linux/drivers/net/wireless/ath/ath9k/hw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_LICENSE("Dual BSD/GPL");
  38
  39static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  40{
  41        struct ath_common *common = ath9k_hw_common(ah);
  42        struct ath9k_channel *chan = ah->curchan;
  43        unsigned int clockrate;
  44
  45        /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  46        if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  47                clockrate = 117;
  48        else if (!chan) /* should really check for CCK instead */
  49                clockrate = ATH9K_CLOCK_RATE_CCK;
  50        else if (IS_CHAN_2GHZ(chan))
  51                clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  52        else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  53                clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  54        else
  55                clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  56
  57        if (chan) {
  58                if (IS_CHAN_HT40(chan))
  59                        clockrate *= 2;
  60                if (IS_CHAN_HALF_RATE(chan))
  61                        clockrate /= 2;
  62                if (IS_CHAN_QUARTER_RATE(chan))
  63                        clockrate /= 4;
  64        }
  65
  66        common->clockrate = clockrate;
  67}
  68
  69static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  70{
  71        struct ath_common *common = ath9k_hw_common(ah);
  72
  73        return usecs * common->clockrate;
  74}
  75
  76bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  77{
  78        int i;
  79
  80        BUG_ON(timeout < AH_TIME_QUANTUM);
  81
  82        for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  83                if ((REG_READ(ah, reg) & mask) == val)
  84                        return true;
  85
  86                udelay(AH_TIME_QUANTUM);
  87        }
  88
  89        ath_dbg(ath9k_hw_common(ah), ANY,
  90                "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  91                timeout, reg, REG_READ(ah, reg), mask, val);
  92
  93        return false;
  94}
  95EXPORT_SYMBOL(ath9k_hw_wait);
  96
  97void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  98                          int hw_delay)
  99{
 100        hw_delay /= 10;
 101
 102        if (IS_CHAN_HALF_RATE(chan))
 103                hw_delay *= 2;
 104        else if (IS_CHAN_QUARTER_RATE(chan))
 105                hw_delay *= 4;
 106
 107        udelay(hw_delay + BASE_ACTIVATE_DELAY);
 108}
 109
 110void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 111                          int column, unsigned int *writecnt)
 112{
 113        int r;
 114
 115        ENABLE_REGWRITE_BUFFER(ah);
 116        for (r = 0; r < array->ia_rows; r++) {
 117                REG_WRITE(ah, INI_RA(array, r, 0),
 118                          INI_RA(array, r, column));
 119                DO_DELAY(*writecnt);
 120        }
 121        REGWRITE_BUFFER_FLUSH(ah);
 122}
 123
 124void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 125{
 126        u32 *tmp_reg_list, *tmp_data;
 127        int i;
 128
 129        tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 130        if (!tmp_reg_list) {
 131                dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 132                return;
 133        }
 134
 135        tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL);
 136        if (!tmp_data) {
 137                dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 138                goto error_tmp_data;
 139        }
 140
 141        for (i = 0; i < size; i++)
 142                tmp_reg_list[i] = array[i][0];
 143
 144        REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 145
 146        for (i = 0; i < size; i++)
 147                array[i][1] = tmp_data[i];
 148
 149        kfree(tmp_data);
 150error_tmp_data:
 151        kfree(tmp_reg_list);
 152}
 153
 154u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 155{
 156        u32 retval;
 157        int i;
 158
 159        for (i = 0, retval = 0; i < n; i++) {
 160                retval = (retval << 1) | (val & 1);
 161                val >>= 1;
 162        }
 163        return retval;
 164}
 165
 166u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 167                           u8 phy, int kbps,
 168                           u32 frameLen, u16 rateix,
 169                           bool shortPreamble)
 170{
 171        u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 172
 173        if (kbps == 0)
 174                return 0;
 175
 176        switch (phy) {
 177        case WLAN_RC_PHY_CCK:
 178                phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 179                if (shortPreamble)
 180                        phyTime >>= 1;
 181                numBits = frameLen << 3;
 182                txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 183                break;
 184        case WLAN_RC_PHY_OFDM:
 185                if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 186                        bitsPerSymbol =
 187                                ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 188                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 189                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 190                        txTime = OFDM_SIFS_TIME_QUARTER
 191                                + OFDM_PREAMBLE_TIME_QUARTER
 192                                + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 193                } else if (ah->curchan &&
 194                           IS_CHAN_HALF_RATE(ah->curchan)) {
 195                        bitsPerSymbol =
 196                                ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000;
 197                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 198                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 199                        txTime = OFDM_SIFS_TIME_HALF +
 200                                OFDM_PREAMBLE_TIME_HALF
 201                                + (numSymbols * OFDM_SYMBOL_TIME_HALF);
 202                } else {
 203                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 204                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 205                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 206                        txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 207                                + (numSymbols * OFDM_SYMBOL_TIME);
 208                }
 209                break;
 210        default:
 211                ath_err(ath9k_hw_common(ah),
 212                        "Unknown phy %u (rate ix %u)\n", phy, rateix);
 213                txTime = 0;
 214                break;
 215        }
 216
 217        return txTime;
 218}
 219EXPORT_SYMBOL(ath9k_hw_computetxtime);
 220
 221void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 222                                  struct ath9k_channel *chan,
 223                                  struct chan_centers *centers)
 224{
 225        int8_t extoff;
 226
 227        if (!IS_CHAN_HT40(chan)) {
 228                centers->ctl_center = centers->ext_center =
 229                        centers->synth_center = chan->channel;
 230                return;
 231        }
 232
 233        if (IS_CHAN_HT40PLUS(chan)) {
 234                centers->synth_center =
 235                        chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 236                extoff = 1;
 237        } else {
 238                centers->synth_center =
 239                        chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 240                extoff = -1;
 241        }
 242
 243        centers->ctl_center =
 244                centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 245        /* 25 MHz spacing is supported by hw but not on upper layers */
 246        centers->ext_center =
 247                centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 248}
 249
 250/******************/
 251/* Chip Revisions */
 252/******************/
 253
 254static bool ath9k_hw_read_revisions(struct ath_hw *ah)
 255{
 256        u32 srev;
 257        u32 val;
 258
 259        if (ah->get_mac_revision)
 260                ah->hw_version.macRev = ah->get_mac_revision();
 261
 262        switch (ah->hw_version.devid) {
 263        case AR5416_AR9100_DEVID:
 264                ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 265                break;
 266        case AR9300_DEVID_AR9330:
 267                ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 268                if (!ah->get_mac_revision) {
 269                        val = REG_READ(ah, AR_SREV);
 270                        ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271                }
 272                return true;
 273        case AR9300_DEVID_AR9340:
 274                ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275                return true;
 276        case AR9300_DEVID_QCA955X:
 277                ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 278                return true;
 279        case AR9300_DEVID_AR953X:
 280                ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 281                return true;
 282        case AR9300_DEVID_QCA956X:
 283                ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 284                return true;
 285        }
 286
 287        srev = REG_READ(ah, AR_SREV);
 288
 289        if (srev == -1) {
 290                ath_err(ath9k_hw_common(ah),
 291                        "Failed to read SREV register");
 292                return false;
 293        }
 294
 295        val = srev & AR_SREV_ID;
 296
 297        if (val == 0xFF) {
 298                val = srev;
 299                ah->hw_version.macVersion =
 300                        (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 301                ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 302
 303                if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 304                        ah->is_pciexpress = true;
 305                else
 306                        ah->is_pciexpress = (val &
 307                                             AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 308        } else {
 309                if (!AR_SREV_9100(ah))
 310                        ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 311
 312                ah->hw_version.macRev = val & AR_SREV_REVISION;
 313
 314                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 315                        ah->is_pciexpress = true;
 316        }
 317
 318        return true;
 319}
 320
 321/************************************/
 322/* HW Attach, Detach, Init Routines */
 323/************************************/
 324
 325static void ath9k_hw_disablepcie(struct ath_hw *ah)
 326{
 327        if (!AR_SREV_5416(ah))
 328                return;
 329
 330        REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 331        REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 332        REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 333        REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 334        REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 335        REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 336        REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 337        REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 338        REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 339
 340        REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 341}
 342
 343/* This should work for all families including legacy */
 344static bool ath9k_hw_chip_test(struct ath_hw *ah)
 345{
 346        struct ath_common *common = ath9k_hw_common(ah);
 347        u32 regAddr[2] = { AR_STA_ID0 };
 348        u32 regHold[2];
 349        static const u32 patternData[4] = {
 350                0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 351        };
 352        int i, j, loop_max;
 353
 354        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 355                loop_max = 2;
 356                regAddr[1] = AR_PHY_BASE + (8 << 2);
 357        } else
 358                loop_max = 1;
 359
 360        for (i = 0; i < loop_max; i++) {
 361                u32 addr = regAddr[i];
 362                u32 wrData, rdData;
 363
 364                regHold[i] = REG_READ(ah, addr);
 365                for (j = 0; j < 0x100; j++) {
 366                        wrData = (j << 16) | j;
 367                        REG_WRITE(ah, addr, wrData);
 368                        rdData = REG_READ(ah, addr);
 369                        if (rdData != wrData) {
 370                                ath_err(common,
 371                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 372                                        addr, wrData, rdData);
 373                                return false;
 374                        }
 375                }
 376                for (j = 0; j < 4; j++) {
 377                        wrData = patternData[j];
 378                        REG_WRITE(ah, addr, wrData);
 379                        rdData = REG_READ(ah, addr);
 380                        if (wrData != rdData) {
 381                                ath_err(common,
 382                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 383                                        addr, wrData, rdData);
 384                                return false;
 385                        }
 386                }
 387                REG_WRITE(ah, regAddr[i], regHold[i]);
 388        }
 389        udelay(100);
 390
 391        return true;
 392}
 393
 394static void ath9k_hw_init_config(struct ath_hw *ah)
 395{
 396        struct ath_common *common = ath9k_hw_common(ah);
 397
 398        ah->config.dma_beacon_response_time = 1;
 399        ah->config.sw_beacon_response_time = 6;
 400        ah->config.cwm_ignore_extcca = false;
 401        ah->config.analog_shiftreg = 1;
 402
 403        ah->config.rx_intr_mitigation = true;
 404
 405        if (AR_SREV_9300_20_OR_LATER(ah)) {
 406                ah->config.rimt_last = 500;
 407                ah->config.rimt_first = 2000;
 408        } else {
 409                ah->config.rimt_last = 250;
 410                ah->config.rimt_first = 700;
 411        }
 412
 413        if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 414                ah->config.pll_pwrsave = 7;
 415
 416        /*
 417         * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 418         * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 419         * This means we use it for all AR5416 devices, and the few
 420         * minor PCI AR9280 devices out there.
 421         *
 422         * Serialization is required because these devices do not handle
 423         * well the case of two concurrent reads/writes due to the latency
 424         * involved. During one read/write another read/write can be issued
 425         * on another CPU while the previous read/write may still be working
 426         * on our hardware, if we hit this case the hardware poops in a loop.
 427         * We prevent this by serializing reads and writes.
 428         *
 429         * This issue is not present on PCI-Express devices or pre-AR5416
 430         * devices (legacy, 802.11abg).
