcdac_tmp = pcdac_high_pwr;
2976                edge_flag = 0;
2977        }
2978
2979        /* This is used when setting tx power*/
2980        ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2981
2982        /* Fill Power to PCDAC table backwards */
2983        pwr = max_pwr_idx;
2984        for (i = 63; i >= 0; i--) {
2985                /* Entering lower power range, reset
2986                 * edge flag and set pcdac_tmp to lower
2987                 * power curve.*/
2988                if (edge_flag == 0x40 &&
2989                (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2990                        edge_flag = 0x00;
2991                        pcdac_tmp = pcdac_low_pwr;
2992                        pwr = mid_pwr_idx / 2;
2993                }
2994
2995                /* Don't go below 1, extrapolate below if we have
2996                 * already switched to the lower power curve -or
2997                 * we only have one curve and edge_flag is zero
2998                 * anyway */
2999                if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3000                        while (i >= 0) {
3001                                pcdac_out[i] = pcdac_out[i + 1];
3002                                i--;
3003                        }
3004                        break;
3005                }
3006
3007                pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3008
3009                /* Extrapolate above if pcdac is greater than
3010                 * 126 -this can happen because we OR pcdac_out
3011                 * value with edge_flag on high power curve */
3012                if (pcdac_out[i] > 126)
3013                        pcdac_out[i] = 126;
3014
3015                /* Decrease by a 0.5dB step */
3016                pwr--;
3017        }
3018}
3019
3020/**
3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022 * @ah: The &struct ath5k_hw
3023 */
3024static void
3025ath5k_write_pcdac_table(struct ath5k_hw *ah)
3026{
3027        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
3028        int     i;
3029
3030        /*
3031         * Write TX power values
3032         */
3033        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3034                ath5k_hw_reg_write(ah,
3035                        (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3036                        (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3037                        AR5K_PHY_PCDAC_TXPOWER(i));
3038        }
3039}
3040
3041
3042/*
3043 * Power to PDADC table functions
3044 */
3045
3046/**
3047 * DOC: Power to PDADC table functions
3048 *
3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052 * PDADC steps on y axis and looks like an exponential function like the
3053 * RF5111 curve.
3054 *
3055 * To recreate the curves we read the points from eeprom (eeprom.c)
3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
3057 * curves are used (like RF5112) but vendors have the opportunity to include
3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
3059 * point for better accuracy like RF5112.
3060 *
3061 * The process is similar to what we do above for RF5111/5112
3062 */
3063
3064/**
3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066 * @ah: The &struct ath5k_hw
3067 * @pwr_min: Minimum power (x min)
3068 * @pwr_max: Maximum power (x max)
3069 * @pdcurves: Number of available curves
3070 *
3071 * Combine the various pd curves and create the final Power to PDADC table
3072 * We can have up to 4 pd curves, we need to do a similar process
3073 * as we do for RF5112. This time we don't have an edge_flag but we
3074 * set the gain boundaries on a separate register.
3075 */
3076static void
3077ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3078                        s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3079{
3080        u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3081        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3082        u8 *pdadc_tmp;
3083        s16 pdadc_0;
3084        u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3085        u8 pd_gain_overlap;
3086
3087        /* Note: Register value is initialized on initvals
3088         * there is no feedback from hw.
