linux/drivers/net/wireless/intel/ipw2x00/ipw2200.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3
   4  Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
   5
   6  802.11 status code portion of this file from ethereal-0.10.6:
   7    Copyright 2000, Axis Communications AB
   8    Ethereal - Network traffic analyzer
   9    By Gerald Combs <gerald@ethereal.com>
  10    Copyright 1998 Gerald Combs
  11
  12
  13  Contact Information:
  14  Intel Linux Wireless <ilw@linux.intel.com>
  15  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  16
  17******************************************************************************/
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <net/cfg80211-wext.h>
  22#include "ipw2200.h"
  23#include "ipw.h"
  24
  25
  26#ifndef KBUILD_EXTMOD
  27#define VK "k"
  28#else
  29#define VK
  30#endif
  31
  32#ifdef CONFIG_IPW2200_DEBUG
  33#define VD "d"
  34#else
  35#define VD
  36#endif
  37
  38#ifdef CONFIG_IPW2200_MONITOR
  39#define VM "m"
  40#else
  41#define VM
  42#endif
  43
  44#ifdef CONFIG_IPW2200_PROMISCUOUS
  45#define VP "p"
  46#else
  47#define VP
  48#endif
  49
  50#ifdef CONFIG_IPW2200_RADIOTAP
  51#define VR "r"
  52#else
  53#define VR
  54#endif
  55
  56#ifdef CONFIG_IPW2200_QOS
  57#define VQ "q"
  58#else
  59#define VQ
  60#endif
  61
  62#define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
  63#define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
  64#define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
  65#define DRV_VERSION     IPW2200_VERSION
  66
  67#define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
  68
  69MODULE_DESCRIPTION(DRV_DESCRIPTION);
  70MODULE_VERSION(DRV_VERSION);
  71MODULE_AUTHOR(DRV_COPYRIGHT);
  72MODULE_LICENSE("GPL");
  73MODULE_FIRMWARE("ipw2200-ibss.fw");
  74#ifdef CONFIG_IPW2200_MONITOR
  75MODULE_FIRMWARE("ipw2200-sniffer.fw");
  76#endif
  77MODULE_FIRMWARE("ipw2200-bss.fw");
  78
  79static int cmdlog = 0;
  80static int debug = 0;
  81static int default_channel = 0;
  82static int network_mode = 0;
  83
  84static u32 ipw_debug_level;
  85static int associate;
  86static int auto_create = 1;
  87static int led_support = 1;
  88static int disable = 0;
  89static int bt_coexist = 0;
  90static int hwcrypto = 0;
  91static int roaming = 1;
  92static const char ipw_modes[] = {
  93        'a', 'b', 'g', '?'
  94};
  95static int antenna = CFG_SYS_ANTENNA_BOTH;
  96
  97#ifdef CONFIG_IPW2200_PROMISCUOUS
  98static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
  99#endif
 100
 101static struct ieee80211_rate ipw2200_rates[] = {
 102        { .bitrate = 10 },
 103        { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 104        { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 105        { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 106        { .bitrate = 60 },
 107        { .bitrate = 90 },
 108        { .bitrate = 120 },
 109        { .bitrate = 180 },
 110        { .bitrate = 240 },
 111        { .bitrate = 360 },
 112        { .bitrate = 480 },
 113        { .bitrate = 540 }
 114};
 115
 116#define ipw2200_a_rates         (ipw2200_rates + 4)
 117#define ipw2200_num_a_rates     8
 118#define ipw2200_bg_rates        (ipw2200_rates + 0)
 119#define ipw2200_num_bg_rates    12
 120
 121/* Ugly macro to convert literal channel numbers into their mhz equivalents
 122 * There are certianly some conditions that will break this (like feeding it '30')
 123 * but they shouldn't arise since nothing talks on channel 30. */
 124#define ieee80211chan2mhz(x) \
 125        (((x) <= 14) ? \
 126        (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
 127        ((x) + 1000) * 5)
 128
 129#ifdef CONFIG_IPW2200_QOS
 130static int qos_enable = 0;
 131static int qos_burst_enable = 0;
 132static int qos_no_ack_mask = 0;
 133static int burst_duration_CCK = 0;
 134static int burst_duration_OFDM = 0;
 135
 136static struct libipw_qos_parameters def_qos_parameters_OFDM = {
 137        {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
 138         QOS_TX3_CW_MIN_OFDM},
 139        {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
 140         QOS_TX3_CW_MAX_OFDM},
 141        {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
 142        {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
 143        {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
 144         QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
 145};
 146
 147static struct libipw_qos_parameters def_qos_parameters_CCK = {
 148        {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
 149         QOS_TX3_CW_MIN_CCK},
 150        {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
 151         QOS_TX3_CW_MAX_CCK},
 152        {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
 153        {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
 154        {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
 155         QOS_TX3_TXOP_LIMIT_CCK}
 156};
 157
 158static struct libipw_qos_parameters def_parameters_OFDM = {
 159        {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
 160         DEF_TX3_CW_MIN_OFDM},
 161        {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
 162         DEF_TX3_CW_MAX_OFDM},
 163        {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
 164        {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
 165        {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
 166         DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
 167};
 168
 169static struct libipw_qos_parameters def_parameters_CCK = {
 170        {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
 171         DEF_TX3_CW_MIN_CCK},
 172        {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
 173         DEF_TX3_CW_MAX_CCK},
 174        {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
 175        {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
 176        {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
 177         DEF_TX3_TXOP_LIMIT_CCK}
 178};
 179
 180static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
 181
 182static int from_priority_to_tx_queue[] = {
 183        IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
 184        IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
 185};
 186
 187static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
 188
 189static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
 190                                       *qos_param);
 191static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
 192                                     *qos_param);
 193#endif                          /* CONFIG_IPW2200_QOS */
 194
 195static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
 196static void ipw_remove_current_network(struct ipw_priv *priv);
 197static void ipw_rx(struct ipw_priv *priv);
 198static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
 199                                struct clx2_tx_queue *txq, int qindex);
 200static int ipw_queue_reset(struct ipw_priv *priv);
 201
 202static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
 203                             int len, int sync);
 204
 205static void ipw_tx_queue_free(struct ipw_priv *);
 206
 207static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
 208static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
 209static void ipw_rx_queue_replenish(void *);
 210static int ipw_up(struct ipw_priv *);
 211static void ipw_bg_up(struct work_struct *work);
 212static void ipw_down(struct ipw_priv *);
 213static void ipw_bg_down(struct work_struct *work);
 214static int ipw_config(struct ipw_priv *);
 215static int init_supported_rates(struct ipw_priv *priv,
 216                                struct ipw_supported_rates *prates);
 217static void ipw_set_hwcrypto_keys(struct ipw_priv *);
 218static void ipw_send_wep_keys(struct ipw_priv *, int);
 219
 220static int snprint_line(char *buf, size_t count,
 221                        const u8 * data, u32 len, u32 ofs)
 222{
 223        int out, i, j, l;
 224        char c;
 225
 226        out = scnprintf(buf, count, "%08X", ofs);
 227
 228        for (l = 0, i = 0; i < 2; i++) {
 229                out += scnprintf(buf + out, count - out, " ");
 230                for (j = 0; j < 8 && l < len; j++, l++)
 231                        out += scnprintf(buf + out, count - out, "%02X ",
 232                                        data[(i * 8 + j)]);
 233                for (; j < 8; j++)
 234                        out += scnprintf(buf + out, count - out, "   ");
 235        }
 236
 237        out += scnprintf(buf + out, count - out, " ");
 238        for (l = 0, i = 0; i < 2; i++) {
 239                out += scnprintf(buf + out, count - out, " ");
 240                for (j = 0; j < 8 && l < len; j++, l++) {
 241                        c = data[(i * 8 + j)];
 242                        if (!isascii(c) || !isprint(c))
 243                                c = '.';
 244
 245                        out += scnprintf(buf + out, count - out, "%c", c);
 246                }
 247
 248                for (; j < 8; j++)
 249                        out += scnprintf(buf + out, count - out, " ");
 250        }
 251
 252        return out;
 253}
 254
 255static void printk_buf(int level, const u8 * data, u32 len)
 256{
 257        char line[81];
 258        u32 ofs = 0;
 259        if (!(ipw_debug_level & level))
 260                return;
 261
 262        while (len) {
 263                snprint_line(line, sizeof(line), &data[ofs],
 264                             min(len, 16U), ofs);
 265                printk(KERN_DEBUG "%s\n", line);
 266                ofs += 16;
 267                len -= min(len, 16U);
 268        }
 269}
 270
 271static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
 272{
 273        size_t out = size;
 274        u32 ofs = 0;
 275        int total = 0;
 276
 277        while (size && len) {
 278                out = snprint_line(output, size, &data[ofs],
 279                                   min_t(size_t, len, 16U), ofs);
 280
 281                ofs += 16;
 282                output += out;
 283                size -= out;
 284                len -= min_t(size_t, len, 16U);
 285                total += out;
 286        }
 287        return total;
 288}
 289
 290/* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
 291static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
 292#define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
 293
 294/* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
 295static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
 296#define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
 297
 298/* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 299static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
 300static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
 301{
 302        IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
 303                     __LINE__, (u32) (b), (u32) (c));
 304        _ipw_write_reg8(a, b, c);
 305}
 306
 307/* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 308static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
 309static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
 310{
 311        IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
 312                     __LINE__, (u32) (b), (u32) (c));
 313        _ipw_write_reg16(a, b, c);
 314}
 315
 316/* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
 317static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
 318static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
 319{
 320        IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
 321                     __LINE__, (u32) (b), (u32) (c));
 322        _ipw_write_reg32(a, b, c);
 323}
 324
 325/* 8-bit direct write (low 4K) */
 326static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
 327                u8 val)
 328{
 329        writeb(val, ipw->hw_base + ofs);
 330}
 331
 332/* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 333#define ipw_write8(ipw, ofs, val) do { \
 334        IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
 335                        __LINE__, (u32)(ofs), (u32)(val)); \
 336        _ipw_write8(ipw, ofs, val); \
 337} while (0)
 338
 339/* 16-bit direct write (low 4K) */
 340static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
 341                u16 val)
 342{
 343        writew(val, ipw->hw_base + ofs);
 344}
 345
 346/* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 347#define ipw_write16(ipw, ofs, val) do { \
 348        IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
 349                        __LINE__, (u32)(ofs), (u32)(val)); \
 350        _ipw_write16(ipw, ofs, val); \
 351} while (0)
 352
 353/* 32-bit direct write (low 4K) */
 354static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
 355                u32 val)
 356{
 357        writel(val, ipw->hw_base + ofs);
 358}
 359
 360/* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
 361#define ipw_write32(ipw, ofs, val) do { \
 362        IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
 363                        __LINE__, (u32)(ofs), (u32)(val)); \
 364        _ipw_write32(ipw, ofs, val); \
 365} while (0)
 366
 367/* 8-bit direct read (low 4K) */
 368static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
 369{
 370        return readb(ipw->hw_base + ofs);
 371}
 372
 373/* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 374#define ipw_read8(ipw, ofs) ({ \
 375        IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
 376                        (u32)(ofs)); \
 377        _ipw_read8(ipw, ofs); \
 378})
 379
 380/* 16-bit direct read (low 4K) */
 381static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
 382{
 383        return readw(ipw->hw_base + ofs);
 384}
 385
 386/* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 387#define ipw_read16(ipw, ofs) ({ \
 388        IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
 389                        (u32)(ofs)); \
 390        _ipw_read16(ipw, ofs); \
 391})
 392
 393/* 32-bit direct read (low 4K) */
 394static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
 395{
 396        return readl(ipw->hw_base + ofs);
 397}
 398
 399/* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
 400#define ipw_read32(ipw, ofs) ({ \
 401        IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
 402                        (u32)(ofs)); \
 403        _ipw_read32(ipw, ofs); \
 404})
 405
 406static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
 407/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
 408#define ipw_read_indirect(a, b, c, d) ({ \
 409        IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
 410                        __LINE__, (u32)(b), (u32)(d)); \
 411        _ipw_read_indirect(a, b, c, d); \
 412})
 413
 414/* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
 415static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
 416                                int num);
 417#define ipw_write_indirect(a, b, c, d) do { \
 418        IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
 419                        __LINE__, (u32)(b), (u32)(d)); \
 420        _ipw_write_indirect(a, b, c, d); \
 421} while (0)
 422
 423/* 32-bit indirect write (above 4K) */
 424static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
 425{
 426        IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
 427        _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
 428        _ipw_write32(priv, IPW_INDIRECT_DATA, value);
 429}
 430
 431/* 8-bit indirect write (above 4K) */
 432static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
 433{
 434        u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
 435        u32 dif_len = reg - aligned_addr;
 436
 437        IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
 438        _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 439        _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
 440}
 441
 442/* 16-bit indirect write (above 4K) */
 443static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
 444{
 445        u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
 446        u32 dif_len = (reg - aligned_addr) & (~0x1ul);
 447
 448        IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
 449        _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 450        _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
 451}
 452
 453/* 8-bit indirect read (above 4K) */
 454static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
 455{
 456        u32 word;
 457        _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
 458        IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
 459        word = _ipw_read32(priv, IPW_INDIRECT_DATA);
 460        return (word >> ((reg & 0x3) * 8)) & 0xff;
 461}
 462
 463/* 32-bit indirect read (above 4K) */
 464static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
 465{
 466        u32 value;
 467
 468        IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
 469
 470        _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
 471        value = _ipw_read32(priv, IPW_INDIRECT_DATA);
 472        IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
 473        return value;
 474}
 475
 476/* General purpose, no alignment requirement, iterative (multi-byte) read, */
 477/*    for area above 1st 4K of SRAM/reg space */
 478static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
 479                               int num)
 480{
 481        u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
 482        u32 dif_len = addr - aligned_addr;
 483        u32 i;
 484
 485        IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
 486
 487        if (num <= 0) {
 488                return;
 489        }
 490
 491        /* Read the first dword (or portion) byte by byte */
 492        if (unlikely(dif_len)) {
 493                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 494                /* Start reading at aligned_addr + dif_len */
 495                for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
 496                        *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
 497                aligned_addr += 4;
 498        }
 499
 500        /* Read all of the middle dwords as dwords, with auto-increment */
 501        _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
 502        for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
 503                *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
 504
 505        /* Read the last dword (or portion) byte by byte */
 506        if (unlikely(num)) {
 507                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 508                for (i = 0; num > 0; i++, num--)
 509                        *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
 510        }
 511}
 512
 513/* General purpose, no alignment requirement, iterative (multi-byte) write, */
 514/*    for area above 1st 4K of SRAM/reg space */
 515static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
 516                                int num)
 517{
 518        u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
 519        u32 dif_len = addr - aligned_addr;
 520        u32 i;
 521
 522        IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
 523
 524        if (num <= 0) {
 525                return;
 526        }
 527
 528        /* Write the first dword (or portion) byte by byte */
 529        if (unlikely(dif_len)) {
 530                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 531                /* Start writing at aligned_addr + dif_len */
 532                for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
 533                        _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
 534                aligned_addr += 4;
 535        }
 536
 537        /* Write all of the middle dwords as dwords, with auto-increment */
 538        _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
 539        for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
 540                _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
 541
 542        /* Write the last dword (or portion) byte by byte */
 543        if (unlikely(num)) {
 544                _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
 545                for (i = 0; num > 0; i++, num--, buf++)
 546                        _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
 547        }
 548}
 549
 550/* General purpose, no alignment requirement, iterative (multi-byte) write, */
 551/*    for 1st 4K of SRAM/regs space */
 552static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
 553                             int num)
 554{
 555        memcpy_toio((priv->hw_base + addr), buf, num);
 556}
 557
 558/* Set bit(s) in low 4K of SRAM/regs */
 559static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
 560{
 561        ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
 562}
 563
 564/* Clear bit(s) in low 4K of SRAM/regs */
 565static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
 566{
 567        ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
 568}
 569
 570static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
 571{
 572        if (priv->status & STATUS_INT_ENABLED)
 573                return;
 574        priv->status |= STATUS_INT_ENABLED;
 575        ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
 576}
 577
 578static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
 579{
 580        if (!(priv->status & STATUS_INT_ENABLED))
 581                return;
 582        priv->status &= ~STATUS_INT_ENABLED;
 583        ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
 584}
 585
 586static inline void ipw_enable_interrupts(struct ipw_priv *priv)
 587{
 588        unsigned long flags;
 589
 590        spin_lock_irqsave(&priv->irq_lock, flags);
 591        __ipw_enable_interrupts(priv);
 592        spin_unlock_irqrestore(&priv->irq_lock, flags);
 593}
 594
 595static inline void ipw_disable_interrupts(struct ipw_priv *priv)
 596{
 597        unsigned long flags;
 598
 599        spin_lock_irqsave(&priv->irq_lock, flags);
 600        __ipw_disable_interrupts(priv);
 601        spin_unlock_irqrestore(&priv->irq_lock, flags);
 602}
 603
 604static char *ipw_error_desc(u32 val)
 605{
 606        switch (val) {
 607        case IPW_FW_ERROR_OK:
 608                return "ERROR_OK";
 609        case IPW_FW_ERROR_FAIL:
 610                return "ERROR_FAIL";
 611        case IPW_FW_ERROR_MEMORY_UNDERFLOW:
 612                return "MEMORY_UNDERFLOW";
 613        case IPW_FW_ERROR_MEMORY_OVERFLOW:
 614                return "MEMORY_OVERFLOW";
 615        case IPW_FW_ERROR_BAD_PARAM:
 616                return "BAD_PARAM";
 617        case IPW_FW_ERROR_BAD_CHECKSUM:
 618                return "BAD_CHECKSUM";
 619        case IPW_FW_ERROR_NMI_INTERRUPT:
 620                return "NMI_INTERRUPT";
 621        case IPW_FW_ERROR_BAD_DATABASE:
 622                return "BAD_DATABASE";
 623        case IPW_FW_ERROR_ALLOC_FAIL:
 624                return "ALLOC_FAIL";
 625        case IPW_FW_ERROR_DMA_UNDERRUN:
 626                return "DMA_UNDERRUN";
 627        case IPW_FW_ERROR_DMA_STATUS:
 628                return "DMA_STATUS";
 629        case IPW_FW_ERROR_DINO_ERROR:
 630                return "DINO_ERROR";
 631        case IPW_FW_ERROR_EEPROM_ERROR:
 632                return "EEPROM_ERROR";
 633        case IPW_FW_ERROR_SYSASSERT:
 634                return "SYSASSERT";
 635        case IPW_FW_ERROR_FATAL_ERROR:
 636                return "FATAL_ERROR";
 637        default:
 638                return "UNKNOWN_ERROR";
 639        }
 640}
 641
 642static void ipw_dump_error_log(struct ipw_priv *priv,
 643                               struct ipw_fw_error *error)
 644{
 645        u32 i;
 646
 647        if (!error) {
 648                IPW_ERROR("Error allocating and capturing error log.  "
 649                          "Nothing to dump.\n");
 650                return;
 651        }
 652
 653        IPW_ERROR("Start IPW Error Log Dump:\n");
 654        IPW_ERROR("Status: 0x%08X, Config: %08X\n",
 655                  error->status, error->config);
 656
 657        for (i = 0; i < error->elem_len; i++)
 658                IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
 659                          ipw_error_desc(error->elem[i].desc),
 660                          error->elem[i].time,
 661                          error->elem[i].blink1,
 662                          error->elem[i].blink2,
 663                          error->elem[i].link1,
 664                          error->elem[i].link2, error->elem[i].data);
 665        for (i = 0; i < error->log_len; i++)
 666                IPW_ERROR("%i\t0x%08x\t%i\n",
 667                          error->log[i].time,
 668                          error->log[i].data, error->log[i].event);
 669}
 670
 671static inline int ipw_is_init(struct ipw_priv *priv)
 672{
 673        return (priv->status & STATUS_INIT) ? 1 : 0;
 674}
 675
 676static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
 677{
 678        u32 addr, field_info, field_len, field_count, total_len;
 679
 680        IPW_DEBUG_ORD("ordinal = %i\n", ord);
 681
 682        if (!priv || !val || !len) {
 683                IPW_DEBUG_ORD("Invalid argument\n");
 684                return -EINVAL;
 685        }
 686
 687        /* verify device ordinal tables have been initialized */
 688        if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
 689                IPW_DEBUG_ORD("Access ordinals before initialization\n");
 690                return -EINVAL;
 691        }
 692
 693        switch (IPW_ORD_TABLE_ID_MASK & ord) {
 694        case IPW_ORD_TABLE_0_MASK:
 695                /*
 696                 * TABLE 0: Direct access to a table of 32 bit values
 697                 *
 698                 * This is a very simple table with the data directly
 699                 * read from the table
 700                 */
 701
 702                /* remove the table id from the ordinal */
 703                ord &= IPW_ORD_TABLE_VALUE_MASK;
 704
 705                /* boundary check */
 706                if (ord > priv->table0_len) {
 707                        IPW_DEBUG_ORD("ordinal value (%i) longer then "
 708                                      "max (%i)\n", ord, priv->table0_len);
 709                        return -EINVAL;
 710                }
 711
 712                /* verify we have enough room to store the value */
 713                if (*len < sizeof(u32)) {
 714                        IPW_DEBUG_ORD("ordinal buffer length too small, "
 715                                      "need %zd\n", sizeof(u32));
 716                        return -EINVAL;
 717                }
 718
 719                IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
 720                              ord, priv->table0_addr + (ord << 2));
 721
 722                *len = sizeof(u32);
 723                ord <<= 2;
 724                *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
 725                break;
 726
 727        case IPW_ORD_TABLE_1_MASK:
 728                /*
 729                 * TABLE 1: Indirect access to a table of 32 bit values
 730                 *
 731                 * This is a fairly large table of u32 values each
 732                 * representing starting addr for the data (which is
 733                 * also a u32)
 734                 */
 735
 736                /* remove the table id from the ordinal */
 737                ord &= IPW_ORD_TABLE_VALUE_MASK;
 738
 739                /* boundary check */
 740                if (ord > priv->table1_len) {
 741                        IPW_DEBUG_ORD("ordinal value too long\n");
 742                        return -EINVAL;
 743                }
 744
 745                /* verify we have enough room to store the value */
 746                if (*len < sizeof(u32)) {
 747                        IPW_DEBUG_ORD("ordinal buffer length too small, "
 748                                      "need %zd\n", sizeof(u32));
 749                        return -EINVAL;
 750                }
 751
 752                *((u32 *) val) =
 753                    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
 754                *len = sizeof(u32);
 755                break;
 756
 757        case IPW_ORD_TABLE_2_MASK:
 758                /*
 759                 * TABLE 2: Indirect access to a table of variable sized values
 760                 *
 761                 * This table consist of six values, each containing
 762                 *     - dword containing the starting offset of the data
 763                 *     - dword containing the lengh in the first 16bits
 764                 *       and the count in the second 16bits
 765                 */
 766
 767                /* remove the table id from the ordinal */
 768                ord &= IPW_ORD_TABLE_VALUE_MASK;
 769
 770                /* boundary check */
 771                if (ord > priv->table2_len) {
 772                        IPW_DEBUG_ORD("ordinal value too long\n");
 773                        return -EINVAL;
 774                }
 775
 776                /* get the address of statistic */
 777                addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
 778
 779                /* get the second DW of statistics ;
 780                 * two 16-bit words - first is length, second is count */
 781                field_info =
 782                    ipw_read_reg32(priv,
 783                                   priv->table2_addr + (ord << 3) +
 784                                   sizeof(u32));
 785
 786                /* get each entry length */
 787                field_len = *((u16 *) & field_info);
 788
 789                /* get number of entries */
 790                field_count = *(((u16 *) & field_info) + 1);
 791
 792                /* abort if not enough memory */
 793                total_len = field_len * field_count;
 794                if (total_len > *len) {
 795                        *len = total_len;
 796                        return -EINVAL;
 797                }
 798
 799                *len = total_len;
 800                if (!total_len)
 801                        return 0;
 802
 803                IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
 804                              "field_info = 0x%08x\n",
 805                              addr, total_len, field_info);
 806                ipw_read_indirect(priv, addr, val, total_len);
 807                break;
 808
 809        default:
 810                IPW_DEBUG_ORD("Invalid ordinal!\n");
 811                return -EINVAL;
 812
 813        }
 814
 815        return 0;
 816}
 817
 818static void ipw_init_ordinals(struct ipw_priv *priv)
 819{
 820        priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
 821        priv->table0_len = ipw_read32(priv, priv->table0_addr);
 822
 823        IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
 824                      priv->table0_addr, priv->table0_len);
 825
 826        priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
 827        priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
 828
 829        IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
 830                      priv->table1_addr, priv->table1_len);
 831
 832        priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
 833        priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
 834        priv->table2_len &= 0x0000ffff; /* use first two bytes */
 835
 836        IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
 837                      priv->table2_addr, priv->table2_len);
 838
 839}
 840
 841static u32 ipw_register_toggle(u32 reg)
 842{
 843        reg &= ~IPW_START_STANDBY;
 844        if (reg & IPW_GATE_ODMA)
 845                reg &= ~IPW_GATE_ODMA;
 846        if (reg & IPW_GATE_IDMA)
 847                reg &= ~IPW_GATE_IDMA;
 848        if (reg & IPW_GATE_ADMA)
 849                reg &= ~IPW_GATE_ADMA;
 850        return reg;
 851}
 852
 853/*
 854 * LED behavior:
 855 * - On radio ON, turn on any LEDs that require to be on during start
 856 * - On initialization, start unassociated blink
 857 * - On association, disable unassociated blink
 858 * - On disassociation, start unassociated blink
 859 * - On radio OFF, turn off any LEDs started during radio on
 860 *
 861 */
 862#define LD_TIME_LINK_ON msecs_to_jiffies(300)
 863#define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
 864#define LD_TIME_ACT_ON msecs_to_jiffies(250)
 865
 866static void ipw_led_link_on(struct ipw_priv *priv)
 867{
 868        unsigned long flags;
 869        u32 led;
 870
 871        /* If configured to not use LEDs, or nic_type is 1,
 872         * then we don't toggle a LINK led */
 873        if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
 874                return;
 875
 876        spin_lock_irqsave(&priv->lock, flags);
 877
 878        if (!(priv->status & STATUS_RF_KILL_MASK) &&
 879            !(priv->status & STATUS_LED_LINK_ON)) {
 880                IPW_DEBUG_LED("Link LED On\n");
 881                led = ipw_read_reg32(priv, IPW_EVENT_REG);
 882                led |= priv->led_association_on;
 883
 884                led = ipw_register_toggle(led);
 885
 886                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 887                ipw_write_reg32(priv, IPW_EVENT_REG, led);
 888
 889                priv->status |= STATUS_LED_LINK_ON;
 890
 891                /* If we aren't associated, schedule turning the LED off */
 892                if (!(priv->status & STATUS_ASSOCIATED))
 893                        schedule_delayed_work(&priv->led_link_off,
 894                                              LD_TIME_LINK_ON);
 895        }
 896
 897        spin_unlock_irqrestore(&priv->lock, flags);
 898}
 899
 900static void ipw_bg_led_link_on(struct work_struct *work)
 901{
 902        struct ipw_priv *priv =
 903                container_of(work, struct ipw_priv, led_link_on.work);
 904        mutex_lock(&priv->mutex);
 905        ipw_led_link_on(priv);
 906        mutex_unlock(&priv->mutex);
 907}
 908
 909static void ipw_led_link_off(struct ipw_priv *priv)
 910{
 911        unsigned long flags;
 912        u32 led;
 913
 914        /* If configured not to use LEDs, or nic type is 1,
 915         * then we don't goggle the LINK led. */
 916        if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
 917                return;
 918
 919        spin_lock_irqsave(&priv->lock, flags);
 920
 921        if (priv->status & STATUS_LED_LINK_ON) {
 922                led = ipw_read_reg32(priv, IPW_EVENT_REG);
 923                led &= priv->led_association_off;
 924                led = ipw_register_toggle(led);
 925
 926                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 927                ipw_write_reg32(priv, IPW_EVENT_REG, led);
 928
 929                IPW_DEBUG_LED("Link LED Off\n");
 930
 931                priv->status &= ~STATUS_LED_LINK_ON;
 932
 933                /* If we aren't associated and the radio is on, schedule
 934                 * turning the LED on (blink while unassociated) */
 935                if (!(priv->status & STATUS_RF_KILL_MASK) &&
 936                    !(priv->status & STATUS_ASSOCIATED))
 937                        schedule_delayed_work(&priv->led_link_on,
 938                                              LD_TIME_LINK_OFF);
 939
 940        }
 941
 942        spin_unlock_irqrestore(&priv->lock, flags);
 943}
 944
 945static void ipw_bg_led_link_off(struct work_struct *work)
 946{
 947        struct ipw_priv *priv =
 948                container_of(work, struct ipw_priv, led_link_off.work);
 949        mutex_lock(&priv->mutex);
 950        ipw_led_link_off(priv);
 951        mutex_unlock(&priv->mutex);
 952}
 953
 954static void __ipw_led_activity_on(struct ipw_priv *priv)
 955{
 956        u32 led;
 957
 958        if (priv->config & CFG_NO_LED)
 959                return;
 960
 961        if (priv->status & STATUS_RF_KILL_MASK)
 962                return;
 963
 964        if (!(priv->status & STATUS_LED_ACT_ON)) {
 965                led = ipw_read_reg32(priv, IPW_EVENT_REG);
 966                led |= priv->led_activity_on;
 967
 968                led = ipw_register_toggle(led);
 969
 970                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
 971                ipw_write_reg32(priv, IPW_EVENT_REG, led);
 972
 973                IPW_DEBUG_LED("Activity LED On\n");
 974
 975                priv->status |= STATUS_LED_ACT_ON;
 976
 977                cancel_delayed_work(&priv->led_act_off);
 978                schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
 979        } else {
 980                /* Reschedule LED off for full time period */
 981                cancel_delayed_work(&priv->led_act_off);
 982                schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
 983        }
 984}
 985
 986#if 0
 987void ipw_led_activity_on(struct ipw_priv *priv)
 988{
 989        unsigned long flags;
 990        spin_lock_irqsave(&priv->lock, flags);
 991        __ipw_led_activity_on(priv);
 992        spin_unlock_irqrestore(&priv->lock, flags);
 993}
 994#endif  /*  0  */
 995
 996static void ipw_led_activity_off(struct ipw_priv *priv)
 997{
 998        unsigned long flags;
 999        u32 led;
1000
1001        if (priv->config & CFG_NO_LED)
1002                return;
1003
1004        spin_lock_irqsave(&priv->lock, flags);
1005
1006        if (priv->status & STATUS_LED_ACT_ON) {
1007                led = ipw_read_reg32(priv, IPW_EVENT_REG);
1008                led &= priv->led_activity_off;
1009
1010                led = ipw_register_toggle(led);
1011
1012                IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1013                ipw_write_reg32(priv, IPW_EVENT_REG, led);
1014
1015                IPW_DEBUG_LED("Activity LED Off\n");
1016
1017                priv->status &= ~STATUS_LED_ACT_ON;
1018        }
1019
1020        spin_unlock_irqrestore(&priv->lock, flags);
1021}
1022
1023static void ipw_bg_led_activity_off(struct work_struct *work)
1024{
1025        struct ipw_priv *priv =
1026                container_of(work, struct ipw_priv, led_act_off.work);
1027        mutex_lock(&priv->mutex);
1028        ipw_led_activity_off(priv);
1029        mutex_unlock(&priv->mutex);
1030}
1031
1032static void ipw_led_band_on(struct ipw_priv *priv)
1033{
1034        unsigned long flags;
1035        u32 led;
1036
1037        /* Only nic type 1 supports mode LEDs */
1038        if (priv->config & CFG_NO_LED ||
1039            priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1040                return;
1041
1042        spin_lock_irqsave(&priv->lock, flags);
1043
1044        led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045        if (priv->assoc_network->mode == IEEE_A) {
1046                led |= priv->led_ofdm_on;
1047                led &= priv->led_association_off;
1048                IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1049        } else if (priv->assoc_network->mode == IEEE_G) {
1050                led |= priv->led_ofdm_on;
1051                led |= priv->led_association_on;
1052                IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1053        } else {
1054                led &= priv->led_ofdm_off;
1055                led |= priv->led_association_on;
1056                IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1057        }
1058
1059        led = ipw_register_toggle(led);
1060
1061        IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1062        ipw_write_reg32(priv, IPW_EVENT_REG, led);
1063
1064        spin_unlock_irqrestore(&priv->lock, flags);
1065}
1066
1067static void ipw_led_band_off(struct ipw_priv *priv)
1068{
1069        unsigned long flags;
1070        u32 led;
1071
1072        /* Only nic type 1 supports mode LEDs */
1073        if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1074                return;
1075
1076        spin_lock_irqsave(&priv->lock, flags);
1077
1078        led = ipw_read_reg32(priv, IPW_EVENT_REG);
1079        led &= priv->led_ofdm_off;
1080        led &= priv->led_association_off;
1081
1082        led = ipw_register_toggle(led);
1083
1084        IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1085        ipw_write_reg32(priv, IPW_EVENT_REG, led);
1086
1087        spin_unlock_irqrestore(&priv->lock, flags);
1088}
1089
1090static void ipw_led_radio_on(struct ipw_priv *priv)
1091{
1092        ipw_led_link_on(priv);
1093}
1094
1095static void ipw_led_radio_off(struct ipw_priv *priv)
1096{
1097        ipw_led_activity_off(priv);
1098        ipw_led_link_off(priv);
1099}
1100
1101static void ipw_led_link_up(struct ipw_priv *priv)
1102{
1103        /* Set the Link Led on for all nic types */
1104        ipw_led_link_on(priv);
1105}
1106
1107static void ipw_led_link_down(struct ipw_priv *priv)
1108{
1109        ipw_led_activity_off(priv);
1110        ipw_led_link_off(priv);
1111
1112        if (priv->status & STATUS_RF_KILL_MASK)
1113                ipw_led_radio_off(priv);
1114}
1115
1116static void ipw_led_init(struct ipw_priv *priv)
1117{
1118        priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1119
1120        /* Set the default PINs for the link and activity leds */
1121        priv->led_activity_on = IPW_ACTIVITY_LED;
1122        priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1123
1124        priv->led_association_on = IPW_ASSOCIATED_LED;
1125        priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1126
1127        /* Set the default PINs for the OFDM leds */
1128        priv->led_ofdm_on = IPW_OFDM_LED;
1129        priv->led_ofdm_off = ~(IPW_OFDM_LED);
1130
1131        switch (priv->nic_type) {
1132        case EEPROM_NIC_TYPE_1:
1133                /* In this NIC type, the LEDs are reversed.... */
1134                priv->led_activity_on = IPW_ASSOCIATED_LED;
1135                priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1136                priv->led_association_on = IPW_ACTIVITY_LED;
1137                priv->led_association_off = ~(IPW_ACTIVITY_LED);
1138
1139                if (!(priv->config & CFG_NO_LED))
1140                        ipw_led_band_on(priv);
1141
1142                /* And we don't blink link LEDs for this nic, so
1143                 * just return here */
1144                return;
1145
1146        case EEPROM_NIC_TYPE_3:
1147        case EEPROM_NIC_TYPE_2:
1148        case EEPROM_NIC_TYPE_4:
1149        case EEPROM_NIC_TYPE_0:
1150                break;
1151
1152        default:
1153                IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1154                               priv->nic_type);
1155                priv->nic_type = EEPROM_NIC_TYPE_0;
1156                break;
1157        }
1158
1159        if (!(priv->config & CFG_NO_LED)) {
1160                if (priv->status & STATUS_ASSOCIATED)
1161                        ipw_led_link_on(priv);
1162                else
1163                        ipw_led_link_off(priv);
1164        }
1165}
1166
1167static void ipw_led_shutdown(struct ipw_priv *priv)
1168{
1169        ipw_led_activity_off(priv);
1170        ipw_led_link_off(priv);
1171        ipw_led_band_off(priv);
1172        cancel_delayed_work(&priv->led_link_on);
1173        cancel_delayed_work(&priv->led_link_off);
1174        cancel_delayed_work(&priv->led_act_off);
1175}
1176
1177/*
1178 * The following adds a new attribute to the sysfs representation
1179 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1180 * used for controlling the debug level.
1181 *
1182 * See the level definitions in ipw for details.