 431         */
 432        if (num_possible_cpus() > 1)
 433                ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 434
 435        if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 436                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 437                    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 438                     !ah->is_pciexpress)) {
 439                        ah->config.serialize_regmode = SER_REG_MODE_ON;
 440                } else {
 441                        ah->config.serialize_regmode = SER_REG_MODE_OFF;
 442                }
 443        }
 444
 445        ath_dbg(common, RESET, "serialize_regmode is %d\n",
 446                ah->config.serialize_regmode);
 447
 448        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 449                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 450        else
 451                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 452}
 453
 454static void ath9k_hw_init_defaults(struct ath_hw *ah)
 455{
 456        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 457
 458        regulatory->country_code = CTRY_DEFAULT;
 459        regulatory->power_limit = MAX_COMBINED_POWER;
 460
 461        ah->hw_version.magic = AR5416_MAGIC;
 462        ah->hw_version.subvendorid = 0;
 463
 464        ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 465                               AR_STA_ID1_MCAST_KSRCH;
 466        if (AR_SREV_9100(ah))
 467                ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 468
 469        ah->slottime = 9;
 470        ah->globaltxtimeout = (u32) -1;
 471        ah->power_mode = ATH9K_PM_UNDEFINED;
 472        ah->htc_reset_init = true;
 473
 474        ah->tpc_enabled = false;
 475
 476        ah->ani_function = ATH9K_ANI_ALL;
 477        if (!AR_SREV_9300_20_OR_LATER(ah))
 478                ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 479
 480        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 481                ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 482        else
 483                ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 484}
 485
 486static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 487{
 488        struct ath_common *common = ath9k_hw_common(ah);
 489        int i;
 490        u16 eeval;
 491        static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 492
 493        /* MAC address may already be loaded via ath9k_platform_data */
 494        if (is_valid_ether_addr(common->macaddr))
 495                return;
 496
 497        for (i = 0; i < 3; i++) {
 498                eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 499                common->macaddr[2 * i] = eeval >> 8;
 500                common->macaddr[2 * i + 1] = eeval & 0xff;
 501        }
 502
 503        if (is_valid_ether_addr(common->macaddr))
 504                return;
 505
 506        ath_err(common, "eeprom contains invalid mac address: %pM\n",
 507                common->macaddr);
 508
 509        eth_random_addr(common->macaddr);
 510        ath_err(common, "random mac address will be used: %pM\n",
 511                common->macaddr);
 512
 513        return;
 514}
 515
 516static int ath9k_hw_post_init(struct ath_hw *ah)
 517{
 518        struct ath_common *common = ath9k_hw_common(ah);
 519        int ecode;
 520
 521        if (common->bus_ops->ath_bus_type != ATH_USB) {
 522                if (!ath9k_hw_chip_test(ah))
 523                        return -ENODEV;
 524        }
 525
 526        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 527                ecode = ar9002_hw_rf_claim(ah);
 528                if (ecode != 0)
 529                        return ecode;
 530        }
 531
 532        ecode = ath9k_hw_eeprom_init(ah);
 533        if (ecode != 0)
 534                return ecode;
 535
 536        ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 537                ah->eep_ops->get_eeprom_ver(ah),
 538                ah->eep_ops->get_eeprom_rev(ah));
 539
 540        ath9k_hw_ani_init(ah);
 541
 542        /*
 543         * EEPROM needs to be initialized before we do this.
 544         * This is required for regulatory compliance.
 545         */
 546        if (AR_SREV_9300_20_OR_LATER(ah)) {
 547                u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 548                if ((regdmn & 0xF0) == CTL_FCC) {
 549                        ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 550                        ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 551                }
 552        }
 553
 554        return 0;
 555}
 556
 557static int ath9k_hw_attach_ops(struct ath_hw *ah)
 558{
 559        if (!AR_SREV_9300_20_OR_LATER(ah))
 560                return ar9002_hw_attach_ops(ah);
 561
 562        ar9003_hw_attach_ops(ah);
 563        return 0;
 564}
 565
 566/* Called for all hardware families */
 567static int __ath9k_hw_init(struct ath_hw *ah)
 568{
 569        struct ath_common *common = ath9k_hw_common(ah);
 570        int r = 0;
 571
 572        if (!ath9k_hw_read_revisions(ah)) {
 573                ath_err(common, "Could not read hardware revisions");
 574                return -EOPNOTSUPP;
 575        }
 576
 577        switch (ah->hw_version.macVersion) {
 578        case AR_SREV_VERSION_5416_PCI:
 579        case AR_SREV_VERSION_5416_PCIE:
 580        case AR_SREV_VERSION_9160:
 581        case AR_SREV_VERSION_9100:
 582        case AR_SREV_VERSION_9280:
 583        case AR_SREV_VERSION_9285:
 584        case AR_SREV_VERSION_9287:
 585        case AR_SREV_VERSION_9271:
 586        case AR_SREV_VERSION_9300:
 587        case AR_SREV_VERSION_9330:
 588        case AR_SREV_VERSION_9485:
 589        case AR_SREV_VERSION_9340:
 590        case AR_SREV_VERSION_9462:
 591        case AR_SREV_VERSION_9550:
 592        case AR_SREV_VERSION_9565:
 593        case AR_SREV_VERSION_9531:
 594        case AR_SREV_VERSION_9561:
 595                break;
 596        default:
 597                ath_err(common,
 598                        "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 599                        ah->hw_version.macVersion, ah->hw_version.macRev);
 600                return -EOPNOTSUPP;
 601        }
 602
 603        /*
 604         * Read back AR_WA into a permanent copy and set bits 14 and 17.
 605         * We need to do this to avoid RMW of this register. We cannot
 606         * read the reg when chip is asleep.
 607         */
 608        if (AR_SREV_9300_20_OR_LATER(ah)) {
 609                ah->WARegVal = REG_READ(ah, AR_WA);
 610                ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 611                                 AR_WA_ASPM_TIMER_BASED_DISABLE);
 612        }
 613
 614        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 615                ath_err(common, "Couldn't reset chip\n");
 616                return -EIO;
 617        }
 618
 619        if (AR_SREV_9565(ah)) {
 620                ah->WARegVal |= AR_WA_BIT22;
 621                REG_WRITE(ah, AR_WA, ah->WARegVal);
 622        }
 623
 624        ath9k_hw_init_defaults(ah);
 625        ath9k_hw_init_config(ah);
 626
 627        r = ath9k_hw_attach_ops(ah);
 628        if (r)
 629                return r;
 630
 631        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 632                ath_err(common, "Couldn't wakeup chip\n");
 633                return -EIO;
 634        }
 635
 636        if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 637            AR_SREV_9330(ah) || AR_SREV_9550(ah))
 638                ah->is_pciexpress = false;
 639
 640        ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 641        ath9k_hw_init_cal_settings(ah);
 642
 643        if (!ah->is_pciexpress)
 644                ath9k_hw_disablepcie(ah);
 645
 646        r = ath9k_hw_post_init(ah);
 647        if (r)
 648                return r;
 649
 650        ath9k_hw_init_mode_gain_regs(ah);
 651        r = ath9k_hw_fill_cap_info(ah);
 652        if (r)
 653                return r;
 654
 655        ath9k_hw_init_macaddr(ah);
 656        ath9k_hw_init_hang_checks(ah);
 657
 658        common->state = ATH_HW_INITIALIZED;
 659
 660        return 0;
 661}
 662
 663int ath9k_hw_init(struct ath_hw *ah)
 664{
 665        int ret;
 666        struct ath_common *common = ath9k_hw_common(ah);
 667
 668        /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 669        switch (ah->hw_version.devid) {
 670        case AR5416_DEVID_PCI:
 671        case AR5416_DEVID_PCIE:
 672        case AR5416_AR9100_DEVID:
 673        case AR9160_DEVID_PCI:
 674        case AR9280_DEVID_PCI:
 675        case AR9280_DEVID_PCIE:
 676        case AR9285_DEVID_PCIE:
 677        case AR9287_DEVID_PCI:
 678        case AR9287_DEVID_PCIE:
 679        case AR2427_DEVID_PCIE:
 680        case AR9300_DEVID_PCIE:
 681        case AR9300_DEVID_AR9485_PCIE:
 682        case AR9300_DEVID_AR9330:
 683        case AR9300_DEVID_AR9340:
 684        case AR9300_DEVID_QCA955X:
 685        case AR9300_DEVID_AR9580:
 686        case AR9300_DEVID_AR9462:
 687        case AR9485_DEVID_AR1111:
 688        case AR9300_DEVID_AR9565:
 689        case AR9300_DEVID_AR953X:
 690        case AR9300_DEVID_QCA956X:
 691                break;
 692        default:
 693                if (common->bus_ops->ath_bus_type == ATH_USB)
 694                        break;
 695                ath_err(common, "Hardware device ID 0x%04x not supported\n",
 696                        ah->hw_version.devid);
 697                return -EOPNOTSUPP;
 698        }
 699
 700        ret = __ath9k_hw_init(ah);
 701        if (ret) {
 702                ath_err(common,
 703                        "Unable to initialize hardware; initialization status: %d\n",
 704                        ret);
 705                return ret;
 706        }
 707
 708        ath_dynack_init(ah);
 709
 710        return 0;
 711}
 712EXPORT_SYMBOL(ath9k_hw_init);
 713
 714static void ath9k_hw_init_qos(struct ath_hw *ah)
 715{
 716        ENABLE_REGWRITE_BUFFER(ah);
 717
 718        REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 719        REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 720
 721        REG_WRITE(ah, AR_QOS_NO_ACK,
 722                  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 723                  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 724                  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 725
 726        REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 727        REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 728        REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 729        REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 730        REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 731
 732        REGWRITE_BUFFER_FLUSH(ah);
 733}
 734
 735u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 736{
 737        struct ath_common *common = ath9k_hw_common(ah);
 738        int i = 0;
 739
 740        REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 741        udelay(100);
 742        REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 743
 744        while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 745
 746                udelay(100);
 747
 748                if (WARN_ON_ONCE(i >= 100)) {
 749                        ath_err(common, "PLL4 measurement not done\n");
 750                        break;
 751                }
 752
 753                i++;
 754        }
 755
 756        return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 757}
 758EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 759
 760static void ath9k_hw_init_pll(struct ath_hw *ah,
 761                              struct ath9k_channel *chan)
 762{
 763        u32 pll;
 764
 765        pll = ath9k_hw_compute_pll_control(ah, chan);
 766
 767        if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 768                /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 769                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 770                              AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 771                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 772                              AR_CH0_DPLL2_KD, 0x40);
 773                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 774                              AR_CH0_DPLL2_KI, 0x4);
 775
 776                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 777                              AR_CH0_BB_DPLL1_REFDIV, 0x5);
 778                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 779                              AR_CH0_BB_DPLL1_NINI, 0x58);
 780                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 781                              AR_CH0_BB_DPLL1_NFRAC, 0x0);
 782
 783                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 784                              AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 785                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 786                              AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 787                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 788                              AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 789
 790                /* program BB PLL phase_shift to 0x6 */
 791                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 792                              AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 793
 794                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 795                              AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 796                udelay(1000);
 797        } else if (AR_SREV_9330(ah)) {
 798                u32 ddr_dpll2, pll_control2, kd;
 799
 800                if (ah->is_clk_25mhz) {
 801                        ddr_dpll2 = 0x18e82f01;
 802                        pll_control2 = 0xe04a3d;
 803                        kd = 0x1d;
 804                } else {
 805                        ddr_dpll2 = 0x19e82f01;
 806                        pll_control2 = 0x886666;
 807                        kd = 0x3d;
 808                }
 809
 810                /* program DDR PLL ki and kd value */
 811                REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 812
 813                /* program DDR PLL phase_shift */
 814                REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 815                              AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 816
 817                REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 818                          pll | AR_RTC_9300_PLL_BYPASS);
 819                udelay(1000);
 820
 821                /* program refdiv, nint, frac to RTC register */
 822                REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 823
 824                /* program BB PLL kd and ki value */
 825                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 826                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 827
 828                /* program BB PLL phase_shift */
 829                REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 830                              AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 831        } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 832                   AR_SREV_9561(ah)) {
 833                u32 regval, pll2_divint, pll2_divfrac, refdiv;
 834
 835                REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 836                          pll | AR_RTC_9300_SOC_PLL_BYPASS);
 837                udelay(1000);
 838
 839                REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 840                udelay(100);
 841
 842                if (ah->is_clk_25mhz) {
 843                        if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 844                                pll2_divint = 0x1c;
 845                                pll2_divfrac = 0xa3d2;
 846                                refdiv = 1;
 847                        } else {
 848                                pll2_divint = 0x54;
 849                                pll2_divfrac = 0x1eb85;
 850                                refdiv = 3;
 851                        }
 852                } else {
 853                        if (AR_SREV_9340(ah)) {
 854                                pll2_divint = 88;
 855                                pll2_divfrac = 0;
 856                                refdiv = 5;
 857                        } else {
 858                                pll2_divint = 0x11;