3089         * XXX: What about pd_gain_overlap from EEPROM ? */
3090        pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3091                AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3092
3093        /* Create final PDADC table */
3094        for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3095                pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3096
3097                if (pdg == pdcurves - 1)
3098                        /* 2 dB boundary stretch for last
3099                         * (higher power) curve */
3100                        gain_boundaries[pdg] = pwr_max[pdg] + 4;
3101                else
3102                        /* Set gain boundary in the middle
3103                         * between this curve and the next one */
3104                        gain_boundaries[pdg] =
3105                                (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3106
3107                /* Sanity check in case our 2 db stretch got out of
3108                 * range. */
3109                if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3110                        gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3111
3112                /* For the first curve (lower power)
3113                 * start from 0 dB */
3114                if (pdg == 0)
3115                        pdadc_0 = 0;
3116                else
3117                        /* For the other curves use the gain overlap */
3118                        pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3119                                                        pd_gain_overlap;
3120
3121                /* Force each power step to be at least 0.5 dB */
3122                if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3123                        pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3124                else
3125                        pwr_step = 1;
3126
3127                /* If pdadc_0 is negative, we need to extrapolate
3128                 * below this pdgain by a number of pwr_steps */
3129                while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3130                        s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3131                        pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3132                        pdadc_0++;
3133                }
3134
3135                /* Set last pwr level, using gain boundaries */
3136                pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3137                /* Limit it to be inside pwr range */
3138                table_size = pwr_max[pdg] - pwr_min[pdg];
3139                max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3140
3141                /* Fill pdadc_out table */
3142                while (pdadc_0 < max_idx && pdadc_i < 128)
3143                        pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3144
3145                /* Need to extrapolate above this pdgain? */
3146                if (pdadc_n <= max_idx)
3147                        continue;
3148
3149                /* Force each power step to be at least 0.5 dB */
3150                if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3151                        pwr_step = pdadc_tmp[table_size - 1] -
3152                                                pdadc_tmp[table_size - 2];
3153                else
3154                        pwr_step = 1;
3155
3156                /* Extrapolate above */
3157                while ((pdadc_0 < (s16) pdadc_n) &&
3158                (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3159                        s16 tmp = pdadc_tmp[table_size - 1] +
3160                                        (pdadc_0 - max_idx) * pwr_step;
3161                        pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3162                        pdadc_0++;
3163                }
3164        }
3165
3166        while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3167                gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3168                pdg++;
3169        }
3170
3171        while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3172                pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3173                pdadc_i++;
3174        }
3175
3176        /* Set gain boundaries */
3177        ath5k_hw_reg_write(ah,
3178                AR5K_REG_SM(pd_gain_overlap,
3179                        AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3180                AR5K_REG_SM(gain_boundaries[0],
3181                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3182                AR5K_REG_SM(gain_boundaries[1],
3183                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3184                AR5K_REG_SM(gain_boundaries[2],
3185                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3186                AR5K_REG_SM(gain_boundaries[3],
3187                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3188                AR5K_PHY_TPC_RG5);
3189
3190        /* Used for setting rate power table */
3191        ah->ah_txpower.txp_min_idx = pwr_min[0];
3192
3193}
3194
3195/**
3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197 * @ah: The &struct ath5k_hw
3198 * @ee_mode: One of enum ath5k_driver_mode
3199 */
3200static void
3201ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3202{
3203        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3204        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3205        u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3206        u8 pdcurves = ee->ee_pd_gains[ee_mode];
3207        u32 reg;
3208        u8 i;
3209
3210        /* Select the right pdgain curves */
3211
3212        /* Clear current settings */
3213        reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3214        reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3215                AR5K_PHY_TPC_RG1_PDGAIN_2 |
3216                AR5K_PHY_TPC_RG1_PDGAIN_3 |
3217                AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3218
3219        /*
3220         * Use pd_gains curve from eeprom
3221         *
3222         * This overrides the default setting from initvals
3223         * in case some vendors (e.g. Zcomax) don't use the default
3224         * curves. If we don't honor their settings we 'll get a
3225         * 5dB (1 * gain overlap ?) drop.
3226         */
3227        reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3228
3229        switch (pdcurves) {
3230        case 3:
3231                reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3232                fallthrough;
3233        case 2:
3234                reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3235                fallthrough;
3236        case 1:
3237                reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3238                break;
3239        }
3240        ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3241
3242        /*
3243         * Write TX power values
3244         */
3245        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3246                u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3247                ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3248        }
3249}
3250
3251
3252/*
3253 * Common code for PCDAC/PDADC tables
3254 */
3255
3256/**
3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
3258 * @ah: The &struct ath5k_hw
3259 * @channel: The &struct ieee80211_channel
3260 * @ee_mode: One of enum ath5k_driver_mode
3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
3262 *
3263 * This is the main function that uses all of the above
3264 * to set PCDAC/PDADC table on hw for the current channel.