1183 */
1184static ssize_t debug_level_show(struct device_driver *d, char *buf)
1185{
1186        return sprintf(buf, "0x%08X\n", ipw_debug_level);
1187}
1188
1189static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1190                                 size_t count)
1191{
1192        char *p = (char *)buf;
1193        u32 val;
1194
1195        if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1196                p++;
1197                if (p[0] == 'x' || p[0] == 'X')
1198                        p++;
1199                val = simple_strtoul(p, &p, 16);
1200        } else
1201                val = simple_strtoul(p, &p, 10);
1202        if (p == buf)
1203                printk(KERN_INFO DRV_NAME
1204                       ": %s is not in hex or decimal form.\n", buf);
1205        else
1206                ipw_debug_level = val;
1207
1208        return strnlen(buf, count);
1209}
1210static DRIVER_ATTR_RW(debug_level);
1211
1212static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1213{
1214        /* length = 1st dword in log */
1215        return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1216}
1217
1218static void ipw_capture_event_log(struct ipw_priv *priv,
1219                                  u32 log_len, struct ipw_event *log)
1220{
1221        u32 base;
1222
1223        if (log_len) {
1224                base = ipw_read32(priv, IPW_EVENT_LOG);
1225                ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1226                                  (u8 *) log, sizeof(*log) * log_len);
1227        }
1228}
1229
1230static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1231{
1232        struct ipw_fw_error *error;
1233        u32 log_len = ipw_get_event_log_len(priv);
1234        u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1235        u32 elem_len = ipw_read_reg32(priv, base);
1236
1237        error = kmalloc(sizeof(*error) +
1238                        sizeof(*error->elem) * elem_len +
1239                        sizeof(*error->log) * log_len, GFP_ATOMIC);
1240        if (!error) {
1241                IPW_ERROR("Memory allocation for firmware error log "
1242                          "failed.\n");
1243                return NULL;
1244        }
1245        error->jiffies = jiffies;
1246        error->status = priv->status;
1247        error->config = priv->config;
1248        error->elem_len = elem_len;
1249        error->log_len = log_len;
1250        error->elem = (struct ipw_error_elem *)error->payload;
1251        error->log = (struct ipw_event *)(error->elem + elem_len);
1252
1253        ipw_capture_event_log(priv, log_len, error->log);
1254
1255        if (elem_len)
1256                ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1257                                  sizeof(*error->elem) * elem_len);
1258
1259        return error;
1260}
1261
1262static ssize_t show_event_log(struct device *d,
1263                              struct device_attribute *attr, char *buf)
1264{
1265        struct ipw_priv *priv = dev_get_drvdata(d);
1266        u32 log_len = ipw_get_event_log_len(priv);
1267        u32 log_size;
1268        struct ipw_event *log;
1269        u32 len = 0, i;
1270
1271        /* not using min() because of its strict type checking */
1272        log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1273                        sizeof(*log) * log_len : PAGE_SIZE;
1274        log = kzalloc(log_size, GFP_KERNEL);
1275        if (!log) {
1276                IPW_ERROR("Unable to allocate memory for log\n");
1277                return 0;
1278        }
1279        log_len = log_size / sizeof(*log);
1280        ipw_capture_event_log(priv, log_len, log);
1281
1282        len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1283        for (i = 0; i < log_len; i++)
1284                len += scnprintf(buf + len, PAGE_SIZE - len,
1285                                "\n%08X%08X%08X",
1286                                log[i].time, log[i].event, log[i].data);
1287        len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1288        kfree(log);
1289        return len;
1290}
1291
1292static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1293
1294static ssize_t show_error(struct device *d,
1295                          struct device_attribute *attr, char *buf)
1296{
1297        struct ipw_priv *priv = dev_get_drvdata(d);
1298        u32 len = 0, i;
1299        if (!priv->error)
1300                return 0;
1301        len += scnprintf(buf + len, PAGE_SIZE - len,
1302                        "%08lX%08X%08X%08X",
1303                        priv->error->jiffies,
1304                        priv->error->status,
1305                        priv->error->config, priv->error->elem_len);
1306        for (i = 0; i < priv->error->elem_len; i++)
1307                len += scnprintf(buf + len, PAGE_SIZE - len,
1308                                "\n%08X%08X%08X%08X%08X%08X%08X",
1309                                priv->error->elem[i].time,
1310                                priv->error->elem[i].desc,
1311                                priv->error->elem[i].blink1,
1312                                priv->error->elem[i].blink2,
1313                                priv->error->elem[i].link1,
1314                                priv->error->elem[i].link2,
1315                                priv->error->elem[i].data);
1316
1317        len += scnprintf(buf + len, PAGE_SIZE - len,
1318                        "\n%08X", priv->error->log_len);
1319        for (i = 0; i < priv->error->log_len; i++)
1320                len += scnprintf(buf + len, PAGE_SIZE - len,
1321                                "\n%08X%08X%08X",
1322                                priv->error->log[i].time,
1323                                priv->error->log[i].event,
1324                                priv->error->log[i].data);
1325        len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1326        return len;
1327}
1328
1329static ssize_t clear_error(struct device *d,
1330                           struct device_attribute *attr,
1331                           const char *buf, size_t count)
1332{
1333        struct ipw_priv *priv = dev_get_drvdata(d);
1334
1335        kfree(priv->error);
1336        priv->error = NULL;
1337        return count;
1338}
1339
1340static DEVICE_ATTR(error, 0644, show_error, clear_error);
1341
1342static ssize_t show_cmd_log(struct device *d,
1343                            struct device_attribute *attr, char *buf)
1344{
1345        struct ipw_priv *priv = dev_get_drvdata(d);
1346        u32 len = 0, i;
1347        if (!priv->cmdlog)
1348                return 0;
1349        for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1350             (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1351             i = (i + 1) % priv->cmdlog_len) {
1352                len +=
1353                    scnprintf(buf + len, PAGE_SIZE - len,
1354                             "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1355                             priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1356                             priv->cmdlog[i].cmd.len);
1357                len +=
1358                    snprintk_buf(buf + len, PAGE_SIZE - len,
1359                                 (u8 *) priv->cmdlog[i].cmd.param,
1360                                 priv->cmdlog[i].cmd.len);
1361                len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1362        }
1363        len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1364        return len;
1365}
1366
1367static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1368
1369#ifdef CONFIG_IPW2200_PROMISCUOUS
1370static void ipw_prom_free(struct ipw_priv *priv);
1371static int ipw_prom_alloc(struct ipw_priv *priv);
1372static ssize_t store_rtap_iface(struct device *d,
1373                         struct device_attribute *attr,
1374                         const char *buf, size_t count)
1375{
1376        struct ipw_priv *priv = dev_get_drvdata(d);
1377        int rc = 0;
1378
1379        if (count < 1)
1380                return -EINVAL;
1381
1382        switch (buf[0]) {
1383        case '0':
1384                if (!rtap_iface)
1385                        return count;
1386
1387                if (netif_running(priv->prom_net_dev)) {
1388                        IPW_WARNING("Interface is up.  Cannot unregister.\n");
1389                        return count;
1390                }
1391
1392                ipw_prom_free(priv);
1393                rtap_iface = 0;
1394                break;
1395
1396        case '1':
1397                if (rtap_iface)
1398                        return count;
1399
1400                rc = ipw_prom_alloc(priv);
1401                if (!rc)
1402                        rtap_iface = 1;
1403                break;
1404
1405        default:
1406                return -EINVAL;
1407        }
1408
1409        if (rc) {
1410                IPW_ERROR("Failed to register promiscuous network "
1411                          "device (error %d).\n", rc);
1412        }
1413
1414        return count;
1415}
1416
1417static ssize_t show_rtap_iface(struct device *d,
1418                        struct device_attribute *attr,
1419                        char *buf)
1420{
1421        struct ipw_priv *priv = dev_get_drvdata(d);
1422        if (rtap_iface)
1423                return sprintf(buf, "%s", priv->prom_net_dev->name);
1424        else {
1425                buf[0] = '-';
1426                buf[1] = '1';
1427                buf[2] = '\0';
1428                return 3;
1429        }
1430}
1431
1432static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1433
1434static ssize_t store_rtap_filter(struct device *d,
1435                         struct device_attribute *attr,
1436                         const char *buf, size_t count)
1437{
1438        struct ipw_priv *priv = dev_get_drvdata(d);
1439
1440        if (!priv->prom_priv) {
1441                IPW_ERROR("Attempting to set filter without "
1442                          "rtap_iface enabled.\n");
1443                return -EPERM;
1444        }
1445
1446        priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1447
1448        IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1449                       BIT_ARG16(priv->prom_priv->filter));
1450
1451        return count;
1452}
1453
1454static ssize_t show_rtap_filter(struct device *d,
1455                        struct device_attribute *attr,
1456                        char *buf)
1457{
1458        struct ipw_priv *priv = dev_get_drvdata(d);
1459        return sprintf(buf, "0x%04X",
1460                       priv->prom_priv ? priv->prom_priv->filter : 0);
1461}
1462
1463static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1464#endif
1465
1466static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1467                             char *buf)
1468{
1469        struct ipw_priv *priv = dev_get_drvdata(d);
1470        return sprintf(buf, "%d\n", priv->ieee->scan_age);
1471}
1472
1473static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1474                              const char *buf, size_t count)
1475{
1476        struct ipw_priv *priv = dev_get_drvdata(d);
1477        struct net_device *dev = priv->net_dev;
1478        char buffer[] = "00000000";
1479        unsigned long len =
1480            (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1481        unsigned long val;
1482        char *p = buffer;
1483
1484        IPW_DEBUG_INFO("enter\n");
1485
1486        strncpy(buffer, buf, len);
1487        buffer[len] = 0;
1488
1489        if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1490                p++;
1491                if (p[0] == 'x' || p[0] == 'X')
1492                        p++;
1493                val = simple_strtoul(p, &p, 16);
1494        } else
1495                val = simple_strtoul(p, &p, 10);
1496        if (p == buffer) {
1497                IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1498        } else {
1499                priv->ieee->scan_age = val;
1500                IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1501        }
1502
1503        IPW_DEBUG_INFO("exit\n");
1504        return len;
1505}
1506
1507static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1508
1509static ssize_t show_led(struct device *d, struct device_attribute *attr,
1510                        char *buf)
1511{
1512        struct ipw_priv *priv = dev_get_drvdata(d);
1513        return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1514}
1515
1516static ssize_t store_led(struct device *d, struct device_attribute *attr,
1517                         const char *buf, size_t count)
1518{
1519        struct ipw_priv *priv = dev_get_drvdata(d);
1520
1521        IPW_DEBUG_INFO("enter\n");
1522
1523        if (count == 0)
1524                return 0;
1525
1526        if (*buf == 0) {
1527                IPW_DEBUG_LED("Disabling LED control.\n");
1528                priv->config |= CFG_NO_LED;
1529                ipw_led_shutdown(priv);
1530        } else {
1531                IPW_DEBUG_LED("Enabling LED control.\n");
1532                priv->config &= ~CFG_NO_LED;
1533                ipw_led_init(priv);
1534        }
1535
1536        IPW_DEBUG_INFO("exit\n");
1537        return count;
1538}
1539
1540static DEVICE_ATTR(led, 0644, show_led, store_led);
1541
1542static ssize_t show_status(struct device *d,
1543                           struct device_attribute *attr, char *buf)
1544{
1545        struct ipw_priv *p = dev_get_drvdata(d);
1546        return sprintf(buf, "0x%08x\n", (int)p->status);
1547}
1548
1549static DEVICE_ATTR(status, 0444, show_status, NULL);
1550
1551static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1552                        char *buf)
1553{
1554        struct ipw_priv *p = dev_get_drvdata(d);
1555        return sprintf(buf, "0x%08x\n", (int)p->config);
1556}
1557
1558static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1559
1560static ssize_t show_nic_type(struct device *d,
1561                             struct device_attribute *attr, char *buf)
1562{
1563        struct ipw_priv *priv = dev_get_drvdata(d);
1564        return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1565}
1566
1567static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1568
1569static ssize_t show_ucode_version(struct device *d,
1570                                  struct device_attribute *attr, char *buf)
1571{
1572        u32 len = sizeof(u32), tmp = 0;
1573        struct ipw_priv *p = dev_get_drvdata(d);
1574
1575        if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1576                return 0;
1577
1578        return sprintf(buf, "0x%08x\n", tmp);
1579}
1580
1581static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1582
1583static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1584                        char *buf)
1585{
1586        u32 len = sizeof(u32), tmp = 0;
1587        struct ipw_priv *p = dev_get_drvdata(d);
1588
1589        if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1590                return 0;
1591
1592        return sprintf(buf, "0x%08x\n", tmp);
1593}
1594
1595static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1596
1597/*
1598 * Add a device attribute to view/control the delay between eeprom
1599 * operations.
1600 */
1601static ssize_t show_eeprom_delay(struct device *d,
1602                                 struct device_attribute *attr, char *buf)
1603{
1604        struct ipw_priv *p = dev_get_drvdata(d);
1605        int n = p->eeprom_delay;
1606        return sprintf(buf, "%i\n", n);
1607}
1608static ssize_t store_eeprom_delay(struct device *d,
1609                                  struct device_attribute *attr,
1610                                  const char *buf, size_t count)
1611{
1612        struct ipw_priv *p = dev_get_drvdata(d);
1613        sscanf(buf, "%i", &p->eeprom_delay);
1614        return strnlen(buf, count);
1615}
1616
1617static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1618
1619static ssize_t show_command_event_reg(struct device *d,
1620                                      struct device_attribute *attr, char *buf)
1621{
1622        u32 reg = 0;
1623        struct ipw_priv *p = dev_get_drvdata(d);
1624
1625        reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1626        return sprintf(buf, "0x%08x\n", reg);
1627}
1628static ssize_t store_command_event_reg(struct device *d,
1629                                       struct device_attribute *attr,
1630                                       const char *buf, size_t count)
1631{
1632        u32 reg;
1633        struct ipw_priv *p = dev_get_drvdata(d);
1634
1635        sscanf(buf, "%x", &reg);
1636        ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1637        return strnlen(buf, count);
1638}
1639
1640static DEVICE_ATTR(command_event_reg, 0644,
1641                   show_command_event_reg, store_command_event_reg);
1642
1643static ssize_t show_mem_gpio_reg(struct device *d,
1644                                 struct device_attribute *attr, char *buf)
1645{
1646        u32 reg = 0;
1647        struct ipw_priv *p = dev_get_drvdata(d);
1648
1649        reg = ipw_read_reg32(p, 0x301100);
1650        return sprintf(buf, "0x%08x\n", reg);
1651}
1652static ssize_t store_mem_gpio_reg(struct device *d,
1653                                  struct device_attribute *attr,
1654                                  const char *buf, size_t count)
1655{
1656        u32 reg;
1657        struct ipw_priv *p = dev_get_drvdata(d);
1658
1659        sscanf(buf, "%x", &reg);
1660        ipw_write_reg32(p, 0x301100, reg);
1661        return strnlen(buf, count);
1662}
1663
1664static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1665
1666static ssize_t show_indirect_dword(struct device *d,
1667                                   struct device_attribute *attr, char *buf)
1668{
1669        u32 reg = 0;
1670        struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672        if (priv->status & STATUS_INDIRECT_DWORD)
1673                reg = ipw_read_reg32(priv, priv->indirect_dword);
1674        else
1675                reg = 0;
1676
1677        return sprintf(buf, "0x%08x\n", reg);
1678}
1679static ssize_t store_indirect_dword(struct device *d,
1680                                    struct device_attribute *attr,
1681                                    const char *buf, size_t count)
1682{
1683        struct ipw_priv *priv = dev_get_drvdata(d);
1684
1685        sscanf(buf, "%x", &priv->indirect_dword);
1686        priv->status |= STATUS_INDIRECT_DWORD;
1687        return strnlen(buf, count);
1688}
1689
1690static DEVICE_ATTR(indirect_dword, 0644,
1691                   show_indirect_dword, store_indirect_dword);
1692
1693static ssize_t show_indirect_byte(struct device *d,
1694                                  struct device_attribute *attr, char *buf)
1695{
1696        u8 reg = 0;
1697        struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699        if (priv->status & STATUS_INDIRECT_BYTE)
1700                reg = ipw_read_reg8(priv, priv->indirect_byte);
1701        else
1702                reg = 0;
1703
1704        return sprintf(buf, "0x%02x\n", reg);
1705}
1706static ssize_t store_indirect_byte(struct device *d,
1707                                   struct device_attribute *attr,
1708                                   const char *buf, size_t count)
1709{
1710        struct ipw_priv *priv = dev_get_drvdata(d);
1711
1712        sscanf(buf, "%x", &priv->indirect_byte);
1713        priv->status |= STATUS_INDIRECT_BYTE;
1714        return strnlen(buf, count);
1715}
1716
1717static DEVICE_ATTR(indirect_byte, 0644,
1718                   show_indirect_byte, store_indirect_byte);
1719
1720static ssize_t show_direct_dword(struct device *d,
1721                                 struct device_attribute *attr, char *buf)
1722{
1723        u32 reg = 0;
1724        struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726        if (priv->status & STATUS_DIRECT_DWORD)
1727                reg = ipw_read32(priv, priv->direct_dword);
1728        else
1729                reg = 0;
1730
1731        return sprintf(buf, "0x%08x\n", reg);
1732}
1733static ssize_t store_direct_dword(struct device *d,
1734                                  struct device_attribute *attr,
1735                                  const char *buf, size_t count)
1736{
1737        struct ipw_priv *priv = dev_get_drvdata(d);
1738
1739        sscanf(buf, "%x", &priv->direct_dword);
1740        priv->status |= STATUS_DIRECT_DWORD;
1741        return strnlen(buf, count);
1742}
1743
1744static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1745
1746static int rf_kill_active(struct ipw_priv *priv)
1747{
1748        if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1749                priv->status |= STATUS_RF_KILL_HW;
1750                wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1751        } else {
1752                priv->status &= ~STATUS_RF_KILL_HW;
1753                wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1754        }
1755
1756        return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1757}
1758
1759static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1760                            char *buf)
1761{
1762        /* 0 - RF kill not enabled
1763           1 - SW based RF kill active (sysfs)
1764           2 - HW based RF kill active
1765           3 - Both HW and SW baed RF kill active */
1766        struct ipw_priv *priv = dev_get_drvdata(d);
1767        int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1768            (rf_kill_active(priv) ? 0x2 : 0x0);
1769        return sprintf(buf, "%i\n", val);
1770}
1771
1772static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1773{
1774        if ((disable_radio ? 1 : 0) ==
1775            ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1776                return 0;
1777
1778        IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1779                          disable_radio ? "OFF" : "ON");
1780
1781        if (disable_radio) {
1782                priv->status |= STATUS_RF_KILL_SW;
1783
1784                cancel_delayed_work(&priv->request_scan);
1785                cancel_delayed_work(&priv->request_direct_scan);
1786                cancel_delayed_work(&priv->request_passive_scan);
1787                cancel_delayed_work(&priv->scan_event);
1788                schedule_work(&priv->down);
1789        } else {
1790                priv->status &= ~STATUS_RF_KILL_SW;
1791                if (rf_kill_active(priv)) {
1792                        IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1793                                          "disabled by HW switch\n");
1794                        /* Make sure the RF_KILL check timer is running */
1795                        cancel_delayed_work(&priv->rf_kill);
1796                        schedule_delayed_work(&priv->rf_kill,
1797                                              round_jiffies_relative(2 * HZ));
1798                } else
1799                        schedule_work(&priv->up);
1800        }
1801
1802        return 1;
1803}
1804
1805static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1806                             const char *buf, size_t count)
1807{
1808        struct ipw_priv *priv = dev_get_drvdata(d);
1809
1810        ipw_radio_kill_sw(priv, buf[0] == '1');
1811
1812        return count;
1813}
1814
1815static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1816
1817static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1818                               char *buf)
1819{
1820        struct ipw_priv *priv = dev_get_drvdata(d);
1821        int pos = 0, len = 0;
1822        if (priv->config & CFG_SPEED_SCAN) {
1823                while (priv->speed_scan[pos] != 0)
1824                        len += sprintf(&buf[len], "%d ",
1825                                       priv->speed_scan[pos++]);
1826                return len + sprintf(&buf[len], "\n");
1827        }
1828
1829        return sprintf(buf, "0\n");
1830}
1831
1832static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1833                                const char *buf, size_t count)
1834{
1835        struct ipw_priv *priv = dev_get_drvdata(d);
1836        int channel, pos = 0;
1837        const char *p = buf;
1838
1839        /* list of space separated channels to scan, optionally ending with 0 */
1840        while ((channel = simple_strtol(p, NULL, 0))) {
1841                if (pos == MAX_SPEED_SCAN - 1) {
1842                        priv->speed_scan[pos] = 0;
1843                        break;
1844                }
1845
1846                if (libipw_is_valid_channel(priv->ieee, channel))
1847                        priv->speed_scan[pos++] = channel;
1848                else
1849                        IPW_WARNING("Skipping invalid channel request: %d\n",
1850                                    channel);
1851                p = strchr(p, ' ');
1852                if (!p)
1853                        break;
1854                while (*p == ' ' || *p == '\t')
1855                        p++;
1856        }
1857
1858        if (pos == 0)
1859                priv->config &= ~CFG_SPEED_SCAN;
1860        else {
1861                priv->speed_scan_pos = 0;
1862                priv->config |= CFG_SPEED_SCAN;
1863        }
1864
1865        return count;
1866}
1867
1868static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1869
1870static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1871                              char *buf)
1872{
1873        struct ipw_priv *priv = dev_get_drvdata(d);
1874        return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1875}
1876
1877static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1878                               const char *buf, size_t count)
1879{
1880        struct ipw_priv *priv = dev_get_drvdata(d);
1881        if (buf[0] == '1')
1882                priv->config |= CFG_NET_STATS;
1883        else
1884                priv->config &= ~CFG_NET_STATS;
1885
1886        return count;
1887}
1888
1889static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1890
1891static ssize_t show_channels(struct device *d,
1892                             struct device_attribute *attr,
1893                             char *buf)
1894{
1895        struct ipw_priv *priv = dev_get_drvdata(d);
1896        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1897        int len = 0, i;
1898
1899        len = sprintf(&buf[len],
1900                      "Displaying %d channels in 2.4Ghz band "
1901                      "(802.11bg):\n", geo->bg_channels);
1902
1903        for (i = 0; i < geo->bg_channels; i++) {
1904                len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1905                               geo->bg[i].channel,
1906                               geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1907                               " (radar spectrum)" : "",
1908                               ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1909                                (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1910                               ? "" : ", IBSS",
1911                               geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1912                               "passive only" : "active/passive",
1913                               geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1914                               "B" : "B/G");
1915        }
1916
1917        len += sprintf(&buf[len],
1918                       "Displaying %d channels in 5.2Ghz band "
1919                       "(802.11a):\n", geo->a_channels);
1920        for (i = 0; i < geo->a_channels; i++) {
1921                len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1922                               geo->a[i].channel,
1923                               geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1924                               " (radar spectrum)" : "",
1925                               ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1926                                (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1927                               ? "" : ", IBSS",
1928                               geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1929                               "passive only" : "active/passive");
1930        }
1931
1932        return len;
1933}
1934
1935static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1936
1937static void notify_wx_assoc_event(struct ipw_priv *priv)
1938{
1939        union iwreq_data wrqu;
1940        wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1941        if (priv->status & STATUS_ASSOCIATED)
1942                memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1943        else
1944                eth_zero_addr(wrqu.ap_addr.sa_data);
1945        wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1946}
1947
1948static void ipw_irq_tasklet(struct tasklet_struct *t)
1949{
1950        struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1951        u32 inta, inta_mask, handled = 0;
1952        unsigned long flags;
1953
1954        spin_lock_irqsave(&priv->irq_lock, flags);
1955
1956        inta = ipw_read32(priv, IPW_INTA_RW);
1957        inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1958
1959        if (inta == 0xFFFFFFFF) {
1960                /* Hardware disappeared */
1961                IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1962                /* Only handle the cached INTA values */
1963                inta = 0;
1964        }
1965        inta &= (IPW_INTA_MASK_ALL & inta_mask);
1966
1967        /* Add any cached INTA values that need to be handled */
1968        inta |= priv->isr_inta;
1969
1970        spin_unlock_irqrestore(&priv->irq_lock, flags);
1971
1972        spin_lock_irqsave(&priv->lock, flags);
1973
1974        /* handle all the justifications for the interrupt */
1975        if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1976                ipw_rx(priv);
1977                handled |= IPW_INTA_BIT_RX_TRANSFER;
1978        }
1979
1980        if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1981                IPW_DEBUG_HC("Command completed.\n");
1982                ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1983                priv->status &= ~STATUS_HCMD_ACTIVE;
1984                wake_up_interruptible(&priv->wait_command_queue);
1985                handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1986        }
1987
1988        if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1989                IPW_DEBUG_TX("TX_QUEUE_1\n");
1990                ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1991                handled |= IPW_INTA_BIT_TX_QUEUE_1;
1992        }
1993
1994        if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1995                IPW_DEBUG_TX("TX_QUEUE_2\n");
1996                ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1997                handled |= IPW_INTA_BIT_TX_QUEUE_2;
1998        }
1999
2000        if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2001                IPW_DEBUG_TX("TX_QUEUE_3\n");
2002                ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2003                handled |= IPW_INTA_BIT_TX_QUEUE_3;
2004        }
2005
2006        if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2007                IPW_DEBUG_TX("TX_QUEUE_4\n");
2008                ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2009                handled |= IPW_INTA_BIT_TX_QUEUE_4;
2010        }
2011
2012        if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2013                IPW_WARNING("STATUS_CHANGE\n");
2014                handled |= IPW_INTA_BIT_STATUS_CHANGE;
2015        }
2016
2017        if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2018                IPW_WARNING("TX_PERIOD_EXPIRED\n");
2019                handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2020        }
2021
2022        if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2023                IPW_WARNING("HOST_CMD_DONE\n");
2024                handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2025        }
2026
2027        if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2028                IPW_WARNING("FW_INITIALIZATION_DONE\n");
2029                handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2030        }
2031
2032        if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2033                IPW_WARNING("PHY_OFF_DONE\n");
2034                handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2035        }
2036
2037        if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2038                IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2039                priv->status |= STATUS_RF_KILL_HW;
2040                wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2041                wake_up_interruptible(&priv->wait_command_queue);
2042                priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2043                cancel_delayed_work(&priv->request_scan);
2044                cancel_delayed_work(&priv->request_direct_scan);
2045                cancel_delayed_work(&priv->request_passive_scan);
2046                cancel_delayed_work(&priv->scan_event);
2047                schedule_work(&priv->link_down);
2048                schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2049                handled |= IPW_INTA_BIT_RF_KILL_DONE;
2050        }
2051
2052        if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2053                IPW_WARNING("Firmware error detected.  Restarting.\n");
2054                if (priv->error) {
2055                        IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2056                        if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2057                                struct ipw_fw_error *error =
2058                                    ipw_alloc_error_log(priv);
2059                                ipw_dump_error_log(priv, error);
2060                                kfree(error);
2061                        }
2062                } else {
2063                        priv->error = ipw_alloc_error_log(priv);
2064                        if (priv->error)
2065                                IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2066                        else
2067                                IPW_DEBUG_FW("Error allocating sysfs 'error' "
2068                                             "log.\n");
2069                        if (ipw_debug_level & IPW_DL_FW_ERRORS)
2070                                ipw_dump_error_log(priv, priv->error);
2071                }
2072
2073                /* XXX: If hardware encryption is for WPA/WPA2,
2074                 * we have to notify the supplicant. */
2075                if (priv->ieee->sec.encrypt) {
2076                        priv->status &= ~STATUS_ASSOCIATED;
2077                        notify_wx_assoc_event(priv);
2078                }
2079
2080                /* Keep the restart process from trying to send host
2081                 * commands by clearing the INIT status bit */
2082                priv->status &= ~STATUS_INIT;
2083
2084                /* Cancel currently queued command. */
2085                priv->status &= ~STATUS_HCMD_ACTIVE;
2086                wake_up_interruptible(&priv->wait_command_queue);
2087
2088                schedule_work(&priv->adapter_restart);
2089                handled |= IPW_INTA_BIT_FATAL_ERROR;
2090        }
2091
2092        if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2093                IPW_ERROR("Parity error\n");
2094                handled |= IPW_INTA_BIT_PARITY_ERROR;
2095        }
2096
2097        if (handled != inta) {
2098                IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2099        }
2100
2101        spin_unlock_irqrestore(&priv->lock, flags);
2102
2103        /* enable all interrupts */
2104        ipw_enable_interrupts(priv);
2105}
2106
2107#define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2108static char *get_cmd_string(u8 cmd)
2109{
2110        switch (cmd) {
2111                IPW_CMD(HOST_COMPLETE);
2112                IPW_CMD(POWER_DOWN);
2113                IPW_CMD(SYSTEM_CONFIG);
2114                IPW_CMD(MULTICAST_ADDRESS);
2115                IPW_CMD(SSID);
2116                IPW_CMD(ADAPTER_ADDRESS);
2117                IPW_CMD(PORT_TYPE);
2118                IPW_CMD(RTS_THRESHOLD);
2119                IPW_CMD(FRAG_THRESHOLD);
2120                IPW_CMD(POWER_MODE);
2121                IPW_CMD(WEP_KEY);
2122                IPW_CMD(TGI_TX_KEY);
2123                IPW_CMD(SCAN_REQUEST);
2124                IPW_CMD(SCAN_REQUEST_EXT);
2125                IPW_CMD(ASSOCIATE);
2126                IPW_CMD(SUPPORTED_RATES);
2127                IPW_CMD(SCAN_ABORT);
2128                IPW_CMD(TX_FLUSH);
2129                IPW_CMD(QOS_PARAMETERS);
2130                IPW_CMD(DINO_CONFIG);
2131                IPW_CMD(RSN_CAPABILITIES);
2132                IPW_CMD(RX_KEY);
2133                IPW_CMD(CARD_DISABLE);
2134                IPW_CMD(SEED_NUMBER);
2135                IPW_CMD(TX_POWER);
2136                IPW_CMD(COUNTRY_INFO);
2137                IPW_CMD(AIRONET_INFO);
2138                IPW_CMD(AP_TX_POWER);
2139                IPW_CMD(CCKM_INFO);
2140                IPW_CMD(CCX_VER_INFO);
2141                IPW_CMD(SET_CALIBRATION);
2142                IPW_CMD(SENSITIVITY_CALIB);
2143                IPW_CMD(RETRY_LIMIT);
2144                IPW_CMD(IPW_PRE_POWER_DOWN);
2145                IPW_CMD(VAP_BEACON_TEMPLATE);
2146                IPW_CMD(VAP_DTIM_PERIOD);
2147                IPW_CMD(EXT_SUPPORTED_RATES);
2148                IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2149                IPW_CMD(VAP_QUIET_INTERVALS);
2150                IPW_CMD(VAP_CHANNEL_SWITCH);
2151                IPW_CMD(VAP_MANDATORY_CHANNELS);
2152                IPW_CMD(VAP_CELL_PWR_LIMIT);
2153                IPW_CMD(VAP_CF_PARAM_SET);
2154                IPW_CMD(VAP_SET_BEACONING_STATE);
2155                IPW_CMD(MEASUREMENT);
2156                IPW_CMD(POWER_CAPABILITY);
2157                IPW_CMD(SUPPORTED_CHANNELS);
2158                IPW_CMD(TPC_REPORT);
2159                IPW_CMD(WME_INFO);
2160                IPW_CMD(PRODUCTION_COMMAND);
2161        default:
2162                return "UNKNOWN";
2163        }
2164}
2165
2166#define HOST_COMPLETE_TIMEOUT HZ
2167
2168static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2169{
2170        int rc = 0;
2171        unsigned long flags;
2172        unsigned long now, end;
2173
2174        spin_lock_irqsave(&priv->lock, flags);
2175        if (priv->status & STATUS_HCMD_ACTIVE) {
2176                IPW_ERROR("Failed to send %s: Already sending a command.\n",
2177                          get_cmd_string(cmd->cmd));
2178                spin_unlock_irqrestore(&priv->lock, flags);
2179                return -EAGAIN;
2180        }
2181
2182        priv->status |= STATUS_HCMD_ACTIVE;
2183
2184        if (priv->cmdlog) {
2185                priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2186                priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2187                priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2188                memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2189                       cmd->len);
2190                priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2191        }
2192
2193        IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2194                     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2195                     priv->status);
2196
2197#ifndef DEBUG_CMD_WEP_KEY
2198        if (cmd->cmd == IPW_CMD_WEP_KEY)
2199                IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2200        else
2201#endif
2202                printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2203
2204        rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2205        if (rc) {
2206                priv->status &= ~STATUS_HCMD_ACTIVE;
2207                IPW_ERROR("Failed to send %s: Reason %d\n",
2208                          get_cmd_string(cmd->cmd), rc);
2209                spin_unlock_irqrestore(&priv->lock, flags);
2210                goto exit;
2211        }
2212        spin_unlock_irqrestore(&priv->lock, flags);
2213
2214        now = jiffies;
2215        end = now + HOST_COMPLETE_TIMEOUT;
2216again:
2217        rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2218                                              !(priv->
2219                                                status & STATUS_HCMD_ACTIVE),
2220                                              end - now);
2221        if (rc < 0) {
2222                now = jiffies;
2223                if (time_before(now, end))
2224                        goto again;
2225                rc = 0;
2226        }
2227
2228        if (rc == 0) {
2229                spin_lock_irqsave(&priv->lock, flags);
2230                if (priv->status & STATUS_HCMD_ACTIVE) {
2231                        IPW_ERROR("Failed to send %s: Command timed out.\n",
2232                                  get_cmd_string(cmd->cmd));
2233                        priv->status &= ~STATUS_HCMD_ACTIVE;
2234                        spin_unlock_irqrestore(&priv->lock, flags);
2235                        rc = -EIO;
2236                        goto exit;
2237                }
2238                spin_unlock_irqrestore(&priv->lock, flags);
2239        } else
2240                rc = 0;
2241
2242        if (priv->status & STATUS_RF_KILL_HW) {
2243                IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2244                          get_cmd_string(cmd->cmd));
2245                rc = -EIO;
2246                goto exit;
2247        }
2248
2249      exit:
2250        if (priv->cmdlog) {
2251                priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2252                priv->cmdlog_pos %= priv->cmdlog_len;
2253        }
2254        return rc;
2255}
2256
2257static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2258{
2259        struct host_cmd cmd = {
2260                .cmd = command,
2261        };
2262
2263        return __ipw_send_cmd(priv, &cmd);
2264}
2265
2266static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2267                            void *data)
2268{
2269        struct host_cmd cmd = {
2270                .cmd = command,
2271                .len = len,
2272                .param = data,
2273        };
2274
2275        return __ipw_send_cmd(priv, &cmd);
2276}
2277
2278static int ipw_send_host_complete(struct ipw_priv *priv)
2279{
2280        if (!priv) {
2281                IPW_ERROR("Invalid args\n");
2282                return -1;
2283        }
2284
2285        return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2286}
2287
2288static int ipw_send_system_config(struct ipw_priv *priv)
2289{
2290        return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2291                                sizeof(priv->sys_config),
2292                                &priv->sys_config);
2293}
2294
2295static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2296{
2297        if (!priv || !ssid) {
2298                IPW_ERROR("Invalid args\n");
2299                return -1;
2300        }
2301
2302        return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2303                                ssid);
2304}
2305
2306static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2307{
2308        if (!priv || !mac) {
2309                IPW_ERROR("Invalid args\n");
2310                return -1;
2311        }
2312
2313        IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2314                       priv->net_dev->name, mac);
2315
2316        return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2317}
2318
2319static void ipw_adapter_restart(void *adapter)
2320{
2321        struct ipw_priv *priv = adapter;
2322
2323        if (priv->status & STATUS_RF_KILL_MASK)
2324                return;
2325
2326        ipw_down(priv);
2327
2328        if (priv->assoc_network &&
2329            (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2330                ipw_remove_current_network(priv);
2331
2332        if (ipw_up(priv)) {
2333                IPW_ERROR("Failed to up device\n");
2334                return;
2335        }
2336}
2337
2338static void ipw_bg_adapter_restart(struct work_struct *work)
2339{
2340        struct ipw_priv *priv =
2341                container_of(work, struct ipw_priv, adapter_restart);
2342        mutex_lock(&priv->mutex);
2343        ipw_adapter_restart(priv);
2344        mutex_unlock(&priv->mutex);
2345}
2346
2347static void ipw_abort_scan(struct ipw_priv *priv);
2348
2349#define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2350
2351static void ipw_scan_check(void *data)
2352{
2353        struct ipw_priv *priv = data;
2354
2355        if (priv->status & STATUS_SCAN_ABORTING) {
2356                IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2357                               "adapter after (%dms).\n",
2358                               jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2359                schedule_work(&priv->adapter_restart);
2360        } else if (priv->status & STATUS_SCANNING) {
2361                IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2362                               "after (%dms).\n",
2363                               jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2364                ipw_abort_scan(priv);
2365                schedule_delayed_work(&priv->scan_check, HZ);
2366        }
2367}
2368
2369static void ipw_bg_scan_check(struct work_struct *work)
2370{
2371        struct ipw_priv *priv =
2372                container_of(work, struct ipw_priv, scan_check.work);
2373        mutex_lock(&priv->mutex);
2374        ipw_scan_check(priv);
2375        mutex_unlock(&priv->mutex);
2376}
2377
2378static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2379                                     struct ipw_scan_request_ext *request)
2380{
2381        return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2382                                sizeof(*request), request);
2383}
2384
2385static int ipw_send_scan_abort(struct ipw_priv *priv)
2386{
2387        if (!priv) {
2388                IPW_ERROR("Invalid args\n");
2389                return -1;
2390        }
2391
2392        return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2393}
2394
2395static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2396{
2397        struct ipw_sensitivity_calib calib = {
2398                .beacon_rssi_raw = cpu_to_le16(sens),
2399        };
2400
2401        return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2402                                &calib);
2403}
2404
2405static int ipw_send_associate(struct ipw_priv *priv,
2406                              struct ipw_associate *associate)
2407{
2408        if (!priv || !associate) {
2409                IPW_ERROR("Invalid args\n");
2410                return -1;
2411        }
2412
2413        return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2414                                associate);
2415}
2416
2417static int ipw_send_supported_rates(struct ipw_priv *priv,
2418                                    struct ipw_supported_rates *rates)
2419{
2420        if (!priv || !rates) {
2421                IPW_ERROR("Invalid args\n");
2422                return -1;
2423        }
2424
2425        return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2426                                rates);
2427}
2428
2429static int ipw_set_random_seed(struct ipw_priv *priv)
2430{
2431        u32 val;
2432
2433        if (!priv) {
2434                IPW_ERROR("Invalid args\n");
2435                return -1;
2436        }
2437
2438        get_random_bytes(&val, sizeof(val));
2439
2440        return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2441}
2442
2443static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2444{
2445        __le32 v = cpu_to_le32(phy_off);
2446        if (!priv) {
2447                IPW_ERROR("Invalid args\n");
2448                return -1;
2449        }
2450
2451        return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2452}
2453
2454static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2455{
2456        if (!priv || !power) {
2457                IPW_ERROR("Invalid args\n");
2458                return -1;
2459        }
2460
2461        return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2462}
2463
2464static int ipw_set_tx_power(struct ipw_priv *priv)
2465{
2466        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2467        struct ipw_tx_power tx_power;
2468        s8 max_power;
2469        int i;
2470
2471        memset(&tx_power, 0, sizeof(tx_power));
2472
2473        /* configure device for 'G' band */
2474        tx_power.ieee_mode = IPW_G_MODE;
2475        tx_power.num_channels = geo->bg_channels;
2476        for (i = 0; i < geo->bg_channels; i++) {
2477                max_power = geo->bg[i].max_power;
2478                tx_power.channels_tx_power[i].channel_number =
2479                    geo->bg[i].channel;
2480                tx_power.channels_tx_power[i].tx_power = max_power ?
2481                    min(max_power, priv->tx_power) : priv->tx_power;
2482        }
2483        if (ipw_send_tx_power(priv, &tx_power))
2484                return -EIO;
2485
2486        /* configure device to also handle 'B' band */
2487        tx_power.ieee_mode = IPW_B_MODE;
2488        if (ipw_send_tx_power(priv, &tx_power))
2489                return -EIO;
2490
2491        /* configure device to also handle 'A' band */
2492        if (priv->ieee->abg_true) {
2493                tx_power.ieee_mode = IPW_A_MODE;
2494                tx_power.num_channels = geo->a_channels;
2495                for (i = 0; i < tx_power.num_channels; i++) {
2496                        max_power = geo->a[i].max_power;
2497                        tx_power.channels_tx_power[i].channel_number =
2498                            geo->a[i].channel;
2499                        tx_power.channels_tx_power[i].tx_power = max_power ?
2500                            min(max_power, priv->tx_power) : priv->tx_power;
2501                }
2502                if (ipw_send_tx_power(priv, &tx_power))
2503                        return -EIO;
2504        }
2505        return 0;
2506}
2507
2508static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2509{
2510        struct ipw_rts_threshold rts_threshold = {
2511                .rts_threshold = cpu_to_le16(rts),
2512        };
2513
2514        if (!priv) {
2515                IPW_ERROR("Invalid args\n");
2516                return -1;
2517        }
2518
2519        return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2520                                sizeof(rts_threshold), &rts_threshold);
2521}
2522
2523static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2524{
2525        struct ipw_frag_threshold frag_threshold = {
2526                .frag_threshold = cpu_to_le16(frag),
2527        };
2528
2529        if (!priv) {
2530                IPW_ERROR("Invalid args\n");
2531                return -1;
2532        }
2533
2534        return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2535                                sizeof(frag_threshold), &frag_threshold);
2536}
2537
2538static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2539{
2540        __le32 param;
2541
2542        if (!priv) {
2543                IPW_ERROR("Invalid args\n");
2544                return -1;
2545        }
2546
2547        /* If on battery, set to 3, if AC set to CAM, else user
2548         * level */
2549        switch (mode) {
2550        case IPW_POWER_BATTERY:
2551                param = cpu_to_le32(IPW_POWER_INDEX_3);
2552                break;
2553        case IPW_POWER_AC:
2554                param = cpu_to_le32(IPW_POWER_MODE_CAM);
2555                break;
2556        default:
2557                param = cpu_to_le32(mode);
2558                break;
2559        }
2560
2561        return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2562                                &param);
2563}
2564
2565static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2566{
2567        struct ipw_retry_limit retry_limit = {
2568                .short_retry_limit = slimit,
2569                .long_retry_limit = llimit
2570        };
2571
2572        if (!priv) {
2573                IPW_ERROR("Invalid args\n");
2574                return -1;
2575        }
2576
2577        return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2578                                &retry_limit);
2579}
2580
2581/*
2582 * The IPW device contains a Microwire compatible EEPROM that stores
2583 * various data like the MAC address.  Usually the firmware has exclusive
2584 * access to the eeprom, but during device initialization (before the
2585 * device driver has sent the HostComplete command to the firmware) the
2586 * device driver has read access to the EEPROM by way of indirect addressing
2587 * through a couple of memory mapped registers.