 859                                pll2_divfrac = (AR_SREV_9531(ah) ||
 860                                                AR_SREV_9561(ah)) ?
 861                                                0x26665 : 0x26666;
 862                                refdiv = 1;
 863                        }
 864                }
 865
 866                regval = REG_READ(ah, AR_PHY_PLL_MODE);
 867                if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 868                        regval |= (0x1 << 22);
 869                else
 870                        regval |= (0x1 << 16);
 871                REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 872                udelay(100);
 873
 874                REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 875                          (pll2_divint << 18) | pll2_divfrac);
 876                udelay(100);
 877
 878                regval = REG_READ(ah, AR_PHY_PLL_MODE);
 879                if (AR_SREV_9340(ah))
 880                        regval = (regval & 0x80071fff) |
 881                                (0x1 << 30) |
 882                                (0x1 << 13) |
 883                                (0x4 << 26) |
 884                                (0x18 << 19);
 885                else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 886                        regval = (regval & 0x01c00fff) |
 887                                (0x1 << 31) |
 888                                (0x2 << 29) |
 889                                (0xa << 25) |
 890                                (0x1 << 19);
 891
 892                        if (AR_SREV_9531(ah))
 893                                regval |= (0x6 << 12);
 894                } else
 895                        regval = (regval & 0x80071fff) |
 896                                (0x3 << 30) |
 897                                (0x1 << 13) |
 898                                (0x4 << 26) |
 899                                (0x60 << 19);
 900                REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 901
 902                if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 903                        REG_WRITE(ah, AR_PHY_PLL_MODE,
 904                                  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 905                else
 906                        REG_WRITE(ah, AR_PHY_PLL_MODE,
 907                                  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 908
 909                udelay(1000);
 910        }
 911
 912        if (AR_SREV_9565(ah))
 913                pll |= 0x40000;
 914        REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 915
 916        if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 917            AR_SREV_9550(ah))
 918                udelay(1000);
 919
 920        /* Switch the core clock for ar9271 to 117Mhz */
 921        if (AR_SREV_9271(ah)) {
 922                udelay(500);
 923                REG_WRITE(ah, 0x50040, 0x304);
 924        }
 925
 926        udelay(RTC_PLL_SETTLE_DELAY);
 927
 928        REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 929}
 930
 931static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 932                                          enum nl80211_iftype opmode)
 933{
 934        u32 sync_default = AR_INTR_SYNC_DEFAULT;
 935        u32 imr_reg = AR_IMR_TXERR |
 936                AR_IMR_TXURN |
 937                AR_IMR_RXERR |
 938                AR_IMR_RXORN |
 939                AR_IMR_BCNMISC;
 940        u32 msi_cfg = 0;
 941
 942        if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 943            AR_SREV_9561(ah))
 944                sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 945
 946        if (AR_SREV_9300_20_OR_LATER(ah)) {
 947                imr_reg |= AR_IMR_RXOK_HP;
 948                if (ah->config.rx_intr_mitigation) {
 949                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 950                        msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 951                } else {
 952                        imr_reg |= AR_IMR_RXOK_LP;
 953                        msi_cfg |= AR_INTCFG_MSI_RXOK;
 954                }
 955        } else {
 956                if (ah->config.rx_intr_mitigation) {
 957                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 958                        msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
 959                } else {
 960                        imr_reg |= AR_IMR_RXOK;
 961                        msi_cfg |= AR_INTCFG_MSI_RXOK;
 962                }
 963        }
 964
 965        if (ah->config.tx_intr_mitigation) {
 966                imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 967                msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
 968        } else {
 969                imr_reg |= AR_IMR_TXOK;
 970                msi_cfg |= AR_INTCFG_MSI_TXOK;
 971        }
 972
 973        ENABLE_REGWRITE_BUFFER(ah);
 974
 975        REG_WRITE(ah, AR_IMR, imr_reg);
 976        ah->imrs2_reg |= AR_IMR_S2_GTT;
 977        REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 978
 979        if (ah->msi_enabled) {
 980                ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
 981                ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
 982                ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
 983                REG_WRITE(ah, AR_INTCFG, msi_cfg);
 984                ath_dbg(ath9k_hw_common(ah), ANY,
 985                        "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
 986                        REG_READ(ah, AR_INTCFG), msi_cfg);
 987        }
 988
 989        if (!AR_SREV_9100(ah)) {
 990                REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 991                REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 992                REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 993        }
 994
 995        REGWRITE_BUFFER_FLUSH(ah);
 996
 997        if (AR_SREV_9300_20_OR_LATER(ah)) {
 998                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 999                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1000                REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1001                REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1002        }
1003}
1004
1005static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1006{
1007        u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1008        val = min(val, (u32) 0xFFFF);
1009        REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1010}
1011
1012void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1013{
1014        u32 val = ath9k_hw_mac_to_clks(ah, us);
1015        val = min(val, (u32) 0xFFFF);
1016        REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1017}
1018
1019void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1020{
1021        u32 val = ath9k_hw_mac_to_clks(ah, us);
1022        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1023        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1024}
1025
1026void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1027{
1028        u32 val = ath9k_hw_mac_to_clks(ah, us);
1029        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1030        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1031}
1032
1033static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1034{
1035        if (tu > 0xFFFF) {
1036                ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1037                        tu);
1038                ah->globaltxtimeout = (u32) -1;
1039                return false;
1040        } else {
1041                REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1042                ah->globaltxtimeout = tu;
1043                return true;
1044        }
1045}
1046
1047void ath9k_hw_init_global_settings(struct ath_hw *ah)
1048{
1049        struct ath_common *common = ath9k_hw_common(ah);
1050        const struct ath9k_channel *chan = ah->curchan;
1051        int acktimeout, ctstimeout, ack_offset = 0;
1052        int slottime;
1053        int sifstime;
1054        int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0;
1055        u32 reg;
1056
1057        ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1058                ah->misc_mode);
1059
1060        if (!chan)
1061                return;
1062
1063        if (ah->misc_mode != 0)
1064                REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1065
1066        if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067                rx_lat = 41;
1068        else
1069                rx_lat = 37;
1070        tx_lat = 54;
1071
1072        if (IS_CHAN_5GHZ(chan))
1073                sifstime = 16;
1074        else
1075                sifstime = 10;
1076
1077        if (IS_CHAN_HALF_RATE(chan)) {
1078                eifs = 175;
1079                rx_lat *= 2;
1080                tx_lat *= 2;
1081                if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082                    tx_lat += 11;
1083
1084                sifstime = 32;
1085                ack_offset = 16;
1086                ack_shift = 3;
1087                slottime = 13;
1088        } else if (IS_CHAN_QUARTER_RATE(chan)) {
1089                eifs = 340;
1090                rx_lat = (rx_lat * 4) - 1;
1091                tx_lat *= 4;
1092                if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1093                    tx_lat += 22;
1094
1095                sifstime = 64;
1096                ack_offset = 32;
1097                ack_shift = 1;
1098                slottime = 21;
1099        } else {
1100                if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1101                        eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1102                        reg = AR_USEC_ASYNC_FIFO;
1103                } else {
1104                        eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1105                                common->clockrate;
1106                        reg = REG_READ(ah, AR_USEC);
1107                }
1108                rx_lat = MS(reg, AR_USEC_RX_LAT);
1109                tx_lat = MS(reg, AR_USEC_TX_LAT);
1110
1111                slottime = ah->slottime;
1112        }
1113
1114        /* As defined by IEEE 802.11-2007 17.3.8.6 */
1115        slottime += 3 * ah->coverage_class;
1116        acktimeout = slottime + sifstime + ack_offset;
1117        ctstimeout = acktimeout;
1118
1119        /*
1120         * Workaround for early ACK timeouts, add an offset to match the
1121         * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1122         * This was initially only meant to work around an issue with delayed
1123         * BA frames in some implementations, but it has been found to fix ACK
1124         * timeout issues in other cases as well.
1125         */
1126        if (IS_CHAN_2GHZ(chan) &&
1127            !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1128                acktimeout += 64 - sifstime - ah->slottime;
1129                ctstimeout += 48 - sifstime - ah->slottime;
1130        }
1131
1132        if (ah->dynack.enabled) {
1133                acktimeout = ah->dynack.ackto;
1134                ctstimeout = acktimeout;
1135                slottime = (acktimeout - 3) / 2;
1136        } else {
1137                ah->dynack.ackto = acktimeout;
1138        }
1139
1140        ath9k_hw_set_sifs_time(ah, sifstime);
1141        ath9k_hw_setslottime(ah, slottime);
1142        ath9k_hw_set_ack_timeout(ah, acktimeout);
1143        ath9k_hw_set_cts_timeout(ah, ctstimeout);
1144        if (ah->globaltxtimeout != (u32) -1)
1145                ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1146
1147        REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1148        REG_RMW(ah, AR_USEC,
1149                (common->clockrate - 1) |
1150                SM(rx_lat, AR_USEC_RX_LAT) |
1151                SM(tx_lat, AR_USEC_TX_LAT),
1152                AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1153
1154        if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
1155                REG_RMW(ah, AR_TXSIFS,
1156                        sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT),
1157                        (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT));
1158}
1159EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1160
1161void ath9k_hw_deinit(struct ath_hw *ah)
1162{
1163        struct ath_common *common = ath9k_hw_common(ah);
1164
1165        if (common->state < ATH_HW_INITIALIZED)
1166                return;
1167
1168        ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1169}
1170EXPORT_SYMBOL(ath9k_hw_deinit);
1171
1172/*******/
1173/* INI */
1174/*******/
1175
1176u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1177{
1178        u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1179
1180        if (IS_CHAN_2GHZ(chan))
1181                ctl |= CTL_11G;
1182        else
1183                ctl |= CTL_11A;
1184
1185        return ctl;
1186}
1187
1188/****************************************/
1189/* Reset and Channel Switching Routines */
1190/****************************************/
1191
1192static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1193{
1194        struct ath_common *common = ath9k_hw_common(ah);
1195        int txbuf_size;
1196
1197        ENABLE_REGWRITE_BUFFER(ah);
1198
1199        /*
1200         * set AHB_MODE not to do cacheline prefetches
1201        */
1202        if (!AR_SREV_9300_20_OR_LATER(ah))
1203                REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1204
1205        /*
1206         * let mac dma reads be in 128 byte chunks
1207         */
1208        REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1209
1210        REGWRITE_BUFFER_FLUSH(ah);
1211
1212        /*
1213         * Restore TX Trigger Level to its pre-reset value.
1214         * The initial value depends on whether aggregation is enabled, and is
1215         * adjusted whenever underruns are detected.
1216         */
1217        if (!AR_SREV_9300_20_OR_LATER(ah))
1218                REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1219
1220        ENABLE_REGWRITE_BUFFER(ah);
1221
1222        /*
1223         * let mac dma writes be in 128 byte chunks
1224         */
1225        REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1226
1227        /*
1228         * Setup receive FIFO threshold to hold off TX activities
1229         */
1230        REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1231
1232        if (AR_SREV_9300_20_OR_LATER(ah)) {
1233                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1234                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1235
1236                ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1237                        ah->caps.rx_status_len);
1238        }
1239
1240        /*
1241         * reduce the number of usable entries in PCU TXBUF to avoid
1242         * wrap around issues.
1243         */
1244        if (AR_SREV_9285(ah)) {
1245                /* For AR9285 the number of Fifos are reduced to half.
1246                 * So set the usable tx buf size also to half to
1247                 * avoid data/delimiter underruns
1248                 */
1249                txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1250        } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1251                /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1252                txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1253        } else {
1254                txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1255        }
1256
1257        if (!AR_SREV_9271(ah))
1258                REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1259
1260        REGWRITE_BUFFER_FLUSH(ah);
1261
1262        if (AR_SREV_9300_20_OR_LATER(ah))
1263                ath9k_hw_reset_txstatus_ring(ah);
1264}
1265
1266static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1267{
1268        u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1269        u32 set = AR_STA_ID1_KSRCH_MODE;
1270
1271        ENABLE_REG_RMW_BUFFER(ah);
1272        switch (opmode) {
1273        case NL80211_IFTYPE_ADHOC:
1274                if (!AR_SREV_9340_13(ah)) {
1275                        set |= AR_STA_ID1_ADHOC;
1276                        REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1277                        break;
1278                }
1279                fallthrough;
1280        case NL80211_IFTYPE_OCB:
1281        case NL80211_IFTYPE_MESH_POINT:
1282        case NL80211_IFTYPE_AP:
1283                set |= AR_STA_ID1_STA_AP;
1284                fallthrough;
1285        case NL80211_IFTYPE_STATION:
1286                REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1287                break;
1288        default:
1289                if (!ah->is_monitoring)
1290                        set = 0;
1291                break;
1292        }
1293        REG_RMW(ah, AR_STA_ID1, set, mask);
1294        REG_RMW_BUFFER_FLUSH(ah);
1295}
1296
1297void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1298                                   u32 *coef_mantissa, u32 *coef_exponent)
1299{
1300        u32 coef_exp, coef_man;
1301
1302        for (coef_exp = 31; coef_exp > 0; coef_exp--)
1303                if ((coef_scaled >> coef_exp) & 0x1)
1304                        break;
1305
1306        coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1307
1308        coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1309
1310        *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1311        *coef_exponent = coef_exp - 16;
1312}
1313
1314/* AR9330 WAR:
1315 * call external reset function to reset WMAC if:
1316 * - doing a cold reset
1317 * - we have pending frames in the TX queues.