3265 * This table is used for tx power calibration on the baseband,
3266 * without it we get weird tx power levels and in some cases
3267 * distorted spectral mask
3268 */
3269static int
3270ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3271                        struct ieee80211_channel *channel,
3272                        u8 ee_mode, u8 type)
3273{
3274        struct ath5k_pdgain_info *pdg_L, *pdg_R;
3275        struct ath5k_chan_pcal_info *pcinfo_L;
3276        struct ath5k_chan_pcal_info *pcinfo_R;
3277        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3278        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3279        s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3280        s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3281        u8 *tmpL;
3282        u8 *tmpR;
3283        u32 target = channel->center_freq;
3284        int pdg, i;
3285
3286        /* Get surrounding freq piers for this channel */
3287        ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3288                                                &pcinfo_L,
3289                                                &pcinfo_R);
3290
3291        /* Loop over pd gain curves on
3292         * surrounding freq piers by index */
3293        for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3294
3295                /* Fill curves in reverse order
3296                 * from lower power (max gain)
3297                 * to higher power. Use curve -> idx
3298                 * backmapping we did on eeprom init */
3299                u8 idx = pdg_curve_to_idx[pdg];
3300
3301                /* Grab the needed curves by index */
3302                pdg_L = &pcinfo_L->pd_curves[idx];
3303                pdg_R = &pcinfo_R->pd_curves[idx];
3304
3305                /* Initialize the temp tables */
3306                tmpL = ah->ah_txpower.tmpL[pdg];
3307                tmpR = ah->ah_txpower.tmpR[pdg];
3308
3309                /* Set curve's x boundaries and create
3310                 * curves so that they cover the same
3311                 * range (if we don't do that one table
3312                 * will have values on some range and the
3313                 * other one won't have any so interpolation
3314                 * will fail) */
3315                table_min[pdg] = min(pdg_L->pd_pwr[0],
3316                                        pdg_R->pd_pwr[0]) / 2;
3317
3318                table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3319                                pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3320
3321                /* Now create the curves on surrounding channels
3322                 * and interpolate if needed to get the final
3323                 * curve for this gain on this channel */
3324                switch (type) {
3325                case AR5K_PWRTABLE_LINEAR_PCDAC:
3326                        /* Override min/max so that we don't loose
3327                         * accuracy (don't divide by 2) */
3328                        table_min[pdg] = min(pdg_L->pd_pwr[0],
3329                                                pdg_R->pd_pwr[0]);
3330
3331                        table_max[pdg] =
3332                                max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3333                                        pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3334
3335                        /* Override minimum so that we don't get
3336                         * out of bounds while extrapolating
3337                         * below. Don't do this when we have 2
3338                         * curves and we are on the high power curve
3339                         * because table_min is ok in this case */
3340                        if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3341
3342                                table_min[pdg] =
3343                                        ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3344                                                                pdg_R->pd_step,
3345                                                                pdg_L->pd_pwr,
3346                                                                pdg_R->pd_pwr);
3347
3348                                /* Don't go too low because we will
3349                                 * miss the upper part of the curve.
3350                                 * Note: 126 = 31.5dB (max power supported)
3351                                 * in 0.25dB units */
3352                                if (table_max[pdg] - table_min[pdg] > 126)
3353                                        table_min[pdg] = table_max[pdg] - 126;
3354                        }
3355
3356                        fallthrough;
3357                case AR5K_PWRTABLE_PWR_TO_PCDAC:
3358                case AR5K_PWRTABLE_PWR_TO_PDADC:
3359
3360                        ath5k_create_power_curve(table_min[pdg],
3361                                                table_max[pdg],
3362                                                pdg_L->pd_pwr,
3363                                                pdg_L->pd_step,
3364                                                pdg_L->pd_points, tmpL, type);
3365
3366                        /* We are in a calibration
3367                         * pier, no need to interpolate
3368                         * between freq piers */
3369                        if (pcinfo_L == pcinfo_R)
3370                                continue;
3371
3372                        ath5k_create_power_curve(table_min[pdg],
3373                                                table_max[pdg],
3374                                                pdg_R->pd_pwr,
3375                                                pdg_R->pd_step,
3376                                                pdg_R->pd_points, tmpR, type);
3377                        break;
3378                default:
3379                        return -EINVAL;
3380                }
3381
3382                /* Interpolate between curves
3383                 * of surrounding freq piers to
3384                 * get the final curve for this
3385                 * pd gain. Re-use tmpL for interpolation
3386                 * output */
3387                for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3388                (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3389                        tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3390                                                        (s16) pcinfo_L->freq,
3391                                                        (s16) pcinfo_R->freq,
3392                                                        (s16) tmpL[i],
3393                                                        (s16) tmpR[i]);
3394                }
3395        }
3396
3397        /* Now we have a set of curves for this
3398         * channel on tmpL (x range is table_max - table_min
3399         * and y values are tmpL[pdg][]) sorted in the same
3400         * order as EEPROM (because we've used the backmapping).