2588 *
2589 * The following is a simplified implementation for pulling data out of the
2590 * the eeprom, along with some helper functions to find information in
2591 * the per device private data's copy of the eeprom.
2592 *
2593 * NOTE: To better understand how these functions work (i.e what is a chip
2594 *       select and why do have to keep driving the eeprom clock?), read
2595 *       just about any data sheet for a Microwire compatible EEPROM.
2596 */
2597
2598/* write a 32 bit value into the indirect accessor register */
2599static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2600{
2601        ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2602
2603        /* the eeprom requires some time to complete the operation */
2604        udelay(p->eeprom_delay);
2605}
2606
2607/* perform a chip select operation */
2608static void eeprom_cs(struct ipw_priv *priv)
2609{
2610        eeprom_write_reg(priv, 0);
2611        eeprom_write_reg(priv, EEPROM_BIT_CS);
2612        eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2613        eeprom_write_reg(priv, EEPROM_BIT_CS);
2614}
2615
2616/* perform a chip select operation */
2617static void eeprom_disable_cs(struct ipw_priv *priv)
2618{
2619        eeprom_write_reg(priv, EEPROM_BIT_CS);
2620        eeprom_write_reg(priv, 0);
2621        eeprom_write_reg(priv, EEPROM_BIT_SK);
2622}
2623
2624/* push a single bit down to the eeprom */
2625static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2626{
2627        int d = (bit ? EEPROM_BIT_DI : 0);
2628        eeprom_write_reg(p, EEPROM_BIT_CS | d);
2629        eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2630}
2631
2632/* push an opcode followed by an address down to the eeprom */
2633static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2634{
2635        int i;
2636
2637        eeprom_cs(priv);
2638        eeprom_write_bit(priv, 1);
2639        eeprom_write_bit(priv, op & 2);
2640        eeprom_write_bit(priv, op & 1);
2641        for (i = 7; i >= 0; i--) {
2642                eeprom_write_bit(priv, addr & (1 << i));
2643        }
2644}
2645
2646/* pull 16 bits off the eeprom, one bit at a time */
2647static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2648{
2649        int i;
2650        u16 r = 0;
2651
2652        /* Send READ Opcode */
2653        eeprom_op(priv, EEPROM_CMD_READ, addr);
2654
2655        /* Send dummy bit */
2656        eeprom_write_reg(priv, EEPROM_BIT_CS);
2657
2658        /* Read the byte off the eeprom one bit at a time */
2659        for (i = 0; i < 16; i++) {
2660                u32 data = 0;
2661                eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2662                eeprom_write_reg(priv, EEPROM_BIT_CS);
2663                data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2664                r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2665        }
2666
2667        /* Send another dummy bit */
2668        eeprom_write_reg(priv, 0);
2669        eeprom_disable_cs(priv);
2670
2671        return r;
2672}
2673
2674/* helper function for pulling the mac address out of the private */
2675/* data's copy of the eeprom data                                 */
2676static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2677{
2678        memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2679}
2680
2681static void ipw_read_eeprom(struct ipw_priv *priv)
2682{
2683        int i;
2684        __le16 *eeprom = (__le16 *) priv->eeprom;
2685
2686        IPW_DEBUG_TRACE(">>\n");
2687
2688        /* read entire contents of eeprom into private buffer */
2689        for (i = 0; i < 128; i++)
2690                eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2691
2692        IPW_DEBUG_TRACE("<<\n");
2693}
2694
2695/*
2696 * Either the device driver (i.e. the host) or the firmware can
2697 * load eeprom data into the designated region in SRAM.  If neither
2698 * happens then the FW will shutdown with a fatal error.
2699 *
2700 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2701 * bit needs region of shared SRAM needs to be non-zero.
2702 */
2703static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2704{
2705        int i;
2706
2707        IPW_DEBUG_TRACE(">>\n");
2708
2709        /*
2710           If the data looks correct, then copy it to our private
2711           copy.  Otherwise let the firmware know to perform the operation
2712           on its own.
2713         */
2714        if (priv->eeprom[EEPROM_VERSION] != 0) {
2715                IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2716
2717                /* write the eeprom data to sram */
2718                for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2719                        ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2720
2721                /* Do not load eeprom data on fatal error or suspend */
2722                ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2723        } else {
2724                IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2725
2726                /* Load eeprom data on fatal error or suspend */
2727                ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2728        }
2729
2730        IPW_DEBUG_TRACE("<<\n");
2731}
2732
2733static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2734{
2735        count >>= 2;
2736        if (!count)
2737                return;
2738        _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2739        while (count--)
2740                _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2741}
2742
2743static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2744{
2745        ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2746                        CB_NUMBER_OF_ELEMENTS_SMALL *
2747                        sizeof(struct command_block));
2748}
2749
2750static int ipw_fw_dma_enable(struct ipw_priv *priv)
2751{                               /* start dma engine but no transfers yet */
2752
2753        IPW_DEBUG_FW(">> :\n");
2754
2755        /* Start the dma */
2756        ipw_fw_dma_reset_command_blocks(priv);
2757
2758        /* Write CB base address */
2759        ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2760
2761        IPW_DEBUG_FW("<< :\n");
2762        return 0;
2763}
2764
2765static void ipw_fw_dma_abort(struct ipw_priv *priv)
2766{
2767        u32 control = 0;
2768
2769        IPW_DEBUG_FW(">> :\n");
2770
2771        /* set the Stop and Abort bit */
2772        control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2773        ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2774        priv->sram_desc.last_cb_index = 0;
2775
2776        IPW_DEBUG_FW("<<\n");
2777}
2778
2779static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2780                                          struct command_block *cb)
2781{
2782        u32 address =
2783            IPW_SHARED_SRAM_DMA_CONTROL +
2784            (sizeof(struct command_block) * index);
2785        IPW_DEBUG_FW(">> :\n");
2786
2787        ipw_write_indirect(priv, address, (u8 *) cb,
2788                           (int)sizeof(struct command_block));
2789
2790        IPW_DEBUG_FW("<< :\n");
2791        return 0;
2792
2793}
2794
2795static int ipw_fw_dma_kick(struct ipw_priv *priv)
2796{
2797        u32 control = 0;
2798        u32 index = 0;
2799
2800        IPW_DEBUG_FW(">> :\n");
2801
2802        for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2803                ipw_fw_dma_write_command_block(priv, index,
2804                                               &priv->sram_desc.cb_list[index]);
2805
2806        /* Enable the DMA in the CSR register */
2807        ipw_clear_bit(priv, IPW_RESET_REG,
2808                      IPW_RESET_REG_MASTER_DISABLED |
2809                      IPW_RESET_REG_STOP_MASTER);
2810
2811        /* Set the Start bit. */
2812        control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2813        ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2814
2815        IPW_DEBUG_FW("<< :\n");
2816        return 0;
2817}
2818
2819static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2820{
2821        u32 address;
2822        u32 register_value = 0;
2823        u32 cb_fields_address = 0;
2824
2825        IPW_DEBUG_FW(">> :\n");
2826        address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2827        IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2828
2829        /* Read the DMA Controlor register */
2830        register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2831        IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2832
2833        /* Print the CB values */
2834        cb_fields_address = address;
2835        register_value = ipw_read_reg32(priv, cb_fields_address);
2836        IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2837
2838        cb_fields_address += sizeof(u32);
2839        register_value = ipw_read_reg32(priv, cb_fields_address);
2840        IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2841
2842        cb_fields_address += sizeof(u32);
2843        register_value = ipw_read_reg32(priv, cb_fields_address);
2844        IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2845                          register_value);
2846
2847        cb_fields_address += sizeof(u32);
2848        register_value = ipw_read_reg32(priv, cb_fields_address);
2849        IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2850
2851        IPW_DEBUG_FW(">> :\n");
2852}
2853
2854static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2855{
2856        u32 current_cb_address = 0;
2857        u32 current_cb_index = 0;
2858
2859        IPW_DEBUG_FW("<< :\n");
2860        current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2861
2862        current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2863            sizeof(struct command_block);
2864
2865        IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2866                          current_cb_index, current_cb_address);
2867
2868        IPW_DEBUG_FW(">> :\n");
2869        return current_cb_index;
2870
2871}
2872
2873static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2874                                        u32 src_address,
2875                                        u32 dest_address,
2876                                        u32 length,
2877                                        int interrupt_enabled, int is_last)
2878{
2879
2880        u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2881            CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2882            CB_DEST_SIZE_LONG;
2883        struct command_block *cb;
2884        u32 last_cb_element = 0;
2885
2886        IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2887                          src_address, dest_address, length);
2888
2889        if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2890                return -1;
2891
2892        last_cb_element = priv->sram_desc.last_cb_index;
2893        cb = &priv->sram_desc.cb_list[last_cb_element];
2894        priv->sram_desc.last_cb_index++;
2895
2896        /* Calculate the new CB control word */
2897        if (interrupt_enabled)
2898                control |= CB_INT_ENABLED;
2899
2900        if (is_last)
2901                control |= CB_LAST_VALID;
2902
2903        control |= length;
2904
2905        /* Calculate the CB Element's checksum value */
2906        cb->status = control ^ src_address ^ dest_address;
2907
2908        /* Copy the Source and Destination addresses */
2909        cb->dest_addr = dest_address;
2910        cb->source_addr = src_address;
2911
2912        /* Copy the Control Word last */
2913        cb->control = control;
2914
2915        return 0;
2916}
2917
2918static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2919                                 int nr, u32 dest_address, u32 len)
2920{
2921        int ret, i;
2922        u32 size;
2923
2924        IPW_DEBUG_FW(">>\n");
2925        IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2926                          nr, dest_address, len);
2927
2928        for (i = 0; i < nr; i++) {
2929                size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2930                ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2931                                                   dest_address +
2932                                                   i * CB_MAX_LENGTH, size,
2933                                                   0, 0);
2934                if (ret) {
2935                        IPW_DEBUG_FW_INFO(": Failed\n");
2936                        return -1;
2937                } else
2938                        IPW_DEBUG_FW_INFO(": Added new cb\n");
2939        }
2940
2941        IPW_DEBUG_FW("<<\n");
2942        return 0;
2943}
2944
2945static int ipw_fw_dma_wait(struct ipw_priv *priv)
2946{
2947        u32 current_index = 0, previous_index;
2948        u32 watchdog = 0;
2949
2950        IPW_DEBUG_FW(">> :\n");
2951
2952        current_index = ipw_fw_dma_command_block_index(priv);
2953        IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2954                          (int)priv->sram_desc.last_cb_index);
2955
2956        while (current_index < priv->sram_desc.last_cb_index) {
2957                udelay(50);
2958                previous_index = current_index;
2959                current_index = ipw_fw_dma_command_block_index(priv);
2960
2961                if (previous_index < current_index) {
2962                        watchdog = 0;
2963                        continue;
2964                }
2965                if (++watchdog > 400) {
2966                        IPW_DEBUG_FW_INFO("Timeout\n");
2967                        ipw_fw_dma_dump_command_block(priv);
2968                        ipw_fw_dma_abort(priv);
2969                        return -1;
2970                }
2971        }
2972
2973        ipw_fw_dma_abort(priv);
2974
2975        /*Disable the DMA in the CSR register */
2976        ipw_set_bit(priv, IPW_RESET_REG,
2977                    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2978
2979        IPW_DEBUG_FW("<< dmaWaitSync\n");
2980        return 0;
2981}
2982
2983static void ipw_remove_current_network(struct ipw_priv *priv)
2984{
2985        struct list_head *element, *safe;
2986        struct libipw_network *network = NULL;
2987        unsigned long flags;
2988
2989        spin_lock_irqsave(&priv->ieee->lock, flags);
2990        list_for_each_safe(element, safe, &priv->ieee->network_list) {
2991                network = list_entry(element, struct libipw_network, list);
2992                if (ether_addr_equal(network->bssid, priv->bssid)) {
2993                        list_del(element);
2994                        list_add_tail(&network->list,
2995                                      &priv->ieee->network_free_list);
2996                }
2997        }
2998        spin_unlock_irqrestore(&priv->ieee->lock, flags);
2999}
3000
3001/*
3002 * Check that card is still alive.
3003 * Reads debug register from domain0.
3004 * If card is present, pre-defined value should
3005 * be found there.
3006 *
3007 * @param priv
3008 * @return 1 if card is present, 0 otherwise
3009 */
3010static inline int ipw_alive(struct ipw_priv *priv)
3011{
3012        return ipw_read32(priv, 0x90) == 0xd55555d5;
3013}
3014
3015/* timeout in msec, attempted in 10-msec quanta */
3016static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3017                               int timeout)
3018{
3019        int i = 0;
3020
3021        do {
3022                if ((ipw_read32(priv, addr) & mask) == mask)
3023                        return i;
3024                mdelay(10);
3025                i += 10;
3026        } while (i < timeout);
3027
3028        return -ETIME;
3029}
3030
3031/* These functions load the firmware and micro code for the operation of
3032 * the ipw hardware.  It assumes the buffer has all the bits for the
3033 * image and the caller is handling the memory allocation and clean up.
3034 */
3035
3036static int ipw_stop_master(struct ipw_priv *priv)
3037{
3038        int rc;
3039
3040        IPW_DEBUG_TRACE(">>\n");
3041        /* stop master. typical delay - 0 */
3042        ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3043
3044        /* timeout is in msec, polled in 10-msec quanta */
3045        rc = ipw_poll_bit(priv, IPW_RESET_REG,
3046                          IPW_RESET_REG_MASTER_DISABLED, 100);
3047        if (rc < 0) {
3048                IPW_ERROR("wait for stop master failed after 100ms\n");
3049                return -1;
3050        }
3051
3052        IPW_DEBUG_INFO("stop master %dms\n", rc);
3053
3054        return rc;
3055}
3056
3057static void ipw_arc_release(struct ipw_priv *priv)
3058{
3059        IPW_DEBUG_TRACE(">>\n");
3060        mdelay(5);
3061
3062        ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3063
3064        /* no one knows timing, for safety add some delay */
3065        mdelay(5);
3066}
3067
3068struct fw_chunk {
3069        __le32 address;
3070        __le32 length;
3071};
3072
3073static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3074{
3075        int rc = 0, i, addr;
3076        u8 cr = 0;
3077        __le16 *image;
3078
3079        image = (__le16 *) data;
3080
3081        IPW_DEBUG_TRACE(">>\n");
3082
3083        rc = ipw_stop_master(priv);
3084
3085        if (rc < 0)
3086                return rc;
3087
3088        for (addr = IPW_SHARED_LOWER_BOUND;
3089             addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3090                ipw_write32(priv, addr, 0);
3091        }
3092
3093        /* no ucode (yet) */
3094        memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3095        /* destroy DMA queues */
3096        /* reset sequence */
3097
3098        ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3099        ipw_arc_release(priv);
3100        ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3101        mdelay(1);
3102
3103        /* reset PHY */
3104        ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3105        mdelay(1);
3106
3107        ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3108        mdelay(1);
3109
3110        /* enable ucode store */
3111        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3112        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3113        mdelay(1);
3114
3115        /* write ucode */
3116        /*
3117         * @bug
3118         * Do NOT set indirect address register once and then
3119         * store data to indirect data register in the loop.
3120         * It seems very reasonable, but in this case DINO do not
3121         * accept ucode. It is essential to set address each time.
3122         */
3123        /* load new ipw uCode */
3124        for (i = 0; i < len / 2; i++)
3125                ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3126                                le16_to_cpu(image[i]));
3127
3128        /* enable DINO */
3129        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3130        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3131
3132        /* this is where the igx / win driver deveates from the VAP driver. */
3133
3134        /* wait for alive response */
3135        for (i = 0; i < 100; i++) {
3136                /* poll for incoming data */
3137                cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3138                if (cr & DINO_RXFIFO_DATA)
3139                        break;
3140                mdelay(1);
3141        }
3142
3143        if (cr & DINO_RXFIFO_DATA) {
3144                /* alive_command_responce size is NOT multiple of 4 */
3145                __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3146
3147                for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3148                        response_buffer[i] =
3149                            cpu_to_le32(ipw_read_reg32(priv,
3150                                                       IPW_BASEBAND_RX_FIFO_READ));
3151                memcpy(&priv->dino_alive, response_buffer,
3152                       sizeof(priv->dino_alive));
3153                if (priv->dino_alive.alive_command == 1
3154                    && priv->dino_alive.ucode_valid == 1) {
3155                        rc = 0;
3156                        IPW_DEBUG_INFO
3157                            ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3158                             "of %02d/%02d/%02d %02d:%02d\n",
3159                             priv->dino_alive.software_revision,
3160                             priv->dino_alive.software_revision,
3161                             priv->dino_alive.device_identifier,
3162                             priv->dino_alive.device_identifier,
3163                             priv->dino_alive.time_stamp[0],
3164                             priv->dino_alive.time_stamp[1],
3165                             priv->dino_alive.time_stamp[2],
3166                             priv->dino_alive.time_stamp[3],
3167                             priv->dino_alive.time_stamp[4]);
3168                } else {
3169                        IPW_DEBUG_INFO("Microcode is not alive\n");
3170                        rc = -EINVAL;
3171                }
3172        } else {
3173                IPW_DEBUG_INFO("No alive response from DINO\n");
3174                rc = -ETIME;
3175        }
3176
3177        /* disable DINO, otherwise for some reason
3178           firmware have problem getting alive resp. */
3179        ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3180
3181        return rc;
3182}
3183
3184static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3185{
3186        int ret = -1;
3187        int offset = 0;
3188        struct fw_chunk *chunk;
3189        int total_nr = 0;
3190        int i;
3191        struct dma_pool *pool;
3192        void **virts;
3193        dma_addr_t *phys;
3194
3195        IPW_DEBUG_TRACE("<< :\n");
3196
3197        virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3198                              GFP_KERNEL);
3199        if (!virts)
3200                return -ENOMEM;
3201
3202        phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3203                             GFP_KERNEL);
3204        if (!phys) {
3205                kfree(virts);
3206                return -ENOMEM;
3207        }
3208        pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3209                               0);
3210        if (!pool) {
3211                IPW_ERROR("dma_pool_create failed\n");
3212                kfree(phys);
3213                kfree(virts);
3214                return -ENOMEM;
3215        }
3216
3217        /* Start the Dma */
3218        ret = ipw_fw_dma_enable(priv);
3219
3220        /* the DMA is already ready this would be a bug. */
3221        BUG_ON(priv->sram_desc.last_cb_index > 0);
3222
3223        do {
3224                u32 chunk_len;
3225                u8 *start;
3226                int size;
3227                int nr = 0;
3228
3229                chunk = (struct fw_chunk *)(data + offset);
3230                offset += sizeof(struct fw_chunk);
3231                chunk_len = le32_to_cpu(chunk->length);
3232                start = data + offset;
3233
3234                nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3235                for (i = 0; i < nr; i++) {
3236                        virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3237                                                         &phys[total_nr]);
3238                        if (!virts[total_nr]) {
3239                                ret = -ENOMEM;
3240                                goto out;
3241                        }
3242                        size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3243                                     CB_MAX_LENGTH);
3244                        memcpy(virts[total_nr], start, size);
3245                        start += size;
3246                        total_nr++;
3247                        /* We don't support fw chunk larger than 64*8K */
3248                        BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3249                }
3250
3251                /* build DMA packet and queue up for sending */
3252                /* dma to chunk->address, the chunk->length bytes from data +
3253                 * offeset*/
3254                /* Dma loading */
3255                ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3256                                            nr, le32_to_cpu(chunk->address),
3257                                            chunk_len);
3258                if (ret) {
3259                        IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3260                        goto out;
3261                }
3262
3263                offset += chunk_len;
3264        } while (offset < len);
3265
3266        /* Run the DMA and wait for the answer */
3267        ret = ipw_fw_dma_kick(priv);
3268        if (ret) {
3269                IPW_ERROR("dmaKick Failed\n");
3270                goto out;
3271        }
3272
3273        ret = ipw_fw_dma_wait(priv);
3274        if (ret) {
3275                IPW_ERROR("dmaWaitSync Failed\n");
3276                goto out;
3277        }
3278 out:
3279        for (i = 0; i < total_nr; i++)
3280                dma_pool_free(pool, virts[i], phys[i]);
3281
3282        dma_pool_destroy(pool);
3283        kfree(phys);
3284        kfree(virts);
3285
3286        return ret;
3287}
3288
3289/* stop nic */
3290static int ipw_stop_nic(struct ipw_priv *priv)
3291{
3292        int rc = 0;
3293
3294        /* stop */
3295        ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3296
3297        rc = ipw_poll_bit(priv, IPW_RESET_REG,
3298                          IPW_RESET_REG_MASTER_DISABLED, 500);
3299        if (rc < 0) {
3300                IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3301                return rc;
3302        }
3303
3304        ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3305
3306        return rc;
3307}
3308
3309static void ipw_start_nic(struct ipw_priv *priv)
3310{
3311        IPW_DEBUG_TRACE(">>\n");
3312
3313        /* prvHwStartNic  release ARC */
3314        ipw_clear_bit(priv, IPW_RESET_REG,
3315                      IPW_RESET_REG_MASTER_DISABLED |
3316                      IPW_RESET_REG_STOP_MASTER |
3317                      CBD_RESET_REG_PRINCETON_RESET);
3318
3319        /* enable power management */
3320        ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3321                    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3322
3323        IPW_DEBUG_TRACE("<<\n");
3324}
3325
3326static int ipw_init_nic(struct ipw_priv *priv)
3327{
3328        int rc;
3329
3330        IPW_DEBUG_TRACE(">>\n");
3331        /* reset */
3332        /*prvHwInitNic */
3333        /* set "initialization complete" bit to move adapter to D0 state */
3334        ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3335
3336        /* low-level PLL activation */
3337        ipw_write32(priv, IPW_READ_INT_REGISTER,
3338                    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3339
3340        /* wait for clock stabilization */
3341        rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3342                          IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3343        if (rc < 0)
3344                IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3345
3346        /* assert SW reset */
3347        ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3348
3349        udelay(10);
3350
3351        /* set "initialization complete" bit to move adapter to D0 state */
3352        ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3353
3354        IPW_DEBUG_TRACE(">>\n");
3355        return 0;
3356}
3357
3358/* Call this function from process context, it will sleep in request_firmware.
3359 * Probe is an ok place to call this from.
3360 */
3361static int ipw_reset_nic(struct ipw_priv *priv)
3362{
3363        int rc = 0;
3364        unsigned long flags;
3365
3366        IPW_DEBUG_TRACE(">>\n");
3367
3368        rc = ipw_init_nic(priv);
3369
3370        spin_lock_irqsave(&priv->lock, flags);
3371        /* Clear the 'host command active' bit... */
3372        priv->status &= ~STATUS_HCMD_ACTIVE;
3373        wake_up_interruptible(&priv->wait_command_queue);
3374        priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3375        wake_up_interruptible(&priv->wait_state);
3376        spin_unlock_irqrestore(&priv->lock, flags);
3377
3378        IPW_DEBUG_TRACE("<<\n");
3379        return rc;
3380}
3381
3382
3383struct ipw_fw {
3384        __le32 ver;
3385        __le32 boot_size;
3386        __le32 ucode_size;
3387        __le32 fw_size;
3388        u8 data[];
3389};
3390
3391static int ipw_get_fw(struct ipw_priv *priv,
3392                      const struct firmware **raw, const char *name)
3393{
3394        struct ipw_fw *fw;
3395        int rc;
3396
3397        /* ask firmware_class module to get the boot firmware off disk */
3398        rc = request_firmware(raw, name, &priv->pci_dev->dev);
3399        if (rc < 0) {
3400                IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3401                return rc;
3402        }
3403
3404        if ((*raw)->size < sizeof(*fw)) {
3405                IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3406                return -EINVAL;
3407        }
3408
3409        fw = (void *)(*raw)->data;
3410
3411        if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3412            le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3413                IPW_ERROR("%s is too small or corrupt (%zd)\n",
3414                          name, (*raw)->size);
3415                return -EINVAL;
3416        }
3417
3418        IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3419                       name,
3420                       le32_to_cpu(fw->ver) >> 16,
3421                       le32_to_cpu(fw->ver) & 0xff,
3422                       (*raw)->size - sizeof(*fw));
3423        return 0;
3424}
3425
3426#define IPW_RX_BUF_SIZE (3000)
3427
3428static void ipw_rx_queue_reset(struct ipw_priv *priv,
3429                                      struct ipw_rx_queue *rxq)
3430{
3431        unsigned long flags;
3432        int i;
3433
3434        spin_lock_irqsave(&rxq->lock, flags);
3435
3436        INIT_LIST_HEAD(&rxq->rx_free);
3437        INIT_LIST_HEAD(&rxq->rx_used);
3438
3439        /* Fill the rx_used queue with _all_ of the Rx buffers */
3440        for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3441                /* In the reset function, these buffers may have been allocated
3442                 * to an SKB, so we need to unmap and free potential storage */
3443                if (rxq->pool[i].skb != NULL) {
3444                        dma_unmap_single(&priv->pci_dev->dev,
3445                                         rxq->pool[i].dma_addr,
3446                                         IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3447                        dev_kfree_skb(rxq->pool[i].skb);
3448                        rxq->pool[i].skb = NULL;
3449                }
3450                list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3451        }
3452
3453        /* Set us so that we have processed and used all buffers, but have
3454         * not restocked the Rx queue with fresh buffers */
3455        rxq->read = rxq->write = 0;
3456        rxq->free_count = 0;
3457        spin_unlock_irqrestore(&rxq->lock, flags);
3458}
3459
3460#ifdef CONFIG_PM
3461static int fw_loaded = 0;
3462static const struct firmware *raw = NULL;
3463
3464static void free_firmware(void)
3465{
3466        if (fw_loaded) {
3467                release_firmware(raw);
3468                raw = NULL;
3469                fw_loaded = 0;
3470        }
3471}
3472#else
3473#define free_firmware() do {} while (0)
3474#endif
3475
3476static int ipw_load(struct ipw_priv *priv)
3477{
3478#ifndef CONFIG_PM
3479        const struct firmware *raw = NULL;
3480#endif
3481        struct ipw_fw *fw;
3482        u8 *boot_img, *ucode_img, *fw_img;
3483        u8 *name = NULL;
3484        int rc = 0, retries = 3;
3485
3486        switch (priv->ieee->iw_mode) {
3487        case IW_MODE_ADHOC:
3488                name = "ipw2200-ibss.fw";
3489                break;
3490#ifdef CONFIG_IPW2200_MONITOR
3491        case IW_MODE_MONITOR:
3492                name = "ipw2200-sniffer.fw";
3493                break;
3494#endif
3495        case IW_MODE_INFRA:
3496                name = "ipw2200-bss.fw";
3497                break;
3498        }
3499
3500        if (!name) {
3501                rc = -EINVAL;
3502                goto error;
3503        }
3504
3505#ifdef CONFIG_PM
3506        if (!fw_loaded) {
3507#endif
3508                rc = ipw_get_fw(priv, &raw, name);
3509                if (rc < 0)
3510                        goto error;
3511#ifdef CONFIG_PM
3512        }
3513#endif
3514
3515        fw = (void *)raw->data;
3516        boot_img = &fw->data[0];
3517        ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3518        fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3519                           le32_to_cpu(fw->ucode_size)];
3520
3521        if (!priv->rxq)
3522                priv->rxq = ipw_rx_queue_alloc(priv);
3523        else
3524                ipw_rx_queue_reset(priv, priv->rxq);
3525        if (!priv->rxq) {
3526                IPW_ERROR("Unable to initialize Rx queue\n");
3527                rc = -ENOMEM;
3528                goto error;
3529        }
3530
3531      retry:
3532        /* Ensure interrupts are disabled */
3533        ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3534        priv->status &= ~STATUS_INT_ENABLED;
3535
3536        /* ack pending interrupts */
3537        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3538
3539        ipw_stop_nic(priv);
3540
3541        rc = ipw_reset_nic(priv);
3542        if (rc < 0) {
3543                IPW_ERROR("Unable to reset NIC\n");
3544                goto error;
3545        }
3546
3547        ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3548                        IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3549
3550        /* DMA the initial boot firmware into the device */
3551        rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3552        if (rc < 0) {
3553                IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3554                goto error;
3555        }
3556
3557        /* kick start the device */
3558        ipw_start_nic(priv);
3559
3560        /* wait for the device to finish its initial startup sequence */
3561        rc = ipw_poll_bit(priv, IPW_INTA_RW,
3562                          IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3563        if (rc < 0) {
3564                IPW_ERROR("device failed to boot initial fw image\n");
3565                goto error;
3566        }
3567        IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3568
3569        /* ack fw init done interrupt */
3570        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3571
3572        /* DMA the ucode into the device */
3573        rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3574        if (rc < 0) {
3575                IPW_ERROR("Unable to load ucode: %d\n", rc);
3576                goto error;
3577        }
3578
3579        /* stop nic */
3580        ipw_stop_nic(priv);
3581
3582        /* DMA bss firmware into the device */
3583        rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3584        if (rc < 0) {
3585                IPW_ERROR("Unable to load firmware: %d\n", rc);
3586                goto error;
3587        }
3588#ifdef CONFIG_PM
3589        fw_loaded = 1;
3590#endif
3591
3592        ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3593
3594        rc = ipw_queue_reset(priv);
3595        if (rc < 0) {
3596                IPW_ERROR("Unable to initialize queues\n");
3597                goto error;
3598        }
3599
3600        /* Ensure interrupts are disabled */
3601        ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3602        /* ack pending interrupts */
3603        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3604
3605        /* kick start the device */
3606        ipw_start_nic(priv);
3607
3608        if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3609                if (retries > 0) {
3610                        IPW_WARNING("Parity error.  Retrying init.\n");
3611                        retries--;
3612                        goto retry;
3613                }
3614
3615                IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3616                rc = -EIO;
3617                goto error;
3618        }
3619
3620        /* wait for the device */
3621        rc = ipw_poll_bit(priv, IPW_INTA_RW,
3622                          IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3623        if (rc < 0) {
3624                IPW_ERROR("device failed to start within 500ms\n");
3625                goto error;
3626        }
3627        IPW_DEBUG_INFO("device response after %dms\n", rc);
3628
3629        /* ack fw init done interrupt */
3630        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3631
3632        /* read eeprom data */
3633        priv->eeprom_delay = 1;
3634        ipw_read_eeprom(priv);
3635        /* initialize the eeprom region of sram */
3636        ipw_eeprom_init_sram(priv);
3637
3638        /* enable interrupts */
3639        ipw_enable_interrupts(priv);
3640
3641        /* Ensure our queue has valid packets */
3642        ipw_rx_queue_replenish(priv);
3643
3644        ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3645
3646        /* ack pending interrupts */
3647        ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3648
3649#ifndef CONFIG_PM
3650        release_firmware(raw);
3651#endif
3652        return 0;
3653
3654      error:
3655        if (priv->rxq) {
3656                ipw_rx_queue_free(priv, priv->rxq);
3657                priv->rxq = NULL;
3658        }
3659        ipw_tx_queue_free(priv);
3660        release_firmware(raw);
3661#ifdef CONFIG_PM
3662        fw_loaded = 0;
3663        raw = NULL;
3664#endif
3665
3666        return rc;
3667}
3668
3669/*
3670 * DMA services
3671 *
3672 * Theory of operation
3673 *
3674 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3675 * 2 empty entries always kept in the buffer to protect from overflow.
3676 *
3677 * For Tx queue, there are low mark and high mark limits. If, after queuing
3678 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3679 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3680 * Tx queue resumed.
3681 *
3682 * The IPW operates with six queues, one receive queue in the device's
3683 * sram, one transmit queue for sending commands to the device firmware,
3684 * and four transmit queues for data.
3685 *
3686 * The four transmit queues allow for performing quality of service (qos)
3687 * transmissions as per the 802.11 protocol.  Currently Linux does not
3688 * provide a mechanism to the user for utilizing prioritized queues, so
3689 * we only utilize the first data transmit queue (queue1).
3690 */
3691
3692/*
3693 * Driver allocates buffers of this size for Rx
3694 */
3695
3696/*
3697 * ipw_rx_queue_space - Return number of free slots available in queue.
3698 */
3699static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3700{
3701        int s = q->read - q->write;
3702        if (s <= 0)
3703                s += RX_QUEUE_SIZE;
3704        /* keep some buffer to not confuse full and empty queue */
3705        s -= 2;
3706        if (s < 0)
3707                s = 0;
3708        return s;
3709}
3710
3711static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3712{
3713        int s = q->last_used - q->first_empty;
3714        if (s <= 0)
3715                s += q->n_bd;
3716        s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3717        if (s < 0)
3718                s = 0;
3719        return s;
3720}
3721
3722static inline int ipw_queue_inc_wrap(int index, int n_bd)
3723{
3724        return (++index == n_bd) ? 0 : index;
3725}
3726
3727/*
3728 * Initialize common DMA queue structure
3729 *
3730 * @param q                queue to init
3731 * @param count            Number of BD's to allocate. Should be power of 2
3732 * @param read_register    Address for 'read' register
3733 *                         (not offset within BAR, full address)
3734 * @param write_register   Address for 'write' register
3735 *                         (not offset within BAR, full address)
3736 * @param base_register    Address for 'base' register
3737 *                         (not offset within BAR, full address)
3738 * @param size             Address for 'size' register
3739 *                         (not offset within BAR, full address)
3740 */
3741static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3742                           int count, u32 read, u32 write, u32 base, u32 size)
3743{
3744        q->n_bd = count;
3745
3746        q->low_mark = q->n_bd / 4;
3747        if (q->low_mark < 4)
3748                q->low_mark = 4;
3749
3750        q->high_mark = q->n_bd / 8;
3751        if (q->high_mark < 2)
3752                q->high_mark = 2;
3753
3754        q->first_empty = q->last_used = 0;
3755        q->reg_r = read;
3756        q->reg_w = write;
3757
3758        ipw_write32(priv, base, q->dma_addr);
3759        ipw_write32(priv, size, count);
3760        ipw_write32(priv, read, 0);
3761        ipw_write32(priv, write, 0);
3762
3763        _ipw_read32(priv, 0x90);
3764}
3765
3766static int ipw_queue_tx_init(struct ipw_priv *priv,
3767                             struct clx2_tx_queue *q,
3768                             int count, u32 read, u32 write, u32 base, u32 size)
3769{
3770        struct pci_dev *dev = priv->pci_dev;
3771
3772        q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3773        if (!q->txb)
3774                return -ENOMEM;
3775
3776        q->bd =
3777            dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3778                               &q->q.dma_addr, GFP_KERNEL);
3779        if (!q->bd) {
3780                IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3781                          sizeof(q->bd[0]) * count);
3782                kfree(q->txb);
3783                q->txb = NULL;
3784                return -ENOMEM;
3785        }
3786
3787        ipw_queue_init(priv, &q->q, count, read, write, base, size);
3788        return 0;
3789}
3790
3791/*
3792 * Free one TFD, those at index [txq->q.last_used].
3793 * Do NOT advance any indexes
3794 *
3795 * @param dev
3796 * @param txq
3797 */
3798static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3799                                  struct clx2_tx_queue *txq)
3800{
3801        struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3802        struct pci_dev *dev = priv->pci_dev;
3803        int i;
3804
3805        /* classify bd */
3806        if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3807                /* nothing to cleanup after for host commands */
3808                return;
3809
3810        /* sanity check */
3811        if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3812                IPW_ERROR("Too many chunks: %i\n",
3813                          le32_to_cpu(bd->u.data.num_chunks));
3814                /* @todo issue fatal error, it is quite serious situation */
3815                return;
3816        }
3817
3818        /* unmap chunks if any */
3819        for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3820                dma_unmap_single(&dev->dev,
3821                                 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3822                                 le16_to_cpu(bd->u.data.chunk_len[i]),
3823                                 DMA_TO_DEVICE);
3824                if (txq->txb[txq->q.last_used]) {
3825                        libipw_txb_free(txq->txb[txq->q.last_used]);
3826                        txq->txb[txq->q.last_used] = NULL;
3827                }
3828        }
3829}
3830
3831/*
3832 * Deallocate DMA queue.
3833 *
3834 * Empty queue by removing and destroying all BD's.
3835 * Free all buffers.