1318 */
1319static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1320{
1321        int i, npend = 0;
1322
1323        for (i = 0; i < AR_NUM_QCU; i++) {
1324                npend = ath9k_hw_numtxpending(ah, i);
1325                if (npend)
1326                        break;
1327        }
1328
1329        if (ah->external_reset &&
1330            (npend || type == ATH9K_RESET_COLD)) {
1331                int reset_err = 0;
1332
1333                ath_dbg(ath9k_hw_common(ah), RESET,
1334                        "reset MAC via external reset\n");
1335
1336                reset_err = ah->external_reset();
1337                if (reset_err) {
1338                        ath_err(ath9k_hw_common(ah),
1339                                "External reset failed, err=%d\n",
1340                                reset_err);
1341                        return false;
1342                }
1343
1344                REG_WRITE(ah, AR_RTC_RESET, 1);
1345        }
1346
1347        return true;
1348}
1349
1350static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1351{
1352        u32 rst_flags;
1353        u32 tmpReg;
1354
1355        if (AR_SREV_9100(ah)) {
1356                REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1357                              AR_RTC_DERIVED_CLK_PERIOD, 1);
1358                (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1359        }
1360
1361        ENABLE_REGWRITE_BUFFER(ah);
1362
1363        if (AR_SREV_9300_20_OR_LATER(ah)) {
1364                REG_WRITE(ah, AR_WA, ah->WARegVal);
1365                udelay(10);
1366        }
1367
1368        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1369                  AR_RTC_FORCE_WAKE_ON_INT);
1370
1371        if (AR_SREV_9100(ah)) {
1372                rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1373                        AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1374        } else {
1375                tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1376                if (AR_SREV_9340(ah))
1377                        tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1378                else
1379                        tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1380                                  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1381
1382                if (tmpReg) {
1383                        u32 val;
1384                        REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1385
1386                        val = AR_RC_HOSTIF;
1387                        if (!AR_SREV_9300_20_OR_LATER(ah))
1388                                val |= AR_RC_AHB;
1389                        REG_WRITE(ah, AR_RC, val);
1390
1391                } else if (!AR_SREV_9300_20_OR_LATER(ah))
1392                        REG_WRITE(ah, AR_RC, AR_RC_AHB);
1393
1394                rst_flags = AR_RTC_RC_MAC_WARM;
1395                if (type == ATH9K_RESET_COLD)
1396                        rst_flags |= AR_RTC_RC_MAC_COLD;
1397        }
1398
1399        if (AR_SREV_9330(ah)) {
1400                if (!ath9k_hw_ar9330_reset_war(ah, type))
1401                        return false;
1402        }
1403
1404        if (ath9k_hw_mci_is_enabled(ah))
1405                ar9003_mci_check_gpm_offset(ah);
1406
1407        /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1408         * RTC_RC reg read
1409         */
1410        if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1411                REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1412                ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1413                              20 * AH_WAIT_TIMEOUT);
1414                REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1415        }
1416
1417        REG_WRITE(ah, AR_RTC_RC, rst_flags);
1418
1419        REGWRITE_BUFFER_FLUSH(ah);
1420
1421        if (AR_SREV_9300_20_OR_LATER(ah))
1422                udelay(50);
1423        else if (AR_SREV_9100(ah))
1424                mdelay(10);
1425        else
1426                udelay(100);
1427
1428        REG_WRITE(ah, AR_RTC_RC, 0);
1429        if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1430                ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1431                return false;
1432        }
1433
1434        if (!AR_SREV_9100(ah))
1435                REG_WRITE(ah, AR_RC, 0);
1436
1437        if (AR_SREV_9100(ah))
1438                udelay(50);
1439
1440        return true;
1441}
1442
1443static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1444{
1445        ENABLE_REGWRITE_BUFFER(ah);
1446
1447        if (AR_SREV_9300_20_OR_LATER(ah)) {
1448                REG_WRITE(ah, AR_WA, ah->WARegVal);
1449                udelay(10);
1450        }
1451
1452        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1453                  AR_RTC_FORCE_WAKE_ON_INT);
1454
1455        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1456                REG_WRITE(ah, AR_RC, AR_RC_AHB);
1457
1458        REG_WRITE(ah, AR_RTC_RESET, 0);
1459
1460        REGWRITE_BUFFER_FLUSH(ah);
1461
1462        udelay(2);
1463
1464        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1465                REG_WRITE(ah, AR_RC, 0);
1466
1467        REG_WRITE(ah, AR_RTC_RESET, 1);
1468
1469        if (!ath9k_hw_wait(ah,
1470                           AR_RTC_STATUS,
1471                           AR_RTC_STATUS_M,
1472                           AR_RTC_STATUS_ON,
1473                           AH_WAIT_TIMEOUT)) {
1474                ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1475                return false;
1476        }
1477
1478        return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1479}
1480
1481static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1482{
1483        bool ret = false;
1484
1485        if (AR_SREV_9300_20_OR_LATER(ah)) {
1486                REG_WRITE(ah, AR_WA, ah->WARegVal);
1487                udelay(10);
1488        }
1489
1490        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1491                  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1492
1493        if (!ah->reset_power_on)
1494                type = ATH9K_RESET_POWER_ON;
1495
1496        switch (type) {
1497        case ATH9K_RESET_POWER_ON:
1498                ret = ath9k_hw_set_reset_power_on(ah);
1499                if (ret)
1500                        ah->reset_power_on = true;
1501                break;
1502        case ATH9K_RESET_WARM:
1503        case ATH9K_RESET_COLD:
1504                ret = ath9k_hw_set_reset(ah, type);
1505                break;
1506        default:
1507                break;
1508        }
1509
1510        return ret;
1511}
1512
1513static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1514                                struct ath9k_channel *chan)
1515{
1516        int reset_type = ATH9K_RESET_WARM;
1517
1518        if (AR_SREV_9280(ah)) {
1519                if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1520                        reset_type = ATH9K_RESET_POWER_ON;
1521                else
1522                        reset_type = ATH9K_RESET_COLD;
1523        } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1524                   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1525                reset_type = ATH9K_RESET_COLD;
1526
1527        if (!ath9k_hw_set_reset_reg(ah, reset_type))
1528                return false;
1529
1530        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1531                return false;
1532
1533        ah->chip_fullsleep = false;
1534
1535        if (AR_SREV_9330(ah))
1536                ar9003_hw_internal_regulator_apply(ah);
1537        ath9k_hw_init_pll(ah, chan);
1538
1539        return true;
1540}
1541
1542static bool ath9k_hw_channel_change(struct ath_hw *ah,
1543                                    struct ath9k_channel *chan)
1544{
1545        struct ath_common *common = ath9k_hw_common(ah);
1546        struct ath9k_hw_capabilities *pCap = &ah->caps;
1547        bool band_switch = false, mode_diff = false;
1548        u8 ini_reloaded = 0;
1549        u32 qnum;
1550        int r;
1551
1552        if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1553                u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1554                band_switch = !!(flags_diff & CHANNEL_5GHZ);
1555                mode_diff = !!(flags_diff & ~CHANNEL_HT);
1556        }
1557
1558        for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1559                if (ath9k_hw_numtxpending(ah, qnum)) {
1560                        ath_dbg(common, QUEUE,
1561                                "Transmit frames pending on queue %d\n", qnum);
1562                        return false;
1563                }
1564        }
1565
1566        if (!ath9k_hw_rfbus_req(ah)) {
1567                ath_err(common, "Could not kill baseband RX\n");
1568                return false;
1569        }
1570
1571        if (band_switch || mode_diff) {
1572                ath9k_hw_mark_phy_inactive(ah);
1573                udelay(5);
1574
1575                if (band_switch)
1576                        ath9k_hw_init_pll(ah, chan);
1577
1578                if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1579                        ath_err(common, "Failed to do fast channel change\n");
1580                        return false;
1581                }
1582        }
1583
1584        ath9k_hw_set_channel_regs(ah, chan);
1585
1586        r = ath9k_hw_rf_set_freq(ah, chan);
1587        if (r) {
1588                ath_err(common, "Failed to set channel\n");
1589                return false;
1590        }
1591        ath9k_hw_set_clockrate(ah);
1592        ath9k_hw_apply_txpower(ah, chan, false);
1593
1594        ath9k_hw_set_delta_slope(ah, chan);
1595        ath9k_hw_spur_mitigate_freq(ah, chan);
1596
1597        if (band_switch || ini_reloaded)
1598                ah->eep_ops->set_board_values(ah, chan);
1599
1600        ath9k_hw_init_bb(ah, chan);
1601        ath9k_hw_rfbus_done(ah);
1602
1603        if (band_switch || ini_reloaded) {
1604                ah->ah_flags |= AH_FASTCC;
1605                ath9k_hw_init_cal(ah, chan);
1606                ah->ah_flags &= ~AH_FASTCC;
1607        }
1608
1609        return true;
1610}
1611
1612static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1613{
1614        u32 gpio_mask = ah->gpio_mask;
1615        int i;
1616
1617        for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1618                if (!(gpio_mask & 1))
1619                        continue;
1620
1621                ath9k_hw_gpio_request_out(ah, i, NULL,
1622                                          AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1623                ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1624        }
1625}
1626
1627void ath9k_hw_check_nav(struct ath_hw *ah)
1628{
1629        struct ath_common *common = ath9k_hw_common(ah);
1630        u32 val;
1631
1632        val = REG_READ(ah, AR_NAV);
1633        if (val != 0xdeadbeef && val > 0x7fff) {
1634                ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1635                REG_WRITE(ah, AR_NAV, 0);
1636        }
1637}
1638EXPORT_SYMBOL(ath9k_hw_check_nav);
1639
1640bool ath9k_hw_check_alive(struct ath_hw *ah)
1641{
1642        int count = 50;
1643        u32 reg, last_val;
1644
1645        /* Check if chip failed to wake up */
1646        if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1647                return false;
1648
1649        if (AR_SREV_9300(ah))
1650                return !ath9k_hw_detect_mac_hang(ah);
1651
1652        if (AR_SREV_9285_12_OR_LATER(ah))
1653                return true;
1654
1655        last_val = REG_READ(ah, AR_OBS_BUS_1);
1656        do {
1657                reg = REG_READ(ah, AR_OBS_BUS_1);
1658                if (reg != last_val)
1659                        return true;
1660
1661                udelay(1);
1662                last_val = reg;
1663                if ((reg & 0x7E7FFFEF) == 0x00702400)
1664                        continue;
1665
1666                switch (reg & 0x7E000B00) {
1667                case 0x1E000000:
1668                case 0x52000B00:
1669                case 0x18000B00:
1670                        continue;
1671                default:
1672                        return true;
1673                }
1674        } while (count-- > 0);
1675
1676        return false;
1677}
1678EXPORT_SYMBOL(ath9k_hw_check_alive);
1679
1680static void ath9k_hw_init_mfp(struct ath_hw *ah)
1681{
1682        /* Setup MFP options for CCMP */
1683        if (AR_SREV_9280_20_OR_LATER(ah)) {
1684                /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1685                 * frames when constructing CCMP AAD. */
1686                REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1687                              0xc7ff);
1688                if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1689                        ah->sw_mgmt_crypto_tx = true;
1690                else
1691                        ah->sw_mgmt_crypto_tx = false;
1692                ah->sw_mgmt_crypto_rx = false;
1693        } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1694                /* Disable hardware crypto for management frames */
1695                REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1696                            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1697                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1698                            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1699                ah->sw_mgmt_crypto_tx = true;
1700                ah->sw_mgmt_crypto_rx = true;
1701        } else {
1702                ah->sw_mgmt_crypto_tx = true;
1703                ah->sw_mgmt_crypto_rx = true;
1704        }
1705}
1706
1707static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1708                                  u32 macStaId1, u32 saveDefAntenna)
1709{
1710        struct ath_common *common = ath9k_hw_common(ah);
1711
1712        ENABLE_REGWRITE_BUFFER(ah);
1713
1714        REG_RMW(ah, AR_STA_ID1, macStaId1
1715                  | AR_STA_ID1_RTS_USE_DEF
1716                  | ah->sta_id1_defaults,
1717                  ~AR_STA_ID1_SADH_MASK);
1718        ath_hw_setbssidmask(common);
1719        REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1720        ath9k_hw_write_associd(ah);
1721        REG_WRITE(ah, AR_ISR, ~0);
1722        REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1723
1724        REGWRITE_BUFFER_FLUSH(ah);
1725
1726        ath9k_hw_set_operating_mode(ah, ah->opmode);
1727}
1728
1729static void ath9k_hw_init_queues(struct ath_hw *ah)
1730{
1731        int i;
1732
1733        ENABLE_REGWRITE_BUFFER(ah);
1734
1735        for (i = 0; i < AR_NUM_DCU; i++)
1736                REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1737
1738        REGWRITE_BUFFER_FLUSH(ah);
1739
1740        ah->intr_txqs = 0;
1741        for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1742                ath9k_hw_resettxqueue(ah, i);
1743}
1744
1745/*
1746 * For big endian systems turn on swapping for descriptors
1747 */
1748static void ath9k_hw_init_desc(struct ath_hw *ah)
1749{
1750        struct ath_common *common = ath9k_hw_common(ah);
1751
1752        if (AR_SREV_9100(ah)) {
1753                u32 mask;
1754                mask = REG_READ(ah, AR_CFG);
1755                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1756                        ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1757                                mask);
1758                } else {
1759                        mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1760                        REG_WRITE(ah, AR_CFG, mask);
1761                        ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1762                                REG_READ(ah, AR_CFG));
1763                }
1764        } else {
1765                if (common->bus_ops->ath_bus_type == ATH_USB) {
1766                        /* Configure AR9271 target WLAN */
1767                        if (AR_SREV_9271(ah))
1768                                REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1769                        else
1770                                REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771                }
1772#ifdef __BIG_ENDIAN
1773                else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1774                         AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1775                         AR_SREV_9561(ah))
1776                        REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1777                else
1778                        REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1779#endif
1780        }
1781}
1782
1783/*
1784 * Fast channel change:
1785 * (Change synthesizer based on channel freq without resetting chip)
1786 */
1787static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1788{
1789        struct ath_common *common = ath9k_hw_common(ah);
1790        struct ath9k_hw_capabilities *pCap = &ah->caps;
1791        int ret;
1792
1793        if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794                goto fail;
1795
1796        if (ah->chip_fullsleep)
1797                goto fail;
1798
1799        if (!ah->curchan)
1800                goto fail;
1801
1802        if (chan->channel == ah->curchan->channel)
1803                goto fail;
1804
1805        if ((ah->curchan->channelFlags | chan->channelFlags) &
1806            (CHANNEL_HALF | CHANNEL_QUARTER))
1807                goto fail;
1808
1809        /*
1810         * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1811         */
1812        if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1813            ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1814                goto fail;
1815
1816        if (!ath9k_hw_check_alive(ah))
1817                goto fail;
1818
1819        /*
1820         * For AR9462, make sure that calibration data for
1821         * re-using are present.