3401         * So for RF5112 it's from higher power to lower power
3402         * and for RF2413 it's from lower power to higher power.
3403         * For RF5111 we only have one curve. */
3404
3405        /* Fill min and max power levels for this
3406         * channel by interpolating the values on
3407         * surrounding channels to complete the dataset */
3408        ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3409                                        (s16) pcinfo_L->freq,
3410                                        (s16) pcinfo_R->freq,
3411                                        pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3412
3413        ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3414                                        (s16) pcinfo_L->freq,
3415                                        (s16) pcinfo_R->freq,
3416                                        pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3417
3418        /* Fill PCDAC/PDADC table */
3419        switch (type) {
3420        case AR5K_PWRTABLE_LINEAR_PCDAC:
3421                /* For RF5112 we can have one or two curves
3422                 * and each curve covers a certain power lvl
3423                 * range so we need to do some more processing */
3424                ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3425                                                ee->ee_pd_gains[ee_mode]);
3426
3427                /* Set txp.offset so that we can
3428                 * match max power value with max
3429                 * table index */
3430                ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3431                break;
3432        case AR5K_PWRTABLE_PWR_TO_PCDAC:
3433                /* We are done for RF5111 since it has only
3434                 * one curve, just fit the curve on the table */
3435                ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3436
3437                /* No rate powertable adjustment for RF5111 */
3438                ah->ah_txpower.txp_min_idx = 0;
3439                ah->ah_txpower.txp_offset = 0;
3440                break;
3441        case AR5K_PWRTABLE_PWR_TO_PDADC:
3442                /* Set PDADC boundaries and fill
3443                 * final PDADC table */
3444                ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3445                                                ee->ee_pd_gains[ee_mode]);
3446
3447                /* Set txp.offset, note that table_min
3448                 * can be negative */
3449                ah->ah_txpower.txp_offset = table_min[0];
3450                break;
3451        default:
3452                return -EINVAL;
3453        }
3454
3455        ah->ah_txpower.txp_setup = true;
3456
3457        return 0;
3458}
3459
3460/**
3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462 * @ah: The &struct ath5k_hw
3463 * @ee_mode: One of enum ath5k_driver_mode
3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
3465 */
3466static void
3467ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3468{
3469        if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3470                ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3471        else
3472                ath5k_write_pcdac_table(ah);
3473}
3474
3475
3476/**
3477 * DOC: Per-rate tx power setting
3478 *
3479 * This is the code that sets the desired tx power limit (below
3480 * maximum) on hw for each rate (we also have TPC that sets
3481 * power per packet type). We do that by providing an index on the
3482 * PCDAC/PDADC table we set up above, for each rate.
3483 *
3484 * For now we only limit txpower based on maximum tx power
3485 * supported by hw (what's inside rate_info) + conformance test
3486 * limits. We need to limit this even more, based on regulatory domain
3487 * etc to be safe. Normally this is done from above so we don't care
3488 * here, all we care is that the tx power we set will be O.K.
3489 * for the hw (e.g. won't create noise on PA etc).