3836 *
3837 * @param dev
3838 * @param q
3839 */
3840static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3841{
3842        struct clx2_queue *q = &txq->q;
3843        struct pci_dev *dev = priv->pci_dev;
3844
3845        if (q->n_bd == 0)
3846                return;
3847
3848        /* first, empty all BD's */
3849        for (; q->first_empty != q->last_used;
3850             q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3851                ipw_queue_tx_free_tfd(priv, txq);
3852        }
3853
3854        /* free buffers belonging to queue itself */
3855        dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3856                          q->dma_addr);
3857        kfree(txq->txb);
3858
3859        /* 0 fill whole structure */
3860        memset(txq, 0, sizeof(*txq));
3861}
3862
3863/*
3864 * Destroy all DMA queues and structures
3865 *
3866 * @param priv
3867 */
3868static void ipw_tx_queue_free(struct ipw_priv *priv)
3869{
3870        /* Tx CMD queue */
3871        ipw_queue_tx_free(priv, &priv->txq_cmd);
3872
3873        /* Tx queues */
3874        ipw_queue_tx_free(priv, &priv->txq[0]);
3875        ipw_queue_tx_free(priv, &priv->txq[1]);
3876        ipw_queue_tx_free(priv, &priv->txq[2]);
3877        ipw_queue_tx_free(priv, &priv->txq[3]);
3878}
3879
3880static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3881{
3882        /* First 3 bytes are manufacturer */
3883        bssid[0] = priv->mac_addr[0];
3884        bssid[1] = priv->mac_addr[1];
3885        bssid[2] = priv->mac_addr[2];
3886
3887        /* Last bytes are random */
3888        get_random_bytes(&bssid[3], ETH_ALEN - 3);
3889
3890        bssid[0] &= 0xfe;       /* clear multicast bit */
3891        bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3892}
3893
3894static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3895{
3896        struct ipw_station_entry entry;
3897        int i;
3898
3899        for (i = 0; i < priv->num_stations; i++) {
3900                if (ether_addr_equal(priv->stations[i], bssid)) {
3901                        /* Another node is active in network */
3902                        priv->missed_adhoc_beacons = 0;
3903                        if (!(priv->config & CFG_STATIC_CHANNEL))
3904                                /* when other nodes drop out, we drop out */
3905                                priv->config &= ~CFG_ADHOC_PERSIST;
3906
3907                        return i;
3908                }
3909        }
3910
3911        if (i == MAX_STATIONS)
3912                return IPW_INVALID_STATION;
3913
3914        IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3915
3916        entry.reserved = 0;
3917        entry.support_mode = 0;
3918        memcpy(entry.mac_addr, bssid, ETH_ALEN);
3919        memcpy(priv->stations[i], bssid, ETH_ALEN);
3920        ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3921                         &entry, sizeof(entry));
3922        priv->num_stations++;
3923
3924        return i;
3925}
3926
3927static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3928{
3929        int i;
3930
3931        for (i = 0; i < priv->num_stations; i++)
3932                if (ether_addr_equal(priv->stations[i], bssid))
3933                        return i;
3934
3935        return IPW_INVALID_STATION;
3936}
3937
3938static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3939{
3940        int err;
3941
3942        if (priv->status & STATUS_ASSOCIATING) {
3943                IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3944                schedule_work(&priv->disassociate);
3945                return;
3946        }
3947
3948        if (!(priv->status & STATUS_ASSOCIATED)) {
3949                IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3950                return;
3951        }
3952
3953        IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3954                        "on channel %d.\n",
3955                        priv->assoc_request.bssid,
3956                        priv->assoc_request.channel);
3957
3958        priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3959        priv->status |= STATUS_DISASSOCIATING;
3960
3961        if (quiet)
3962                priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3963        else
3964                priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3965
3966        err = ipw_send_associate(priv, &priv->assoc_request);
3967        if (err) {
3968                IPW_DEBUG_HC("Attempt to send [dis]associate command "
3969                             "failed.\n");
3970                return;
3971        }
3972
3973}
3974
3975static int ipw_disassociate(void *data)
3976{
3977        struct ipw_priv *priv = data;
3978        if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3979                return 0;
3980        ipw_send_disassociate(data, 0);
3981        netif_carrier_off(priv->net_dev);
3982        return 1;
3983}
3984
3985static void ipw_bg_disassociate(struct work_struct *work)
3986{
3987        struct ipw_priv *priv =
3988                container_of(work, struct ipw_priv, disassociate);
3989        mutex_lock(&priv->mutex);
3990        ipw_disassociate(priv);
3991        mutex_unlock(&priv->mutex);
3992}
3993
3994static void ipw_system_config(struct work_struct *work)
3995{
3996        struct ipw_priv *priv =
3997                container_of(work, struct ipw_priv, system_config);
3998
3999#ifdef CONFIG_IPW2200_PROMISCUOUS
4000        if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4001                priv->sys_config.accept_all_data_frames = 1;
4002                priv->sys_config.accept_non_directed_frames = 1;
4003                priv->sys_config.accept_all_mgmt_bcpr = 1;
4004                priv->sys_config.accept_all_mgmt_frames = 1;
4005        }
4006#endif
4007
4008        ipw_send_system_config(priv);
4009}
4010
4011struct ipw_status_code {
4012        u16 status;
4013        const char *reason;
4014};
4015
4016static const struct ipw_status_code ipw_status_codes[] = {
4017        {0x00, "Successful"},
4018        {0x01, "Unspecified failure"},
4019        {0x0A, "Cannot support all requested capabilities in the "
4020         "Capability information field"},
4021        {0x0B, "Reassociation denied due to inability to confirm that "
4022         "association exists"},
4023        {0x0C, "Association denied due to reason outside the scope of this "
4024         "standard"},
4025        {0x0D,
4026         "Responding station does not support the specified authentication "
4027         "algorithm"},
4028        {0x0E,
4029         "Received an Authentication frame with authentication sequence "
4030         "transaction sequence number out of expected sequence"},
4031        {0x0F, "Authentication rejected because of challenge failure"},
4032        {0x10, "Authentication rejected due to timeout waiting for next "
4033         "frame in sequence"},
4034        {0x11, "Association denied because AP is unable to handle additional "
4035         "associated stations"},
4036        {0x12,
4037         "Association denied due to requesting station not supporting all "
4038         "of the datarates in the BSSBasicServiceSet Parameter"},
4039        {0x13,
4040         "Association denied due to requesting station not supporting "
4041         "short preamble operation"},
4042        {0x14,
4043         "Association denied due to requesting station not supporting "
4044         "PBCC encoding"},
4045        {0x15,
4046         "Association denied due to requesting station not supporting "
4047         "channel agility"},
4048        {0x19,
4049         "Association denied due to requesting station not supporting "
4050         "short slot operation"},
4051        {0x1A,
4052         "Association denied due to requesting station not supporting "
4053         "DSSS-OFDM operation"},
4054        {0x28, "Invalid Information Element"},
4055        {0x29, "Group Cipher is not valid"},
4056        {0x2A, "Pairwise Cipher is not valid"},
4057        {0x2B, "AKMP is not valid"},
4058        {0x2C, "Unsupported RSN IE version"},
4059        {0x2D, "Invalid RSN IE Capabilities"},
4060        {0x2E, "Cipher suite is rejected per security policy"},
4061};
4062
4063static const char *ipw_get_status_code(u16 status)
4064{
4065        int i;
4066        for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4067                if (ipw_status_codes[i].status == (status & 0xff))
4068                        return ipw_status_codes[i].reason;
4069        return "Unknown status value.";
4070}
4071
4072static inline void average_init(struct average *avg)
4073{
4074        memset(avg, 0, sizeof(*avg));
4075}
4076
4077#define DEPTH_RSSI 8
4078#define DEPTH_NOISE 16
4079static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4080{
4081        return ((depth-1)*prev_avg +  val)/depth;
4082}
4083
4084static void average_add(struct average *avg, s16 val)
4085{
4086        avg->sum -= avg->entries[avg->pos];
4087        avg->sum += val;
4088        avg->entries[avg->pos++] = val;
4089        if (unlikely(avg->pos == AVG_ENTRIES)) {
4090                avg->init = 1;
4091                avg->pos = 0;
4092        }
4093}
4094
4095static s16 average_value(struct average *avg)
4096{
4097        if (!unlikely(avg->init)) {
4098                if (avg->pos)
4099                        return avg->sum / avg->pos;
4100                return 0;
4101        }
4102
4103        return avg->sum / AVG_ENTRIES;
4104}
4105
4106static void ipw_reset_stats(struct ipw_priv *priv)
4107{
4108        u32 len = sizeof(u32);
4109
4110        priv->quality = 0;
4111
4112        average_init(&priv->average_missed_beacons);
4113        priv->exp_avg_rssi = -60;
4114        priv->exp_avg_noise = -85 + 0x100;
4115
4116        priv->last_rate = 0;
4117        priv->last_missed_beacons = 0;
4118        priv->last_rx_packets = 0;
4119        priv->last_tx_packets = 0;
4120        priv->last_tx_failures = 0;
4121
4122        /* Firmware managed, reset only when NIC is restarted, so we have to
4123         * normalize on the current value */
4124        ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4125                        &priv->last_rx_err, &len);
4126        ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4127                        &priv->last_tx_failures, &len);
4128
4129        /* Driver managed, reset with each association */
4130        priv->missed_adhoc_beacons = 0;
4131        priv->missed_beacons = 0;
4132        priv->tx_packets = 0;
4133        priv->rx_packets = 0;
4134
4135}
4136
4137static u32 ipw_get_max_rate(struct ipw_priv *priv)
4138{
4139        u32 i = 0x80000000;
4140        u32 mask = priv->rates_mask;
4141        /* If currently associated in B mode, restrict the maximum
4142         * rate match to B rates */
4143        if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4144                mask &= LIBIPW_CCK_RATES_MASK;
4145
4146        /* TODO: Verify that the rate is supported by the current rates
4147         * list. */
4148
4149        while (i && !(mask & i))
4150                i >>= 1;
4151        switch (i) {
4152        case LIBIPW_CCK_RATE_1MB_MASK:
4153                return 1000000;
4154        case LIBIPW_CCK_RATE_2MB_MASK:
4155                return 2000000;
4156        case LIBIPW_CCK_RATE_5MB_MASK:
4157                return 5500000;
4158        case LIBIPW_OFDM_RATE_6MB_MASK:
4159                return 6000000;
4160        case LIBIPW_OFDM_RATE_9MB_MASK:
4161                return 9000000;
4162        case LIBIPW_CCK_RATE_11MB_MASK:
4163                return 11000000;
4164        case LIBIPW_OFDM_RATE_12MB_MASK:
4165                return 12000000;
4166        case LIBIPW_OFDM_RATE_18MB_MASK:
4167                return 18000000;
4168        case LIBIPW_OFDM_RATE_24MB_MASK:
4169                return 24000000;
4170        case LIBIPW_OFDM_RATE_36MB_MASK:
4171                return 36000000;
4172        case LIBIPW_OFDM_RATE_48MB_MASK:
4173                return 48000000;
4174        case LIBIPW_OFDM_RATE_54MB_MASK:
4175                return 54000000;
4176        }
4177
4178        if (priv->ieee->mode == IEEE_B)
4179                return 11000000;
4180        else
4181                return 54000000;
4182}
4183
4184static u32 ipw_get_current_rate(struct ipw_priv *priv)
4185{
4186        u32 rate, len = sizeof(rate);
4187        int err;
4188
4189        if (!(priv->status & STATUS_ASSOCIATED))
4190                return 0;
4191
4192        if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4193                err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4194                                      &len);
4195                if (err) {
4196                        IPW_DEBUG_INFO("failed querying ordinals.\n");
4197                        return 0;
4198                }
4199        } else
4200                return ipw_get_max_rate(priv);
4201
4202        switch (rate) {
4203        case IPW_TX_RATE_1MB:
4204                return 1000000;
4205        case IPW_TX_RATE_2MB:
4206                return 2000000;
4207        case IPW_TX_RATE_5MB:
4208                return 5500000;
4209        case IPW_TX_RATE_6MB:
4210                return 6000000;
4211        case IPW_TX_RATE_9MB:
4212                return 9000000;
4213        case IPW_TX_RATE_11MB:
4214                return 11000000;
4215        case IPW_TX_RATE_12MB:
4216                return 12000000;
4217        case IPW_TX_RATE_18MB:
4218                return 18000000;
4219        case IPW_TX_RATE_24MB:
4220                return 24000000;
4221        case IPW_TX_RATE_36MB:
4222                return 36000000;
4223        case IPW_TX_RATE_48MB:
4224                return 48000000;
4225        case IPW_TX_RATE_54MB:
4226                return 54000000;
4227        }
4228
4229        return 0;
4230}
4231
4232#define IPW_STATS_INTERVAL (2 * HZ)
4233static void ipw_gather_stats(struct ipw_priv *priv)
4234{
4235        u32 rx_err, rx_err_delta, rx_packets_delta;
4236        u32 tx_failures, tx_failures_delta, tx_packets_delta;
4237        u32 missed_beacons_percent, missed_beacons_delta;
4238        u32 quality = 0;
4239        u32 len = sizeof(u32);
4240        s16 rssi;
4241        u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4242            rate_quality;
4243        u32 max_rate;
4244
4245        if (!(priv->status & STATUS_ASSOCIATED)) {
4246                priv->quality = 0;
4247                return;
4248        }
4249
4250        /* Update the statistics */
4251        ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4252                        &priv->missed_beacons, &len);
4253        missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4254        priv->last_missed_beacons = priv->missed_beacons;
4255        if (priv->assoc_request.beacon_interval) {
4256                missed_beacons_percent = missed_beacons_delta *
4257                    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4258                    (IPW_STATS_INTERVAL * 10);
4259        } else {
4260                missed_beacons_percent = 0;
4261        }
4262        average_add(&priv->average_missed_beacons, missed_beacons_percent);
4263
4264        ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4265        rx_err_delta = rx_err - priv->last_rx_err;
4266        priv->last_rx_err = rx_err;
4267
4268        ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4269        tx_failures_delta = tx_failures - priv->last_tx_failures;
4270        priv->last_tx_failures = tx_failures;
4271
4272        rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4273        priv->last_rx_packets = priv->rx_packets;
4274
4275        tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4276        priv->last_tx_packets = priv->tx_packets;
4277
4278        /* Calculate quality based on the following:
4279         *
4280         * Missed beacon: 100% = 0, 0% = 70% missed
4281         * Rate: 60% = 1Mbs, 100% = Max
4282         * Rx and Tx errors represent a straight % of total Rx/Tx
4283         * RSSI: 100% = > -50,  0% = < -80
4284         * Rx errors: 100% = 0, 0% = 50% missed
4285         *
4286         * The lowest computed quality is used.
4287         *
4288         */
4289#define BEACON_THRESHOLD 5
4290        beacon_quality = 100 - missed_beacons_percent;
4291        if (beacon_quality < BEACON_THRESHOLD)
4292                beacon_quality = 0;
4293        else
4294                beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4295                    (100 - BEACON_THRESHOLD);
4296        IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4297                        beacon_quality, missed_beacons_percent);
4298
4299        priv->last_rate = ipw_get_current_rate(priv);
4300        max_rate = ipw_get_max_rate(priv);
4301        rate_quality = priv->last_rate * 40 / max_rate + 60;
4302        IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4303                        rate_quality, priv->last_rate / 1000000);
4304
4305        if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4306                rx_quality = 100 - (rx_err_delta * 100) /
4307                    (rx_packets_delta + rx_err_delta);
4308        else
4309                rx_quality = 100;
4310        IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4311                        rx_quality, rx_err_delta, rx_packets_delta);
4312
4313        if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4314                tx_quality = 100 - (tx_failures_delta * 100) /
4315                    (tx_packets_delta + tx_failures_delta);
4316        else
4317                tx_quality = 100;
4318        IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4319                        tx_quality, tx_failures_delta, tx_packets_delta);
4320
4321        rssi = priv->exp_avg_rssi;
4322        signal_quality =
4323            (100 *
4324             (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4325             (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4326             (priv->ieee->perfect_rssi - rssi) *
4327             (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4328              62 * (priv->ieee->perfect_rssi - rssi))) /
4329            ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4330             (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4331        if (signal_quality > 100)
4332                signal_quality = 100;
4333        else if (signal_quality < 1)
4334                signal_quality = 0;
4335
4336        IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4337                        signal_quality, rssi);
4338
4339        quality = min(rx_quality, signal_quality);
4340        quality = min(tx_quality, quality);
4341        quality = min(rate_quality, quality);
4342        quality = min(beacon_quality, quality);
4343        if (quality == beacon_quality)
4344                IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4345                                quality);
4346        if (quality == rate_quality)
4347                IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4348                                quality);
4349        if (quality == tx_quality)
4350                IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4351                                quality);
4352        if (quality == rx_quality)
4353                IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4354                                quality);
4355        if (quality == signal_quality)
4356                IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4357                                quality);
4358
4359        priv->quality = quality;
4360
4361        schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4362}
4363
4364static void ipw_bg_gather_stats(struct work_struct *work)
4365{
4366        struct ipw_priv *priv =
4367                container_of(work, struct ipw_priv, gather_stats.work);
4368        mutex_lock(&priv->mutex);
4369        ipw_gather_stats(priv);
4370        mutex_unlock(&priv->mutex);
4371}
4372
4373/* Missed beacon behavior:
4374 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4375 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4376 * Above disassociate threshold, give up and stop scanning.
4377 * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4378static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4379                                            int missed_count)
4380{
4381        priv->notif_missed_beacons = missed_count;
4382
4383        if (missed_count > priv->disassociate_threshold &&
4384            priv->status & STATUS_ASSOCIATED) {
4385                /* If associated and we've hit the missed
4386                 * beacon threshold, disassociate, turn
4387                 * off roaming, and abort any active scans */
4388                IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4389                          IPW_DL_STATE | IPW_DL_ASSOC,
4390                          "Missed beacon: %d - disassociate\n", missed_count);
4391                priv->status &= ~STATUS_ROAMING;
4392                if (priv->status & STATUS_SCANNING) {
4393                        IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4394                                  IPW_DL_STATE,
4395                                  "Aborting scan with missed beacon.\n");
4396                        schedule_work(&priv->abort_scan);
4397                }
4398
4399                schedule_work(&priv->disassociate);
4400                return;
4401        }
4402
4403        if (priv->status & STATUS_ROAMING) {
4404                /* If we are currently roaming, then just
4405                 * print a debug statement... */
4406                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4407                          "Missed beacon: %d - roam in progress\n",
4408                          missed_count);
4409                return;
4410        }
4411
4412        if (roaming &&
4413            (missed_count > priv->roaming_threshold &&
4414             missed_count <= priv->disassociate_threshold)) {
4415                /* If we are not already roaming, set the ROAM
4416                 * bit in the status and kick off a scan.
4417                 * This can happen several times before we reach
4418                 * disassociate_threshold. */
4419                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420                          "Missed beacon: %d - initiate "
4421                          "roaming\n", missed_count);
4422                if (!(priv->status & STATUS_ROAMING)) {
4423                        priv->status |= STATUS_ROAMING;
4424                        if (!(priv->status & STATUS_SCANNING))
4425                                schedule_delayed_work(&priv->request_scan, 0);
4426                }
4427                return;
4428        }
4429
4430        if (priv->status & STATUS_SCANNING &&
4431            missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4432                /* Stop scan to keep fw from getting
4433                 * stuck (only if we aren't roaming --
4434                 * otherwise we'll never scan more than 2 or 3
4435                 * channels..) */
4436                IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4437                          "Aborting scan with missed beacon.\n");
4438                schedule_work(&priv->abort_scan);
4439        }
4440
4441        IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4442}
4443
4444static void ipw_scan_event(struct work_struct *work)
4445{
4446        union iwreq_data wrqu;
4447
4448        struct ipw_priv *priv =
4449                container_of(work, struct ipw_priv, scan_event.work);
4450
4451        wrqu.data.length = 0;
4452        wrqu.data.flags = 0;
4453        wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4454}
4455
4456static void handle_scan_event(struct ipw_priv *priv)
4457{
4458        /* Only userspace-requested scan completion events go out immediately */
4459        if (!priv->user_requested_scan) {
4460                schedule_delayed_work(&priv->scan_event,
4461                                      round_jiffies_relative(msecs_to_jiffies(4000)));
4462        } else {
4463                priv->user_requested_scan = 0;
4464                mod_delayed_work(system_wq, &priv->scan_event, 0);
4465        }
4466}
4467
4468/*
4469 * Handle host notification packet.
4470 * Called from interrupt routine
4471 */
4472static void ipw_rx_notification(struct ipw_priv *priv,
4473                                       struct ipw_rx_notification *notif)
4474{
4475        u16 size = le16_to_cpu(notif->size);
4476
4477        IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4478
4479        switch (notif->subtype) {
4480        case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4481                        struct notif_association *assoc = &notif->u.assoc;
4482
4483                        switch (assoc->state) {
4484                        case CMAS_ASSOCIATED:{
4485                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4486                                                  IPW_DL_ASSOC,
4487                                                  "associated: '%*pE' %pM\n",
4488                                                  priv->essid_len, priv->essid,
4489                                                  priv->bssid);
4490
4491                                        switch (priv->ieee->iw_mode) {
4492                                        case IW_MODE_INFRA:
4493                                                memcpy(priv->ieee->bssid,
4494                                                       priv->bssid, ETH_ALEN);
4495                                                break;
4496
4497                                        case IW_MODE_ADHOC:
4498                                                memcpy(priv->ieee->bssid,
4499                                                       priv->bssid, ETH_ALEN);
4500
4501                                                /* clear out the station table */
4502                                                priv->num_stations = 0;
4503
4504                                                IPW_DEBUG_ASSOC
4505                                                    ("queueing adhoc check\n");
4506                                                schedule_delayed_work(
4507                                                        &priv->adhoc_check,
4508                                                        le16_to_cpu(priv->
4509                                                        assoc_request.
4510                                                        beacon_interval));
4511                                                break;
4512                                        }
4513
4514                                        priv->status &= ~STATUS_ASSOCIATING;
4515                                        priv->status |= STATUS_ASSOCIATED;
4516                                        schedule_work(&priv->system_config);
4517
4518#ifdef CONFIG_IPW2200_QOS
4519#define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4520                         le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4521                                        if ((priv->status & STATUS_AUTH) &&
4522                                            (IPW_GET_PACKET_STYPE(&notif->u.raw)
4523                                             == IEEE80211_STYPE_ASSOC_RESP)) {
4524                                                if ((sizeof
4525                                                     (struct
4526                                                      libipw_assoc_response)
4527                                                     <= size)
4528                                                    && (size <= 2314)) {
4529                                                        struct
4530                                                        libipw_rx_stats
4531                                                            stats = {
4532                                                                .len = size - 1,
4533                                                        };
4534
4535                                                        IPW_DEBUG_QOS
4536                                                            ("QoS Associate "
4537                                                             "size %d\n", size);
4538                                                        libipw_rx_mgt(priv->
4539                                                                         ieee,
4540                                                                         (struct
4541                                                                          libipw_hdr_4addr
4542                                                                          *)
4543                                                                         &notif->u.raw, &stats);
4544                                                }
4545                                        }
4546#endif
4547
4548                                        schedule_work(&priv->link_up);
4549
4550                                        break;
4551                                }
4552
4553                        case CMAS_AUTHENTICATED:{
4554                                        if (priv->
4555                                            status & (STATUS_ASSOCIATED |
4556                                                      STATUS_AUTH)) {
4557                                                struct notif_authenticate *auth
4558                                                    = &notif->u.auth;
4559                                                IPW_DEBUG(IPW_DL_NOTIF |
4560                                                          IPW_DL_STATE |
4561                                                          IPW_DL_ASSOC,
4562                                                          "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4563                                                          priv->essid_len,
4564                                                          priv->essid,
4565                                                          priv->bssid,
4566                                                          le16_to_cpu(auth->status),
4567                                                          ipw_get_status_code
4568                                                          (le16_to_cpu
4569                                                           (auth->status)));
4570
4571                                                priv->status &=
4572                                                    ~(STATUS_ASSOCIATING |
4573                                                      STATUS_AUTH |
4574                                                      STATUS_ASSOCIATED);
4575
4576                                                schedule_work(&priv->link_down);
4577                                                break;
4578                                        }
4579
4580                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4581                                                  IPW_DL_ASSOC,
4582                                                  "authenticated: '%*pE' %pM\n",
4583                                                  priv->essid_len, priv->essid,
4584                                                  priv->bssid);
4585                                        break;
4586                                }
4587
4588                        case CMAS_INIT:{
4589                                        if (priv->status & STATUS_AUTH) {
4590                                                struct
4591                                                    libipw_assoc_response
4592                                                *resp;
4593                                                resp =
4594                                                    (struct
4595                                                     libipw_assoc_response
4596                                                     *)&notif->u.raw;
4597                                                IPW_DEBUG(IPW_DL_NOTIF |
4598                                                          IPW_DL_STATE |
4599                                                          IPW_DL_ASSOC,
4600                                                          "association failed (0x%04X): %s\n",
4601                                                          le16_to_cpu(resp->status),
4602                                                          ipw_get_status_code
4603                                                          (le16_to_cpu
4604                                                           (resp->status)));
4605                                        }
4606
4607                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608                                                  IPW_DL_ASSOC,
4609                                                  "disassociated: '%*pE' %pM\n",
4610                                                  priv->essid_len, priv->essid,
4611                                                  priv->bssid);
4612
4613                                        priv->status &=
4614                                            ~(STATUS_DISASSOCIATING |
4615                                              STATUS_ASSOCIATING |
4616                                              STATUS_ASSOCIATED | STATUS_AUTH);
4617                                        if (priv->assoc_network
4618                                            && (priv->assoc_network->
4619                                                capability &
4620                                                WLAN_CAPABILITY_IBSS))
4621                                                ipw_remove_current_network
4622                                                    (priv);
4623
4624                                        schedule_work(&priv->link_down);
4625
4626                                        break;
4627                                }
4628
4629                        case CMAS_RX_ASSOC_RESP:
4630                                break;
4631
4632                        default:
4633                                IPW_ERROR("assoc: unknown (%d)\n",
4634                                          assoc->state);
4635                                break;
4636                        }
4637
4638                        break;
4639                }
4640
4641        case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4642                        struct notif_authenticate *auth = &notif->u.auth;
4643                        switch (auth->state) {
4644                        case CMAS_AUTHENTICATED:
4645                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4646                                          "authenticated: '%*pE' %pM\n",
4647                                          priv->essid_len, priv->essid,
4648                                          priv->bssid);
4649                                priv->status |= STATUS_AUTH;
4650                                break;
4651
4652                        case CMAS_INIT:
4653                                if (priv->status & STATUS_AUTH) {
4654                                        IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                                  IPW_DL_ASSOC,
4656                                                  "authentication failed (0x%04X): %s\n",
4657                                                  le16_to_cpu(auth->status),
4658                                                  ipw_get_status_code(le16_to_cpu
4659                                                                      (auth->
4660                                                                       status)));
4661                                }
4662                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663                                          IPW_DL_ASSOC,
4664                                          "deauthenticated: '%*pE' %pM\n",
4665                                          priv->essid_len, priv->essid,
4666                                          priv->bssid);
4667
4668                                priv->status &= ~(STATUS_ASSOCIATING |
4669                                                  STATUS_AUTH |
4670                                                  STATUS_ASSOCIATED);
4671
4672                                schedule_work(&priv->link_down);
4673                                break;
4674
4675                        case CMAS_TX_AUTH_SEQ_1:
4676                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4677                                          IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4678                                break;
4679                        case CMAS_RX_AUTH_SEQ_2:
4680                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4681                                          IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4682                                break;
4683                        case CMAS_AUTH_SEQ_1_PASS:
4684                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685                                          IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4686                                break;
4687                        case CMAS_AUTH_SEQ_1_FAIL:
4688                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689                                          IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4690                                break;
4691                        case CMAS_TX_AUTH_SEQ_3:
4692                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693                                          IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4694                                break;
4695                        case CMAS_RX_AUTH_SEQ_4:
4696                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697                                          IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4698                                break;
4699                        case CMAS_AUTH_SEQ_2_PASS:
4700                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4701                                          IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4702                                break;
4703                        case CMAS_AUTH_SEQ_2_FAIL:
4704                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4705                                          IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4706                                break;
4707                        case CMAS_TX_ASSOC:
4708                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4709                                          IPW_DL_ASSOC, "TX_ASSOC\n");
4710                                break;
4711                        case CMAS_RX_ASSOC_RESP:
4712                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4713                                          IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4714
4715                                break;
4716                        case CMAS_ASSOCIATED:
4717                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                          IPW_DL_ASSOC, "ASSOCIATED\n");
4719                                break;
4720                        default:
4721                                IPW_DEBUG_NOTIF("auth: failure - %d\n",
4722                                                auth->state);
4723                                break;
4724                        }
4725                        break;
4726                }
4727
4728        case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4729                        struct notif_channel_result *x =
4730                            &notif->u.channel_result;
4731
4732                        if (size == sizeof(*x)) {
4733                                IPW_DEBUG_SCAN("Scan result for channel %d\n",
4734                                               x->channel_num);
4735                        } else {
4736                                IPW_DEBUG_SCAN("Scan result of wrong size %d "
4737                                               "(should be %zd)\n",
4738                                               size, sizeof(*x));
4739                        }
4740                        break;
4741                }
4742
4743        case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4744                        struct notif_scan_complete *x = &notif->u.scan_complete;
4745                        if (size == sizeof(*x)) {
4746                                IPW_DEBUG_SCAN
4747                                    ("Scan completed: type %d, %d channels, "
4748                                     "%d status\n", x->scan_type,
4749                                     x->num_channels, x->status);
4750                        } else {
4751                                IPW_ERROR("Scan completed of wrong size %d "
4752                                          "(should be %zd)\n",
4753                                          size, sizeof(*x));
4754                        }
4755
4756                        priv->status &=
4757                            ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4758
4759                        wake_up_interruptible(&priv->wait_state);
4760                        cancel_delayed_work(&priv->scan_check);
4761
4762                        if (priv->status & STATUS_EXIT_PENDING)
4763                                break;
4764
4765                        priv->ieee->scans++;
4766
4767#ifdef CONFIG_IPW2200_MONITOR
4768                        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4769                                priv->status |= STATUS_SCAN_FORCED;
4770                                schedule_delayed_work(&priv->request_scan, 0);
4771                                break;
4772                        }
4773                        priv->status &= ~STATUS_SCAN_FORCED;
4774#endif                          /* CONFIG_IPW2200_MONITOR */
4775
4776                        /* Do queued direct scans first */
4777                        if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4778                                schedule_delayed_work(&priv->request_direct_scan, 0);
4779
4780                        if (!(priv->status & (STATUS_ASSOCIATED |
4781                                              STATUS_ASSOCIATING |
4782                                              STATUS_ROAMING |
4783                                              STATUS_DISASSOCIATING)))
4784                                schedule_work(&priv->associate);
4785                        else if (priv->status & STATUS_ROAMING) {
4786                                if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4787                                        /* If a scan completed and we are in roam mode, then
4788                                         * the scan that completed was the one requested as a
4789                                         * result of entering roam... so, schedule the
4790                                         * roam work */
4791                                        schedule_work(&priv->roam);
4792                                else
4793                                        /* Don't schedule if we aborted the scan */
4794                                        priv->status &= ~STATUS_ROAMING;
4795                        } else if (priv->status & STATUS_SCAN_PENDING)
4796                                schedule_delayed_work(&priv->request_scan, 0);
4797                        else if (priv->config & CFG_BACKGROUND_SCAN
4798                                 && priv->status & STATUS_ASSOCIATED)
4799                                schedule_delayed_work(&priv->request_scan,
4800                                                      round_jiffies_relative(HZ));
4801
4802                        /* Send an empty event to user space.
4803                         * We don't send the received data on the event because
4804                         * it would require us to do complex transcoding, and
4805                         * we want to minimise the work done in the irq handler
4806                         * Use a request to extract the data.
4807                         * Also, we generate this even for any scan, regardless
4808                         * on how the scan was initiated. User space can just
4809                         * sync on periodic scan to get fresh data...
4810                         * Jean II */
4811                        if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4812                                handle_scan_event(priv);
4813                        break;
4814                }
4815
4816        case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4817                        struct notif_frag_length *x = &notif->u.frag_len;
4818
4819                        if (size == sizeof(*x))
4820                                IPW_ERROR("Frag length: %d\n",
4821                                          le16_to_cpu(x->frag_length));
4822                        else
4823                                IPW_ERROR("Frag length of wrong size %d "
4824                                          "(should be %zd)\n",
4825                                          size, sizeof(*x));
4826                        break;
4827                }
4828
4829        case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4830                        struct notif_link_deterioration *x =
4831                            &notif->u.link_deterioration;
4832
4833                        if (size == sizeof(*x)) {
4834                                IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4835                                        "link deterioration: type %d, cnt %d\n",
4836                                        x->silence_notification_type,
4837                                        x->silence_count);
4838                                memcpy(&priv->last_link_deterioration, x,
4839                                       sizeof(*x));
4840                        } else {
4841                                IPW_ERROR("Link Deterioration of wrong size %d "
4842                                          "(should be %zd)\n",
4843                                          size, sizeof(*x));
4844                        }
4845                        break;
4846                }
4847
4848        case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4849                        IPW_ERROR("Dino config\n");
4850                        if (priv->hcmd
4851                            && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4852                                IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4853
4854                        break;
4855                }
4856
4857        case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4858                        struct notif_beacon_state *x = &notif->u.beacon_state;
4859                        if (size != sizeof(*x)) {
4860                                IPW_ERROR
4861                                    ("Beacon state of wrong size %d (should "
4862                                     "be %zd)\n", size, sizeof(*x));
4863                                break;
4864                        }
4865
4866                        if (le32_to_cpu(x->state) ==
4867                            HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4868                                ipw_handle_missed_beacon(priv,
4869                                                         le32_to_cpu(x->
4870                                                                     number));
4871
4872                        break;
4873                }
4874
4875        case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4876                        struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4877                        if (size == sizeof(*x)) {
4878                                IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4879                                          "0x%02x station %d\n",
4880                                          x->key_state, x->security_type,
4881                                          x->station_index);
4882                                break;
4883                        }
4884
4885                        IPW_ERROR
4886                            ("TGi Tx Key of wrong size %d (should be %zd)\n",
4887                             size, sizeof(*x));
4888                        break;
4889                }
4890
4891        case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4892                        struct notif_calibration *x = &notif->u.calibration;
4893
4894                        if (size == sizeof(*x)) {
4895                                memcpy(&priv->calib, x, sizeof(*x));
4896                                IPW_DEBUG_INFO("TODO: Calibration\n");
4897                                break;
4898                        }
4899
4900                        IPW_ERROR
4901                            ("Calibration of wrong size %d (should be %zd)\n",
4902                             size, sizeof(*x));
4903                        break;
4904                }
4905
4906        case HOST_NOTIFICATION_NOISE_STATS:{
4907                        if (size == sizeof(u32)) {
4908                                priv->exp_avg_noise =
4909                                    exponential_average(priv->exp_avg_noise,
4910                                    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4911                                    DEPTH_NOISE);
4912                                break;
4913                        }
4914
4915                        IPW_ERROR
4916                            ("Noise stat is wrong size %d (should be %zd)\n",
4917                             size, sizeof(u32));
4918                        break;
4919                }
4920
4921        default:
4922                IPW_DEBUG_NOTIF("Unknown notification: "
4923                                "subtype=%d,flags=0x%2x,size=%d\n",
4924                                notif->subtype, notif->flags, size);
4925        }
4926}
4927
4928/*
4929 * Destroys all DMA structures and initialise them again
4930 *
4931 * @param priv
4932 * @return error code
4933 */
4934static int ipw_queue_reset(struct ipw_priv *priv)
4935{
4936        int rc = 0;
4937        /* @todo customize queue sizes */
4938        int nTx = 64, nTxCmd = 8;
4939        ipw_tx_queue_free(priv);
4940        /* Tx CMD queue */
4941        rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4942                               IPW_TX_CMD_QUEUE_READ_INDEX,
4943                               IPW_TX_CMD_QUEUE_WRITE_INDEX,
4944                               IPW_TX_CMD_QUEUE_BD_BASE,
4945                               IPW_TX_CMD_QUEUE_BD_SIZE);
4946        if (rc) {
4947                IPW_ERROR("Tx Cmd queue init failed\n");
4948                goto error;
4949        }
4950        /* Tx queue(s) */
4951        rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4952                               IPW_TX_QUEUE_0_READ_INDEX,
4953                               IPW_TX_QUEUE_0_WRITE_INDEX,
4954                               IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4955        if (rc) {
4956                IPW_ERROR("Tx 0 queue init failed\n");
4957                goto error;
4958        }
4959        rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4960                               IPW_TX_QUEUE_1_READ_INDEX,
4961                               IPW_TX_QUEUE_1_WRITE_INDEX,
4962                               IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4963        if (rc) {
4964                IPW_ERROR("Tx 1 queue init failed\n");
4965                goto error;
4966        }
4967        rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4968                               IPW_TX_QUEUE_2_READ_INDEX,
4969                               IPW_TX_QUEUE_2_WRITE_INDEX,
4970                               IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4971        if (rc) {
4972                IPW_ERROR("Tx 2 queue init failed\n");
4973                goto error;
4974        }
4975        rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4976                               IPW_TX_QUEUE_3_READ_INDEX,
4977                               IPW_TX_QUEUE_3_WRITE_INDEX,
4978                               IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4979        if (rc) {
4980                IPW_ERROR("Tx 3 queue init failed\n");
4981                goto error;
4982        }
4983        /* statistics */
4984        priv->rx_bufs_min = 0;
4985        priv->rx_pend_max = 0;
4986        return rc;
4987
4988      error:
4989        ipw_tx_queue_free(priv);
4990        return rc;
4991}
4992
4993/*
4994 * Reclaim Tx queue entries no more used by NIC.
4995 *
4996 * When FW advances 'R' index, all entries between old and
4997 * new 'R' index need to be reclaimed. As result, some free space
4998 * forms. If there is enough free space (> low mark), wake Tx queue.
4999 *
5000 * @note Need to protect against garbage in 'R' index
5001 * @param priv
5002 * @param txq
5003 * @param qindex
5004 * @return Number of used entries remains in the queue
5005 */
5006static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5007                                struct clx2_tx_queue *txq, int qindex)
5008{
5009        u32 hw_tail;
5010        int used;
5011        struct clx2_queue *q = &txq->q;
5012
5013        hw_tail = ipw_read32(priv, q->reg_r);
5014        if (hw_tail >= q->n_bd) {
5015                IPW_ERROR
5016                    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5017                     hw_tail, q->n_bd);
5018                goto done;
5019        }
5020        for (; q->last_used != hw_tail;
5021             q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5022                ipw_queue_tx_free_tfd(priv, txq);
5023                priv->tx_packets++;
5024        }
5025      done:
5026        if ((ipw_tx_queue_space(q) > q->low_mark) &&
5027            (qindex >= 0))
5028                netif_wake_queue(priv->net_dev);
5029        used = q->first_empty - q->last_used;
5030        if (used < 0)
5031                used += q->n_bd;
5032
5033        return used;
5034}
5035
5036static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5037                             int len, int sync)
5038{
5039        struct clx2_tx_queue *txq = &priv->txq_cmd;
5040        struct clx2_queue *q = &txq->q;
5041        struct tfd_frame *tfd;
5042
5043        if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5044                IPW_ERROR("No space for Tx\n");
5045                return -EBUSY;
5046        }
5047
5048        tfd = &txq->bd[q->first_empty];
5049        txq->txb[q->first_empty] = NULL;
5050
5051        memset(tfd, 0, sizeof(*tfd));
5052        tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5053        tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5054        priv->hcmd_seq++;
5055        tfd->u.cmd.index = hcmd;
5056        tfd->u.cmd.length = len;
5057        memcpy(tfd->u.cmd.payload, buf, len);
5058        q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5059        ipw_write32(priv, q->reg_w, q->first_empty);
5060        _ipw_read32(priv, 0x90);
5061
5062        return 0;
5063}
5064
5065/*
5066 * Rx theory of operation
5067 *
5068 * The host allocates 32 DMA target addresses and passes the host address
5069 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5070 * 0 to 31
5071 *
5072 * Rx Queue Indexes
5073 * The host/firmware share two index registers for managing the Rx buffers.
5074 *
5075 * The READ index maps to the first position that the firmware may be writing
5076 * to -- the driver can read up to (but not including) this position and get
5077 * good data.
5078 * The READ index is managed by the firmware once the card is enabled.
5079 *
5080 * The WRITE index maps to the last position the driver has read from -- the
5081 * position preceding WRITE is the last slot the firmware can place a packet.
5082 *
5083 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5084 * WRITE = READ.
5085 *
5086 * During initialization the host sets up the READ queue position to the first
5087 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5088 *
5089 * When the firmware places a packet in a buffer it will advance the READ index
5090 * and fire the RX interrupt.  The driver can then query the READ index and
5091 * process as many packets as possible, moving the WRITE index forward as it
5092 * resets the Rx queue buffers with new memory.
5093 *
5094 * The management in the driver is as follows:
5095 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5096 *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5097 *   to replensish the ipw->rxq->rx_free.
5098 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5099 *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5100 *   'processed' and 'read' driver indexes as well)
5101 * + A received packet is processed and handed to the kernel network stack,
5102 *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5103 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5104 *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5105 *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5106 *   were enough free buffers and RX_STALLED is set it is cleared.
5107 *
5108 *
5109 * Driver sequence:
5110 *
5111 * ipw_rx_queue_alloc()       Allocates rx_free
5112 * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5113 *                            ipw_rx_queue_restock
5114 * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5115 *                            queue, updates firmware pointers, and updates
5116 *                            the WRITE index.  If insufficient rx_free buffers
5117 *                            are available, schedules ipw_rx_queue_replenish
5118 *
5119 * -- enable interrupts --
5120 * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5121 *                            READ INDEX, detaching the SKB from the pool.