1822         */
1823        if (AR_SREV_9462(ah) && (ah->caldata &&
1824                                 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1825                                  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1826                                  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1827                goto fail;
1828
1829        ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1830                ah->curchan->channel, chan->channel);
1831
1832        ret = ath9k_hw_channel_change(ah, chan);
1833        if (!ret)
1834                goto fail;
1835
1836        if (ath9k_hw_mci_is_enabled(ah))
1837                ar9003_mci_2g5g_switch(ah, false);
1838
1839        ath9k_hw_loadnf(ah, ah->curchan);
1840        ath9k_hw_start_nfcal(ah, true);
1841
1842        if (AR_SREV_9271(ah))
1843                ar9002_hw_load_ani_reg(ah, chan);
1844
1845        return 0;
1846fail:
1847        return -EINVAL;
1848}
1849
1850u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur)
1851{
1852        struct timespec64 ts;
1853        s64 usec;
1854
1855        if (!cur) {
1856                ktime_get_raw_ts64(&ts);
1857                cur = &ts;
1858        }
1859
1860        usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1861        usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1862
1863        return (u32) usec;
1864}
1865EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1866
1867int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1868                   struct ath9k_hw_cal_data *caldata, bool fastcc)
1869{
1870        struct ath_common *common = ath9k_hw_common(ah);
1871        u32 saveLedState;
1872        u32 saveDefAntenna;
1873        u32 macStaId1;
1874        struct timespec64 tsf_ts;
1875        u32 tsf_offset;
1876        u64 tsf = 0;
1877        int r;
1878        bool start_mci_reset = false;
1879        bool save_fullsleep = ah->chip_fullsleep;
1880
1881        if (ath9k_hw_mci_is_enabled(ah)) {
1882                start_mci_reset = ar9003_mci_start_reset(ah, chan);
1883                if (start_mci_reset)
1884                        return 0;
1885        }
1886
1887        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1888                return -EIO;
1889
1890        if (ah->curchan && !ah->chip_fullsleep)
1891                ath9k_hw_getnf(ah, ah->curchan);
1892
1893        ah->caldata = caldata;
1894        if (caldata && (chan->channel != caldata->channel ||
1895                        chan->channelFlags != caldata->channelFlags)) {
1896                /* Operating channel changed, reset channel calibration data */
1897                memset(caldata, 0, sizeof(*caldata));
1898                ath9k_init_nfcal_hist_buffer(ah, chan);
1899        } else if (caldata) {
1900                clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1901        }
1902        ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1903
1904        if (fastcc) {
1905                r = ath9k_hw_do_fastcc(ah, chan);
1906                if (!r)
1907                        return r;
1908        }
1909
1910        if (ath9k_hw_mci_is_enabled(ah))
1911                ar9003_mci_stop_bt(ah, save_fullsleep);
1912
1913        saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1914        if (saveDefAntenna == 0)
1915                saveDefAntenna = 1;
1916
1917        macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1918
1919        /* Save TSF before chip reset, a cold reset clears it */
1920        ktime_get_raw_ts64(&tsf_ts);
1921        tsf = ath9k_hw_gettsf64(ah);
1922
1923        saveLedState = REG_READ(ah, AR_CFG_LED) &
1924                (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1925                 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1926
1927        ath9k_hw_mark_phy_inactive(ah);
1928
1929        ah->paprd_table_write_done = false;
1930
1931        /* Only required on the first reset */
1932        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933                REG_WRITE(ah,
1934                          AR9271_RESET_POWER_DOWN_CONTROL,
1935                          AR9271_RADIO_RF_RST);
1936                udelay(50);
1937        }
1938
1939        if (!ath9k_hw_chip_reset(ah, chan)) {
1940                ath_err(common, "Chip reset failed\n");
1941                return -EINVAL;
1942        }
1943
1944        /* Only required on the first reset */
1945        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1946                ah->htc_reset_init = false;
1947                REG_WRITE(ah,
1948                          AR9271_RESET_POWER_DOWN_CONTROL,
1949                          AR9271_GATE_MAC_CTL);
1950                udelay(50);
1951        }
1952
1953        /* Restore TSF */
1954        tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1955        ath9k_hw_settsf64(ah, tsf + tsf_offset);
1956
1957        if (AR_SREV_9280_20_OR_LATER(ah))
1958                REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1959
1960        if (!AR_SREV_9300_20_OR_LATER(ah))
1961                ar9002_hw_enable_async_fifo(ah);
1962
1963        r = ath9k_hw_process_ini(ah, chan);
1964        if (r)
1965                return r;
1966
1967        ath9k_hw_set_rfmode(ah, chan);
1968
1969        if (ath9k_hw_mci_is_enabled(ah))
1970                ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1971
1972        /*
1973         * Some AR91xx SoC devices frequently fail to accept TSF writes
1974         * right after the chip reset. When that happens, write a new
1975         * value after the initvals have been applied.
1976         */
1977        if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1978                tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1979                ath9k_hw_settsf64(ah, tsf + tsf_offset);
1980        }
1981
1982        ath9k_hw_init_mfp(ah);
1983
1984        ath9k_hw_set_delta_slope(ah, chan);
1985        ath9k_hw_spur_mitigate_freq(ah, chan);
1986        ah->eep_ops->set_board_values(ah, chan);
1987
1988        ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1989
1990        r = ath9k_hw_rf_set_freq(ah, chan);
1991        if (r)
1992                return r;
1993
1994        ath9k_hw_set_clockrate(ah);
1995
1996        ath9k_hw_init_queues(ah);
1997        ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1998        ath9k_hw_ani_cache_ini_regs(ah);
1999        ath9k_hw_init_qos(ah);
2000
2001        if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2002                ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
2003
2004        ath9k_hw_init_global_settings(ah);
2005
2006        if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
2007                REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2008                            AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2009                REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2010                              AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2011                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2012                            AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2013        }
2014
2015        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2016
2017        ath9k_hw_set_dma(ah);
2018
2019        if (!ath9k_hw_mci_is_enabled(ah))
2020                REG_WRITE(ah, AR_OBS, 8);
2021
2022        ENABLE_REG_RMW_BUFFER(ah);
2023        if (ah->config.rx_intr_mitigation) {
2024                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2025                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2026        }
2027
2028        if (ah->config.tx_intr_mitigation) {
2029                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2030                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2031        }
2032        REG_RMW_BUFFER_FLUSH(ah);
2033
2034        ath9k_hw_init_bb(ah, chan);
2035
2036        if (caldata) {
2037                clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2038                clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2039        }
2040        if (!ath9k_hw_init_cal(ah, chan))
2041                return -EIO;
2042
2043        if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2044                return -EIO;
2045
2046        ENABLE_REGWRITE_BUFFER(ah);
2047
2048        ath9k_hw_restore_chainmask(ah);
2049        REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2050
2051        REGWRITE_BUFFER_FLUSH(ah);
2052
2053        ath9k_hw_gen_timer_start_tsf2(ah);
2054
2055        ath9k_hw_init_desc(ah);
2056
2057        if (ath9k_hw_btcoex_is_enabled(ah))
2058                ath9k_hw_btcoex_enable(ah);
2059
2060        if (ath9k_hw_mci_is_enabled(ah))
2061                ar9003_mci_check_bt(ah);
2062
2063        if (AR_SREV_9300_20_OR_LATER(ah)) {
2064                ath9k_hw_loadnf(ah, chan);
2065                ath9k_hw_start_nfcal(ah, true);
2066        }
2067
2068        if (AR_SREV_9300_20_OR_LATER(ah))
2069                ar9003_hw_bb_watchdog_config(ah);
2070
2071        if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2072                ar9003_hw_disable_phy_restart(ah);
2073
2074        ath9k_hw_apply_gpio_override(ah);
2075
2076        if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2077                REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2078
2079        if (ah->hw->conf.radar_enabled) {
2080                /* set HW specific DFS configuration */
2081                ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2082                ath9k_hw_set_radar_params(ah);
2083        }
2084
2085        return 0;
2086}
2087EXPORT_SYMBOL(ath9k_hw_reset);
2088
2089/******************************/
2090/* Power Management (Chipset) */
2091/******************************/
2092
2093/*
2094 * Notify Power Mgt is disabled in self-generated frames.
2095 * If requested, force chip to sleep.
2096 */
2097static void ath9k_set_power_sleep(struct ath_hw *ah)
2098{
2099        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100
2101        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2102                REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2103                REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2104                REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2105                /* xxx Required for WLAN only case ? */
2106                REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2107                udelay(100);
2108        }
2109
2110        /*
2111         * Clear the RTC force wake bit to allow the
2112         * mac to go to sleep.
2113         */
2114        REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2115
2116        if (ath9k_hw_mci_is_enabled(ah))
2117                udelay(100);
2118
2119        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2120                REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2121
2122        /* Shutdown chip. Active low */
2123        if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2124                REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2125                udelay(2);
2126        }
2127
2128        /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2129        if (AR_SREV_9300_20_OR_LATER(ah))
2130                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2131}
2132
2133/*
2134 * Notify Power Management is enabled in self-generating
2135 * frames. If request, set power mode of chip to
2136 * auto/normal.  Duration in units of 128us (1/8 TU).