3490 *
3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492 * x values) and is indexed as follows:
3493 * rates[0] - rates[7] -> OFDM rates
3494 * rates[8] - rates[14] -> CCK rates
3495 * rates[15] -> XR rates (they all have the same power)
3496 */
3497
3498/**
3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500 * @ah: The &struct ath5k_hw
3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503 * @ee_mode: One of enum ath5k_driver_mode
3504 */
3505static void
3506ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3507                        struct ath5k_rate_pcal_info *rate_info,
3508                        u8 ee_mode)
3509{
3510        unsigned int i;
3511        u16 *rates;
3512        s16 rate_idx_scaled = 0;
3513
3514        /* max_pwr is power level we got from driver/user in 0.5dB
3515         * units, switch to 0.25dB units so we can compare */
3516        max_pwr *= 2;
3517        max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3518
3519        /* apply rate limits */
3520        rates = ah->ah_txpower.txp_rates_power_table;
3521
3522        /* OFDM rates 6 to 24Mb/s */
3523        for (i = 0; i < 5; i++)
3524                rates[i] = min(max_pwr, rate_info->target_power_6to24);
3525
3526        /* Rest OFDM rates */
3527        rates[5] = min(rates[0], rate_info->target_power_36);
3528        rates[6] = min(rates[0], rate_info->target_power_48);
3529        rates[7] = min(rates[0], rate_info->target_power_54);
3530
3531        /* CCK rates */
3532        /* 1L */
3533        rates[8] = min(rates[0], rate_info->target_power_6to24);
3534        /* 2L */
3535        rates[9] = min(rates[0], rate_info->target_power_36);
3536        /* 2S */
3537        rates[10] = min(rates[0], rate_info->target_power_36);
3538        /* 5L */
3539        rates[11] = min(rates[0], rate_info->target_power_48);
3540        /* 5S */
3541        rates[12] = min(rates[0], rate_info->target_power_48);
3542        /* 11L */
3543        rates[13] = min(rates[0], rate_info->target_power_54);
3544        /* 11S */
3545        rates[14] = min(rates[0], rate_info->target_power_54);
3546
3547        /* XR rates */
3548        rates[15] = min(rates[0], rate_info->target_power_6to24);
3549
3550        /* CCK rates have different peak to average ratio
3551         * so we have to tweak their power so that gainf
3552         * correction works ok. For this we use OFDM to
3553         * CCK delta from eeprom */
3554        if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3555        (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3556                for (i = 8; i <= 15; i++)
3557                        rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3558
3559        /* Save min/max and current tx power for this channel
3560         * in 0.25dB units.
3561         *
3562         * Note: We use rates[0] for current tx power because
3563         * it covers most of the rates, in most cases. It's our
3564         * tx power limit and what the user expects to see. */
3565        ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3566        ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3567
3568        /* Set max txpower for correct OFDM operation on all rates
3569         * -that is the txpower for 54Mbit-, it's used for the PAPD
3570         * gain probe and it's in 0.5dB units */
3571        ah->ah_txpower.txp_ofdm = rates[7];
3572
3573        /* Now that we have all rates setup use table offset to
3574         * match the power range set by user with the power indices
3575         * on PCDAC/PDADC table */
3576        for (i = 0; i < 16; i++) {
3577                rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3578                /* Don't get out of bounds */
3579                if (rate_idx_scaled > 63)
3580                        rate_idx_scaled = 63;
3581                if (rate_idx_scaled < 0)
3582                        rate_idx_scaled = 0;
3583                rates[i] = rate_idx_scaled;
3584        }
3585}
3586
3587
3588/**
3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590 * @ah: The &struct ath5k_hw
3591 * @channel: The &struct ieee80211_channel
3592 * @txpower: Requested tx power in 0.5dB steps
3593 *
3594 * Combines all of the above to set the requested tx power limit
3595 * on hw.
3596 */
3597static int
3598ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3599                 u8 txpower)
3600{
3601        struct ath5k_rate_pcal_info rate_info;
3602        struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3603        int ee_mode;
3604        u8 type;
3605        int ret;
3606
3607        if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3608                ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3609                return -EINVAL;
3610        }
3611
3612        ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3613
3614        /* Initialize TX power table */
3615        switch (ah->ah_radio) {
3616        case AR5K_RF5110:
3617                /* TODO */
3618                return 0;
3619        case AR5K_RF5111:
3620                type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3621                break;
3622        case AR5K_RF5112:
3623                type = AR5K_PWRTABLE_LINEAR_PCDAC;
3624                break;
3625        case AR5K_RF2413:
3626        case AR5K_RF5413:
3627        case AR5K_RF2316:
3628        case AR5K_RF2317:
3629        case AR5K_RF2425:
3630                type = AR5K_PWRTABLE_PWR_TO_PDADC;
3631                break;
3632        default:
3633                return -EINVAL;
3634        }
3635
3636        /*
3637         * If we don't change channel/mode skip tx powertable calculation
3638         * and use the cached one.