5122 *                            Moves the packet buffer from queue to rx_used.
5123 *                            Calls ipw_rx_queue_restock to refill any empty
5124 *                            slots.
5125 * ...
5126 *
5127 */
5128
5129/*
5130 * If there are slots in the RX queue that  need to be restocked,
5131 * and we have free pre-allocated buffers, fill the ranks as much
5132 * as we can pulling from rx_free.
5133 *
5134 * This moves the 'write' index forward to catch up with 'processed', and
5135 * also updates the memory address in the firmware to reference the new
5136 * target buffer.
5137 */
5138static void ipw_rx_queue_restock(struct ipw_priv *priv)
5139{
5140        struct ipw_rx_queue *rxq = priv->rxq;
5141        struct list_head *element;
5142        struct ipw_rx_mem_buffer *rxb;
5143        unsigned long flags;
5144        int write;
5145
5146        spin_lock_irqsave(&rxq->lock, flags);
5147        write = rxq->write;
5148        while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5149                element = rxq->rx_free.next;
5150                rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5151                list_del(element);
5152
5153                ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5154                            rxb->dma_addr);
5155                rxq->queue[rxq->write] = rxb;
5156                rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5157                rxq->free_count--;
5158        }
5159        spin_unlock_irqrestore(&rxq->lock, flags);
5160
5161        /* If the pre-allocated buffer pool is dropping low, schedule to
5162         * refill it */
5163        if (rxq->free_count <= RX_LOW_WATERMARK)
5164                schedule_work(&priv->rx_replenish);
5165
5166        /* If we've added more space for the firmware to place data, tell it */
5167        if (write != rxq->write)
5168                ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5169}
5170
5171/*
5172 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5173 * Also restock the Rx queue via ipw_rx_queue_restock.
5174 *
5175 * This is called as a scheduled work item (except for during initialization)
5176 */
5177static void ipw_rx_queue_replenish(void *data)
5178{
5179        struct ipw_priv *priv = data;
5180        struct ipw_rx_queue *rxq = priv->rxq;
5181        struct list_head *element;
5182        struct ipw_rx_mem_buffer *rxb;
5183        unsigned long flags;
5184
5185        spin_lock_irqsave(&rxq->lock, flags);
5186        while (!list_empty(&rxq->rx_used)) {
5187                element = rxq->rx_used.next;
5188                rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5189                rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5190                if (!rxb->skb) {
5191                        printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5192                               priv->net_dev->name);
5193                        /* We don't reschedule replenish work here -- we will
5194                         * call the restock method and if it still needs
5195                         * more buffers it will schedule replenish */
5196                        break;
5197                }
5198                list_del(element);
5199
5200                rxb->dma_addr =
5201                    dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5202                                   IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5203
5204                list_add_tail(&rxb->list, &rxq->rx_free);
5205                rxq->free_count++;
5206        }
5207        spin_unlock_irqrestore(&rxq->lock, flags);
5208
5209        ipw_rx_queue_restock(priv);
5210}
5211
5212static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5213{
5214        struct ipw_priv *priv =
5215                container_of(work, struct ipw_priv, rx_replenish);
5216        mutex_lock(&priv->mutex);
5217        ipw_rx_queue_replenish(priv);
5218        mutex_unlock(&priv->mutex);
5219}
5220
5221/* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5222 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5223 * This free routine walks the list of POOL entries and if SKB is set to
5224 * non NULL it is unmapped and freed
5225 */
5226static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5227{
5228        int i;
5229
5230        if (!rxq)
5231                return;
5232
5233        for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5234                if (rxq->pool[i].skb != NULL) {
5235                        dma_unmap_single(&priv->pci_dev->dev,
5236                                         rxq->pool[i].dma_addr,
5237                                         IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5238                        dev_kfree_skb(rxq->pool[i].skb);
5239                }
5240        }
5241
5242        kfree(rxq);
5243}
5244
5245static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5246{
5247        struct ipw_rx_queue *rxq;
5248        int i;
5249
5250        rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5251        if (unlikely(!rxq)) {
5252                IPW_ERROR("memory allocation failed\n");
5253                return NULL;
5254        }
5255        spin_lock_init(&rxq->lock);
5256        INIT_LIST_HEAD(&rxq->rx_free);
5257        INIT_LIST_HEAD(&rxq->rx_used);
5258
5259        /* Fill the rx_used queue with _all_ of the Rx buffers */
5260        for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5261                list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5262
5263        /* Set us so that we have processed and used all buffers, but have
5264         * not restocked the Rx queue with fresh buffers */
5265        rxq->read = rxq->write = 0;
5266        rxq->free_count = 0;
5267
5268        return rxq;
5269}
5270
5271static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5272{
5273        rate &= ~LIBIPW_BASIC_RATE_MASK;
5274        if (ieee_mode == IEEE_A) {
5275                switch (rate) {
5276                case LIBIPW_OFDM_RATE_6MB:
5277                        return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5278                            1 : 0;
5279                case LIBIPW_OFDM_RATE_9MB:
5280                        return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5281                            1 : 0;
5282                case LIBIPW_OFDM_RATE_12MB:
5283                        return priv->
5284                            rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5285                case LIBIPW_OFDM_RATE_18MB:
5286                        return priv->
5287                            rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5288                case LIBIPW_OFDM_RATE_24MB:
5289                        return priv->
5290                            rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5291                case LIBIPW_OFDM_RATE_36MB:
5292                        return priv->
5293                            rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5294                case LIBIPW_OFDM_RATE_48MB:
5295                        return priv->
5296                            rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5297                case LIBIPW_OFDM_RATE_54MB:
5298                        return priv->
5299                            rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5300                default:
5301                        return 0;
5302                }
5303        }
5304
5305        /* B and G mixed */
5306        switch (rate) {
5307        case LIBIPW_CCK_RATE_1MB:
5308                return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5309        case LIBIPW_CCK_RATE_2MB:
5310                return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5311        case LIBIPW_CCK_RATE_5MB:
5312                return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5313        case LIBIPW_CCK_RATE_11MB:
5314                return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5315        }
5316
5317        /* If we are limited to B modulations, bail at this point */
5318        if (ieee_mode == IEEE_B)
5319                return 0;
5320
5321        /* G */
5322        switch (rate) {
5323        case LIBIPW_OFDM_RATE_6MB:
5324                return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5325        case LIBIPW_OFDM_RATE_9MB:
5326                return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5327        case LIBIPW_OFDM_RATE_12MB:
5328                return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5329        case LIBIPW_OFDM_RATE_18MB:
5330                return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5331        case LIBIPW_OFDM_RATE_24MB:
5332                return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5333        case LIBIPW_OFDM_RATE_36MB:
5334                return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5335        case LIBIPW_OFDM_RATE_48MB:
5336                return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337        case LIBIPW_OFDM_RATE_54MB:
5338                return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5339        }
5340
5341        return 0;
5342}
5343
5344static int ipw_compatible_rates(struct ipw_priv *priv,
5345                                const struct libipw_network *network,
5346                                struct ipw_supported_rates *rates)
5347{
5348        int num_rates, i;
5349
5350        memset(rates, 0, sizeof(*rates));
5351        num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5352        rates->num_rates = 0;
5353        for (i = 0; i < num_rates; i++) {
5354                if (!ipw_is_rate_in_mask(priv, network->mode,
5355                                         network->rates[i])) {
5356
5357                        if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5358                                IPW_DEBUG_SCAN("Adding masked mandatory "
5359                                               "rate %02X\n",
5360                                               network->rates[i]);
5361                                rates->supported_rates[rates->num_rates++] =
5362                                    network->rates[i];
5363                                continue;
5364                        }
5365
5366                        IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5367                                       network->rates[i], priv->rates_mask);
5368                        continue;
5369                }
5370
5371                rates->supported_rates[rates->num_rates++] = network->rates[i];
5372        }
5373
5374        num_rates = min(network->rates_ex_len,
5375                        (u8) (IPW_MAX_RATES - num_rates));
5376        for (i = 0; i < num_rates; i++) {
5377                if (!ipw_is_rate_in_mask(priv, network->mode,
5378                                         network->rates_ex[i])) {
5379                        if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5380                                IPW_DEBUG_SCAN("Adding masked mandatory "
5381                                               "rate %02X\n",
5382                                               network->rates_ex[i]);
5383                                rates->supported_rates[rates->num_rates++] =
5384                                    network->rates[i];
5385                                continue;
5386                        }
5387
5388                        IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5389                                       network->rates_ex[i], priv->rates_mask);
5390                        continue;
5391                }
5392
5393                rates->supported_rates[rates->num_rates++] =
5394                    network->rates_ex[i];
5395        }
5396
5397        return 1;
5398}
5399
5400static void ipw_copy_rates(struct ipw_supported_rates *dest,
5401                                  const struct ipw_supported_rates *src)
5402{
5403        u8 i;
5404        for (i = 0; i < src->num_rates; i++)
5405                dest->supported_rates[i] = src->supported_rates[i];
5406        dest->num_rates = src->num_rates;
5407}
5408
5409/* TODO: Look at sniffed packets in the air to determine if the basic rate
5410 * mask should ever be used -- right now all callers to add the scan rates are
5411 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5412static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5413                                   u8 modulation, u32 rate_mask)
5414{
5415        u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5416            LIBIPW_BASIC_RATE_MASK : 0;
5417
5418        if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5419                rates->supported_rates[rates->num_rates++] =
5420                    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5421
5422        if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5423                rates->supported_rates[rates->num_rates++] =
5424                    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5425
5426        if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5427                rates->supported_rates[rates->num_rates++] = basic_mask |
5428                    LIBIPW_CCK_RATE_5MB;
5429
5430        if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5431                rates->supported_rates[rates->num_rates++] = basic_mask |
5432                    LIBIPW_CCK_RATE_11MB;
5433}
5434
5435static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5436                                    u8 modulation, u32 rate_mask)
5437{
5438        u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5439            LIBIPW_BASIC_RATE_MASK : 0;
5440
5441        if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5442                rates->supported_rates[rates->num_rates++] = basic_mask |
5443                    LIBIPW_OFDM_RATE_6MB;
5444
5445        if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5446                rates->supported_rates[rates->num_rates++] =
5447                    LIBIPW_OFDM_RATE_9MB;
5448
5449        if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5450                rates->supported_rates[rates->num_rates++] = basic_mask |
5451                    LIBIPW_OFDM_RATE_12MB;
5452
5453        if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5454                rates->supported_rates[rates->num_rates++] =
5455                    LIBIPW_OFDM_RATE_18MB;
5456
5457        if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5458                rates->supported_rates[rates->num_rates++] = basic_mask |
5459                    LIBIPW_OFDM_RATE_24MB;
5460
5461        if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5462                rates->supported_rates[rates->num_rates++] =
5463                    LIBIPW_OFDM_RATE_36MB;
5464
5465        if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5466                rates->supported_rates[rates->num_rates++] =
5467                    LIBIPW_OFDM_RATE_48MB;
5468
5469        if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5470                rates->supported_rates[rates->num_rates++] =
5471                    LIBIPW_OFDM_RATE_54MB;
5472}
5473
5474struct ipw_network_match {
5475        struct libipw_network *network;
5476        struct ipw_supported_rates rates;
5477};
5478
5479static int ipw_find_adhoc_network(struct ipw_priv *priv,
5480                                  struct ipw_network_match *match,
5481                                  struct libipw_network *network,
5482                                  int roaming)
5483{
5484        struct ipw_supported_rates rates;
5485
5486        /* Verify that this network's capability is compatible with the
5487         * current mode (AdHoc or Infrastructure) */
5488        if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5489             !(network->capability & WLAN_CAPABILITY_IBSS))) {
5490                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5491                                network->ssid_len, network->ssid,
5492                                network->bssid);
5493                return 0;
5494        }
5495
5496        if (unlikely(roaming)) {
5497                /* If we are roaming, then ensure check if this is a valid
5498                 * network to try and roam to */
5499                if ((network->ssid_len != match->network->ssid_len) ||
5500                    memcmp(network->ssid, match->network->ssid,
5501                           network->ssid_len)) {
5502                        IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5503                                        network->ssid_len, network->ssid,
5504                                        network->bssid);
5505                        return 0;
5506                }
5507        } else {
5508                /* If an ESSID has been configured then compare the broadcast
5509                 * ESSID to ours */
5510                if ((priv->config & CFG_STATIC_ESSID) &&
5511                    ((network->ssid_len != priv->essid_len) ||
5512                     memcmp(network->ssid, priv->essid,
5513                            min(network->ssid_len, priv->essid_len)))) {
5514                        IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5515                                        network->ssid_len, network->ssid,
5516                                        network->bssid, priv->essid_len,
5517                                        priv->essid);
5518                        return 0;
5519                }
5520        }
5521
5522        /* If the old network rate is better than this one, don't bother
5523         * testing everything else. */
5524
5525        if (network->time_stamp[0] < match->network->time_stamp[0]) {
5526                IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5527                                match->network->ssid_len, match->network->ssid);
5528                return 0;
5529        } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5530                IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5531                                match->network->ssid_len, match->network->ssid);
5532                return 0;
5533        }
5534
5535        /* Now go through and see if the requested network is valid... */
5536        if (priv->ieee->scan_age != 0 &&
5537            time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5538                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5539                                network->ssid_len, network->ssid,
5540                                network->bssid,
5541                                jiffies_to_msecs(jiffies -
5542                                                 network->last_scanned));
5543                return 0;
5544        }
5545
5546        if ((priv->config & CFG_STATIC_CHANNEL) &&
5547            (network->channel != priv->channel)) {
5548                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5549                                network->ssid_len, network->ssid,
5550                                network->bssid,
5551                                network->channel, priv->channel);
5552                return 0;
5553        }
5554
5555        /* Verify privacy compatibility */
5556        if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5557            ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5558                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5559                                network->ssid_len, network->ssid,
5560                                network->bssid,
5561                                priv->
5562                                capability & CAP_PRIVACY_ON ? "on" : "off",
5563                                network->
5564                                capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5565                                "off");
5566                return 0;
5567        }
5568
5569        if (ether_addr_equal(network->bssid, priv->bssid)) {
5570                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5571                                network->ssid_len, network->ssid,
5572                                network->bssid, priv->bssid);
5573                return 0;
5574        }
5575
5576        /* Filter out any incompatible freq / mode combinations */
5577        if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5578                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5579                                network->ssid_len, network->ssid,
5580                                network->bssid);
5581                return 0;
5582        }
5583
5584        /* Ensure that the rates supported by the driver are compatible with
5585         * this AP, including verification of basic rates (mandatory) */
5586        if (!ipw_compatible_rates(priv, network, &rates)) {
5587                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5588                                network->ssid_len, network->ssid,
5589                                network->bssid);
5590                return 0;
5591        }
5592
5593        if (rates.num_rates == 0) {
5594                IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5595                                network->ssid_len, network->ssid,
5596                                network->bssid);
5597                return 0;
5598        }
5599
5600        /* TODO: Perform any further minimal comparititive tests.  We do not
5601         * want to put too much policy logic here; intelligent scan selection
5602         * should occur within a generic IEEE 802.11 user space tool.  */
5603
5604        /* Set up 'new' AP to this network */
5605        ipw_copy_rates(&match->rates, &rates);
5606        match->network = network;
5607        IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5608                        network->ssid_len, network->ssid, network->bssid);
5609
5610        return 1;
5611}
5612
5613static void ipw_merge_adhoc_network(struct work_struct *work)
5614{
5615        struct ipw_priv *priv =
5616                container_of(work, struct ipw_priv, merge_networks);
5617        struct libipw_network *network = NULL;
5618        struct ipw_network_match match = {
5619                .network = priv->assoc_network
5620        };
5621
5622        if ((priv->status & STATUS_ASSOCIATED) &&
5623            (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624                /* First pass through ROAM process -- look for a better
5625                 * network */
5626                unsigned long flags;
5627
5628                spin_lock_irqsave(&priv->ieee->lock, flags);
5629                list_for_each_entry(network, &priv->ieee->network_list, list) {
5630                        if (network != priv->assoc_network)
5631                                ipw_find_adhoc_network(priv, &match, network,
5632                                                       1);
5633                }
5634                spin_unlock_irqrestore(&priv->ieee->lock, flags);
5635
5636                if (match.network == priv->assoc_network) {
5637                        IPW_DEBUG_MERGE("No better ADHOC in this network to "
5638                                        "merge to.\n");
5639                        return;
5640                }
5641
5642                mutex_lock(&priv->mutex);
5643                if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5644                        IPW_DEBUG_MERGE("remove network %*pE\n",
5645                                        priv->essid_len, priv->essid);
5646                        ipw_remove_current_network(priv);
5647                }
5648
5649                ipw_disassociate(priv);
5650                priv->assoc_network = match.network;
5651                mutex_unlock(&priv->mutex);
5652                return;
5653        }
5654}
5655
5656static int ipw_best_network(struct ipw_priv *priv,
5657                            struct ipw_network_match *match,
5658                            struct libipw_network *network, int roaming)
5659{
5660        struct ipw_supported_rates rates;
5661
5662        /* Verify that this network's capability is compatible with the
5663         * current mode (AdHoc or Infrastructure) */
5664        if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5665             !(network->capability & WLAN_CAPABILITY_ESS)) ||
5666            (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5667             !(network->capability & WLAN_CAPABILITY_IBSS))) {
5668                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5669                                network->ssid_len, network->ssid,
5670                                network->bssid);
5671                return 0;
5672        }
5673
5674        if (unlikely(roaming)) {
5675                /* If we are roaming, then ensure check if this is a valid
5676                 * network to try and roam to */
5677                if ((network->ssid_len != match->network->ssid_len) ||
5678                    memcmp(network->ssid, match->network->ssid,
5679                           network->ssid_len)) {
5680                        IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5681                                        network->ssid_len, network->ssid,
5682                                        network->bssid);
5683                        return 0;
5684                }
5685        } else {
5686                /* If an ESSID has been configured then compare the broadcast
5687                 * ESSID to ours */
5688                if ((priv->config & CFG_STATIC_ESSID) &&
5689                    ((network->ssid_len != priv->essid_len) ||
5690                     memcmp(network->ssid, priv->essid,
5691                            min(network->ssid_len, priv->essid_len)))) {
5692                        IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5693                                        network->ssid_len, network->ssid,
5694                                        network->bssid, priv->essid_len,
5695                                        priv->essid);
5696                        return 0;
5697                }
5698        }
5699
5700        /* If the old network rate is better than this one, don't bother
5701         * testing everything else. */
5702        if (match->network && match->network->stats.rssi > network->stats.rssi) {
5703                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5704                                network->ssid_len, network->ssid,
5705                                network->bssid, match->network->ssid_len,
5706                                match->network->ssid, match->network->bssid);
5707                return 0;
5708        }
5709
5710        /* If this network has already had an association attempt within the
5711         * last 3 seconds, do not try and associate again... */
5712        if (network->last_associate &&
5713            time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5714                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5715                                network->ssid_len, network->ssid,
5716                                network->bssid,
5717                                jiffies_to_msecs(jiffies -
5718                                                 network->last_associate));
5719                return 0;
5720        }
5721
5722        /* Now go through and see if the requested network is valid... */
5723        if (priv->ieee->scan_age != 0 &&
5724            time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5725                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5726                                network->ssid_len, network->ssid,
5727                                network->bssid,
5728                                jiffies_to_msecs(jiffies -
5729                                                 network->last_scanned));
5730                return 0;
5731        }
5732
5733        if ((priv->config & CFG_STATIC_CHANNEL) &&
5734            (network->channel != priv->channel)) {
5735                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5736                                network->ssid_len, network->ssid,
5737                                network->bssid,
5738                                network->channel, priv->channel);
5739                return 0;
5740        }
5741
5742        /* Verify privacy compatibility */
5743        if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5744            ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5745                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5746                                network->ssid_len, network->ssid,
5747                                network->bssid,
5748                                priv->capability & CAP_PRIVACY_ON ? "on" :
5749                                "off",
5750                                network->capability &
5751                                WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5752                return 0;
5753        }
5754
5755        if ((priv->config & CFG_STATIC_BSSID) &&
5756            !ether_addr_equal(network->bssid, priv->bssid)) {
5757                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5758                                network->ssid_len, network->ssid,
5759                                network->bssid, priv->bssid);
5760                return 0;
5761        }
5762
5763        /* Filter out any incompatible freq / mode combinations */
5764        if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5765                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5766                                network->ssid_len, network->ssid,
5767                                network->bssid);
5768                return 0;
5769        }
5770
5771        /* Filter out invalid channel in current GEO */
5772        if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5773                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5774                                network->ssid_len, network->ssid,
5775                                network->bssid);
5776                return 0;
5777        }
5778
5779        /* Ensure that the rates supported by the driver are compatible with
5780         * this AP, including verification of basic rates (mandatory) */
5781        if (!ipw_compatible_rates(priv, network, &rates)) {
5782                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5783                                network->ssid_len, network->ssid,
5784                                network->bssid);
5785                return 0;
5786        }
5787
5788        if (rates.num_rates == 0) {
5789                IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5790                                network->ssid_len, network->ssid,
5791                                network->bssid);
5792                return 0;
5793        }
5794
5795        /* TODO: Perform any further minimal comparititive tests.  We do not
5796         * want to put too much policy logic here; intelligent scan selection
5797         * should occur within a generic IEEE 802.11 user space tool.  */
5798
5799        /* Set up 'new' AP to this network */
5800        ipw_copy_rates(&match->rates, &rates);
5801        match->network = network;
5802
5803        IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5804                        network->ssid_len, network->ssid, network->bssid);
5805
5806        return 1;
5807}
5808
5809static void ipw_adhoc_create(struct ipw_priv *priv,
5810                             struct libipw_network *network)
5811{
5812        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5813        int i;
5814
5815        /*
5816         * For the purposes of scanning, we can set our wireless mode
5817         * to trigger scans across combinations of bands, but when it
5818         * comes to creating a new ad-hoc network, we have tell the FW
5819         * exactly which band to use.
5820         *
5821         * We also have the possibility of an invalid channel for the
5822         * chossen band.  Attempting to create a new ad-hoc network
5823         * with an invalid channel for wireless mode will trigger a
5824         * FW fatal error.
5825         *
5826         */
5827        switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5828        case LIBIPW_52GHZ_BAND:
5829                network->mode = IEEE_A;
5830                i = libipw_channel_to_index(priv->ieee, priv->channel);
5831                BUG_ON(i == -1);
5832                if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5833                        IPW_WARNING("Overriding invalid channel\n");
5834                        priv->channel = geo->a[0].channel;
5835                }
5836                break;
5837
5838        case LIBIPW_24GHZ_BAND:
5839                if (priv->ieee->mode & IEEE_G)
5840                        network->mode = IEEE_G;
5841                else
5842                        network->mode = IEEE_B;
5843                i = libipw_channel_to_index(priv->ieee, priv->channel);
5844                BUG_ON(i == -1);
5845                if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5846                        IPW_WARNING("Overriding invalid channel\n");
5847                        priv->channel = geo->bg[0].channel;
5848                }
5849                break;
5850
5851        default:
5852                IPW_WARNING("Overriding invalid channel\n");
5853                if (priv->ieee->mode & IEEE_A) {
5854                        network->mode = IEEE_A;
5855                        priv->channel = geo->a[0].channel;
5856                } else if (priv->ieee->mode & IEEE_G) {
5857                        network->mode = IEEE_G;
5858                        priv->channel = geo->bg[0].channel;
5859                } else {
5860                        network->mode = IEEE_B;
5861                        priv->channel = geo->bg[0].channel;
5862                }
5863                break;
5864        }
5865
5866        network->channel = priv->channel;
5867        priv->config |= CFG_ADHOC_PERSIST;
5868        ipw_create_bssid(priv, network->bssid);
5869        network->ssid_len = priv->essid_len;
5870        memcpy(network->ssid, priv->essid, priv->essid_len);
5871        memset(&network->stats, 0, sizeof(network->stats));
5872        network->capability = WLAN_CAPABILITY_IBSS;
5873        if (!(priv->config & CFG_PREAMBLE_LONG))
5874                network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5875        if (priv->capability & CAP_PRIVACY_ON)
5876                network->capability |= WLAN_CAPABILITY_PRIVACY;
5877        network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5878        memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5879        network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5880        memcpy(network->rates_ex,
5881               &priv->rates.supported_rates[network->rates_len],
5882               network->rates_ex_len);
5883        network->last_scanned = 0;
5884        network->flags = 0;
5885        network->last_associate = 0;
5886        network->time_stamp[0] = 0;
5887        network->time_stamp[1] = 0;
5888        network->beacon_interval = 100; /* Default */
5889        network->listen_interval = 10;  /* Default */
5890        network->atim_window = 0;       /* Default */
5891        network->wpa_ie_len = 0;
5892        network->rsn_ie_len = 0;
5893}
5894
5895static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5896{
5897        struct ipw_tgi_tx_key key;
5898
5899        if (!(priv->ieee->sec.flags & (1 << index)))
5900                return;
5901
5902        key.key_id = index;
5903        memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5904        key.security_type = type;
5905        key.station_index = 0;  /* always 0 for BSS */
5906        key.flags = 0;
5907        /* 0 for new key; previous value of counter (after fatal error) */
5908        key.tx_counter[0] = cpu_to_le32(0);
5909        key.tx_counter[1] = cpu_to_le32(0);
5910
5911        ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5912}
5913
5914static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5915{
5916        struct ipw_wep_key key;
5917        int i;
5918
5919        key.cmd_id = DINO_CMD_WEP_KEY;
5920        key.seq_num = 0;
5921
5922        /* Note: AES keys cannot be set for multiple times.
5923         * Only set it at the first time. */
5924        for (i = 0; i < 4; i++) {
5925                key.key_index = i | type;
5926                if (!(priv->ieee->sec.flags & (1 << i))) {
5927                        key.key_size = 0;
5928                        continue;
5929                }
5930
5931                key.key_size = priv->ieee->sec.key_sizes[i];
5932                memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5933
5934                ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5935        }
5936}
5937
5938static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5939{
5940        if (priv->ieee->host_encrypt)
5941                return;
5942
5943        switch (level) {
5944        case SEC_LEVEL_3:
5945                priv->sys_config.disable_unicast_decryption = 0;
5946                priv->ieee->host_decrypt = 0;
5947                break;
5948        case SEC_LEVEL_2:
5949                priv->sys_config.disable_unicast_decryption = 1;
5950                priv->ieee->host_decrypt = 1;
5951                break;
5952        case SEC_LEVEL_1:
5953                priv->sys_config.disable_unicast_decryption = 0;
5954                priv->ieee->host_decrypt = 0;
5955                break;
5956        case SEC_LEVEL_0:
5957                priv->sys_config.disable_unicast_decryption = 1;
5958                break;
5959        default:
5960                break;
5961        }
5962}
5963
5964static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5965{
5966        if (priv->ieee->host_encrypt)
5967                return;
5968
5969        switch (level) {
5970        case SEC_LEVEL_3:
5971                priv->sys_config.disable_multicast_decryption = 0;
5972                break;
5973        case SEC_LEVEL_2:
5974                priv->sys_config.disable_multicast_decryption = 1;
5975                break;
5976        case SEC_LEVEL_1:
5977                priv->sys_config.disable_multicast_decryption = 0;
5978                break;
5979        case SEC_LEVEL_0:
5980                priv->sys_config.disable_multicast_decryption = 1;
5981                break;
5982        default:
5983                break;
5984        }
5985}
5986
5987static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5988{
5989        switch (priv->ieee->sec.level) {
5990        case SEC_LEVEL_3:
5991                if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5992                        ipw_send_tgi_tx_key(priv,
5993                                            DCT_FLAG_EXT_SECURITY_CCM,
5994                                            priv->ieee->sec.active_key);
5995
5996                if (!priv->ieee->host_mc_decrypt)
5997                        ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5998                break;
5999        case SEC_LEVEL_2:
6000                if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6001                        ipw_send_tgi_tx_key(priv,
6002                                            DCT_FLAG_EXT_SECURITY_TKIP,
6003                                            priv->ieee->sec.active_key);
6004                break;
6005        case SEC_LEVEL_1:
6006                ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6007                ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6008                ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6009                break;
6010        case SEC_LEVEL_0:
6011        default:
6012                break;
6013        }
6014}
6015
6016static void ipw_adhoc_check(void *data)
6017{
6018        struct ipw_priv *priv = data;
6019
6020        if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6021            !(priv->config & CFG_ADHOC_PERSIST)) {
6022                IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6023                          IPW_DL_STATE | IPW_DL_ASSOC,
6024                          "Missed beacon: %d - disassociate\n",
6025                          priv->missed_adhoc_beacons);
6026                ipw_remove_current_network(priv);
6027                ipw_disassociate(priv);
6028                return;
6029        }
6030
6031        schedule_delayed_work(&priv->adhoc_check,
6032                              le16_to_cpu(priv->assoc_request.beacon_interval));
6033}
6034
6035static void ipw_bg_adhoc_check(struct work_struct *work)
6036{
6037        struct ipw_priv *priv =
6038                container_of(work, struct ipw_priv, adhoc_check.work);
6039        mutex_lock(&priv->mutex);
6040        ipw_adhoc_check(priv);
6041        mutex_unlock(&priv->mutex);
6042}
6043
6044static void ipw_debug_config(struct ipw_priv *priv)
6045{
6046        IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6047                       "[CFG 0x%08X]\n", priv->config);
6048        if (priv->config & CFG_STATIC_CHANNEL)
6049                IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6050        else
6051                IPW_DEBUG_INFO("Channel unlocked.\n");
6052        if (priv->config & CFG_STATIC_ESSID)
6053                IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6054                               priv->essid_len, priv->essid);
6055        else
6056                IPW_DEBUG_INFO("ESSID unlocked.\n");
6057        if (priv->config & CFG_STATIC_BSSID)
6058                IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6059        else
6060                IPW_DEBUG_INFO("BSSID unlocked.\n");
6061        if (priv->capability & CAP_PRIVACY_ON)
6062                IPW_DEBUG_INFO("PRIVACY on\n");
6063        else
6064                IPW_DEBUG_INFO("PRIVACY off\n");
6065        IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6066}
6067
6068static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6069{
6070        /* TODO: Verify that this works... */
6071        struct ipw_fixed_rate fr;
6072        u32 reg;
6073        u16 mask = 0;
6074        u16 new_tx_rates = priv->rates_mask;
6075
6076        /* Identify 'current FW band' and match it with the fixed
6077         * Tx rates */
6078
6079        switch (priv->ieee->freq_band) {
6080        case LIBIPW_52GHZ_BAND: /* A only */
6081                /* IEEE_A */
6082                if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6083                        /* Invalid fixed rate mask */
6084                        IPW_DEBUG_WX
6085                            ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6086                        new_tx_rates = 0;
6087                        break;
6088                }
6089
6090                new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6091                break;
6092
6093        default:                /* 2.4Ghz or Mixed */
6094                /* IEEE_B */
6095                if (mode == IEEE_B) {
6096                        if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6097                                /* Invalid fixed rate mask */
6098                                IPW_DEBUG_WX
6099                                    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6100                                new_tx_rates = 0;
6101                        }
6102                        break;
6103                }
6104
6105                /* IEEE_G */
6106                if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6107                                    LIBIPW_OFDM_RATES_MASK)) {
6108                        /* Invalid fixed rate mask */
6109                        IPW_DEBUG_WX
6110                            ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6111                        new_tx_rates = 0;
6112                        break;
6113                }
6114
6115                if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6116                        mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6117                        new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6118                }
6119
6120                if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6121                        mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6122                        new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6123                }
6124
6125                if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6126                        mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6127                        new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6128                }
6129
6130                new_tx_rates |= mask;
6131                break;
6132        }
6133
6134        fr.tx_rates = cpu_to_le16(new_tx_rates);
6135
6136        reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6137        ipw_write_reg32(priv, reg, *(u32 *) & fr);
6138}
6139
6140static void ipw_abort_scan(struct ipw_priv *priv)
6141{
6142        int err;
6143
6144        if (priv->status & STATUS_SCAN_ABORTING) {
6145                IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6146                return;
6147        }
6148        priv->status |= STATUS_SCAN_ABORTING;
6149
6150        err = ipw_send_scan_abort(priv);
6151        if (err)
6152                IPW_DEBUG_HC("Request to abort scan failed.\n");
6153}
6154
6155static void ipw_add_scan_channels(struct ipw_priv *priv,
6156                                  struct ipw_scan_request_ext *scan,
6157                                  int scan_type)
6158{
6159        int channel_index = 0;
6160        const struct libipw_geo *geo;
6161        int i;
6162
6163        geo = libipw_get_geo(priv->ieee);
6164
6165        if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6166                int start = channel_index;
6167                for (i = 0; i < geo->a_channels; i++) {
6168                        if ((priv->status & STATUS_ASSOCIATED) &&
6169                            geo->a[i].channel == priv->channel)
6170                                continue;
6171                        channel_index++;
6172                        scan->channels_list[channel_index] = geo->a[i].channel;
6173                        ipw_set_scan_type(scan, channel_index,
6174                                          geo->a[i].
6175                                          flags & LIBIPW_CH_PASSIVE_ONLY ?
6176                                          IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6177                                          scan_type);
6178                }
6179
6180                if (start != channel_index) {
6181                        scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6182                            (channel_index - start);
6183                        channel_index++;
6184                }
6185        }
6186
6187        if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6188                int start = channel_index;
6189                if (priv->config & CFG_SPEED_SCAN) {
6190                        int index;
6191                        u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6192                                /* nop out the list */
6193                                [0] = 0
6194                        };
6195
6196                        u8 channel;
6197                        while (channel_index < IPW_SCAN_CHANNELS - 1) {
6198                                channel =
6199                                    priv->speed_scan[priv->speed_scan_pos];
6200                                if (channel == 0) {
6201                                        priv->speed_scan_pos = 0;
6202                                        channel = priv->speed_scan[0];
6203                                }
6204                                if ((priv->status & STATUS_ASSOCIATED) &&
6205                                    channel == priv->channel) {
6206                                        priv->speed_scan_pos++;
6207                                        continue;
6208                                }
6209
6210                                /* If this channel has already been
6211                                 * added in scan, break from loop
6212                                 * and this will be the first channel
6213                                 * in the next scan.
6214                                 */
6215                                if (channels[channel - 1] != 0)
6216                                        break;
6217
6218                                channels[channel - 1] = 1;
6219                                priv->speed_scan_pos++;
6220                                channel_index++;
6221                                scan->channels_list[channel_index] = channel;
6222                                index =
6223                                    libipw_channel_to_index(priv->ieee, channel);
6224                                ipw_set_scan_type(scan, channel_index,
6225                                                  geo->bg[index].
6226                                                  flags &
6227                                                  LIBIPW_CH_PASSIVE_ONLY ?
6228                                                  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6229                                                  : scan_type);
6230                        }
6231                } else {
6232                        for (i = 0; i < geo->bg_channels; i++) {
6233                                if ((priv->status & STATUS_ASSOCIATED) &&
6234                                    geo->bg[i].channel == priv->channel)
6235                                        continue;
6236                                channel_index++;
6237                                scan->channels_list[channel_index] =
6238                                    geo->bg[i].channel;
6239                                ipw_set_scan_type(scan, channel_index,
6240                                                  geo->bg[i].
6241                                                  flags &
6242                                                  LIBIPW_CH_PASSIVE_ONLY ?
6243                                                  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6244                                                  : scan_type);
6245                        }
6246                }
6247
6248                if (start != channel_index) {
6249                        scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6250                            (channel_index - start);
6251                }
6252        }
6253}
6254
6255static int ipw_passive_dwell_time(struct ipw_priv *priv)
6256{
6257        /* staying on passive channels longer than the DTIM interval during a
6258         * scan, while associated, causes the firmware to cancel the scan
6259         * without notification. Hence, don't stay on passive channels longer
6260         * than the beacon interval.
6261         */
6262        if (priv->status & STATUS_ASSOCIATED
6263            && priv->assoc_network->beacon_interval > 10)
6264                return priv->assoc_network->beacon_interval - 10;
6265        else
6266                return 120;
6267}
6268
6269static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6270{
6271        struct ipw_scan_request_ext scan;
6272        int err = 0, scan_type;
6273
6274        if (!(priv->status & STATUS_INIT) ||
6275            (priv->status & STATUS_EXIT_PENDING))
6276                return 0;
6277
6278        mutex_lock(&priv->mutex);
6279
6280        if (direct && (priv->direct_scan_ssid_len == 0)) {
6281                IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6282                priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6283                goto done;
6284        }
6285
6286        if (priv->status & STATUS_SCANNING) {
6287                IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6288                priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6289                                        STATUS_SCAN_PENDING;
6290                goto done;
6291        }
6292
6293        if (!(priv->status & STATUS_SCAN_FORCED) &&
6294            priv->status & STATUS_SCAN_ABORTING) {
6295                IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6296                priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6297                                        STATUS_SCAN_PENDING;
6298                goto done;
6299        }
6300
6301        if (priv->status & STATUS_RF_KILL_MASK) {
6302                IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6303                priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6304                                        STATUS_SCAN_PENDING;
6305                goto done;
6306        }
6307
6308        memset(&scan, 0, sizeof(scan));
6309        scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6310
6311        if (type == IW_SCAN_TYPE_PASSIVE) {
6312                IPW_DEBUG_WX("use passive scanning\n");
6313                scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6314                scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6315                        cpu_to_le16(ipw_passive_dwell_time(priv));
6316                ipw_add_scan_channels(priv, &scan, scan_type);
6317                goto send_request;
6318        }
6319
6320        /* Use active scan by default. */
6321        if (priv->config & CFG_SPEED_SCAN)
6322                scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6323                        cpu_to_le16(30);
6324        else
6325                scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6326                        cpu_to_le16(20);
6327
6328        scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6329                cpu_to_le16(20);
6330
6331        scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6332                cpu_to_le16(ipw_passive_dwell_time(priv));
6333        scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6334
6335#ifdef CONFIG_IPW2200_MONITOR
6336        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6337                u8 channel;
6338                u8 band = 0;
6339
6340                switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6341                case LIBIPW_52GHZ_BAND:
6342                        band = (u8) (IPW_A_MODE << 6) | 1;
6343                        channel = priv->channel;
6344                        break;
6345
6346                case LIBIPW_24GHZ_BAND:
6347                        band = (u8) (IPW_B_MODE << 6) | 1;
6348                        channel = priv->channel;
6349                        break;
6350
6351                default:
6352                        band = (u8) (IPW_B_MODE << 6) | 1;
6353                        channel = 9;
6354                        break;
6355                }
6356
6357                scan.channels_list[0] = band;
6358                scan.channels_list[1] = channel;
6359                ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6360
6361                /* NOTE:  The card will sit on this channel for this time
6362                 * period.  Scan aborts are timing sensitive and frequently
6363                 * result in firmware restarts.  As such, it is best to
6364                 * set a small dwell_time here and just keep re-issuing
6365                 * scans.  Otherwise fast channel hopping will not actually
6366                 * hop channels.