2137 */
2138static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2139{
2140        struct ath9k_hw_capabilities *pCap = &ah->caps;
2141
2142        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2143
2144        if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2145                /* Set WakeOnInterrupt bit; clear ForceWake bit */
2146                REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2147                          AR_RTC_FORCE_WAKE_ON_INT);
2148        } else {
2149
2150                /* When chip goes into network sleep, it could be waken
2151                 * up by MCI_INT interrupt caused by BT's HW messages
2152                 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2153                 * rate (~100us). This will cause chip to leave and
2154                 * re-enter network sleep mode frequently, which in
2155                 * consequence will have WLAN MCI HW to generate lots of
2156                 * SYS_WAKING and SYS_SLEEPING messages which will make
2157                 * BT CPU to busy to process.
2158                 */
2159                if (ath9k_hw_mci_is_enabled(ah))
2160                        REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2161                                    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2162                /*
2163                 * Clear the RTC force wake bit to allow the
2164                 * mac to go to sleep.
2165                 */
2166                REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2167
2168                if (ath9k_hw_mci_is_enabled(ah))
2169                        udelay(30);
2170        }
2171
2172        /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2173        if (AR_SREV_9300_20_OR_LATER(ah))
2174                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2175}
2176
2177static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2178{
2179        u32 val;
2180        int i;
2181
2182        /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2183        if (AR_SREV_9300_20_OR_LATER(ah)) {
2184                REG_WRITE(ah, AR_WA, ah->WARegVal);
2185                udelay(10);
2186        }
2187
2188        if ((REG_READ(ah, AR_RTC_STATUS) &
2189             AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2190                if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2191                        return false;
2192                }
2193                if (!AR_SREV_9300_20_OR_LATER(ah))
2194                        ath9k_hw_init_pll(ah, NULL);
2195        }
2196        if (AR_SREV_9100(ah))
2197                REG_SET_BIT(ah, AR_RTC_RESET,
2198                            AR_RTC_RESET_EN);
2199
2200        REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2201                    AR_RTC_FORCE_WAKE_EN);
2202        if (AR_SREV_9100(ah))
2203                mdelay(10);
2204        else
2205                udelay(50);
2206
2207        for (i = POWER_UP_TIME / 50; i > 0; i--) {
2208                val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2209                if (val == AR_RTC_STATUS_ON)
2210                        break;
2211                udelay(50);
2212                REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2213                            AR_RTC_FORCE_WAKE_EN);
2214        }
2215        if (i == 0) {
2216                ath_err(ath9k_hw_common(ah),
2217                        "Failed to wakeup in %uus\n",
2218                        POWER_UP_TIME / 20);
2219                return false;
2220        }
2221
2222        if (ath9k_hw_mci_is_enabled(ah))
2223                ar9003_mci_set_power_awake(ah);
2224
2225        REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2226
2227        return true;
2228}
2229
2230bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2231{
2232        struct ath_common *common = ath9k_hw_common(ah);
2233        int status = true;
2234        static const char *modes[] = {
2235                "AWAKE",
2236                "FULL-SLEEP",
2237                "NETWORK SLEEP",
2238                "UNDEFINED"
2239        };
2240
2241        if (ah->power_mode == mode)
2242                return status;
2243
2244        ath_dbg(common, RESET, "%s -> %s\n",
2245                modes[ah->power_mode], modes[mode]);
2246
2247        switch (mode) {
2248        case ATH9K_PM_AWAKE:
2249                status = ath9k_hw_set_power_awake(ah);
2250                break;
2251        case ATH9K_PM_FULL_SLEEP:
2252                if (ath9k_hw_mci_is_enabled(ah))
2253                        ar9003_mci_set_full_sleep(ah);
2254
2255                ath9k_set_power_sleep(ah);
2256                ah->chip_fullsleep = true;
2257                break;
2258        case ATH9K_PM_NETWORK_SLEEP:
2259                ath9k_set_power_network_sleep(ah);
2260                break;
2261        default:
2262                ath_err(common, "Unknown power mode %u\n", mode);
2263                return false;
2264        }
2265        ah->power_mode = mode;
2266
2267        /*
2268         * XXX: If this warning never comes up after a while then
2269         * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2270         * ath9k_hw_setpower() return type void.
2271         */
2272
2273        if (!(ah->ah_flags & AH_UNPLUGGED))
2274                ATH_DBG_WARN_ON_ONCE(!status);
2275
2276        return status;
2277}
2278EXPORT_SYMBOL(ath9k_hw_setpower);
2279
2280/*******************/
2281/* Beacon Handling */
2282/*******************/
2283
2284void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2285{
2286        int flags = 0;
2287
2288        ENABLE_REGWRITE_BUFFER(ah);
2289
2290        switch (ah->opmode) {
2291        case NL80211_IFTYPE_ADHOC:
2292                REG_SET_BIT(ah, AR_TXCFG,
2293                            AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2294                fallthrough;
2295        case NL80211_IFTYPE_MESH_POINT:
2296        case NL80211_IFTYPE_AP:
2297                REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2298                REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2299                          TU_TO_USEC(ah->config.dma_beacon_response_time));
2300                REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2301                          TU_TO_USEC(ah->config.sw_beacon_response_time));
2302                flags |=
2303                        AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2304                break;
2305        default:
2306                ath_dbg(ath9k_hw_common(ah), BEACON,
2307                        "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2308                return;
2309        }
2310
2311        REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2312        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2313        REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2314
2315        REGWRITE_BUFFER_FLUSH(ah);
2316
2317        REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2318}
2319EXPORT_SYMBOL(ath9k_hw_beaconinit);
2320
2321void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2322                                    const struct ath9k_beacon_state *bs)
2323{
2324        u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2325        struct ath9k_hw_capabilities *pCap = &ah->caps;
2326        struct ath_common *common = ath9k_hw_common(ah);
2327
2328        ENABLE_REGWRITE_BUFFER(ah);
2329
2330        REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2331        REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2332        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2333
2334        REGWRITE_BUFFER_FLUSH(ah);
2335
2336        REG_RMW_FIELD(ah, AR_RSSI_THR,
2337                      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2338
2339        beaconintval = bs->bs_intval;
2340
2341        if (bs->bs_sleepduration > beaconintval)
2342                beaconintval = bs->bs_sleepduration;
2343
2344        dtimperiod = bs->bs_dtimperiod;
2345        if (bs->bs_sleepduration > dtimperiod)
2346                dtimperiod = bs->bs_sleepduration;
2347
2348        if (beaconintval == dtimperiod)
2349                nextTbtt = bs->bs_nextdtim;
2350        else
2351                nextTbtt = bs->bs_nexttbtt;
2352
2353        ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2354        ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2355        ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2356        ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2357
2358        ENABLE_REGWRITE_BUFFER(ah);
2359
2360        REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2361        REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2362
2363        REG_WRITE(ah, AR_SLEEP1,
2364                  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2365                  | AR_SLEEP1_ASSUME_DTIM);
2366
2367        if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2368                beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2369        else
2370                beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2371
2372        REG_WRITE(ah, AR_SLEEP2,
2373                  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2374
2375        REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2376        REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2377
2378        REGWRITE_BUFFER_FLUSH(ah);
2379
2380        REG_SET_BIT(ah, AR_TIMER_MODE,
2381                    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2382                    AR_DTIM_TIMER_EN);
2383
2384        /* TSF Out of Range Threshold */
2385        REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2386}
2387EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2388
2389/*******************/
2390/* HW Capabilities */
2391/*******************/
2392
2393static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2394{
2395        eeprom_chainmask &= chip_chainmask;
2396        if (eeprom_chainmask)
2397                return eeprom_chainmask;
2398        else
2399                return chip_chainmask;
2400}
2401
2402/**
2403 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2404 * @ah: the atheros hardware data structure
2405 *
2406 * We enable DFS support upstream on chipsets which have passed a series
2407 * of tests. The testing requirements are going to be documented. Desired
2408 * test requirements are documented at:
2409 *
2410 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs
2411 *
2412 * Once a new chipset gets properly tested an individual commit can be used
2413 * to document the testing for DFS for that chipset.
2414 */
2415static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2416{
2417
2418        switch (ah->hw_version.macVersion) {
2419        /* for temporary testing DFS with 9280 */
2420        case AR_SREV_VERSION_9280:
2421        /* AR9580 will likely be our first target to get testing on */
2422        case AR_SREV_VERSION_9580:
2423                return true;
2424        default:
2425                return false;
2426        }
2427}
2428
2429static void ath9k_gpio_cap_init(struct ath_hw *ah)
2430{
2431        struct ath9k_hw_capabilities *pCap = &ah->caps;
2432
2433        if (AR_SREV_9271(ah)) {
2434                pCap->num_gpio_pins = AR9271_NUM_GPIO;
2435                pCap->gpio_mask = AR9271_GPIO_MASK;
2436        } else if (AR_DEVID_7010(ah)) {
2437                pCap->num_gpio_pins = AR7010_NUM_GPIO;
2438                pCap->gpio_mask = AR7010_GPIO_MASK;
2439        } else if (AR_SREV_9287(ah)) {
2440                pCap->num_gpio_pins = AR9287_NUM_GPIO;
2441                pCap->gpio_mask = AR9287_GPIO_MASK;
2442        } else if (AR_SREV_9285(ah)) {
2443                pCap->num_gpio_pins = AR9285_NUM_GPIO;
2444                pCap->gpio_mask = AR9285_GPIO_MASK;
2445        } else if (AR_SREV_9280(ah)) {
2446                pCap->num_gpio_pins = AR9280_NUM_GPIO;
2447                pCap->gpio_mask = AR9280_GPIO_MASK;
2448        } else if (AR_SREV_9300(ah)) {
2449                pCap->num_gpio_pins = AR9300_NUM_GPIO;
2450                pCap->gpio_mask = AR9300_GPIO_MASK;
2451        } else if (AR_SREV_9330(ah)) {
2452                pCap->num_gpio_pins = AR9330_NUM_GPIO;
2453                pCap->gpio_mask = AR9330_GPIO_MASK;
2454        } else if (AR_SREV_9340(ah)) {
2455                pCap->num_gpio_pins = AR9340_NUM_GPIO;
2456                pCap->gpio_mask = AR9340_GPIO_MASK;
2457        } else if (AR_SREV_9462(ah)) {
2458                pCap->num_gpio_pins = AR9462_NUM_GPIO;
2459                pCap->gpio_mask = AR9462_GPIO_MASK;
2460        } else if (AR_SREV_9485(ah)) {
2461                pCap->num_gpio_pins = AR9485_NUM_GPIO;
2462                pCap->gpio_mask = AR9485_GPIO_MASK;
2463        } else if (AR_SREV_9531(ah)) {
2464                pCap->num_gpio_pins = AR9531_NUM_GPIO;
2465                pCap->gpio_mask = AR9531_GPIO_MASK;
2466        } else if (AR_SREV_9550(ah)) {
2467                pCap->num_gpio_pins = AR9550_NUM_GPIO;
2468                pCap->gpio_mask = AR9550_GPIO_MASK;
2469        } else if (AR_SREV_9561(ah)) {
2470                pCap->num_gpio_pins = AR9561_NUM_GPIO;
2471                pCap->gpio_mask = AR9561_GPIO_MASK;
2472        } else if (AR_SREV_9565(ah)) {
2473                pCap->num_gpio_pins = AR9565_NUM_GPIO;
2474                pCap->gpio_mask = AR9565_GPIO_MASK;
2475        } else if (AR_SREV_9580(ah)) {
2476                pCap->num_gpio_pins = AR9580_NUM_GPIO;
2477                pCap->gpio_mask = AR9580_GPIO_MASK;
2478        } else {
2479                pCap->num_gpio_pins = AR_NUM_GPIO;
2480                pCap->gpio_mask = AR_GPIO_MASK;
2481        }
2482}
2483
2484int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2485{
2486        struct ath9k_hw_capabilities *pCap = &ah->caps;
2487        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2488        struct ath_common *common = ath9k_hw_common(ah);
2489
2490        u16 eeval;
2491        u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2492
2493        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2494        regulatory->current_rd = eeval;
2495
2496        if (ah->opmode != NL80211_IFTYPE_AP &&
2497            ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2498                if (regulatory->current_rd == 0x64 ||
2499                    regulatory->current_rd == 0x65)
2500                        regulatory->current_rd += 5;
2501                else if (regulatory->current_rd == 0x41)
2502                        regulatory->current_rd = 0x43;
2503                ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2504                        regulatory->current_rd);
2505        }
2506
2507        eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2508
2509        if (eeval & AR5416_OPFLAGS_11A) {
2510                if (ah->disable_5ghz)
2511                        ath_warn(common, "disabling 5GHz band\n");
2512                else
2513                        pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2514        }
2515
2516        if (eeval & AR5416_OPFLAGS_11G) {
2517                if (ah->disable_2ghz)
2518                        ath_warn(common, "disabling 2GHz band\n");
2519                else
2520                        pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2521        }
2522
2523        if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2524                ath_err(common, "both bands are disabled\n");
2525                return -EINVAL;
2526        }
2527
2528        ath9k_gpio_cap_init(ah);
2529
2530        if (AR_SREV_9485(ah) ||
2531            AR_SREV_9285(ah) ||
2532            AR_SREV_9330(ah) ||
2533            AR_SREV_9565(ah))
2534                pCap->chip_chainmask = 1;
2535        else if (!AR_SREV_9280_20_OR_LATER(ah))
2536                pCap->chip_chainmask = 7;
2537        else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2538                 AR_SREV_9340(ah) ||
2539                 AR_SREV_9462(ah) ||
2540                 AR_SREV_9531(ah))
2541                pCap->chip_chainmask = 3;
2542        else
2543                pCap->chip_chainmask = 7;
2544
2545        pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2546        /*
2547         * For AR9271 we will temporarilly uses the rx chainmax as read from
2548         * the EEPROM.