3639         */
3640        if (!ah->ah_txpower.txp_setup ||
3641            (channel->hw_value != curr_channel->hw_value) ||
3642            (channel->center_freq != curr_channel->center_freq)) {
3643                /* Reset TX power values but preserve requested
3644                 * tx power from above */
3645                int requested_txpower = ah->ah_txpower.txp_requested;
3646
3647                memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3648
3649                /* Restore TPC setting and requested tx power */
3650                ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3651
3652                ah->ah_txpower.txp_requested = requested_txpower;
3653
3654                /* Calculate the powertable */
3655                ret = ath5k_setup_channel_powertable(ah, channel,
3656                                                        ee_mode, type);
3657                if (ret)
3658                        return ret;
3659        }
3660
3661        /* Write table on hw */
3662        ath5k_write_channel_powertable(ah, ee_mode, type);
3663
3664        /* Limit max power if we have a CTL available */
3665        ath5k_get_max_ctl_power(ah, channel);
3666
3667        /* FIXME: Antenna reduction stuff */
3668
3669        /* FIXME: Limit power on turbo modes */
3670
3671        /* FIXME: TPC scale reduction */
3672
3673        /* Get surrounding channels for per-rate power table
3674         * calibration */
3675        ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3676
3677        /* Setup rate power table */
3678        ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3679
3680        /* Write rate power table on hw */
3681        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3682                AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683                AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3684
3685        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3686                AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687                AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3688
3689        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3690                AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691                AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3692
3693        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3694                AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695                AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3696
3697        /* FIXME: TPC support */
3698        if (ah->ah_txpower.txp_tpc) {
3699                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3700                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3701
3702                ath5k_hw_reg_write(ah,
3703                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3704                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3705                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3706                        AR5K_TPC);
3707        } else {
3708                ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3709                        AR5K_PHY_TXPOWER_RATE_MAX);
3710        }
3711
3712        return 0;
3713}
3714
3715/**
3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717 * @ah: The &struct ath5k_hw
3718 * @txpower: The requested tx power limit in 0.5dB steps
3719 *
3720 * This function provides access to ath5k_hw_txpower to the driver in
3721 * case user or an application changes it while PHY is running.
3722 */
3723int
3724ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3725{
3726        ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3727                "changing txpower to %d\n", txpower);
3728
3729        return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3730}
3731
3732
3733/*************\
3734 Init function
3735\*************/
3736
3737/**
3738 * ath5k_hw_phy_init() - Initialize PHY
3739 * @ah: The &struct ath5k_hw
3740 * @channel: The @struct ieee80211_channel
3741 * @mode: One of enum ath5k_driver_mode
3742 * @fast: Try a fast channel switch instead
3743 *
3744 * This is the main function used during reset to initialize PHY
3745 * or do a fast channel change if possible.
3746 *
3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748 * warm reset state !
3749 */
3750int
3751ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3752                      u8 mode, bool fast)
3753{
3754        struct ieee80211_channel *curr_channel;
3755        int ret, i;
3756        u32 phy_tst1;
3757        ret = 0;
3758
3759        /*
3760         * Sanity check for fast flag
3761         * Don't try fast channel change when changing modulation
3762         * mode/band. We check for chip compatibility on
3763         * ath5k_hw_reset.
3764         */
3765        curr_channel = ah->ah_current_channel;
3766        if (fast && (channel->hw_value != curr_channel->hw_value))
3767                return -EINVAL;
3768
3769        /*
3770         * On fast channel change we only set the synth parameters
3771         * while PHY is running, enable calibration and skip the rest.
3772         */
3773        if (fast) {
3774                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3775                                    AR5K_PHY_RFBUS_REQ_REQUEST);
3776                for (i = 0; i < 100; i++) {
3777                        if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3778                                break;
3779                        udelay(5);
3780                }
3781                /* Failed */
3782                if (i >= 100)
3783                        return -EIO;
3784
3785                /* Set channel and wait for synth */
3786                ret = ath5k_hw_channel(ah, channel);
3787                if (ret)
3788                        return ret;
3789
3790                ath5k_hw_wait_for_synth(ah, channel);
3791        }
3792
3793        /*
3794         * Set TX power
3795         *
3796         * Note: We need to do that before we set
3797         * RF buffer settings on 5211/5212+ so that we
3798         * properly set curve indices.
3799         */
3800        ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3801                                        ah->ah_txpower.txp_requested * 2 :
3802                                        AR5K_TUNE_MAX_TXPOWER);
3803        if (ret)
3804                return ret;
3805
3806        /* Write OFDM timings on 5212*/
3807        if (ah->ah_version == AR5K_AR5212 &&
3808                channel->hw_value != AR5K_MODE_11B) {
3809
3810                ret = ath5k_hw_write_ofdm_timings(ah, channel);
3811                if (ret)
3812                        return ret;
3813
3814                /* Spur info is available only from EEPROM versions
3815                 * greater than 5.3, but the EEPROM routines will use
3816                 * static values for older versions */
3817                if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3818                        ath5k_hw_set_spur_mitigation_filter(ah,
3819                                                            channel);
3820        }
3821
3822        /* If we used fast channel switching
3823         * we are done, release RF bus and
3824         * fire up NF calibration.