6367                 *
6368                 * TODO: Move SPEED SCAN support to all modes and bands */
6369                scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6370                        cpu_to_le16(2000);
6371        } else {
6372#endif                          /* CONFIG_IPW2200_MONITOR */
6373                /* Honor direct scans first, otherwise if we are roaming make
6374                 * this a direct scan for the current network.  Finally,
6375                 * ensure that every other scan is a fast channel hop scan */
6376                if (direct) {
6377                        err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6378                                            priv->direct_scan_ssid_len);
6379                        if (err) {
6380                                IPW_DEBUG_HC("Attempt to send SSID command  "
6381                                             "failed\n");
6382                                goto done;
6383                        }
6384
6385                        scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6386                } else if ((priv->status & STATUS_ROAMING)
6387                           || (!(priv->status & STATUS_ASSOCIATED)
6388                               && (priv->config & CFG_STATIC_ESSID)
6389                               && (le32_to_cpu(scan.full_scan_index) % 2))) {
6390                        err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6391                        if (err) {
6392                                IPW_DEBUG_HC("Attempt to send SSID command "
6393                                             "failed.\n");
6394                                goto done;
6395                        }
6396
6397                        scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6398                } else
6399                        scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6400
6401                ipw_add_scan_channels(priv, &scan, scan_type);
6402#ifdef CONFIG_IPW2200_MONITOR
6403        }
6404#endif
6405
6406send_request:
6407        err = ipw_send_scan_request_ext(priv, &scan);
6408        if (err) {
6409                IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6410                goto done;
6411        }
6412
6413        priv->status |= STATUS_SCANNING;
6414        if (direct) {
6415                priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6416                priv->direct_scan_ssid_len = 0;
6417        } else
6418                priv->status &= ~STATUS_SCAN_PENDING;
6419
6420        schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6421done:
6422        mutex_unlock(&priv->mutex);
6423        return err;
6424}
6425
6426static void ipw_request_passive_scan(struct work_struct *work)
6427{
6428        struct ipw_priv *priv =
6429                container_of(work, struct ipw_priv, request_passive_scan.work);
6430        ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6431}
6432
6433static void ipw_request_scan(struct work_struct *work)
6434{
6435        struct ipw_priv *priv =
6436                container_of(work, struct ipw_priv, request_scan.work);
6437        ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6438}
6439
6440static void ipw_request_direct_scan(struct work_struct *work)
6441{
6442        struct ipw_priv *priv =
6443                container_of(work, struct ipw_priv, request_direct_scan.work);
6444        ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6445}
6446
6447static void ipw_bg_abort_scan(struct work_struct *work)
6448{
6449        struct ipw_priv *priv =
6450                container_of(work, struct ipw_priv, abort_scan);
6451        mutex_lock(&priv->mutex);
6452        ipw_abort_scan(priv);
6453        mutex_unlock(&priv->mutex);
6454}
6455
6456static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6457{
6458        /* This is called when wpa_supplicant loads and closes the driver
6459         * interface. */
6460        priv->ieee->wpa_enabled = value;
6461        return 0;
6462}
6463
6464static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6465{
6466        struct libipw_device *ieee = priv->ieee;
6467        struct libipw_security sec = {
6468                .flags = SEC_AUTH_MODE,
6469        };
6470        int ret = 0;
6471
6472        if (value & IW_AUTH_ALG_SHARED_KEY) {
6473                sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6474                ieee->open_wep = 0;
6475        } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6476                sec.auth_mode = WLAN_AUTH_OPEN;
6477                ieee->open_wep = 1;
6478        } else if (value & IW_AUTH_ALG_LEAP) {
6479                sec.auth_mode = WLAN_AUTH_LEAP;
6480                ieee->open_wep = 1;
6481        } else
6482                return -EINVAL;
6483
6484        if (ieee->set_security)
6485                ieee->set_security(ieee->dev, &sec);
6486        else
6487                ret = -EOPNOTSUPP;
6488
6489        return ret;
6490}
6491
6492static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6493                                int wpa_ie_len)
6494{
6495        /* make sure WPA is enabled */
6496        ipw_wpa_enable(priv, 1);
6497}
6498
6499static int ipw_set_rsn_capa(struct ipw_priv *priv,
6500                            char *capabilities, int length)
6501{
6502        IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6503
6504        return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6505                                capabilities);
6506}
6507
6508/*
6509 * WE-18 support
6510 */
6511
6512/* SIOCSIWGENIE */
6513static int ipw_wx_set_genie(struct net_device *dev,
6514                            struct iw_request_info *info,
6515                            union iwreq_data *wrqu, char *extra)
6516{
6517        struct ipw_priv *priv = libipw_priv(dev);
6518        struct libipw_device *ieee = priv->ieee;
6519        u8 *buf;
6520        int err = 0;
6521
6522        if (wrqu->data.length > MAX_WPA_IE_LEN ||
6523            (wrqu->data.length && extra == NULL))
6524                return -EINVAL;
6525
6526        if (wrqu->data.length) {
6527                buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6528                if (buf == NULL) {
6529                        err = -ENOMEM;
6530                        goto out;
6531                }
6532
6533                kfree(ieee->wpa_ie);
6534                ieee->wpa_ie = buf;
6535                ieee->wpa_ie_len = wrqu->data.length;
6536        } else {
6537                kfree(ieee->wpa_ie);
6538                ieee->wpa_ie = NULL;
6539                ieee->wpa_ie_len = 0;
6540        }
6541
6542        ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6543      out:
6544        return err;
6545}
6546
6547/* SIOCGIWGENIE */
6548static int ipw_wx_get_genie(struct net_device *dev,
6549                            struct iw_request_info *info,
6550                            union iwreq_data *wrqu, char *extra)
6551{
6552        struct ipw_priv *priv = libipw_priv(dev);
6553        struct libipw_device *ieee = priv->ieee;
6554        int err = 0;
6555
6556        if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6557                wrqu->data.length = 0;
6558                goto out;
6559        }
6560
6561        if (wrqu->data.length < ieee->wpa_ie_len) {
6562                err = -E2BIG;
6563                goto out;
6564        }
6565
6566        wrqu->data.length = ieee->wpa_ie_len;
6567        memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6568
6569      out:
6570        return err;
6571}
6572
6573static int wext_cipher2level(int cipher)
6574{
6575        switch (cipher) {
6576        case IW_AUTH_CIPHER_NONE:
6577                return SEC_LEVEL_0;
6578        case IW_AUTH_CIPHER_WEP40:
6579        case IW_AUTH_CIPHER_WEP104:
6580                return SEC_LEVEL_1;
6581        case IW_AUTH_CIPHER_TKIP:
6582                return SEC_LEVEL_2;
6583        case IW_AUTH_CIPHER_CCMP:
6584                return SEC_LEVEL_3;
6585        default:
6586                return -1;
6587        }
6588}
6589
6590/* SIOCSIWAUTH */
6591static int ipw_wx_set_auth(struct net_device *dev,
6592                           struct iw_request_info *info,
6593                           union iwreq_data *wrqu, char *extra)
6594{
6595        struct ipw_priv *priv = libipw_priv(dev);
6596        struct libipw_device *ieee = priv->ieee;
6597        struct iw_param *param = &wrqu->param;
6598        struct lib80211_crypt_data *crypt;
6599        unsigned long flags;
6600        int ret = 0;
6601
6602        switch (param->flags & IW_AUTH_INDEX) {
6603        case IW_AUTH_WPA_VERSION:
6604                break;
6605        case IW_AUTH_CIPHER_PAIRWISE:
6606                ipw_set_hw_decrypt_unicast(priv,
6607                                           wext_cipher2level(param->value));
6608                break;
6609        case IW_AUTH_CIPHER_GROUP:
6610                ipw_set_hw_decrypt_multicast(priv,
6611                                             wext_cipher2level(param->value));
6612                break;
6613        case IW_AUTH_KEY_MGMT:
6614                /*
6615                 * ipw2200 does not use these parameters
6616                 */
6617                break;
6618
6619        case IW_AUTH_TKIP_COUNTERMEASURES:
6620                crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6621                if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6622                        break;
6623
6624                flags = crypt->ops->get_flags(crypt->priv);
6625
6626                if (param->value)
6627                        flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6628                else
6629                        flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6630
6631                crypt->ops->set_flags(flags, crypt->priv);
6632
6633                break;
6634
6635        case IW_AUTH_DROP_UNENCRYPTED:{
6636                        /* HACK:
6637                         *
6638                         * wpa_supplicant calls set_wpa_enabled when the driver
6639                         * is loaded and unloaded, regardless of if WPA is being
6640                         * used.  No other calls are made which can be used to
6641                         * determine if encryption will be used or not prior to
6642                         * association being expected.  If encryption is not being
6643                         * used, drop_unencrypted is set to false, else true -- we
6644                         * can use this to determine if the CAP_PRIVACY_ON bit should
6645                         * be set.
6646                         */
6647                        struct libipw_security sec = {
6648                                .flags = SEC_ENABLED,
6649                                .enabled = param->value,
6650                        };
6651                        priv->ieee->drop_unencrypted = param->value;
6652                        /* We only change SEC_LEVEL for open mode. Others
6653                         * are set by ipw_wpa_set_encryption.
6654                         */
6655                        if (!param->value) {
6656                                sec.flags |= SEC_LEVEL;
6657                                sec.level = SEC_LEVEL_0;
6658                        } else {
6659                                sec.flags |= SEC_LEVEL;
6660                                sec.level = SEC_LEVEL_1;
6661                        }
6662                        if (priv->ieee->set_security)
6663                                priv->ieee->set_security(priv->ieee->dev, &sec);
6664                        break;
6665                }
6666
6667        case IW_AUTH_80211_AUTH_ALG:
6668                ret = ipw_wpa_set_auth_algs(priv, param->value);
6669                break;
6670
6671        case IW_AUTH_WPA_ENABLED:
6672                ret = ipw_wpa_enable(priv, param->value);
6673                ipw_disassociate(priv);
6674                break;
6675
6676        case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6677                ieee->ieee802_1x = param->value;
6678                break;
6679
6680        case IW_AUTH_PRIVACY_INVOKED:
6681                ieee->privacy_invoked = param->value;
6682                break;
6683
6684        default:
6685                return -EOPNOTSUPP;
6686        }
6687        return ret;
6688}
6689
6690/* SIOCGIWAUTH */
6691static int ipw_wx_get_auth(struct net_device *dev,
6692                           struct iw_request_info *info,
6693                           union iwreq_data *wrqu, char *extra)
6694{
6695        struct ipw_priv *priv = libipw_priv(dev);
6696        struct libipw_device *ieee = priv->ieee;
6697        struct lib80211_crypt_data *crypt;
6698        struct iw_param *param = &wrqu->param;
6699
6700        switch (param->flags & IW_AUTH_INDEX) {
6701        case IW_AUTH_WPA_VERSION:
6702        case IW_AUTH_CIPHER_PAIRWISE:
6703        case IW_AUTH_CIPHER_GROUP:
6704        case IW_AUTH_KEY_MGMT:
6705                /*
6706                 * wpa_supplicant will control these internally
6707                 */
6708                return -EOPNOTSUPP;
6709
6710        case IW_AUTH_TKIP_COUNTERMEASURES:
6711                crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6712                if (!crypt || !crypt->ops->get_flags)
6713                        break;
6714
6715                param->value = (crypt->ops->get_flags(crypt->priv) &
6716                                IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6717
6718                break;
6719
6720        case IW_AUTH_DROP_UNENCRYPTED:
6721                param->value = ieee->drop_unencrypted;
6722                break;
6723
6724        case IW_AUTH_80211_AUTH_ALG:
6725                param->value = ieee->sec.auth_mode;
6726                break;
6727
6728        case IW_AUTH_WPA_ENABLED:
6729                param->value = ieee->wpa_enabled;
6730                break;
6731
6732        case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6733                param->value = ieee->ieee802_1x;
6734                break;
6735
6736        case IW_AUTH_ROAMING_CONTROL:
6737        case IW_AUTH_PRIVACY_INVOKED:
6738                param->value = ieee->privacy_invoked;
6739                break;
6740
6741        default:
6742                return -EOPNOTSUPP;
6743        }
6744        return 0;
6745}
6746
6747/* SIOCSIWENCODEEXT */
6748static int ipw_wx_set_encodeext(struct net_device *dev,
6749                                struct iw_request_info *info,
6750                                union iwreq_data *wrqu, char *extra)
6751{
6752        struct ipw_priv *priv = libipw_priv(dev);
6753        struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6754
6755        if (hwcrypto) {
6756                if (ext->alg == IW_ENCODE_ALG_TKIP) {
6757                        /* IPW HW can't build TKIP MIC,
6758                           host decryption still needed */
6759                        if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6760                                priv->ieee->host_mc_decrypt = 1;
6761                        else {
6762                                priv->ieee->host_encrypt = 0;
6763                                priv->ieee->host_encrypt_msdu = 1;
6764                                priv->ieee->host_decrypt = 1;
6765                        }
6766                } else {
6767                        priv->ieee->host_encrypt = 0;
6768                        priv->ieee->host_encrypt_msdu = 0;
6769                        priv->ieee->host_decrypt = 0;
6770                        priv->ieee->host_mc_decrypt = 0;
6771                }
6772        }
6773
6774        return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6775}
6776
6777/* SIOCGIWENCODEEXT */
6778static int ipw_wx_get_encodeext(struct net_device *dev,
6779                                struct iw_request_info *info,
6780                                union iwreq_data *wrqu, char *extra)
6781{
6782        struct ipw_priv *priv = libipw_priv(dev);
6783        return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6784}
6785
6786/* SIOCSIWMLME */
6787static int ipw_wx_set_mlme(struct net_device *dev,
6788                           struct iw_request_info *info,
6789                           union iwreq_data *wrqu, char *extra)
6790{
6791        struct ipw_priv *priv = libipw_priv(dev);
6792        struct iw_mlme *mlme = (struct iw_mlme *)extra;
6793
6794        switch (mlme->cmd) {
6795        case IW_MLME_DEAUTH:
6796                /* silently ignore */
6797                break;
6798
6799        case IW_MLME_DISASSOC:
6800                ipw_disassociate(priv);
6801                break;
6802
6803        default:
6804                return -EOPNOTSUPP;
6805        }
6806        return 0;
6807}
6808
6809#ifdef CONFIG_IPW2200_QOS
6810
6811/* QoS */
6812/*
6813* get the modulation type of the current network or
6814* the card current mode
6815*/
6816static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6817{
6818        u8 mode = 0;
6819
6820        if (priv->status & STATUS_ASSOCIATED) {
6821                unsigned long flags;
6822
6823                spin_lock_irqsave(&priv->ieee->lock, flags);
6824                mode = priv->assoc_network->mode;
6825                spin_unlock_irqrestore(&priv->ieee->lock, flags);
6826        } else {
6827                mode = priv->ieee->mode;
6828        }
6829        IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6830        return mode;
6831}
6832
6833/*
6834* Handle management frame beacon and probe response
6835*/
6836static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6837                                         int active_network,
6838                                         struct libipw_network *network)
6839{
6840        u32 size = sizeof(struct libipw_qos_parameters);
6841
6842        if (network->capability & WLAN_CAPABILITY_IBSS)
6843                network->qos_data.active = network->qos_data.supported;
6844
6845        if (network->flags & NETWORK_HAS_QOS_MASK) {
6846                if (active_network &&
6847                    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6848                        network->qos_data.active = network->qos_data.supported;
6849
6850                if ((network->qos_data.active == 1) && (active_network == 1) &&
6851                    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6852                    (network->qos_data.old_param_count !=
6853                     network->qos_data.param_count)) {
6854                        network->qos_data.old_param_count =
6855                            network->qos_data.param_count;
6856                        schedule_work(&priv->qos_activate);
6857                        IPW_DEBUG_QOS("QoS parameters change call "
6858                                      "qos_activate\n");
6859                }
6860        } else {
6861                if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6862                        memcpy(&network->qos_data.parameters,
6863                               &def_parameters_CCK, size);
6864                else
6865                        memcpy(&network->qos_data.parameters,
6866                               &def_parameters_OFDM, size);
6867
6868                if ((network->qos_data.active == 1) && (active_network == 1)) {
6869                        IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6870                        schedule_work(&priv->qos_activate);
6871                }
6872
6873                network->qos_data.active = 0;
6874                network->qos_data.supported = 0;
6875        }
6876        if ((priv->status & STATUS_ASSOCIATED) &&
6877            (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6878                if (!ether_addr_equal(network->bssid, priv->bssid))
6879                        if (network->capability & WLAN_CAPABILITY_IBSS)
6880                                if ((network->ssid_len ==
6881                                     priv->assoc_network->ssid_len) &&
6882                                    !memcmp(network->ssid,
6883                                            priv->assoc_network->ssid,
6884                                            network->ssid_len)) {
6885                                        schedule_work(&priv->merge_networks);
6886                                }
6887        }
6888
6889        return 0;
6890}
6891
6892/*
6893* This function set up the firmware to support QoS. It sends
6894* IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6895*/
6896static int ipw_qos_activate(struct ipw_priv *priv,
6897                            struct libipw_qos_data *qos_network_data)
6898{
6899        int err;
6900        struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6901        struct libipw_qos_parameters *active_one = NULL;
6902        u32 size = sizeof(struct libipw_qos_parameters);
6903        u32 burst_duration;
6904        int i;
6905        u8 type;
6906
6907        type = ipw_qos_current_mode(priv);
6908
6909        active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6910        memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6911        active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6912        memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6913
6914        if (qos_network_data == NULL) {
6915                if (type == IEEE_B) {
6916                        IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6917                        active_one = &def_parameters_CCK;
6918                } else
6919                        active_one = &def_parameters_OFDM;
6920
6921                memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6922                burst_duration = ipw_qos_get_burst_duration(priv);
6923                for (i = 0; i < QOS_QUEUE_NUM; i++)
6924                        qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6925                            cpu_to_le16(burst_duration);
6926        } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6927                if (type == IEEE_B) {
6928                        IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6929                                      type);
6930                        if (priv->qos_data.qos_enable == 0)
6931                                active_one = &def_parameters_CCK;
6932                        else
6933                                active_one = priv->qos_data.def_qos_parm_CCK;
6934                } else {
6935                        if (priv->qos_data.qos_enable == 0)
6936                                active_one = &def_parameters_OFDM;
6937                        else
6938                                active_one = priv->qos_data.def_qos_parm_OFDM;
6939                }
6940                memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941        } else {
6942                unsigned long flags;
6943                int active;
6944
6945                spin_lock_irqsave(&priv->ieee->lock, flags);
6946                active_one = &(qos_network_data->parameters);
6947                qos_network_data->old_param_count =
6948                    qos_network_data->param_count;
6949                memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6950                active = qos_network_data->supported;
6951                spin_unlock_irqrestore(&priv->ieee->lock, flags);
6952
6953                if (active == 0) {
6954                        burst_duration = ipw_qos_get_burst_duration(priv);
6955                        for (i = 0; i < QOS_QUEUE_NUM; i++)
6956                                qos_parameters[QOS_PARAM_SET_ACTIVE].
6957                                    tx_op_limit[i] = cpu_to_le16(burst_duration);
6958                }
6959        }
6960
6961        IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6962        err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6963        if (err)
6964                IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6965
6966        return err;
6967}
6968
6969/*
6970* send IPW_CMD_WME_INFO to the firmware
6971*/
6972static int ipw_qos_set_info_element(struct ipw_priv *priv)
6973{
6974        int ret = 0;
6975        struct libipw_qos_information_element qos_info;
6976
6977        if (priv == NULL)
6978                return -1;
6979
6980        qos_info.elementID = QOS_ELEMENT_ID;
6981        qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6982
6983        qos_info.version = QOS_VERSION_1;
6984        qos_info.ac_info = 0;
6985
6986        memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6987        qos_info.qui_type = QOS_OUI_TYPE;
6988        qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6989
6990        ret = ipw_send_qos_info_command(priv, &qos_info);
6991        if (ret != 0) {
6992                IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6993        }
6994        return ret;
6995}
6996
6997/*
6998* Set the QoS parameter with the association request structure
6999*/
7000static int ipw_qos_association(struct ipw_priv *priv,
7001                               struct libipw_network *network)
7002{
7003        int err = 0;
7004        struct libipw_qos_data *qos_data = NULL;
7005        struct libipw_qos_data ibss_data = {
7006                .supported = 1,
7007                .active = 1,
7008        };
7009
7010        switch (priv->ieee->iw_mode) {
7011        case IW_MODE_ADHOC:
7012                BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7013
7014                qos_data = &ibss_data;
7015                break;
7016
7017        case IW_MODE_INFRA:
7018                qos_data = &network->qos_data;
7019                break;
7020
7021        default:
7022                BUG();
7023                break;
7024        }
7025
7026        err = ipw_qos_activate(priv, qos_data);
7027        if (err) {
7028                priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7029                return err;
7030        }
7031
7032        if (priv->qos_data.qos_enable && qos_data->supported) {
7033                IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7034                priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7035                return ipw_qos_set_info_element(priv);
7036        }
7037
7038        return 0;
7039}
7040
7041/*
7042* handling the beaconing responses. if we get different QoS setting
7043* off the network from the associated setting, adjust the QoS
7044* setting
7045*/
7046static void ipw_qos_association_resp(struct ipw_priv *priv,
7047                                    struct libipw_network *network)
7048{
7049        unsigned long flags;
7050        u32 size = sizeof(struct libipw_qos_parameters);
7051        int set_qos_param = 0;
7052
7053        if ((priv == NULL) || (network == NULL) ||
7054            (priv->assoc_network == NULL))
7055                return;
7056
7057        if (!(priv->status & STATUS_ASSOCIATED))
7058                return;
7059
7060        if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7061                return;
7062
7063        spin_lock_irqsave(&priv->ieee->lock, flags);
7064        if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7065                memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7066                       sizeof(struct libipw_qos_data));
7067                priv->assoc_network->qos_data.active = 1;
7068                if ((network->qos_data.old_param_count !=
7069                     network->qos_data.param_count)) {
7070                        set_qos_param = 1;
7071                        network->qos_data.old_param_count =
7072                            network->qos_data.param_count;
7073                }
7074
7075        } else {
7076                if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7077                        memcpy(&priv->assoc_network->qos_data.parameters,
7078                               &def_parameters_CCK, size);
7079                else
7080                        memcpy(&priv->assoc_network->qos_data.parameters,
7081                               &def_parameters_OFDM, size);
7082                priv->assoc_network->qos_data.active = 0;
7083                priv->assoc_network->qos_data.supported = 0;
7084                set_qos_param = 1;
7085        }
7086
7087        spin_unlock_irqrestore(&priv->ieee->lock, flags);
7088
7089        if (set_qos_param == 1)
7090                schedule_work(&priv->qos_activate);
7091}
7092
7093static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7094{
7095        u32 ret = 0;
7096
7097        if (!priv)
7098                return 0;
7099
7100        if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7101                ret = priv->qos_data.burst_duration_CCK;
7102        else
7103                ret = priv->qos_data.burst_duration_OFDM;
7104
7105        return ret;
7106}
7107
7108/*
7109* Initialize the setting of QoS global
7110*/
7111static void ipw_qos_init(struct ipw_priv *priv, int enable,
7112                         int burst_enable, u32 burst_duration_CCK,
7113                         u32 burst_duration_OFDM)
7114{
7115        priv->qos_data.qos_enable = enable;
7116
7117        if (priv->qos_data.qos_enable) {
7118                priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7119                priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7120                IPW_DEBUG_QOS("QoS is enabled\n");
7121        } else {
7122                priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7123                priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7124                IPW_DEBUG_QOS("QoS is not enabled\n");
7125        }
7126
7127        priv->qos_data.burst_enable = burst_enable;
7128
7129        if (burst_enable) {
7130                priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7131                priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7132        } else {
7133                priv->qos_data.burst_duration_CCK = 0;
7134                priv->qos_data.burst_duration_OFDM = 0;
7135        }
7136}
7137
7138/*
7139* map the packet priority to the right TX Queue
7140*/
7141static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7142{
7143        if (priority > 7 || !priv->qos_data.qos_enable)
7144                priority = 0;
7145
7146        return from_priority_to_tx_queue[priority] - 1;
7147}
7148
7149static int ipw_is_qos_active(struct net_device *dev,
7150                             struct sk_buff *skb)
7151{
7152        struct ipw_priv *priv = libipw_priv(dev);
7153        struct libipw_qos_data *qos_data = NULL;
7154        int active, supported;
7155        u8 *daddr = skb->data + ETH_ALEN;
7156        int unicast = !is_multicast_ether_addr(daddr);
7157
7158        if (!(priv->status & STATUS_ASSOCIATED))
7159                return 0;
7160
7161        qos_data = &priv->assoc_network->qos_data;
7162
7163        if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7164                if (unicast == 0)
7165                        qos_data->active = 0;
7166                else
7167                        qos_data->active = qos_data->supported;
7168        }
7169        active = qos_data->active;
7170        supported = qos_data->supported;
7171        IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7172                      "unicast %d\n",
7173                      priv->qos_data.qos_enable, active, supported, unicast);
7174        if (active && priv->qos_data.qos_enable)
7175                return 1;
7176
7177        return 0;
7178
7179}
7180/*
7181* add QoS parameter to the TX command
7182*/
7183static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7184                                        u16 priority,
7185                                        struct tfd_data *tfd)
7186{
7187        int tx_queue_id = 0;
7188
7189
7190        tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7191        tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7192
7193        if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7194                tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7195                tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7196        }
7197        return 0;
7198}
7199
7200/*
7201* background support to run QoS activate functionality
7202*/
7203static void ipw_bg_qos_activate(struct work_struct *work)
7204{
7205        struct ipw_priv *priv =
7206                container_of(work, struct ipw_priv, qos_activate);
7207
7208        mutex_lock(&priv->mutex);
7209
7210        if (priv->status & STATUS_ASSOCIATED)
7211                ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7212
7213        mutex_unlock(&priv->mutex);
7214}
7215
7216static int ipw_handle_probe_response(struct net_device *dev,
7217                                     struct libipw_probe_response *resp,
7218                                     struct libipw_network *network)
7219{
7220        struct ipw_priv *priv = libipw_priv(dev);
7221        int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7222                              (network == priv->assoc_network));
7223
7224        ipw_qos_handle_probe_response(priv, active_network, network);
7225
7226        return 0;
7227}
7228
7229static int ipw_handle_beacon(struct net_device *dev,
7230                             struct libipw_beacon *resp,
7231                             struct libipw_network *network)
7232{
7233        struct ipw_priv *priv = libipw_priv(dev);
7234        int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7235                              (network == priv->assoc_network));
7236
7237        ipw_qos_handle_probe_response(priv, active_network, network);
7238
7239        return 0;
7240}
7241
7242static int ipw_handle_assoc_response(struct net_device *dev,
7243                                     struct libipw_assoc_response *resp,
7244                                     struct libipw_network *network)
7245{
7246        struct ipw_priv *priv = libipw_priv(dev);
7247        ipw_qos_association_resp(priv, network);
7248        return 0;
7249}
7250
7251static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7252                                       *qos_param)
7253{
7254        return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7255                                sizeof(*qos_param) * 3, qos_param);
7256}
7257
7258static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7259                                     *qos_param)
7260{
7261        return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7262                                qos_param);
7263}
7264
7265#endif                          /* CONFIG_IPW2200_QOS */
7266
7267static int ipw_associate_network(struct ipw_priv *priv,
7268                                 struct libipw_network *network,
7269                                 struct ipw_supported_rates *rates, int roaming)
7270{
7271        int err;
7272
7273        if (priv->config & CFG_FIXED_RATE)
7274                ipw_set_fixed_rate(priv, network->mode);
7275
7276        if (!(priv->config & CFG_STATIC_ESSID)) {
7277                priv->essid_len = min(network->ssid_len,
7278                                      (u8) IW_ESSID_MAX_SIZE);
7279                memcpy(priv->essid, network->ssid, priv->essid_len);
7280        }
7281
7282        network->last_associate = jiffies;
7283
7284        memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7285        priv->assoc_request.channel = network->channel;
7286        priv->assoc_request.auth_key = 0;
7287
7288        if ((priv->capability & CAP_PRIVACY_ON) &&
7289            (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7290                priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7291                priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7292
7293                if (priv->ieee->sec.level == SEC_LEVEL_1)
7294                        ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7295
7296        } else if ((priv->capability & CAP_PRIVACY_ON) &&
7297                   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7298                priv->assoc_request.auth_type = AUTH_LEAP;
7299        else
7300                priv->assoc_request.auth_type = AUTH_OPEN;
7301
7302        if (priv->ieee->wpa_ie_len) {
7303                priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7304                ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7305                                 priv->ieee->wpa_ie_len);
7306        }
7307
7308        /*
7309         * It is valid for our ieee device to support multiple modes, but
7310         * when it comes to associating to a given network we have to choose
7311         * just one mode.
7312         */
7313        if (network->mode & priv->ieee->mode & IEEE_A)
7314                priv->assoc_request.ieee_mode = IPW_A_MODE;
7315        else if (network->mode & priv->ieee->mode & IEEE_G)
7316                priv->assoc_request.ieee_mode = IPW_G_MODE;
7317        else if (network->mode & priv->ieee->mode & IEEE_B)
7318                priv->assoc_request.ieee_mode = IPW_B_MODE;
7319
7320        priv->assoc_request.capability = cpu_to_le16(network->capability);
7321        if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7322            && !(priv->config & CFG_PREAMBLE_LONG)) {
7323                priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7324        } else {
7325                priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7326
7327                /* Clear the short preamble if we won't be supporting it */
7328                priv->assoc_request.capability &=
7329                    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7330        }
7331
7332        /* Clear capability bits that aren't used in Ad Hoc */
7333        if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7334                priv->assoc_request.capability &=
7335                    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7336
7337        IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7338                        roaming ? "Rea" : "A",
7339                        priv->essid_len, priv->essid,
7340                        network->channel,
7341                        ipw_modes[priv->assoc_request.ieee_mode],
7342                        rates->num_rates,
7343                        (priv->assoc_request.preamble_length ==
7344                         DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7345                        network->capability &
7346                        WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7347                        priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7348                        priv->capability & CAP_PRIVACY_ON ?
7349                        (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7350                         "(open)") : "",
7351                        priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7352                        priv->capability & CAP_PRIVACY_ON ?
7353                        '1' + priv->ieee->sec.active_key : '.',
7354                        priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7355
7356        priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7357        if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7358            (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7359                priv->assoc_request.assoc_type = HC_IBSS_START;
7360                priv->assoc_request.assoc_tsf_msw = 0;
7361                priv->assoc_request.assoc_tsf_lsw = 0;
7362        } else {
7363                if (unlikely(roaming))
7364                        priv->assoc_request.assoc_type = HC_REASSOCIATE;
7365                else
7366                        priv->assoc_request.assoc_type = HC_ASSOCIATE;
7367                priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7368                priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7369        }
7370
7371        memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7372
7373        if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7374                eth_broadcast_addr(priv->assoc_request.dest);
7375                priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7376        } else {
7377                memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7378                priv->assoc_request.atim_window = 0;
7379        }
7380
7381        priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7382
7383        err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7384        if (err) {
7385                IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7386                return err;
7387        }
7388
7389        rates->ieee_mode = priv->assoc_request.ieee_mode;
7390        rates->purpose = IPW_RATE_CONNECT;
7391        ipw_send_supported_rates(priv, rates);
7392
7393        if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7394                priv->sys_config.dot11g_auto_detection = 1;
7395        else
7396                priv->sys_config.dot11g_auto_detection = 0;
7397
7398        if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7399                priv->sys_config.answer_broadcast_ssid_probe = 1;
7400        else
7401                priv->sys_config.answer_broadcast_ssid_probe = 0;
7402
7403        err = ipw_send_system_config(priv);
7404        if (err) {
7405                IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7406                return err;
7407        }
7408
7409        IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7410        err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7411        if (err) {
7412                IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7413                return err;
7414        }
7415
7416        /*
7417         * If preemption is enabled, it is possible for the association
7418         * to complete before we return from ipw_send_associate.  Therefore
7419         * we have to be sure and update our priviate data first.
7420         */
7421        priv->channel = network->channel;
7422        memcpy(priv->bssid, network->bssid, ETH_ALEN);
7423        priv->status |= STATUS_ASSOCIATING;
7424        priv->status &= ~STATUS_SECURITY_UPDATED;
7425
7426        priv->assoc_network = network;
7427
7428#ifdef CONFIG_IPW2200_QOS
7429        ipw_qos_association(priv, network);
7430#endif
7431
7432        err = ipw_send_associate(priv, &priv->assoc_request);
7433        if (err) {
7434                IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7435                return err;
7436        }
7437
7438        IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7439                  priv->essid_len, priv->essid, priv->bssid);
7440
7441        return 0;
7442}
7443
7444static void ipw_roam(void *data)
7445{
7446        struct ipw_priv *priv = data;
7447        struct libipw_network *network = NULL;
7448        struct ipw_network_match match = {
7449                .network = priv->assoc_network
7450        };
7451
7452        /* The roaming process is as follows:
7453         *
7454         * 1.  Missed beacon threshold triggers the roaming process by
7455         *     setting the status ROAM bit and requesting a scan.
7456         * 2.  When the scan completes, it schedules the ROAM work
7457         * 3.  The ROAM work looks at all of the known networks for one that
7458         *     is a better network than the currently associated.  If none
7459         *     found, the ROAM process is over (ROAM bit cleared)
7460         * 4.  If a better network is found, a disassociation request is
7461         *     sent.
7462         * 5.  When the disassociation completes, the roam work is again
7463         *     scheduled.  The second time through, the driver is no longer
7464         *     associated, and the newly selected network is sent an
7465         *     association request.
7466         * 6.  At this point ,the roaming process is complete and the ROAM
7467         *     status bit is cleared.
7468         */
7469
7470        /* If we are no longer associated, and the roaming bit is no longer
7471         * set, then we are not actively roaming, so just return */
7472        if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7473                return;
7474
7475        if (priv->status & STATUS_ASSOCIATED) {
7476                /* First pass through ROAM process -- look for a better
7477                 * network */
7478                unsigned long flags;
7479                u8 rssi = priv->assoc_network->stats.rssi;
7480                priv->assoc_network->stats.rssi = -128;
7481                spin_lock_irqsave(&priv->ieee->lock, flags);
7482                list_for_each_entry(network, &priv->ieee->network_list, list) {
7483                        if (network != priv->assoc_network)
7484                                ipw_best_network(priv, &match, network, 1);
7485                }
7486                spin_unlock_irqrestore(&priv->ieee->lock, flags);
7487                priv->assoc_network->stats.rssi = rssi;
7488
7489                if (match.network == priv->assoc_network) {
7490                        IPW_DEBUG_ASSOC("No better APs in this network to "
7491                                        "roam to.\n");
7492                        priv->status &= ~STATUS_ROAMING;
7493                        ipw_debug_config(priv);
7494                        return;
7495                }
7496
7497                ipw_send_disassociate(priv, 1);
7498                priv->assoc_network = match.network;
7499
7500                return;
7501        }
7502
7503        /* Second pass through ROAM process -- request association */
7504        ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7505        ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7506        priv->status &= ~STATUS_ROAMING;
7507}
7508
7509static void ipw_bg_roam(struct work_struct *work)
7510{
7511        struct ipw_priv *priv =
7512                container_of(work, struct ipw_priv, roam);
7513        mutex_lock(&priv->mutex);
7514        ipw_roam(priv);
7515        mutex_unlock(&priv->mutex);
7516}
7517
7518static int ipw_associate(void *data)
7519{
7520        struct ipw_priv *priv = data;
7521
7522        struct libipw_network *network = NULL;
7523        struct ipw_network_match match = {
7524                .network = NULL
7525        };
7526        struct ipw_supported_rates *rates;
7527        struct list_head *element;
7528        unsigned long flags;
7529
7530        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7531                IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7532                return 0;
7533        }
7534
7535        if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7536                IPW_DEBUG_ASSOC("Not attempting association (already in "
7537                                "progress)\n");
7538                return 0;
7539        }
7540
7541        if (priv->status & STATUS_DISASSOCIATING) {
7542                IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7543                schedule_work(&priv->associate);
7544                return 0;
7545        }
7546
7547        if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7548                IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7549                                "initialized)\n");
7550                return 0;
7551        }
7552
7553        if (!(priv->config & CFG_ASSOCIATE) &&
7554            !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7555                IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7556                return 0;
7557        }
7558
7559        /* Protect our use of the network_list */
7560        spin_lock_irqsave(&priv->ieee->lock, flags);
7561        list_for_each_entry(network, &priv->ieee->network_list, list)
7562            ipw_best_network(priv, &match, network, 0);
7563
7564        network = match.network;
7565        rates = &match.rates;
7566
7567        if (network == NULL &&
7568            priv->ieee->iw_mode == IW_MODE_ADHOC &&
7569            priv->config & CFG_ADHOC_CREATE &&
7570            priv->config & CFG_STATIC_ESSID &&
7571            priv->config & CFG_STATIC_CHANNEL) {
7572                /* Use oldest network if the free list is empty */
7573                if (list_empty(&priv->ieee->network_free_list)) {
7574                        struct libipw_network *oldest = NULL;
7575                        struct libipw_network *target;
7576
7577                        list_for_each_entry(target, &priv->ieee->network_list, list) {
7578                                if ((oldest == NULL) ||
7579                                    (target->last_scanned < oldest->last_scanned))
7580                                        oldest = target;
7581                        }
7582
7583                        /* If there are no more slots, expire the oldest */
7584                        list_del(&oldest->list);
7585                        target = oldest;
7586                        IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7587                                        target->ssid_len, target->ssid,
7588                                        target->bssid);
7589                        list_add_tail(&target->list,
7590                                      &priv->ieee->network_free_list);
7591                }
7592
7593                element = priv->ieee->network_free_list.next;
7594                network = list_entry(element, struct libipw_network, list);
7595                ipw_adhoc_create(priv, network);
7596                rates = &priv->rates;
7597                list_del(element);
7598                list_add_tail(&network->list, &priv->ieee->network_list);
7599        }
7600        spin_unlock_irqrestore(&priv->ieee->lock, flags);
7601
7602        /* If we reached the end of the list, then we don't have any valid
7603         * matching APs */
7604        if (!network) {
7605                ipw_debug_config(priv);
7606
7607                if (!(priv->status & STATUS_SCANNING)) {
7608                        if (!(priv->config & CFG_SPEED_SCAN))
7609                                schedule_delayed_work(&priv->request_scan,
7610                                                      SCAN_INTERVAL);
7611                        else
7612                                schedule_delayed_work(&priv->request_scan, 0);
7613                }
7614
7615                return 0;
7616        }
7617
7618        ipw_associate_network(priv, network, rates, 0);
7619
7620        return 1;
7621}
7622
7623static void ipw_bg_associate(struct work_struct *work)
7624{
7625        struct ipw_priv *priv =
7626                container_of(work, struct ipw_priv, associate);
7627        mutex_lock(&priv->mutex);
7628        ipw_associate(priv);
7629        mutex_unlock(&priv->mutex);
7630}
7631
7632static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7633                                      struct sk_buff *skb)
7634{
7635        struct ieee80211_hdr *hdr;
7636        u16 fc;
7637
7638        hdr = (struct ieee80211_hdr *)skb->data;
7639        fc = le16_to_cpu(hdr->frame_control);
7640        if (!(fc & IEEE80211_FCTL_PROTECTED))
7641                return;
7642
7643        fc &= ~IEEE80211_FCTL_PROTECTED;
7644        hdr->frame_control = cpu_to_le16(fc);
7645        switch (priv->ieee->sec.level) {
7646        case SEC_LEVEL_3:
7647                /* Remove CCMP HDR */
7648                memmove(skb->data + LIBIPW_3ADDR_LEN,
7649                        skb->data + LIBIPW_3ADDR_LEN + 8,
7650                        skb->len - LIBIPW_3ADDR_LEN - 8);
7651                skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7652                break;
7653        case SEC_LEVEL_2:
7654                break;
7655        case SEC_LEVEL_1:
7656                /* Remove IV */
7657                memmove(skb->data + LIBIPW_3ADDR_LEN,
7658                        skb->data + LIBIPW_3ADDR_LEN + 4,
7659                        skb->len - LIBIPW_3ADDR_LEN - 4);
7660                skb_trim(skb, skb->len - 8);    /* IV + ICV */
7661                break;
7662        case SEC_LEVEL_0:
7663                break;
7664        default:
7665                printk(KERN_ERR "Unknown security level %d\n",
7666                       priv->ieee->sec.level);
7667                break;
7668        }
7669}
7670
7671static void ipw_handle_data_packet(struct ipw_priv *priv,
7672                                   struct ipw_rx_mem_buffer *rxb,
7673                                   struct libipw_rx_stats *stats)
7674{
7675        struct net_device *dev = priv->net_dev;
7676        struct libipw_hdr_4addr *hdr;
7677        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7678
7679        /* We received data from the HW, so stop the watchdog */
7680        netif_trans_update(dev);
7681
7682        /* We only process data packets if the
7683         * interface is open */
7684        if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7685                     skb_tailroom(rxb->skb))) {
7686                dev->stats.rx_errors++;
7687                priv->wstats.discard.misc++;
7688                IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7689                return;
7690        } else if (unlikely(!netif_running(priv->net_dev))) {
7691                dev->stats.rx_dropped++;
7692                priv->wstats.discard.misc++;
7693                IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7694                return;
7695        }
7696
7697        /* Advance skb->data to the start of the actual payload */
7698        skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7699
7700        /* Set the size of the skb to the size of the frame */
7701        skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7702
7703        IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7704
7705        /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7706        hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7707        if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7708            (is_multicast_ether_addr(hdr->addr1) ?