2549         */
2550        if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2551            !(eeval & AR5416_OPFLAGS_11A) &&
2552            !(AR_SREV_9271(ah)))
2553                /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2554                pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2555        else if (AR_SREV_9100(ah))
2556                pCap->rx_chainmask = 0x7;
2557        else
2558                /* Use rx_chainmask from EEPROM. */
2559                pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2560
2561        pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2562        pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2563        ah->txchainmask = pCap->tx_chainmask;
2564        ah->rxchainmask = pCap->rx_chainmask;
2565
2566        ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2567
2568        /* enable key search for every frame in an aggregate */
2569        if (AR_SREV_9300_20_OR_LATER(ah))
2570                ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2571
2572        common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2573
2574        if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2575                pCap->hw_caps |= ATH9K_HW_CAP_HT;
2576        else
2577                pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2578
2579        if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2580                pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2581        else
2582                pCap->rts_aggr_limit = (8 * 1024);
2583
2584#ifdef CONFIG_ATH9K_RFKILL
2585        ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2586        if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2587                ah->rfkill_gpio =
2588                        MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2589                ah->rfkill_polarity =
2590                        MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2591
2592                pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2593        }
2594#endif
2595        if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2596                pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2597        else
2598                pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2599
2600        if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2601                pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2602        else
2603                pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2604
2605        if (AR_SREV_9300_20_OR_LATER(ah)) {
2606                pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2607                if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2608                    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2609                        pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2610
2611                pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2612                pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2613                pCap->rx_status_len = sizeof(struct ar9003_rxs);
2614                pCap->tx_desc_len = sizeof(struct ar9003_txc);
2615                pCap->txs_len = sizeof(struct ar9003_txs);
2616        } else {
2617                pCap->tx_desc_len = sizeof(struct ath_desc);
2618                if (AR_SREV_9280_20(ah))
2619                        pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2620        }
2621
2622        if (AR_SREV_9300_20_OR_LATER(ah))
2623                pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2624
2625        if (AR_SREV_9561(ah))
2626                ah->ent_mode = 0x3BDA000;
2627        else if (AR_SREV_9300_20_OR_LATER(ah))
2628                ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2629
2630        if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2631                pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2632
2633        if (AR_SREV_9285(ah)) {
2634                if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2635                        ant_div_ctl1 =
2636                                ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2637                        if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2638                                pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2639                                ath_info(common, "Enable LNA combining\n");
2640                        }
2641                }
2642        }
2643
2644        if (AR_SREV_9300_20_OR_LATER(ah)) {
2645                if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2646                        pCap->hw_caps |= ATH9K_HW_CAP_APM;
2647        }
2648
2649        if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2650                ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2651                if ((ant_div_ctl1 >> 0x6) == 0x3) {
2652                        pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2653                        ath_info(common, "Enable LNA combining\n");
2654                }
2655        }
2656
2657        if (ath9k_hw_dfs_tested(ah))
2658                pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2659
2660        tx_chainmask = pCap->tx_chainmask;
2661        rx_chainmask = pCap->rx_chainmask;
2662        while (tx_chainmask || rx_chainmask) {
2663                if (tx_chainmask & BIT(0))
2664                        pCap->max_txchains++;
2665                if (rx_chainmask & BIT(0))
2666                        pCap->max_rxchains++;
2667
2668                tx_chainmask >>= 1;
2669                rx_chainmask >>= 1;
2670        }
2671
2672        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2673                if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2674                        pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2675
2676                if (AR_SREV_9462_20_OR_LATER(ah))
2677                        pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2678        }
2679
2680        if (AR_SREV_9300_20_OR_LATER(ah) &&
2681            ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2682                        pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2683
2684#ifdef CONFIG_ATH9K_WOW
2685        if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2686                ah->wow.max_patterns = MAX_NUM_PATTERN;
2687        else
2688                ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2689#endif
2690
2691        return 0;
2692}
2693
2694/****************************/
2695/* GPIO / RFKILL / Antennae */
2696/****************************/
2697
2698static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2699{
2700        int addr;
2701        u32 gpio_shift, tmp;
2702
2703        if (gpio > 11)
2704                addr = AR_GPIO_OUTPUT_MUX3;
2705        else if (gpio > 5)
2706                addr = AR_GPIO_OUTPUT_MUX2;
2707        else
2708                addr = AR_GPIO_OUTPUT_MUX1;
2709
2710        gpio_shift = (gpio % 6) * 5;
2711
2712        if (AR_SREV_9280_20_OR_LATER(ah) ||
2713            (addr != AR_GPIO_OUTPUT_MUX1)) {
2714                REG_RMW(ah, addr, (type << gpio_shift),
2715                        (0x1f << gpio_shift));
2716        } else {
2717                tmp = REG_READ(ah, addr);
2718                tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2719                tmp &= ~(0x1f << gpio_shift);
2720                tmp |= (type << gpio_shift);
2721                REG_WRITE(ah, addr, tmp);
2722        }
2723}
2724
2725/* BSP should set the corresponding MUX register correctly.
2726 */
2727static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2728                                  const char *label)
2729{
2730        int err;
2731
2732        if (ah->caps.gpio_requested & BIT(gpio))
2733                return;
2734
2735        err = gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label);
2736        if (err) {
2737                ath_err(ath9k_hw_common(ah), "request GPIO%d failed:%d\n",
2738                        gpio, err);
2739                return;
2740        }
2741
2742        ah->caps.gpio_requested |= BIT(gpio);
2743}
2744
2745static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2746                                   u32 ah_signal_type)
2747{
2748        u32 gpio_set, gpio_shift = gpio;
2749
2750        if (AR_DEVID_7010(ah)) {
2751                gpio_set = out ?
2752                        AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2753                REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2754                        AR7010_GPIO_OE_MASK << gpio_shift);
2755        } else if (AR_SREV_SOC(ah)) {
2756                gpio_set = out ? 1 : 0;
2757                REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2758                        gpio_set << gpio_shift);
2759        } else {
2760                gpio_shift = gpio << 1;
2761                gpio_set = out ?
2762                        AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2763                REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2764                        AR_GPIO_OE_OUT_DRV << gpio_shift);
2765
2766                if (out)
2767                        ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2768        }
2769}
2770
2771static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2772                                  const char *label, u32 ah_signal_type)
2773{
2774        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2775
2776        if (BIT(gpio) & ah->caps.gpio_mask)
2777                ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2778        else if (AR_SREV_SOC(ah))
2779                ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2780        else
2781                WARN_ON(1);
2782}
2783
2784void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2785{
2786        ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2787}
2788EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2789
2790void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2791                               u32 ah_signal_type)
2792{
2793        ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2794}
2795EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2796
2797void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2798{
2799        if (!AR_SREV_SOC(ah))
2800                return;
2801
2802        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2803
2804        if (ah->caps.gpio_requested & BIT(gpio)) {
2805                gpio_free(gpio);
2806                ah->caps.gpio_requested &= ~BIT(gpio);
2807        }
2808}
2809EXPORT_SYMBOL(ath9k_hw_gpio_free);
2810
2811u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2812{
2813        u32 val = 0xffffffff;
2814
2815#define MS_REG_READ(x, y) \
2816        (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2817
2818        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2819
2820        if (BIT(gpio) & ah->caps.gpio_mask) {
2821                if (AR_SREV_9271(ah))
2822                        val = MS_REG_READ(AR9271, gpio);
2823                else if (AR_SREV_9287(ah))
2824                        val = MS_REG_READ(AR9287, gpio);
2825                else if (AR_SREV_9285(ah))
2826                        val = MS_REG_READ(AR9285, gpio);
2827                else if (AR_SREV_9280(ah))
2828                        val = MS_REG_READ(AR928X, gpio);
2829                else if (AR_DEVID_7010(ah))
2830                        val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2831                else if (AR_SREV_9300_20_OR_LATER(ah))
2832                        val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2833                else
2834                        val = MS_REG_READ(AR, gpio);
2835        } else if (BIT(gpio) & ah->caps.gpio_requested) {
2836                val = gpio_get_value(gpio) & BIT(gpio);
2837        } else {
2838                WARN_ON(1);
2839        }
2840
2841        return !!val;
2842}
2843EXPORT_SYMBOL(ath9k_hw_gpio_get);
2844
2845void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2846{
2847        WARN_ON(gpio >= ah->caps.num_gpio_pins);
2848
2849        if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2850                val = !val;
2851        else
2852                val = !!val;
2853
2854        if (BIT(gpio) & ah->caps.gpio_mask) {
2855                u32 out_addr = AR_DEVID_7010(ah) ?