3825         *
3826         * Note: Only NF calibration due to
3827         * channel change, not AGC calibration
3828         * since AGC is still running !
3829         */
3830        if (fast) {
3831                /*
3832                 * Release RF Bus grant
3833                 */
3834                AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3835                                    AR5K_PHY_RFBUS_REQ_REQUEST);
3836
3837                /*
3838                 * Start NF calibration
3839                 */
3840                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3841                                        AR5K_PHY_AGCCTL_NF);
3842
3843                return ret;
3844        }
3845
3846        /*
3847         * For 5210 we do all initialization using
3848         * initvals, so we don't have to modify
3849         * any settings (5210 also only supports
3850         * a/aturbo modes)
3851         */
3852        if (ah->ah_version != AR5K_AR5210) {
3853
3854                /*
3855                 * Write initial RF gain settings
3856                 * This should work for both 5111/5112
3857                 */
3858                ret = ath5k_hw_rfgain_init(ah, channel->band);
3859                if (ret)
3860                        return ret;
3861
3862                usleep_range(1000, 1500);
3863
3864                /*
3865                 * Write RF buffer
3866                 */
3867                ret = ath5k_hw_rfregs_init(ah, channel, mode);
3868                if (ret)
3869                        return ret;
3870
3871                /*Enable/disable 802.11b mode on 5111
3872                (enable 2111 frequency converter + CCK)*/
3873                if (ah->ah_radio == AR5K_RF5111) {
3874                        if (mode == AR5K_MODE_11B)
3875                                AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3876                                    AR5K_TXCFG_B_MODE);
3877                        else
3878                                AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3879                                    AR5K_TXCFG_B_MODE);
3880                }
3881
3882        } else if (ah->ah_version == AR5K_AR5210) {
3883                usleep_range(1000, 1500);
3884                /* Disable phy and wait */
3885                ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3886                usleep_range(1000, 1500);
3887        }
3888
3889        /* Set channel on PHY */
3890        ret = ath5k_hw_channel(ah, channel);
3891        if (ret)
3892                return ret;
3893
3894        /*
3895         * Enable the PHY and wait until completion
3896         * This includes BaseBand and Synthesizer
3897         * activation.
3898         */
3899        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3900
3901        ath5k_hw_wait_for_synth(ah, channel);
3902
3903        /*
3904         * Perform ADC test to see if baseband is ready
3905         * Set tx hold and check adc test register
3906         */
3907        phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3908        ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3909        for (i = 0; i <= 20; i++) {
3910                if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3911                        break;
3912                usleep_range(200, 250);
3913        }
3914        ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3915
3916        /*
3917         * Start automatic gain control calibration
3918         *
3919         * During AGC calibration RX path is re-routed to
3920         * a power detector so we don't receive anything.
3921         *
3922         * This method is used to calibrate some static offsets
3923         * used together with on-the fly I/Q calibration (the
3924         * one performed via ath5k_hw_phy_calibrate), which doesn't
3925         * interrupt rx path.
3926         *
3927         * While rx path is re-routed to the power detector we also
3928         * start a noise floor calibration to measure the
3929         * card's noise floor (the noise we measure when we are not
3930         * transmitting or receiving anything).
3931         *
3932         * If we are in a noisy environment, AGC calibration may time
3933         * out and/or noise floor calibration might timeout.
3934         */
3935        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3936                                AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3937
3938        /* At the same time start I/Q calibration for QAM constellation
3939         * -no need for CCK- */
3940        ah->ah_iq_cal_needed = false;
3941        if (!(mode == AR5K_MODE_11B)) {
3942                ah->ah_iq_cal_needed = true;
3943                AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3944                                AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3945                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3946                                AR5K_PHY_IQ_RUN);
3947        }
3948
3949        /* Wait for gain calibration to finish (we check for I/Q calibration
3950         * during ath5k_phy_calibrate) */
3951        if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3952                        AR5K_PHY_AGCCTL_CAL, 0, false)) {
3953                ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3954                        channel->center_freq);
3955        }
3956
3957        /* Restore antenna mode */
3958        ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3959
3960        return ret;
3961}
3962