7709             !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7710                ipw_rebuild_decrypted_skb(priv, rxb->skb);
7711
7712        if (!libipw_rx(priv->ieee, rxb->skb, stats))
7713                dev->stats.rx_errors++;
7714        else {                  /* libipw_rx succeeded, so it now owns the SKB */
7715                rxb->skb = NULL;
7716                __ipw_led_activity_on(priv);
7717        }
7718}
7719
7720#ifdef CONFIG_IPW2200_RADIOTAP
7721static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7722                                           struct ipw_rx_mem_buffer *rxb,
7723                                           struct libipw_rx_stats *stats)
7724{
7725        struct net_device *dev = priv->net_dev;
7726        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7727        struct ipw_rx_frame *frame = &pkt->u.frame;
7728
7729        /* initial pull of some data */
7730        u16 received_channel = frame->received_channel;
7731        u8 antennaAndPhy = frame->antennaAndPhy;
7732        s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7733        u16 pktrate = frame->rate;
7734
7735        /* Magic struct that slots into the radiotap header -- no reason
7736         * to build this manually element by element, we can write it much
7737         * more efficiently than we can parse it. ORDER MATTERS HERE */
7738        struct ipw_rt_hdr *ipw_rt;
7739
7740        unsigned short len = le16_to_cpu(pkt->u.frame.length);
7741
7742        /* We received data from the HW, so stop the watchdog */
7743        netif_trans_update(dev);
7744
7745        /* We only process data packets if the
7746         * interface is open */
7747        if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7748                     skb_tailroom(rxb->skb))) {
7749                dev->stats.rx_errors++;
7750                priv->wstats.discard.misc++;
7751                IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7752                return;
7753        } else if (unlikely(!netif_running(priv->net_dev))) {
7754                dev->stats.rx_dropped++;
7755                priv->wstats.discard.misc++;
7756                IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7757                return;
7758        }
7759
7760        /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7761         * that now */
7762        if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7763                /* FIXME: Should alloc bigger skb instead */
7764                dev->stats.rx_dropped++;
7765                priv->wstats.discard.misc++;
7766                IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7767                return;
7768        }
7769
7770        /* copy the frame itself */
7771        memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7772                rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7773
7774        ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7775
7776        ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7777        ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7778        ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7779
7780        /* Big bitfield of all the fields we provide in radiotap */
7781        ipw_rt->rt_hdr.it_present = cpu_to_le32(
7782             (1 << IEEE80211_RADIOTAP_TSFT) |
7783             (1 << IEEE80211_RADIOTAP_FLAGS) |
7784             (1 << IEEE80211_RADIOTAP_RATE) |
7785             (1 << IEEE80211_RADIOTAP_CHANNEL) |
7786             (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7787             (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7788             (1 << IEEE80211_RADIOTAP_ANTENNA));
7789
7790        /* Zero the flags, we'll add to them as we go */
7791        ipw_rt->rt_flags = 0;
7792        ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7793                               frame->parent_tsf[2] << 16 |
7794                               frame->parent_tsf[1] << 8  |
7795                               frame->parent_tsf[0]);
7796
7797        /* Convert signal to DBM */
7798        ipw_rt->rt_dbmsignal = antsignal;
7799        ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7800
7801        /* Convert the channel data and set the flags */
7802        ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7803        if (received_channel > 14) {    /* 802.11a */
7804                ipw_rt->rt_chbitmask =
7805                    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7806        } else if (antennaAndPhy & 32) {        /* 802.11b */
7807                ipw_rt->rt_chbitmask =
7808                    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7809        } else {                /* 802.11g */
7810                ipw_rt->rt_chbitmask =
7811                    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7812        }
7813
7814        /* set the rate in multiples of 500k/s */
7815        switch (pktrate) {
7816        case IPW_TX_RATE_1MB:
7817                ipw_rt->rt_rate = 2;
7818                break;
7819        case IPW_TX_RATE_2MB:
7820                ipw_rt->rt_rate = 4;
7821                break;
7822        case IPW_TX_RATE_5MB:
7823                ipw_rt->rt_rate = 10;
7824                break;
7825        case IPW_TX_RATE_6MB:
7826                ipw_rt->rt_rate = 12;
7827                break;
7828        case IPW_TX_RATE_9MB:
7829                ipw_rt->rt_rate = 18;
7830                break;
7831        case IPW_TX_RATE_11MB:
7832                ipw_rt->rt_rate = 22;
7833                break;
7834        case IPW_TX_RATE_12MB:
7835                ipw_rt->rt_rate = 24;
7836                break;
7837        case IPW_TX_RATE_18MB:
7838                ipw_rt->rt_rate = 36;
7839                break;
7840        case IPW_TX_RATE_24MB:
7841                ipw_rt->rt_rate = 48;
7842                break;
7843        case IPW_TX_RATE_36MB:
7844                ipw_rt->rt_rate = 72;
7845                break;
7846        case IPW_TX_RATE_48MB:
7847                ipw_rt->rt_rate = 96;
7848                break;
7849        case IPW_TX_RATE_54MB:
7850                ipw_rt->rt_rate = 108;
7851                break;
7852        default:
7853                ipw_rt->rt_rate = 0;
7854                break;
7855        }
7856
7857        /* antenna number */
7858        ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7859
7860        /* set the preamble flag if we have it */
7861        if ((antennaAndPhy & 64))
7862                ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7863
7864        /* Set the size of the skb to the size of the frame */
7865        skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7866
7867        IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7868
7869        if (!libipw_rx(priv->ieee, rxb->skb, stats))
7870                dev->stats.rx_errors++;
7871        else {                  /* libipw_rx succeeded, so it now owns the SKB */
7872                rxb->skb = NULL;
7873                /* no LED during capture */
7874        }
7875}
7876#endif
7877
7878#ifdef CONFIG_IPW2200_PROMISCUOUS
7879#define libipw_is_probe_response(fc) \
7880   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7881    (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7882
7883#define libipw_is_management(fc) \
7884   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7885
7886#define libipw_is_control(fc) \
7887   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7888
7889#define libipw_is_data(fc) \
7890   ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7891
7892#define libipw_is_assoc_request(fc) \
7893   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7894
7895#define libipw_is_reassoc_request(fc) \
7896   ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7897
7898static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7899                                      struct ipw_rx_mem_buffer *rxb,
7900                                      struct libipw_rx_stats *stats)
7901{
7902        struct net_device *dev = priv->prom_net_dev;
7903        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7904        struct ipw_rx_frame *frame = &pkt->u.frame;
7905        struct ipw_rt_hdr *ipw_rt;
7906
7907        /* First cache any information we need before we overwrite
7908         * the information provided in the skb from the hardware */
7909        struct ieee80211_hdr *hdr;
7910        u16 channel = frame->received_channel;
7911        u8 phy_flags = frame->antennaAndPhy;
7912        s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7913        s8 noise = (s8) le16_to_cpu(frame->noise);
7914        u8 rate = frame->rate;
7915        unsigned short len = le16_to_cpu(pkt->u.frame.length);
7916        struct sk_buff *skb;
7917        int hdr_only = 0;
7918        u16 filter = priv->prom_priv->filter;
7919
7920        /* If the filter is set to not include Rx frames then return */
7921        if (filter & IPW_PROM_NO_RX)
7922                return;
7923
7924        /* We received data from the HW, so stop the watchdog */
7925        netif_trans_update(dev);
7926
7927        if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7928                dev->stats.rx_errors++;
7929                IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7930                return;
7931        }
7932
7933        /* We only process data packets if the interface is open */
7934        if (unlikely(!netif_running(dev))) {
7935                dev->stats.rx_dropped++;
7936                IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7937                return;
7938        }
7939
7940        /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7941         * that now */
7942        if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7943                /* FIXME: Should alloc bigger skb instead */
7944                dev->stats.rx_dropped++;
7945                IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7946                return;
7947        }
7948
7949        hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7950        if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7951                if (filter & IPW_PROM_NO_MGMT)
7952                        return;
7953                if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7954                        hdr_only = 1;
7955        } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7956                if (filter & IPW_PROM_NO_CTL)
7957                        return;
7958                if (filter & IPW_PROM_CTL_HEADER_ONLY)
7959                        hdr_only = 1;
7960        } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7961                if (filter & IPW_PROM_NO_DATA)
7962                        return;
7963                if (filter & IPW_PROM_DATA_HEADER_ONLY)
7964                        hdr_only = 1;
7965        }
7966
7967        /* Copy the SKB since this is for the promiscuous side */
7968        skb = skb_copy(rxb->skb, GFP_ATOMIC);
7969        if (skb == NULL) {
7970                IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7971                return;
7972        }
7973
7974        /* copy the frame data to write after where the radiotap header goes */
7975        ipw_rt = (void *)skb->data;
7976
7977        if (hdr_only)
7978                len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7979
7980        memcpy(ipw_rt->payload, hdr, len);
7981
7982        ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7983        ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7984        ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
7985
7986        /* Set the size of the skb to the size of the frame */
7987        skb_put(skb, sizeof(*ipw_rt) + len);
7988
7989        /* Big bitfield of all the fields we provide in radiotap */
7990        ipw_rt->rt_hdr.it_present = cpu_to_le32(
7991             (1 << IEEE80211_RADIOTAP_TSFT) |
7992             (1 << IEEE80211_RADIOTAP_FLAGS) |
7993             (1 << IEEE80211_RADIOTAP_RATE) |
7994             (1 << IEEE80211_RADIOTAP_CHANNEL) |
7995             (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7996             (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7997             (1 << IEEE80211_RADIOTAP_ANTENNA));
7998
7999        /* Zero the flags, we'll add to them as we go */
8000        ipw_rt->rt_flags = 0;
8001        ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8002                               frame->parent_tsf[2] << 16 |
8003                               frame->parent_tsf[1] << 8  |
8004                               frame->parent_tsf[0]);
8005
8006        /* Convert to DBM */
8007        ipw_rt->rt_dbmsignal = signal;
8008        ipw_rt->rt_dbmnoise = noise;
8009
8010        /* Convert the channel data and set the flags */
8011        ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8012        if (channel > 14) {     /* 802.11a */
8013                ipw_rt->rt_chbitmask =
8014                    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8015        } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8016                ipw_rt->rt_chbitmask =
8017                    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8018        } else {                /* 802.11g */
8019                ipw_rt->rt_chbitmask =
8020                    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8021        }
8022
8023        /* set the rate in multiples of 500k/s */
8024        switch (rate) {
8025        case IPW_TX_RATE_1MB:
8026                ipw_rt->rt_rate = 2;
8027                break;
8028        case IPW_TX_RATE_2MB:
8029                ipw_rt->rt_rate = 4;
8030                break;
8031        case IPW_TX_RATE_5MB:
8032                ipw_rt->rt_rate = 10;
8033                break;
8034        case IPW_TX_RATE_6MB:
8035                ipw_rt->rt_rate = 12;
8036                break;
8037        case IPW_TX_RATE_9MB:
8038                ipw_rt->rt_rate = 18;
8039                break;
8040        case IPW_TX_RATE_11MB:
8041                ipw_rt->rt_rate = 22;
8042                break;
8043        case IPW_TX_RATE_12MB:
8044                ipw_rt->rt_rate = 24;
8045                break;
8046        case IPW_TX_RATE_18MB:
8047                ipw_rt->rt_rate = 36;
8048                break;
8049        case IPW_TX_RATE_24MB:
8050                ipw_rt->rt_rate = 48;
8051                break;
8052        case IPW_TX_RATE_36MB:
8053                ipw_rt->rt_rate = 72;
8054                break;
8055        case IPW_TX_RATE_48MB:
8056                ipw_rt->rt_rate = 96;
8057                break;
8058        case IPW_TX_RATE_54MB:
8059                ipw_rt->rt_rate = 108;
8060                break;
8061        default:
8062                ipw_rt->rt_rate = 0;
8063                break;
8064        }
8065
8066        /* antenna number */
8067        ipw_rt->rt_antenna = (phy_flags & 3);
8068
8069        /* set the preamble flag if we have it */
8070        if (phy_flags & (1 << 6))
8071                ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8072
8073        IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8074
8075        if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8076                dev->stats.rx_errors++;
8077                dev_kfree_skb_any(skb);
8078        }
8079}
8080#endif
8081
8082static int is_network_packet(struct ipw_priv *priv,
8083                                    struct libipw_hdr_4addr *header)
8084{
8085        /* Filter incoming packets to determine if they are targeted toward
8086         * this network, discarding packets coming from ourselves */
8087        switch (priv->ieee->iw_mode) {
8088        case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8089                /* packets from our adapter are dropped (echo) */
8090                if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8091                        return 0;
8092
8093                /* {broad,multi}cast packets to our BSSID go through */
8094                if (is_multicast_ether_addr(header->addr1))
8095                        return ether_addr_equal(header->addr3, priv->bssid);
8096
8097                /* packets to our adapter go through */
8098                return ether_addr_equal(header->addr1,
8099                                        priv->net_dev->dev_addr);
8100
8101        case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8102                /* packets from our adapter are dropped (echo) */
8103                if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8104                        return 0;
8105
8106                /* {broad,multi}cast packets to our BSS go through */
8107                if (is_multicast_ether_addr(header->addr1))
8108                        return ether_addr_equal(header->addr2, priv->bssid);
8109
8110                /* packets to our adapter go through */
8111                return ether_addr_equal(header->addr1,
8112                                        priv->net_dev->dev_addr);
8113        }
8114
8115        return 1;
8116}
8117
8118#define IPW_PACKET_RETRY_TIME HZ
8119
8120static  int is_duplicate_packet(struct ipw_priv *priv,
8121                                      struct libipw_hdr_4addr *header)
8122{
8123        u16 sc = le16_to_cpu(header->seq_ctl);
8124        u16 seq = WLAN_GET_SEQ_SEQ(sc);
8125        u16 frag = WLAN_GET_SEQ_FRAG(sc);
8126        u16 *last_seq, *last_frag;
8127        unsigned long *last_time;
8128
8129        switch (priv->ieee->iw_mode) {
8130        case IW_MODE_ADHOC:
8131                {
8132                        struct list_head *p;
8133                        struct ipw_ibss_seq *entry = NULL;
8134                        u8 *mac = header->addr2;
8135                        int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8136
8137                        list_for_each(p, &priv->ibss_mac_hash[index]) {
8138                                entry =
8139                                    list_entry(p, struct ipw_ibss_seq, list);
8140                                if (ether_addr_equal(entry->mac, mac))
8141                                        break;
8142                        }
8143                        if (p == &priv->ibss_mac_hash[index]) {
8144                                entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8145                                if (!entry) {
8146                                        IPW_ERROR
8147                                            ("Cannot malloc new mac entry\n");
8148                                        return 0;
8149                                }
8150                                memcpy(entry->mac, mac, ETH_ALEN);
8151                                entry->seq_num = seq;
8152                                entry->frag_num = frag;
8153                                entry->packet_time = jiffies;
8154                                list_add(&entry->list,
8155                                         &priv->ibss_mac_hash[index]);
8156                                return 0;
8157                        }
8158                        last_seq = &entry->seq_num;
8159                        last_frag = &entry->frag_num;
8160                        last_time = &entry->packet_time;
8161                        break;
8162                }
8163        case IW_MODE_INFRA:
8164                last_seq = &priv->last_seq_num;
8165                last_frag = &priv->last_frag_num;
8166                last_time = &priv->last_packet_time;
8167                break;
8168        default:
8169                return 0;
8170        }
8171        if ((*last_seq == seq) &&
8172            time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8173                if (*last_frag == frag)
8174                        goto drop;
8175                if (*last_frag + 1 != frag)
8176                        /* out-of-order fragment */
8177                        goto drop;
8178        } else
8179                *last_seq = seq;
8180
8181        *last_frag = frag;
8182        *last_time = jiffies;
8183        return 0;
8184
8185      drop:
8186        /* Comment this line now since we observed the card receives
8187         * duplicate packets but the FCTL_RETRY bit is not set in the
8188         * IBSS mode with fragmentation enabled.
8189         BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8190        return 1;
8191}
8192
8193static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8194                                   struct ipw_rx_mem_buffer *rxb,
8195                                   struct libipw_rx_stats *stats)
8196{
8197        struct sk_buff *skb = rxb->skb;
8198        struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8199        struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8200            (skb->data + IPW_RX_FRAME_SIZE);
8201
8202        libipw_rx_mgt(priv->ieee, header, stats);
8203
8204        if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8205            ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8206              IEEE80211_STYPE_PROBE_RESP) ||
8207             (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8208              IEEE80211_STYPE_BEACON))) {
8209                if (ether_addr_equal(header->addr3, priv->bssid))
8210                        ipw_add_station(priv, header->addr2);
8211        }
8212
8213        if (priv->config & CFG_NET_STATS) {
8214                IPW_DEBUG_HC("sending stat packet\n");
8215
8216                /* Set the size of the skb to the size of the full
8217                 * ipw header and 802.11 frame */
8218                skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8219                        IPW_RX_FRAME_SIZE);
8220
8221                /* Advance past the ipw packet header to the 802.11 frame */
8222                skb_pull(skb, IPW_RX_FRAME_SIZE);
8223
8224                /* Push the libipw_rx_stats before the 802.11 frame */
8225                memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8226
8227                skb->dev = priv->ieee->dev;
8228
8229                /* Point raw at the libipw_stats */
8230                skb_reset_mac_header(skb);
8231
8232                skb->pkt_type = PACKET_OTHERHOST;
8233                skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8234                memset(skb->cb, 0, sizeof(rxb->skb->cb));
8235                netif_rx(skb);
8236                rxb->skb = NULL;
8237        }
8238}
8239
8240/*
8241 * Main entry function for receiving a packet with 80211 headers.  This
8242 * should be called when ever the FW has notified us that there is a new
8243 * skb in the receive queue.
8244 */
8245static void ipw_rx(struct ipw_priv *priv)
8246{
8247        struct ipw_rx_mem_buffer *rxb;
8248        struct ipw_rx_packet *pkt;
8249        struct libipw_hdr_4addr *header;
8250        u32 r, i;
8251        u8 network_packet;
8252        u8 fill_rx = 0;
8253
8254        r = ipw_read32(priv, IPW_RX_READ_INDEX);
8255        ipw_read32(priv, IPW_RX_WRITE_INDEX);
8256        i = priv->rxq->read;
8257
8258        if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8259                fill_rx = 1;
8260
8261        while (i != r) {
8262                rxb = priv->rxq->queue[i];
8263                if (unlikely(rxb == NULL)) {
8264                        printk(KERN_CRIT "Queue not allocated!\n");
8265                        break;
8266                }
8267                priv->rxq->queue[i] = NULL;
8268
8269                dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8270                                        IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8271
8272                pkt = (struct ipw_rx_packet *)rxb->skb->data;
8273                IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8274                             pkt->header.message_type,
8275                             pkt->header.rx_seq_num, pkt->header.control_bits);
8276
8277                switch (pkt->header.message_type) {
8278                case RX_FRAME_TYPE:     /* 802.11 frame */  {
8279                                struct libipw_rx_stats stats = {
8280                                        .rssi = pkt->u.frame.rssi_dbm -
8281                                            IPW_RSSI_TO_DBM,
8282                                        .signal =
8283                                            pkt->u.frame.rssi_dbm -
8284                                            IPW_RSSI_TO_DBM + 0x100,
8285                                        .noise =
8286                                            le16_to_cpu(pkt->u.frame.noise),
8287                                        .rate = pkt->u.frame.rate,
8288                                        .mac_time = jiffies,
8289                                        .received_channel =
8290                                            pkt->u.frame.received_channel,
8291                                        .freq =
8292                                            (pkt->u.frame.
8293                                             control & (1 << 0)) ?
8294                                            LIBIPW_24GHZ_BAND :
8295                                            LIBIPW_52GHZ_BAND,
8296                                        .len = le16_to_cpu(pkt->u.frame.length),
8297                                };
8298
8299                                if (stats.rssi != 0)
8300                                        stats.mask |= LIBIPW_STATMASK_RSSI;
8301                                if (stats.signal != 0)
8302                                        stats.mask |= LIBIPW_STATMASK_SIGNAL;
8303                                if (stats.noise != 0)
8304                                        stats.mask |= LIBIPW_STATMASK_NOISE;
8305                                if (stats.rate != 0)
8306                                        stats.mask |= LIBIPW_STATMASK_RATE;
8307
8308                                priv->rx_packets++;
8309
8310#ifdef CONFIG_IPW2200_PROMISCUOUS
8311        if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8312                ipw_handle_promiscuous_rx(priv, rxb, &stats);
8313#endif
8314
8315#ifdef CONFIG_IPW2200_MONITOR
8316                                if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8317#ifdef CONFIG_IPW2200_RADIOTAP
8318
8319                ipw_handle_data_packet_monitor(priv,
8320                                               rxb,
8321                                               &stats);
8322#else
8323                ipw_handle_data_packet(priv, rxb,
8324                                       &stats);
8325#endif
8326                                        break;
8327                                }
8328#endif
8329
8330                                header =
8331                                    (struct libipw_hdr_4addr *)(rxb->skb->
8332                                                                   data +
8333                                                                   IPW_RX_FRAME_SIZE);
8334                                /* TODO: Check Ad-Hoc dest/source and make sure
8335                                 * that we are actually parsing these packets
8336                                 * correctly -- we should probably use the
8337                                 * frame control of the packet and disregard
8338                                 * the current iw_mode */
8339
8340                                network_packet =
8341                                    is_network_packet(priv, header);
8342                                if (network_packet && priv->assoc_network) {
8343                                        priv->assoc_network->stats.rssi =
8344                                            stats.rssi;
8345                                        priv->exp_avg_rssi =
8346                                            exponential_average(priv->exp_avg_rssi,
8347                                            stats.rssi, DEPTH_RSSI);
8348                                }
8349
8350                                IPW_DEBUG_RX("Frame: len=%u\n",
8351                                             le16_to_cpu(pkt->u.frame.length));
8352
8353                                if (le16_to_cpu(pkt->u.frame.length) <
8354                                    libipw_get_hdrlen(le16_to_cpu(
8355                                                    header->frame_ctl))) {
8356                                        IPW_DEBUG_DROP
8357                                            ("Received packet is too small. "
8358                                             "Dropping.\n");
8359                                        priv->net_dev->stats.rx_errors++;
8360                                        priv->wstats.discard.misc++;
8361                                        break;
8362                                }
8363
8364                                switch (WLAN_FC_GET_TYPE
8365                                        (le16_to_cpu(header->frame_ctl))) {
8366
8367                                case IEEE80211_FTYPE_MGMT:
8368                                        ipw_handle_mgmt_packet(priv, rxb,
8369                                                               &stats);
8370                                        break;
8371
8372                                case IEEE80211_FTYPE_CTL:
8373                                        break;
8374
8375                                case IEEE80211_FTYPE_DATA:
8376                                        if (unlikely(!network_packet ||
8377                                                     is_duplicate_packet(priv,
8378                                                                         header)))
8379                                        {
8380                                                IPW_DEBUG_DROP("Dropping: "
8381                                                               "%pM, "
8382                                                               "%pM, "
8383                                                               "%pM\n",
8384                                                               header->addr1,
8385                                                               header->addr2,
8386                                                               header->addr3);
8387                                                break;
8388                                        }
8389
8390                                        ipw_handle_data_packet(priv, rxb,
8391                                                               &stats);
8392
8393                                        break;
8394                                }
8395                                break;
8396                        }
8397
8398                case RX_HOST_NOTIFICATION_TYPE:{
8399                                IPW_DEBUG_RX
8400                                    ("Notification: subtype=%02X flags=%02X size=%d\n",
8401                                     pkt->u.notification.subtype,
8402                                     pkt->u.notification.flags,
8403                                     le16_to_cpu(pkt->u.notification.size));
8404                                ipw_rx_notification(priv, &pkt->u.notification);
8405                                break;
8406                        }
8407
8408                default:
8409                        IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8410                                     pkt->header.message_type);
8411                        break;
8412                }
8413
8414                /* For now we just don't re-use anything.  We can tweak this
8415                 * later to try and re-use notification packets and SKBs that
8416                 * fail to Rx correctly */
8417                if (rxb->skb != NULL) {
8418                        dev_kfree_skb_any(rxb->skb);
8419                        rxb->skb = NULL;
8420                }
8421
8422                dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8423                                 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8424                list_add_tail(&rxb->list, &priv->rxq->rx_used);
8425
8426                i = (i + 1) % RX_QUEUE_SIZE;
8427
8428                /* If there are a lot of unsued frames, restock the Rx queue
8429                 * so the ucode won't assert */
8430                if (fill_rx) {
8431                        priv->rxq->read = i;
8432                        ipw_rx_queue_replenish(priv);
8433                }
8434        }
8435
8436        /* Backtrack one entry */
8437        priv->rxq->read = i;
8438        ipw_rx_queue_restock(priv);
8439}
8440
8441#define DEFAULT_RTS_THRESHOLD     2304U
8442#define MIN_RTS_THRESHOLD         1U
8443#define MAX_RTS_THRESHOLD         2304U
8444#define DEFAULT_BEACON_INTERVAL   100U
8445#define DEFAULT_SHORT_RETRY_LIMIT 7U
8446#define DEFAULT_LONG_RETRY_LIMIT  4U
8447
8448/*
8449 * ipw_sw_reset
8450 * @option: options to control different reset behaviour
8451 *          0 = reset everything except the 'disable' module_param
8452 *          1 = reset everything and print out driver info (for probe only)
8453 *          2 = reset everything
8454 */
8455static int ipw_sw_reset(struct ipw_priv *priv, int option)
8456{
8457        int band, modulation;
8458        int old_mode = priv->ieee->iw_mode;
8459
8460        /* Initialize module parameter values here */
8461        priv->config = 0;
8462
8463        /* We default to disabling the LED code as right now it causes
8464         * too many systems to lock up... */
8465        if (!led_support)
8466                priv->config |= CFG_NO_LED;
8467
8468        if (associate)
8469                priv->config |= CFG_ASSOCIATE;
8470        else
8471                IPW_DEBUG_INFO("Auto associate disabled.\n");
8472
8473        if (auto_create)
8474                priv->config |= CFG_ADHOC_CREATE;
8475        else
8476                IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8477
8478        priv->config &= ~CFG_STATIC_ESSID;
8479        priv->essid_len = 0;
8480        memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8481
8482        if (disable && option) {
8483                priv->status |= STATUS_RF_KILL_SW;
8484                IPW_DEBUG_INFO("Radio disabled.\n");
8485        }
8486
8487        if (default_channel != 0) {
8488                priv->config |= CFG_STATIC_CHANNEL;
8489                priv->channel = default_channel;
8490                IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8491                /* TODO: Validate that provided channel is in range */
8492        }
8493#ifdef CONFIG_IPW2200_QOS
8494        ipw_qos_init(priv, qos_enable, qos_burst_enable,
8495                     burst_duration_CCK, burst_duration_OFDM);
8496#endif                          /* CONFIG_IPW2200_QOS */
8497
8498        switch (network_mode) {
8499        case 1:
8500                priv->ieee->iw_mode = IW_MODE_ADHOC;
8501                priv->net_dev->type = ARPHRD_ETHER;
8502
8503                break;
8504#ifdef CONFIG_IPW2200_MONITOR
8505        case 2:
8506                priv->ieee->iw_mode = IW_MODE_MONITOR;
8507#ifdef CONFIG_IPW2200_RADIOTAP
8508                priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8509#else
8510                priv->net_dev->type = ARPHRD_IEEE80211;
8511#endif
8512                break;
8513#endif
8514        default:
8515        case 0:
8516                priv->net_dev->type = ARPHRD_ETHER;
8517                priv->ieee->iw_mode = IW_MODE_INFRA;
8518                break;
8519        }
8520
8521        if (hwcrypto) {
8522                priv->ieee->host_encrypt = 0;
8523                priv->ieee->host_encrypt_msdu = 0;
8524                priv->ieee->host_decrypt = 0;
8525                priv->ieee->host_mc_decrypt = 0;
8526        }
8527        IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8528
8529        /* IPW2200/2915 is abled to do hardware fragmentation. */
8530        priv->ieee->host_open_frag = 0;
8531
8532        if ((priv->pci_dev->device == 0x4223) ||
8533            (priv->pci_dev->device == 0x4224)) {
8534                if (option == 1)
8535                        printk(KERN_INFO DRV_NAME
8536                               ": Detected Intel PRO/Wireless 2915ABG Network "
8537                               "Connection\n");
8538                priv->ieee->abg_true = 1;
8539                band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8540                modulation = LIBIPW_OFDM_MODULATION |
8541                    LIBIPW_CCK_MODULATION;
8542                priv->adapter = IPW_2915ABG;
8543                priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8544        } else {
8545                if (option == 1)
8546                        printk(KERN_INFO DRV_NAME
8547                               ": Detected Intel PRO/Wireless 2200BG Network "
8548                               "Connection\n");
8549
8550                priv->ieee->abg_true = 0;
8551                band = LIBIPW_24GHZ_BAND;
8552                modulation = LIBIPW_OFDM_MODULATION |
8553                    LIBIPW_CCK_MODULATION;
8554                priv->adapter = IPW_2200BG;
8555                priv->ieee->mode = IEEE_G | IEEE_B;
8556        }
8557
8558        priv->ieee->freq_band = band;
8559        priv->ieee->modulation = modulation;
8560
8561        priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8562
8563        priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8564        priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8565
8566        priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8567        priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8568        priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8569
8570        /* If power management is turned on, default to AC mode */
8571        priv->power_mode = IPW_POWER_AC;
8572        priv->tx_power = IPW_TX_POWER_DEFAULT;
8573
8574        return old_mode == priv->ieee->iw_mode;
8575}
8576
8577/*
8578 * This file defines the Wireless Extension handlers.  It does not
8579 * define any methods of hardware manipulation and relies on the
8580 * functions defined in ipw_main to provide the HW interaction.
8581 *
8582 * The exception to this is the use of the ipw_get_ordinal()
8583 * function used to poll the hardware vs. making unnecessary calls.
8584 *
8585 */
8586
8587static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8588{
8589        if (channel == 0) {
8590                IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8591                priv->config &= ~CFG_STATIC_CHANNEL;
8592                IPW_DEBUG_ASSOC("Attempting to associate with new "
8593                                "parameters.\n");
8594                ipw_associate(priv);
8595                return 0;
8596        }
8597
8598        priv->config |= CFG_STATIC_CHANNEL;
8599
8600        if (priv->channel == channel) {
8601                IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8602                               channel);
8603                return 0;
8604        }
8605
8606        IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8607        priv->channel = channel;
8608
8609#ifdef CONFIG_IPW2200_MONITOR
8610        if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8611                int i;
8612                if (priv->status & STATUS_SCANNING) {
8613                        IPW_DEBUG_SCAN("Scan abort triggered due to "
8614                                       "channel change.\n");
8615                        ipw_abort_scan(priv);
8616                }
8617
8618                for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8619                        udelay(10);
8620
8621                if (priv->status & STATUS_SCANNING)
8622                        IPW_DEBUG_SCAN("Still scanning...\n");
8623                else
8624                        IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8625                                       1000 - i);
8626
8627                return 0;
8628        }
8629#endif                          /* CONFIG_IPW2200_MONITOR */
8630
8631        /* Network configuration changed -- force [re]association */
8632        IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8633        if (!ipw_disassociate(priv))
8634                ipw_associate(priv);
8635
8636        return 0;
8637}
8638
8639static int ipw_wx_set_freq(struct net_device *dev,
8640                           struct iw_request_info *info,
8641                           union iwreq_data *wrqu, char *extra)
8642{
8643        struct ipw_priv *priv = libipw_priv(dev);
8644        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8645        struct iw_freq *fwrq = &wrqu->freq;
8646        int ret = 0, i;
8647        u8 channel, flags;
8648        int band;
8649
8650        if (fwrq->m == 0) {
8651                IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8652                mutex_lock(&priv->mutex);
8653                ret = ipw_set_channel(priv, 0);
8654                mutex_unlock(&priv->mutex);
8655                return ret;
8656        }
8657        /* if setting by freq convert to channel */
8658        if (fwrq->e == 1) {
8659                channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8660                if (channel == 0)
8661                        return -EINVAL;
8662        } else
8663                channel = fwrq->m;
8664
8665        if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8666                return -EINVAL;
8667
8668        if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8669                i = libipw_channel_to_index(priv->ieee, channel);
8670                if (i == -1)
8671                        return -EINVAL;
8672
8673                flags = (band == LIBIPW_24GHZ_BAND) ?