2856                        AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2857
2858                REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2859        } else if (BIT(gpio) & ah->caps.gpio_requested) {
2860                gpio_set_value(gpio, val);
2861        } else {
2862                WARN_ON(1);
2863        }
2864}
2865EXPORT_SYMBOL(ath9k_hw_set_gpio);
2866
2867void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2868{
2869        REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2870}
2871EXPORT_SYMBOL(ath9k_hw_setantenna);
2872
2873/*********************/
2874/* General Operation */
2875/*********************/
2876
2877u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2878{
2879        u32 bits = REG_READ(ah, AR_RX_FILTER);
2880        u32 phybits = REG_READ(ah, AR_PHY_ERR);
2881
2882        if (phybits & AR_PHY_ERR_RADAR)
2883                bits |= ATH9K_RX_FILTER_PHYRADAR;
2884        if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2885                bits |= ATH9K_RX_FILTER_PHYERR;
2886
2887        return bits;
2888}
2889EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2890
2891void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2892{
2893        u32 phybits;
2894
2895        ENABLE_REGWRITE_BUFFER(ah);
2896
2897        REG_WRITE(ah, AR_RX_FILTER, bits);
2898
2899        phybits = 0;
2900        if (bits & ATH9K_RX_FILTER_PHYRADAR)
2901                phybits |= AR_PHY_ERR_RADAR;
2902        if (bits & ATH9K_RX_FILTER_PHYERR)
2903                phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2904        REG_WRITE(ah, AR_PHY_ERR, phybits);
2905
2906        if (phybits)
2907                REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2908        else
2909                REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2910
2911        REGWRITE_BUFFER_FLUSH(ah);
2912}
2913EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2914
2915bool ath9k_hw_phy_disable(struct ath_hw *ah)
2916{
2917        if (ath9k_hw_mci_is_enabled(ah))
2918                ar9003_mci_bt_gain_ctrl(ah);
2919
2920        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2921                return false;
2922
2923        ath9k_hw_init_pll(ah, NULL);
2924        ah->htc_reset_init = true;
2925        return true;
2926}
2927EXPORT_SYMBOL(ath9k_hw_phy_disable);
2928
2929bool ath9k_hw_disable(struct ath_hw *ah)
2930{
2931        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2932                return false;
2933
2934        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2935                return false;
2936
2937        ath9k_hw_init_pll(ah, NULL);
2938        return true;
2939}
2940EXPORT_SYMBOL(ath9k_hw_disable);
2941
2942static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2943{
2944        enum eeprom_param gain_param;
2945
2946        if (IS_CHAN_2GHZ(chan))
2947                gain_param = EEP_ANTENNA_GAIN_2G;
2948        else
2949                gain_param = EEP_ANTENNA_GAIN_5G;
2950
2951        return ah->eep_ops->get_eeprom(ah, gain_param);
2952}
2953
2954void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2955                            bool test)
2956{
2957        struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2958        struct ieee80211_channel *channel;
2959        int chan_pwr, new_pwr;
2960        u16 ctl = NO_CTL;
2961
2962        if (!chan)
2963                return;
2964
2965        if (!test)
2966                ctl = ath9k_regd_get_ctl(reg, chan);
2967
2968        channel = chan->chan;
2969        chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER);
2970        new_pwr = min_t(int, chan_pwr, reg->power_limit);
2971
2972        ah->eep_ops->set_txpower(ah, chan, ctl,
2973                                 get_antenna_gain(ah, chan), new_pwr, test);
2974}
2975
2976void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2977{
2978        struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2979        struct ath9k_channel *chan = ah->curchan;
2980        struct ieee80211_channel *channel = chan->chan;
2981
2982        reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER);
2983        if (test)
2984                channel->max_power = MAX_COMBINED_POWER / 2;
2985
2986        ath9k_hw_apply_txpower(ah, chan, test);
2987
2988        if (test)
2989                channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2990}
2991EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2992
2993void ath9k_hw_setopmode(struct ath_hw *ah)
2994{
2995        ath9k_hw_set_operating_mode(ah, ah->opmode);
2996}
2997EXPORT_SYMBOL(ath9k_hw_setopmode);
2998
2999void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3000{
3001        REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3002        REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3003}
3004EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3005
3006void ath9k_hw_write_associd(struct ath_hw *ah)
3007{
3008        struct ath_common *common = ath9k_hw_common(ah);
3009
3010        REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3011        REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3012                  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3013}
3014EXPORT_SYMBOL(ath9k_hw_write_associd);
3015
3016#define ATH9K_MAX_TSF_READ 10
3017
3018u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3019{
3020        u32 tsf_lower, tsf_upper1, tsf_upper2;
3021        int i;
3022
3023        tsf_upper1 = REG_READ(ah, AR_TSF_U32);
3024        for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
3025                tsf_lower = REG_READ(ah, AR_TSF_L32);
3026                tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3027                if (tsf_upper2 == tsf_upper1)
3028                        break;
3029                tsf_upper1 = tsf_upper2;
3030        }
3031
3032        WARN_ON( i == ATH9K_MAX_TSF_READ );
3033
3034        return (((u64)tsf_upper1 << 32) | tsf_lower);
3035}
3036EXPORT_SYMBOL(ath9k_hw_gettsf64);
3037
3038void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3039{
3040        REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3041        REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3042}
3043EXPORT_SYMBOL(ath9k_hw_settsf64);
3044
3045void ath9k_hw_reset_tsf(struct ath_hw *ah)
3046{
3047        if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3048                           AH_TSF_WRITE_TIMEOUT))
3049                ath_dbg(ath9k_hw_common(ah), RESET,
3050                        "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3051
3052        REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3053}
3054EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3055
3056void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3057{
3058        if (set)
3059                ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3060        else
3061                ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3062}
3063EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3064
3065void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3066{
3067        u32 macmode;
3068
3069        if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3070                macmode = AR_2040_JOINED_RX_CLEAR;
3071        else
3072                macmode = 0;
3073
3074        REG_WRITE(ah, AR_2040_MODE, macmode);
3075}
3076
3077/* HW Generic timers configuration */
3078
3079static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3080{
3081        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3082        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3083        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3084        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3085        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3086        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3087        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3088        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3089        {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3090        {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3091                                AR_NDP2_TIMER_MODE, 0x0002},
3092        {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3093                                AR_NDP2_TIMER_MODE, 0x0004},
3094        {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3095                                AR_NDP2_TIMER_MODE, 0x0008},
3096        {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3097                                AR_NDP2_TIMER_MODE, 0x0010},
3098        {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3099                                AR_NDP2_TIMER_MODE, 0x0020},
3100        {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3101                                AR_NDP2_TIMER_MODE, 0x0040},
3102        {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3103                                AR_NDP2_TIMER_MODE, 0x0080}
3104};
3105
3106/* HW generic timer primitives */
3107
3108u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3109{
3110        return REG_READ(ah, AR_TSF_L32);
3111}
3112EXPORT_SYMBOL(ath9k_hw_gettsf32);
3113
3114void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3115{
3116        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117
3118        if (timer_table->tsf2_enabled) {
3119                REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3120                REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3121        }
3122}
3123
3124struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3125                                          void (*trigger)(void *),
3126                                          void (*overflow)(void *),
3127                                          void *arg,
3128                                          u8 timer_index)
3129{
3130        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3131        struct ath_gen_timer *timer;
3132
3133        if ((timer_index < AR_FIRST_NDP_TIMER) ||
3134            (timer_index >= ATH_MAX_GEN_TIMER))
3135                return NULL;
3136
3137        if ((timer_index > AR_FIRST_NDP_TIMER) &&
3138            !AR_SREV_9300_20_OR_LATER(ah))
3139                return NULL;
3140
3141        timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3142        if (timer == NULL)
3143                return NULL;
3144
3145        /* allocate a hardware generic timer slot */
3146        timer_table->timers[timer_index] = timer;
3147        timer->index = timer_index;
3148        timer->trigger = trigger;
3149        timer->overflow = overflow;
3150        timer->arg = arg;
3151
3152        if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3153                timer_table->tsf2_enabled = true;
3154                ath9k_hw_gen_timer_start_tsf2(ah);
3155        }
3156
3157        return timer;
3158}
3159EXPORT_SYMBOL(ath_gen_timer_alloc);
3160
3161void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3162                              struct ath_gen_timer *timer,
3163                              u32 timer_next,
3164                              u32 timer_period)
3165{
3166        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3167        u32 mask = 0;
3168
3169        timer_table->timer_mask |= BIT(timer->index);
3170
3171        /*
3172         * Program generic timer registers
3173         */
3174        REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3175                 timer_next);
3176        REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3177                  timer_period);
3178        REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3179                    gen_tmr_configuration[timer->index].mode_mask);
3180
3181        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3182                /*
3183                 * Starting from AR9462, each generic timer can select which tsf
3184                 * to use. But we still follow the old rule, 0 - 7 use tsf and
3185                 * 8 - 15  use tsf2.
3186                 */
3187                if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3188                        REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3189                                       (1 << timer->index));
3190                else
3191                        REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3192                                       (1 << timer->index));
3193        }
3194
3195        if (timer->trigger)
3196                mask |= SM(AR_GENTMR_BIT(timer->index),
3197                           AR_IMR_S5_GENTIMER_TRIG);
3198        if (timer->overflow)
3199                mask |= SM(AR_GENTMR_BIT(timer->index),
3200                           AR_IMR_S5_GENTIMER_THRESH);
3201
3202        REG_SET_BIT(ah, AR_IMR_S5, mask);
3203
3204        if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3205                ah->imask |= ATH9K_INT_GENTIMER;
3206                ath9k_hw_set_interrupts(ah);
3207        }
3208}
3209EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3210
3211void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3212{
3213        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3214
3215        /* Clear generic timer enable bits. */
3216        REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3217                        gen_tmr_configuration[timer->index].mode_mask);
3218
3219        if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3220                /*
3221                 * Need to switch back to TSF if it was using TSF2.
3222                 */
3223                if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3224                        REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3225                                    (1 << timer->index));
3226                }
3227        }
3228
3229        /* Disable both trigger and thresh interrupt masks */
3230        REG_CLR_BIT(ah, AR_IMR_S5,
3231                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3232                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3233
3234        timer_table->timer_mask &= ~BIT(timer->index);
3235
3236        if (timer_table->timer_mask == 0) {
3237                ah->imask &= ~ATH9K_INT_GENTIMER;
3238                ath9k_hw_set_interrupts(ah);
3239        }
3240}
3241EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3242
3243void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3244{
3245        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3246
3247        /* free the hardware generic timer slot */
3248        timer_table->timers[timer->index] = NULL;
3249        kfree(timer);
3250}
3251EXPORT_SYMBOL(ath_gen_timer_free);
3252
3253/*
3254 * Generic Timer Interrupts handling
3255 */
3256void ath_gen_timer_isr(struct ath_hw *ah)
3257{
3258        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3259        struct ath_gen_timer *timer;
3260        unsigned long trigger_mask, thresh_mask;
3261        unsigned int index;
3262
3263        /* get hardware generic timer interrupt status */
3264        trigger_mask = ah->intr_gen_timer_trigger;
3265        thresh_mask = ah->intr_gen_timer_thresh;
3266        trigger_mask &= timer_table->timer_mask;
3267        thresh_mask &= timer_table->timer_mask;
3268
3269        for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3270                timer = timer_table->timers[index];
3271                if (!timer)
3272                    continue;
3273                if (!timer->overflow)
3274                    continue;
3275
3276                trigger_mask &= ~BIT(index);
3277                timer->overflow(timer->arg);
3278        }
3279
3280        for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3281                timer = timer_table->timers[index];
3282                if (!timer)
3283                    continue;
3284                if (!timer->trigger)
3285                    continue;
3286                timer->trigger(timer->arg);
3287        }
3288}
3289EXPORT_SYMBOL(ath_gen_timer_isr);
3290
3291/********/
3292/* HTC  */
3293/********/
3294
3295static struct {
3296        u32 version;
3297        const char * name;
3298} ath_mac_bb_names[] = {
3299        /* Devices with external radios */
3300        { AR_SREV_VERSION_5416_PCI,     "5416" },
3301        { AR_SREV_VERSION_5416_PCIE,    "5418" },
3302        { AR_SREV_VERSION_9100,         "9100" },
3303        { AR_SREV_VERSION_9160,         "9160" },
3304        /* Single-chip solutions */
3305        { AR_SREV_VERSION_9280,         "9280" },
3306        { AR_SREV_VERSION_9285,         "9285" },
3307        { AR_SREV_VERSION_9287,         "9287" },
3308        { AR_SREV_VERSION_9271,         "9271" },
3309        { AR_SREV_VERSION_9300,         "9300" },
3310        { AR_SREV_VERSION_9330,         "9330" },
3311        { AR_SREV_VERSION_9340,         "9340" },
3312        { AR_SREV_VERSION_9485,         "9485" },
3313        { AR_SREV_VERSION_9462,         "9462" },
3314        { AR_SREV_VERSION_9550,         "9550" },
3315        { AR_SREV_VERSION_9565,         "9565" },
3316        { AR_SREV_VERSION_9531,         "9531" },
3317        { AR_SREV_VERSION_9561,         "9561" },
3318};
3319
3320/* For devices with external radios */
3321static struct {
3322        u16 version;
3323        const char * name;
3324} ath_rf_names[] = {
3325        { 0,                            "5133" },
3326        { AR_RAD5133_SREV_MAJOR,        "5133" },
3327        { AR_RAD5122_SREV_MAJOR,        "5122" },
3328        { AR_RAD2133_SREV_MAJOR,        "2133" },
3329        { AR_RAD2122_SREV_MAJOR,        "2122" }
3330};
3331
3332/*
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3334 */
3335static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3336{
3337        int i;
3338
3339        for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3340                if (ath_mac_bb_names[i].version == mac_bb_version) {
3341                        return ath_mac_bb_names[i].name;
3342                }
3343        }
3344
3345        return "????";
3346}
3347
3348/*
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3351 */
3352static const char *ath9k_hw_rf_name(u16 rf_version)
3353{
3354        int i;
3355
3356        for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3357                if (ath_rf_names[i].version == rf_version) {
3358                        return ath_rf_names[i].name;
3359                }
3360        }
3361
3362        return "????";
3363}
3364
3365void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3366{
3367        int used;
3368
3369        /* chipsets >= AR9280 are single-chip */
3370        if (AR_SREV_9280_20_OR_LATER(ah)) {
3371                used = scnprintf(hw_name, len,
3372                                 "Atheros AR%s Rev:%x",
3373                                 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3374                                 ah->hw_version.macRev);
3375        }
3376        else {
3377                used = scnprintf(hw_name, len,
3378                                 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379                                 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3380                                 ah->hw_version.macRev,
3381                                 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3382                                                  & AR_RADIO_SREV_MAJOR)),
3383                                 ah->hw_version.phyRev);
3384        }
3385
3386        hw_name[used] = '\0';
3387}
3388EXPORT_SYMBOL(ath9k_hw_name);
3389