8674                    geo->bg[i].flags : geo->a[i].flags;
8675                if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8676                        IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8677                        return -EINVAL;
8678                }
8679        }
8680
8681        IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8682        mutex_lock(&priv->mutex);
8683        ret = ipw_set_channel(priv, channel);
8684        mutex_unlock(&priv->mutex);
8685        return ret;
8686}
8687
8688static int ipw_wx_get_freq(struct net_device *dev,
8689                           struct iw_request_info *info,
8690                           union iwreq_data *wrqu, char *extra)
8691{
8692        struct ipw_priv *priv = libipw_priv(dev);
8693
8694        wrqu->freq.e = 0;
8695
8696        /* If we are associated, trying to associate, or have a statically
8697         * configured CHANNEL then return that; otherwise return ANY */
8698        mutex_lock(&priv->mutex);
8699        if (priv->config & CFG_STATIC_CHANNEL ||
8700            priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8701                int i;
8702
8703                i = libipw_channel_to_index(priv->ieee, priv->channel);
8704                BUG_ON(i == -1);
8705                wrqu->freq.e = 1;
8706
8707                switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8708                case LIBIPW_52GHZ_BAND:
8709                        wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8710                        break;
8711
8712                case LIBIPW_24GHZ_BAND:
8713                        wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8714                        break;
8715
8716                default:
8717                        BUG();
8718                }
8719        } else
8720                wrqu->freq.m = 0;
8721
8722        mutex_unlock(&priv->mutex);
8723        IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8724        return 0;
8725}
8726
8727static int ipw_wx_set_mode(struct net_device *dev,
8728                           struct iw_request_info *info,
8729                           union iwreq_data *wrqu, char *extra)
8730{
8731        struct ipw_priv *priv = libipw_priv(dev);
8732        int err = 0;
8733
8734        IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8735
8736        switch (wrqu->mode) {
8737#ifdef CONFIG_IPW2200_MONITOR
8738        case IW_MODE_MONITOR:
8739#endif
8740        case IW_MODE_ADHOC:
8741        case IW_MODE_INFRA:
8742                break;
8743        case IW_MODE_AUTO:
8744                wrqu->mode = IW_MODE_INFRA;
8745                break;
8746        default:
8747                return -EINVAL;
8748        }
8749        if (wrqu->mode == priv->ieee->iw_mode)
8750                return 0;
8751
8752        mutex_lock(&priv->mutex);
8753
8754        ipw_sw_reset(priv, 0);
8755
8756#ifdef CONFIG_IPW2200_MONITOR
8757        if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8758                priv->net_dev->type = ARPHRD_ETHER;
8759
8760        if (wrqu->mode == IW_MODE_MONITOR)
8761#ifdef CONFIG_IPW2200_RADIOTAP
8762                priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8763#else
8764                priv->net_dev->type = ARPHRD_IEEE80211;
8765#endif
8766#endif                          /* CONFIG_IPW2200_MONITOR */
8767
8768        /* Free the existing firmware and reset the fw_loaded
8769         * flag so ipw_load() will bring in the new firmware */
8770        free_firmware();
8771
8772        priv->ieee->iw_mode = wrqu->mode;
8773
8774        schedule_work(&priv->adapter_restart);
8775        mutex_unlock(&priv->mutex);
8776        return err;
8777}
8778
8779static int ipw_wx_get_mode(struct net_device *dev,
8780                           struct iw_request_info *info,
8781                           union iwreq_data *wrqu, char *extra)
8782{
8783        struct ipw_priv *priv = libipw_priv(dev);
8784        mutex_lock(&priv->mutex);
8785        wrqu->mode = priv->ieee->iw_mode;
8786        IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8787        mutex_unlock(&priv->mutex);
8788        return 0;
8789}
8790
8791/* Values are in microsecond */
8792static const s32 timeout_duration[] = {
8793        350000,
8794        250000,
8795        75000,
8796        37000,
8797        25000,
8798};
8799
8800static const s32 period_duration[] = {
8801        400000,
8802        700000,
8803        1000000,
8804        1000000,
8805        1000000
8806};
8807
8808static int ipw_wx_get_range(struct net_device *dev,
8809                            struct iw_request_info *info,
8810                            union iwreq_data *wrqu, char *extra)
8811{
8812        struct ipw_priv *priv = libipw_priv(dev);
8813        struct iw_range *range = (struct iw_range *)extra;
8814        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8815        int i = 0, j;
8816
8817        wrqu->data.length = sizeof(*range);
8818        memset(range, 0, sizeof(*range));
8819
8820        /* 54Mbs == ~27 Mb/s real (802.11g) */
8821        range->throughput = 27 * 1000 * 1000;
8822
8823        range->max_qual.qual = 100;
8824        /* TODO: Find real max RSSI and stick here */
8825        range->max_qual.level = 0;
8826        range->max_qual.noise = 0;
8827        range->max_qual.updated = 7;    /* Updated all three */
8828
8829        range->avg_qual.qual = 70;
8830        /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8831        range->avg_qual.level = 0;      /* FIXME to real average level */
8832        range->avg_qual.noise = 0;
8833        range->avg_qual.updated = 7;    /* Updated all three */
8834        mutex_lock(&priv->mutex);
8835        range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8836
8837        for (i = 0; i < range->num_bitrates; i++)
8838                range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8839                    500000;
8840
8841        range->max_rts = DEFAULT_RTS_THRESHOLD;
8842        range->min_frag = MIN_FRAG_THRESHOLD;
8843        range->max_frag = MAX_FRAG_THRESHOLD;
8844
8845        range->encoding_size[0] = 5;
8846        range->encoding_size[1] = 13;
8847        range->num_encoding_sizes = 2;
8848        range->max_encoding_tokens = WEP_KEYS;
8849
8850        /* Set the Wireless Extension versions */
8851        range->we_version_compiled = WIRELESS_EXT;
8852        range->we_version_source = 18;
8853
8854        i = 0;
8855        if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8856                for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8857                        if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8858                            (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8859                                continue;
8860
8861                        range->freq[i].i = geo->bg[j].channel;
8862                        range->freq[i].m = geo->bg[j].freq * 100000;
8863                        range->freq[i].e = 1;
8864                        i++;
8865                }
8866        }
8867
8868        if (priv->ieee->mode & IEEE_A) {
8869                for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8870                        if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8871                            (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8872                                continue;
8873
8874                        range->freq[i].i = geo->a[j].channel;
8875                        range->freq[i].m = geo->a[j].freq * 100000;
8876                        range->freq[i].e = 1;
8877                        i++;
8878                }
8879        }
8880
8881        range->num_channels = i;
8882        range->num_frequency = i;
8883
8884        mutex_unlock(&priv->mutex);
8885
8886        /* Event capability (kernel + driver) */
8887        range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8888                                IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8889                                IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8890                                IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8891        range->event_capa[1] = IW_EVENT_CAPA_K_1;
8892
8893        range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8894                IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8895
8896        range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8897
8898        IPW_DEBUG_WX("GET Range\n");
8899        return 0;
8900}
8901
8902static int ipw_wx_set_wap(struct net_device *dev,
8903                          struct iw_request_info *info,
8904                          union iwreq_data *wrqu, char *extra)
8905{
8906        struct ipw_priv *priv = libipw_priv(dev);
8907
8908        if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8909                return -EINVAL;
8910        mutex_lock(&priv->mutex);
8911        if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8912            is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8913                /* we disable mandatory BSSID association */
8914                IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8915                priv->config &= ~CFG_STATIC_BSSID;
8916                IPW_DEBUG_ASSOC("Attempting to associate with new "
8917                                "parameters.\n");
8918                ipw_associate(priv);
8919                mutex_unlock(&priv->mutex);
8920                return 0;
8921        }
8922
8923        priv->config |= CFG_STATIC_BSSID;
8924        if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8925                IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8926                mutex_unlock(&priv->mutex);
8927                return 0;
8928        }
8929
8930        IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8931                     wrqu->ap_addr.sa_data);
8932
8933        memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8934
8935        /* Network configuration changed -- force [re]association */
8936        IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8937        if (!ipw_disassociate(priv))
8938                ipw_associate(priv);
8939
8940        mutex_unlock(&priv->mutex);
8941        return 0;
8942}
8943
8944static int ipw_wx_get_wap(struct net_device *dev,
8945                          struct iw_request_info *info,
8946                          union iwreq_data *wrqu, char *extra)
8947{
8948        struct ipw_priv *priv = libipw_priv(dev);
8949
8950        /* If we are associated, trying to associate, or have a statically
8951         * configured BSSID then return that; otherwise return ANY */
8952        mutex_lock(&priv->mutex);
8953        if (priv->config & CFG_STATIC_BSSID ||
8954            priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8955                wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8956                memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8957        } else
8958                eth_zero_addr(wrqu->ap_addr.sa_data);
8959
8960        IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8961                     wrqu->ap_addr.sa_data);
8962        mutex_unlock(&priv->mutex);
8963        return 0;
8964}
8965
8966static int ipw_wx_set_essid(struct net_device *dev,
8967                            struct iw_request_info *info,
8968                            union iwreq_data *wrqu, char *extra)
8969{
8970        struct ipw_priv *priv = libipw_priv(dev);
8971        int length;
8972
8973        mutex_lock(&priv->mutex);
8974
8975        if (!wrqu->essid.flags)
8976        {
8977                IPW_DEBUG_WX("Setting ESSID to ANY\n");
8978                ipw_disassociate(priv);
8979                priv->config &= ~CFG_STATIC_ESSID;
8980                ipw_associate(priv);
8981                mutex_unlock(&priv->mutex);
8982                return 0;
8983        }
8984
8985        length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8986
8987        priv->config |= CFG_STATIC_ESSID;
8988
8989        if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8990            && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8991                IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8992                mutex_unlock(&priv->mutex);
8993                return 0;
8994        }
8995
8996        IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8997
8998        priv->essid_len = length;
8999        memcpy(priv->essid, extra, priv->essid_len);
9000
9001        /* Network configuration changed -- force [re]association */
9002        IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9003        if (!ipw_disassociate(priv))
9004                ipw_associate(priv);
9005
9006        mutex_unlock(&priv->mutex);
9007        return 0;
9008}
9009
9010static int ipw_wx_get_essid(struct net_device *dev,
9011                            struct iw_request_info *info,
9012                            union iwreq_data *wrqu, char *extra)
9013{
9014        struct ipw_priv *priv = libipw_priv(dev);
9015
9016        /* If we are associated, trying to associate, or have a statically
9017         * configured ESSID then return that; otherwise return ANY */
9018        mutex_lock(&priv->mutex);
9019        if (priv->config & CFG_STATIC_ESSID ||
9020            priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9021                IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9022                             priv->essid_len, priv->essid);
9023                memcpy(extra, priv->essid, priv->essid_len);
9024                wrqu->essid.length = priv->essid_len;
9025                wrqu->essid.flags = 1;  /* active */
9026        } else {
9027                IPW_DEBUG_WX("Getting essid: ANY\n");
9028                wrqu->essid.length = 0;
9029                wrqu->essid.flags = 0;  /* active */
9030        }
9031        mutex_unlock(&priv->mutex);
9032        return 0;
9033}
9034
9035static int ipw_wx_set_nick(struct net_device *dev,
9036                           struct iw_request_info *info,
9037                           union iwreq_data *wrqu, char *extra)
9038{
9039        struct ipw_priv *priv = libipw_priv(dev);
9040
9041        IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9042        if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9043                return -E2BIG;
9044        mutex_lock(&priv->mutex);
9045        wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9046        memset(priv->nick, 0, sizeof(priv->nick));
9047        memcpy(priv->nick, extra, wrqu->data.length);
9048        IPW_DEBUG_TRACE("<<\n");
9049        mutex_unlock(&priv->mutex);
9050        return 0;
9051
9052}
9053
9054static int ipw_wx_get_nick(struct net_device *dev,
9055                           struct iw_request_info *info,
9056                           union iwreq_data *wrqu, char *extra)
9057{
9058        struct ipw_priv *priv = libipw_priv(dev);
9059        IPW_DEBUG_WX("Getting nick\n");
9060        mutex_lock(&priv->mutex);
9061        wrqu->data.length = strlen(priv->nick);
9062        memcpy(extra, priv->nick, wrqu->data.length);
9063        wrqu->data.flags = 1;   /* active */
9064        mutex_unlock(&priv->mutex);
9065        return 0;
9066}
9067
9068static int ipw_wx_set_sens(struct net_device *dev,
9069                            struct iw_request_info *info,
9070                            union iwreq_data *wrqu, char *extra)
9071{
9072        struct ipw_priv *priv = libipw_priv(dev);
9073        int err = 0;
9074
9075        IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9076        IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9077        mutex_lock(&priv->mutex);
9078
9079        if (wrqu->sens.fixed == 0)
9080        {
9081                priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9082                priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9083                goto out;
9084        }
9085        if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9086            (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9087                err = -EINVAL;
9088                goto out;
9089        }
9090
9091        priv->roaming_threshold = wrqu->sens.value;
9092        priv->disassociate_threshold = 3*wrqu->sens.value;
9093      out:
9094        mutex_unlock(&priv->mutex);
9095        return err;
9096}
9097
9098static int ipw_wx_get_sens(struct net_device *dev,
9099                            struct iw_request_info *info,
9100                            union iwreq_data *wrqu, char *extra)
9101{
9102        struct ipw_priv *priv = libipw_priv(dev);
9103        mutex_lock(&priv->mutex);
9104        wrqu->sens.fixed = 1;
9105        wrqu->sens.value = priv->roaming_threshold;
9106        mutex_unlock(&priv->mutex);
9107
9108        IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9109                     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9110
9111        return 0;
9112}
9113
9114static int ipw_wx_set_rate(struct net_device *dev,
9115                           struct iw_request_info *info,
9116                           union iwreq_data *wrqu, char *extra)
9117{
9118        /* TODO: We should use semaphores or locks for access to priv */
9119        struct ipw_priv *priv = libipw_priv(dev);
9120        u32 target_rate = wrqu->bitrate.value;
9121        u32 fixed, mask;
9122
9123        /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9124        /* value = X, fixed = 1 means only rate X */
9125        /* value = X, fixed = 0 means all rates lower equal X */
9126
9127        if (target_rate == -1) {
9128                fixed = 0;
9129                mask = LIBIPW_DEFAULT_RATES_MASK;
9130                /* Now we should reassociate */
9131                goto apply;
9132        }
9133
9134        mask = 0;
9135        fixed = wrqu->bitrate.fixed;
9136
9137        if (target_rate == 1000000 || !fixed)
9138                mask |= LIBIPW_CCK_RATE_1MB_MASK;
9139        if (target_rate == 1000000)
9140                goto apply;
9141
9142        if (target_rate == 2000000 || !fixed)
9143                mask |= LIBIPW_CCK_RATE_2MB_MASK;
9144        if (target_rate == 2000000)
9145                goto apply;
9146
9147        if (target_rate == 5500000 || !fixed)
9148                mask |= LIBIPW_CCK_RATE_5MB_MASK;
9149        if (target_rate == 5500000)
9150                goto apply;
9151
9152        if (target_rate == 6000000 || !fixed)
9153                mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9154        if (target_rate == 6000000)
9155                goto apply;
9156
9157        if (target_rate == 9000000 || !fixed)
9158                mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9159        if (target_rate == 9000000)
9160                goto apply;
9161
9162        if (target_rate == 11000000 || !fixed)
9163                mask |= LIBIPW_CCK_RATE_11MB_MASK;
9164        if (target_rate == 11000000)
9165                goto apply;
9166
9167        if (target_rate == 12000000 || !fixed)
9168                mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9169        if (target_rate == 12000000)
9170                goto apply;
9171
9172        if (target_rate == 18000000 || !fixed)
9173                mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9174        if (target_rate == 18000000)
9175                goto apply;
9176
9177        if (target_rate == 24000000 || !fixed)
9178                mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9179        if (target_rate == 24000000)
9180                goto apply;
9181
9182        if (target_rate == 36000000 || !fixed)
9183                mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9184        if (target_rate == 36000000)
9185                goto apply;
9186
9187        if (target_rate == 48000000 || !fixed)
9188                mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9189        if (target_rate == 48000000)
9190                goto apply;
9191
9192        if (target_rate == 54000000 || !fixed)
9193                mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9194        if (target_rate == 54000000)
9195                goto apply;
9196
9197        IPW_DEBUG_WX("invalid rate specified, returning error\n");
9198        return -EINVAL;
9199
9200      apply:
9201        IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9202                     mask, fixed ? "fixed" : "sub-rates");
9203        mutex_lock(&priv->mutex);
9204        if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9205                priv->config &= ~CFG_FIXED_RATE;
9206                ipw_set_fixed_rate(priv, priv->ieee->mode);
9207        } else
9208                priv->config |= CFG_FIXED_RATE;
9209
9210        if (priv->rates_mask == mask) {
9211                IPW_DEBUG_WX("Mask set to current mask.\n");
9212                mutex_unlock(&priv->mutex);
9213                return 0;
9214        }
9215
9216        priv->rates_mask = mask;
9217
9218        /* Network configuration changed -- force [re]association */
9219        IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9220        if (!ipw_disassociate(priv))
9221                ipw_associate(priv);
9222
9223        mutex_unlock(&priv->mutex);
9224        return 0;
9225}
9226
9227static int ipw_wx_get_rate(struct net_device *dev,
9228                           struct iw_request_info *info,
9229                           union iwreq_data *wrqu, char *extra)
9230{
9231        struct ipw_priv *priv = libipw_priv(dev);
9232        mutex_lock(&priv->mutex);
9233        wrqu->bitrate.value = priv->last_rate;
9234        wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9235        mutex_unlock(&priv->mutex);
9236        IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9237        return 0;
9238}
9239
9240static int ipw_wx_set_rts(struct net_device *dev,
9241                          struct iw_request_info *info,
9242                          union iwreq_data *wrqu, char *extra)
9243{
9244        struct ipw_priv *priv = libipw_priv(dev);
9245        mutex_lock(&priv->mutex);
9246        if (wrqu->rts.disabled || !wrqu->rts.fixed)
9247                priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9248        else {
9249                if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9250                    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9251                        mutex_unlock(&priv->mutex);
9252                        return -EINVAL;
9253                }
9254                priv->rts_threshold = wrqu->rts.value;
9255        }
9256
9257        ipw_send_rts_threshold(priv, priv->rts_threshold);
9258        mutex_unlock(&priv->mutex);
9259        IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9260        return 0;
9261}
9262
9263static int ipw_wx_get_rts(struct net_device *dev,
9264                          struct iw_request_info *info,
9265                          union iwreq_data *wrqu, char *extra)
9266{
9267        struct ipw_priv *priv = libipw_priv(dev);
9268        mutex_lock(&priv->mutex);
9269        wrqu->rts.value = priv->rts_threshold;
9270        wrqu->rts.fixed = 0;    /* no auto select */
9271        wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9272        mutex_unlock(&priv->mutex);
9273        IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9274        return 0;
9275}
9276
9277static int ipw_wx_set_txpow(struct net_device *dev,
9278                            struct iw_request_info *info,
9279                            union iwreq_data *wrqu, char *extra)
9280{
9281        struct ipw_priv *priv = libipw_priv(dev);
9282        int err = 0;
9283
9284        mutex_lock(&priv->mutex);
9285        if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9286                err = -EINPROGRESS;
9287                goto out;
9288        }
9289
9290        if (!wrqu->power.fixed)
9291                wrqu->power.value = IPW_TX_POWER_DEFAULT;
9292
9293        if (wrqu->power.flags != IW_TXPOW_DBM) {
9294                err = -EINVAL;
9295                goto out;
9296        }
9297
9298        if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9299            (wrqu->power.value < IPW_TX_POWER_MIN)) {
9300                err = -EINVAL;
9301                goto out;
9302        }
9303
9304        priv->tx_power = wrqu->power.value;
9305        err = ipw_set_tx_power(priv);
9306      out:
9307        mutex_unlock(&priv->mutex);
9308        return err;
9309}
9310
9311static int ipw_wx_get_txpow(struct net_device *dev,
9312                            struct iw_request_info *info,
9313                            union iwreq_data *wrqu, char *extra)
9314{
9315        struct ipw_priv *priv = libipw_priv(dev);
9316        mutex_lock(&priv->mutex);
9317        wrqu->power.value = priv->tx_power;
9318        wrqu->power.fixed = 1;
9319        wrqu->power.flags = IW_TXPOW_DBM;
9320        wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9321        mutex_unlock(&priv->mutex);
9322
9323        IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9324                     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9325
9326        return 0;
9327}
9328
9329static int ipw_wx_set_frag(struct net_device *dev,
9330                           struct iw_request_info *info,
9331                           union iwreq_data *wrqu, char *extra)
9332{
9333        struct ipw_priv *priv = libipw_priv(dev);
9334        mutex_lock(&priv->mutex);
9335        if (wrqu->frag.disabled || !wrqu->frag.fixed)
9336                priv->ieee->fts = DEFAULT_FTS;
9337        else {
9338                if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9339                    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9340                        mutex_unlock(&priv->mutex);
9341                        return -EINVAL;
9342                }
9343
9344                priv->ieee->fts = wrqu->frag.value & ~0x1;
9345        }
9346
9347        ipw_send_frag_threshold(priv, wrqu->frag.value);
9348        mutex_unlock(&priv->mutex);
9349        IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9350        return 0;
9351}
9352
9353static int ipw_wx_get_frag(struct net_device *dev,
9354                           struct iw_request_info *info,
9355                           union iwreq_data *wrqu, char *extra)
9356{
9357        struct ipw_priv *priv = libipw_priv(dev);
9358        mutex_lock(&priv->mutex);
9359        wrqu->frag.value = priv->ieee->fts;
9360        wrqu->frag.fixed = 0;   /* no auto select */
9361        wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9362        mutex_unlock(&priv->mutex);
9363        IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9364
9365        return 0;
9366}
9367
9368static int ipw_wx_set_retry(struct net_device *dev,
9369                            struct iw_request_info *info,
9370                            union iwreq_data *wrqu, char *extra)
9371{
9372        struct ipw_priv *priv = libipw_priv(dev);
9373
9374        if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9375                return -EINVAL;
9376
9377        if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9378                return 0;
9379
9380        if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9381                return -EINVAL;
9382
9383        mutex_lock(&priv->mutex);
9384        if (wrqu->retry.flags & IW_RETRY_SHORT)
9385                priv->short_retry_limit = (u8) wrqu->retry.value;
9386        else if (wrqu->retry.flags & IW_RETRY_LONG)
9387                priv->long_retry_limit = (u8) wrqu->retry.value;
9388        else {
9389                priv->short_retry_limit = (u8) wrqu->retry.value;
9390                priv->long_retry_limit = (u8) wrqu->retry.value;
9391        }
9392
9393        ipw_send_retry_limit(priv, priv->short_retry_limit,
9394                             priv->long_retry_limit);
9395        mutex_unlock(&priv->mutex);
9396        IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9397                     priv->short_retry_limit, priv->long_retry_limit);
9398        return 0;
9399}
9400
9401static int ipw_wx_get_retry(struct net_device *dev,
9402                            struct iw_request_info *info,
9403                            union iwreq_data *wrqu, char *extra)
9404{
9405        struct ipw_priv *priv = libipw_priv(dev);
9406
9407        mutex_lock(&priv->mutex);
9408        wrqu->retry.disabled = 0;
9409
9410        if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9411                mutex_unlock(&priv->mutex);
9412                return -EINVAL;
9413        }
9414
9415        if (wrqu->retry.flags & IW_RETRY_LONG) {
9416                wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9417                wrqu->retry.value = priv->long_retry_limit;
9418        } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9419                wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9420                wrqu->retry.value = priv->short_retry_limit;
9421        } else {
9422                wrqu->retry.flags = IW_RETRY_LIMIT;
9423                wrqu->retry.value = priv->short_retry_limit;
9424        }
9425        mutex_unlock(&priv->mutex);
9426
9427        IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9428
9429        return 0;
9430}
9431
9432static int ipw_wx_set_scan(struct net_device *dev,
9433                           struct iw_request_info *info,
9434                           union iwreq_data *wrqu, char *extra)
9435{
9436        struct ipw_priv *priv = libipw_priv(dev);
9437        struct iw_scan_req *req = (struct iw_scan_req *)extra;
9438        struct delayed_work *work = NULL;
9439
9440        mutex_lock(&priv->mutex);
9441
9442        priv->user_requested_scan = 1;
9443
9444        if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9445                if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9446                        int len = min((int)req->essid_len,
9447                                      (int)sizeof(priv->direct_scan_ssid));
9448                        memcpy(priv->direct_scan_ssid, req->essid, len);
9449                        priv->direct_scan_ssid_len = len;
9450                        work = &priv->request_direct_scan;
9451                } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9452                        work = &priv->request_passive_scan;
9453                }
9454        } else {
9455                /* Normal active broadcast scan */
9456                work = &priv->request_scan;
9457        }
9458
9459        mutex_unlock(&priv->mutex);
9460
9461        IPW_DEBUG_WX("Start scan\n");
9462
9463        schedule_delayed_work(work, 0);
9464
9465        return 0;
9466}
9467
9468static int ipw_wx_get_scan(struct net_device *dev,
9469                           struct iw_request_info *info,
9470                           union iwreq_data *wrqu, char *extra)
9471{
9472        struct ipw_priv *priv = libipw_priv(dev);
9473        return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9474}
9475
9476static int ipw_wx_set_encode(struct net_device *dev,
9477                             struct iw_request_info *info,
9478                             union iwreq_data *wrqu, char *key)
9479{
9480        struct ipw_priv *priv = libipw_priv(dev);
9481        int ret;
9482        u32 cap = priv->capability;
9483
9484        mutex_lock(&priv->mutex);
9485        ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9486
9487        /* In IBSS mode, we need to notify the firmware to update
9488         * the beacon info after we changed the capability. */
9489        if (cap != priv->capability &&
9490            priv->ieee->iw_mode == IW_MODE_ADHOC &&
9491            priv->status & STATUS_ASSOCIATED)
9492                ipw_disassociate(priv);
9493
9494        mutex_unlock(&priv->mutex);
9495        return ret;
9496}
9497
9498static int ipw_wx_get_encode(struct net_device *dev,
9499                             struct iw_request_info *info,
9500                             union iwreq_data *wrqu, char *key)
9501{
9502        struct ipw_priv *priv = libipw_priv(dev);
9503        return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9504}
9505
9506static int ipw_wx_set_power(struct net_device *dev,
9507                            struct iw_request_info *info,
9508                            union iwreq_data *wrqu, char *extra)
9509{
9510        struct ipw_priv *priv = libipw_priv(dev);
9511        int err;
9512        mutex_lock(&priv->mutex);
9513        if (wrqu->power.disabled) {
9514                priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9515                err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9516                if (err) {
9517                        IPW_DEBUG_WX("failed setting power mode.\n");
9518                        mutex_unlock(&priv->mutex);
9519                        return err;
9520                }
9521                IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9522                mutex_unlock(&priv->mutex);
9523                return 0;
9524        }
9525
9526        switch (wrqu->power.flags & IW_POWER_MODE) {
9527        case IW_POWER_ON:       /* If not specified */
9528        case IW_POWER_MODE:     /* If set all mask */
9529        case IW_POWER_ALL_R:    /* If explicitly state all */
9530                break;
9531        default:                /* Otherwise we don't support it */
9532                IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9533                             wrqu->power.flags);
9534                mutex_unlock(&priv->mutex);
9535                return -EOPNOTSUPP;
9536        }
9537
9538        /* If the user hasn't specified a power management mode yet, default
9539         * to BATTERY */
9540        if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9541                priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9542        else
9543                priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9544
9545        err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9546        if (err) {
9547                IPW_DEBUG_WX("failed setting power mode.\n");
9548                mutex_unlock(&priv->mutex);
9549                return err;
9550        }
9551
9552        IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9553        mutex_unlock(&priv->mutex);
9554        return 0;
9555}
9556
9557static int ipw_wx_get_power(struct net_device *dev,
9558                            struct iw_request_info *info,
9559                            union iwreq_data *wrqu, char *extra)
9560{
9561        struct ipw_priv *priv = libipw_priv(dev);
9562        mutex_lock(&priv->mutex);
9563        if (!(priv->power_mode & IPW_POWER_ENABLED))
9564                wrqu->power.disabled = 1;
9565        else
9566                wrqu->power.disabled = 0;
9567
9568        mutex_unlock(&priv->mutex);
9569        IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9570
9571        return 0;
9572}
9573
9574static int ipw_wx_set_powermode(struct net_device *dev,
9575                                struct iw_request_info *info,
9576                                union iwreq_data *wrqu, char *extra)
9577{
9578        struct ipw_priv *priv = libipw_priv(dev);
9579        int mode = *(int *)extra;
9580        int err;
9581
9582        mutex_lock(&priv->mutex);
9583        if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9584                mode = IPW_POWER_AC;
9585
9586        if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9587                err = ipw_send_power_mode(priv, mode);
9588                if (err) {
9589                        IPW_DEBUG_WX("failed setting power mode.\n");
9590                        mutex_unlock(&priv->mutex);
9591                        return err;
9592                }
9593                priv->power_mode = IPW_POWER_ENABLED | mode;
9594        }
9595        mutex_unlock(&priv->mutex);
9596        return 0;
9597}
9598
9599#define MAX_WX_STRING 80
9600static int ipw_wx_get_powermode(struct net_device *dev,
9601                                struct iw_request_info *info,
9602                                union iwreq_data *wrqu, char *extra)
9603{
9604        struct ipw_priv *priv = libipw_priv(dev);
9605        int level = IPW_POWER_LEVEL(priv->power_mode);
9606        char *p = extra;
9607
9608        p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9609
9610        switch (level) {
9611        case IPW_POWER_AC:
9612                p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9613                break;
9614        case IPW_POWER_BATTERY:
9615                p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9616                break;
9617        default:
9618                p += scnprintf(p, MAX_WX_STRING - (p - extra),
9619                              "(Timeout %dms, Period %dms)",
9620                              timeout_duration[level - 1] / 1000,
9621                              period_duration[level - 1] / 1000);
9622        }
9623
9624        if (!(priv->power_mode & IPW_POWER_ENABLED))
9625                p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9626
9627        wrqu->data.length = p - extra + 1;
9628
9629        return 0;
9630}
9631
9632static int ipw_wx_set_wireless_mode(struct net_device *dev,
9633                                    struct iw_request_info *info,
9634                                    union iwreq_data *wrqu, char *extra)
9635{
9636        struct ipw_priv *priv = libipw_priv(dev);
9637        int mode = *(int *)extra;
9638        u8 band = 0, modulation = 0;
9639
9640        if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9641                IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9642                return -EINVAL;
9643        }
9644        mutex_lock(&priv->mutex);
9645        if (priv->adapter == IPW_2915ABG) {
9646                priv->ieee->abg_true = 1;
9647                if (mode & IEEE_A) {
9648                        band |= LIBIPW_52GHZ_BAND;
9649                        modulation |= LIBIPW_OFDM_MODULATION;
9650                } else
9651                        priv->ieee->abg_true = 0;
9652        } else {
9653                if (mode & IEEE_A) {
9654                        IPW_WARNING("Attempt to set 2200BG into "
9655                                    "802.11a mode\n");
9656                        mutex_unlock(&priv->mutex);
9657                        return -EINVAL;
9658                }
9659
9660                priv->ieee->abg_true = 0;
9661        }
9662
9663        if (mode & IEEE_B) {
9664                band |= LIBIPW_24GHZ_BAND;
9665                modulation |= LIBIPW_CCK_MODULATION;
9666        } else
9667                priv->ieee->abg_true = 0;
9668
9669        if (mode & IEEE_G) {
9670                band |= LIBIPW_24GHZ_BAND;
9671                modulation |= LIBIPW_OFDM_MODULATION;
9672        } else
9673                priv->ieee->abg_true = 0;
9674
9675        priv->ieee->mode = mode;
9676        priv->ieee->freq_band = band;
9677        priv->ieee->modulation = modulation;
9678        init_supported_rates(priv, &priv->rates);
9679
9680        /* Network configuration changed -- force [re]association */
9681        IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9682        if (!ipw_disassociate(priv)) {
9683                ipw_send_supported_rates(priv, &priv->rates);
9684                ipw_associate(priv);
9685        }
9686
9687        /* Update the band LEDs */
9688        ipw_led_band_on(priv);
9689
9690        IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9691                     mode & IEEE_A ? 'a' : '.',
9692                     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9693        mutex_unlock(&priv->mutex);
9694        return 0;
9695}
9696
9697static int ipw_wx_get_wireless_mode(struct net_device *dev,
9698                                    struct iw_request_info *info,
9699                                    union iwreq_data *wrqu, char *extra)
9700{
9701        struct ipw_priv *priv = libipw_priv(dev);
9702        mutex_lock(&priv->mutex);
9703        switch (priv->ieee->mode) {
9704        case IEEE_A:
9705                strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9706                break;
9707        case IEEE_B:
9708                strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9709                break;
9710        case IEEE_A | IEEE_B:
9711                strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9712                break;
9713        case IEEE_G:
9714                strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9715                break;
9716        case IEEE_A | IEEE_G:
9717                strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9718                break;
9719        case IEEE_B | IEEE_G:
9720                strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9721                break;
9722        case IEEE_A | IEEE_B | IEEE_G:
9723                strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9724                break;
9725        default:
9726                strncpy(extra, "unknown", MAX_WX_STRING);
9727                break;
9728        }
9729        extra[MAX_WX_STRING - 1] = '\0';
9730
9731        IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9732
9733        wrqu->data.length = strlen(extra) + 1;
9734        mutex_unlock(&priv->mutex);
9735
9736        return 0;
9737}
9738
9739static int ipw_wx_set_preamble(struct net_device *dev,
9740                               struct iw_request_info *info,
9741                               union iwreq_data *wrqu, char *extra)
9742{
9743        struct ipw_priv *priv = libipw_priv(dev);
9744        int mode = *(int *)extra;
9745        mutex_lock(&priv->mutex);
9746        /* Switching from SHORT -> LONG requires a disassociation */
9747        if (mode == 1) {
9748                if (!(priv->config & CFG_PREAMBLE_LONG)) {
9749                        priv->config |= CFG_PREAMBLE_LONG;
9750
9751                        /* Network configuration changed -- force [re]association */
9752                        IPW_DEBUG_ASSOC
9753                            ("[re]association triggered due to preamble change.\n");
9754                        if (!ipw_disassociate(priv))
9755                                ipw_associate(priv);
9756                }
9757                goto done;
9758        }
9759
9760        if (mode == 0) {
9761                priv->config &= ~CFG_PREAMBLE_LONG;
9762                goto done;
9763        }
9764        mutex_unlock(&priv->mutex);
9765        return -EINVAL;
9766
9767      done:
9768        mutex_unlock(&priv->mutex);
9769        return 0;
9770}
9771
9772static int ipw_wx_get_preamble(struct net_device *dev,
9773                               struct iw_request_info *info,
9774                               union iwreq_data *wrqu, char *extra)
9775{
9776        struct ipw_priv *priv = libipw_priv(dev);
9777        mutex_lock(&priv->mutex);
9778        if (priv->config & CFG_PREAMBLE_LONG)
9779                snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9780        else
9781                snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9782        mutex_unlock(&priv->mutex);
9783        return 0;
9784}
9785
9786#ifdef CONFIG_IPW2200_MONITOR
9787static int ipw_wx_set_monitor(struct net_device *dev,
9788                              struct iw_request_info *info,
9789                              union iwreq_data *wrqu, char *extra)
9790{
9791        struct ipw_priv *priv = libipw_priv(dev);
9792        int *parms = (int *)extra;
9793        int enable = (parms[0] > 0);
9794        mutex_lock(&priv->mutex);
9795        IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9796        if (enable) {
9797                if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9798#ifdef CONFIG_IPW2200_RADIOTAP
9799                        priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9800#else
9801                        priv->net_dev->type = ARPHRD_IEEE80211;
9802#endif
9803                        schedule_work(&priv->adapter_restart);
9804                }
9805
9806                ipw_set_channel(priv, parms[1]);
9807        } else {
9808                if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9809                        mutex_unlock(&priv->mutex);
9810                        return 0;
9811                }
9812                priv->net_dev->type = ARPHRD_ETHER;
9813                schedule_work(&priv->adapter_restart);
9814        }
9815        mutex_unlock(&priv->mutex);
9816        return 0;
9817}
9818
9819#endif                          /* CONFIG_IPW2200_MONITOR */
9820
9821static int ipw_wx_reset(struct net_device *dev,
9822                        struct iw_request_info *info,
9823                        union iwreq_data *wrqu, char *extra)
9824{
9825        struct ipw_priv *priv = libipw_priv(dev);
9826        IPW_DEBUG_WX("RESET\n");
9827        schedule_work(&priv->adapter_restart);
9828        return 0;
9829}
9830
9831static int ipw_wx_sw_reset(struct net_device *dev,
9832                           struct iw_request_info *info,
9833                           union iwreq_data *wrqu, char *extra)
9834{
9835        struct ipw_priv *priv = libipw_priv(dev);
9836        union iwreq_data wrqu_sec = {
9837                .encoding = {
9838                             .flags = IW_ENCODE_DISABLED,
9839                             },
9840        };
9841        int ret;
9842
9843        IPW_DEBUG_WX("SW_RESET\n");
9844
9845        mutex_lock(&priv->mutex);
9846
9847        ret = ipw_sw_reset(priv, 2);
9848        if (!ret) {
9849                free_firmware();
9850                ipw_adapter_restart(priv);
9851        }
9852
9853        /* The SW reset bit might have been toggled on by the 'disable'
9854         * module parameter, so take appropriate action */
9855        ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9856
9857        mutex_unlock(&priv->mutex);
9858        libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9859        mutex_lock(&priv->mutex);
9860
9861        if (!(priv->status & STATUS_RF_KILL_MASK)) {
9862                /* Configuration likely changed -- force [re]association */
9863                IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9864                                "reset.\n");
9865                if (!ipw_disassociate(priv))
9866                        ipw_associate(priv);
9867        }
9868
9869        mutex_unlock(&priv->mutex);
9870
9871        return 0;
9872}
9873
9874/* Rebase the WE IOCTLs to zero for the handler array */
9875static iw_handler ipw_wx_handlers[] = {
9876        IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9877        IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9878        IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9879        IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9880        IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9881        IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9882        IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9883        IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9884        IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9885        IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9886        IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9887        IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9888        IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9889        IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9890        IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9891        IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9892        IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9893        IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9894        IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9895        IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9896        IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9897        IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9898        IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9899        IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9900        IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9901        IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9902        IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9903        IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9904        IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9905        IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9906        IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9907        IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9908        IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9909        IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9910        IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9911        IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9912        IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9913        IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9914        IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9915        IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9916        IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9917};
9918
9919enum {
9920        IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9921        IPW_PRIV_GET_POWER,
9922        IPW_PRIV_SET_MODE,
9923        IPW_PRIV_GET_MODE,
9924        IPW_PRIV_SET_PREAMBLE,
9925        IPW_PRIV_GET_PREAMBLE,
9926        IPW_PRIV_RESET,
9927        IPW_PRIV_SW_RESET,
9928#ifdef CONFIG_IPW2200_MONITOR
9929        IPW_PRIV_SET_MONITOR,
9930#endif
9931};
9932
9933static struct iw_priv_args ipw_priv_args[] = {
9934        {
9935         .cmd = IPW_PRIV_SET_POWER,
9936         .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9937         .name = "set_power"},
9938        {
9939         .cmd = IPW_PRIV_GET_POWER,
9940         .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9941         .name = "get_power"},
9942        {
9943         .cmd = IPW_PRIV_SET_MODE,
9944         .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9945         .name = "set_mode"},
9946        {
9947         .cmd = IPW_PRIV_GET_MODE,
9948         .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9949         .name = "get_mode"},
9950        {
9951         .cmd = IPW_PRIV_SET_PREAMBLE,
9952         .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9953         .name = "set_preamble"},
9954        {
9955         .cmd = IPW_PRIV_GET_PREAMBLE,
9956         .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9957         .name = "get_preamble"},
9958        {
9959         IPW_PRIV_RESET,
9960         IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9961        {
9962         IPW_PRIV_SW_RESET,
9963         IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9964#ifdef CONFIG_IPW2200_MONITOR
9965        {
9966         IPW_PRIV_SET_MONITOR,
9967         IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9968#endif                          /* CONFIG_IPW2200_MONITOR */
9969};
9970
9971static iw_handler ipw_priv_handler[] = {
9972        ipw_wx_set_powermode,
9973        ipw_wx_get_powermode,
9974        ipw_wx_set_wireless_mode,
9975        ipw_wx_get_wireless_mode,
9976        ipw_wx_set_preamble,
9977        ipw_wx_get_preamble,
9978        ipw_wx_reset,
9979        ipw_wx_sw_reset,
9980#ifdef CONFIG_IPW2200_MONITOR
9981        ipw_wx_set_monitor,
9982#endif
9983};
9984
9985static const struct iw_handler_def ipw_wx_handler_def = {
9986        .standard = ipw_wx_handlers,
9987        .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9988        .num_private = ARRAY_SIZE(ipw_priv_handler),
9989        .num_private_args = ARRAY_SIZE(ipw_priv_args),
9990        .private = ipw_priv_handler,
9991        .private_args = ipw_priv_args,
9992        .get_wireless_stats = ipw_get_wireless_stats,
9993};
9994
9995/*
9996 * Get wireless statistics.
9997 * Called by /proc/net/wireless
9998 * Also called by SIOCGIWSTATS
9999 */
10000static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10001{
10002        struct ipw_priv *priv = libipw_priv(dev);
10003        struct iw_statistics *wstats;
10004
10005        wstats = &priv->wstats;
10006
10007        /* if hw is disabled, then ipw_get_ordinal() can't be called.
10008         * netdev->get_wireless_stats seems to be called before fw is
10009         * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10010         * and associated; if not associcated, the values are all meaningless
10011         * anyway, so set them all to NULL and INVALID */
10012        if (!(priv->status & STATUS_ASSOCIATED)) {
10013                wstats->miss.beacon = 0;
10014                wstats->discard.retries = 0;
10015                wstats->qual.qual = 0;
10016                wstats->qual.level = 0;
10017                wstats->qual.noise = 0;
10018                wstats->qual.updated = 7;
10019                wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10020                    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10021                return wstats;
10022        }
10023
10024        wstats->qual.qual = priv->quality;
10025        wstats->qual.level = priv->exp_avg_rssi;
10026        wstats->qual.noise = priv->exp_avg_noise;
10027        wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10028            IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10029
10030        wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10031        wstats->discard.retries = priv->last_tx_failures;
10032        wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10033
10034/*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10035        goto fail_get_ordinal;
10036        wstats->discard.retries += tx_retry; */
10037
10038        return wstats;
10039}
10040
10041/* net device stuff */
10042
10043static  void init_sys_config(struct ipw_sys_config *sys_config)
10044{
10045        memset(sys_config, 0, sizeof(struct ipw_sys_config));
10046        sys_config->bt_coexistence = 0;
10047        sys_config->answer_broadcast_ssid_probe = 0;
10048        sys_config->accept_all_data_frames = 0;
10049        sys_config->accept_non_directed_frames = 1;
10050        sys_config->exclude_unicast_unencrypted = 0;
10051        sys_config->disable_unicast_decryption = 1;
10052        sys_config->exclude_multicast_unencrypted = 0;
10053        sys_config->disable_multicast_decryption = 1;
10054        if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10055                antenna = CFG_SYS_ANTENNA_BOTH;
10056        sys_config->antenna_diversity = antenna;
10057        sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10058        sys_config->dot11g_auto_detection = 0;
10059        sys_config->enable_cts_to_self = 0;
10060        sys_config->bt_coexist_collision_thr = 0;
10061        sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10062        sys_config->silence_threshold = 0x1e;
10063}
10064
10065static int ipw_net_open(struct net_device *dev)
10066{
10067        IPW_DEBUG_INFO("dev->open\n");
10068        netif_start_queue(dev);
10069        return 0;
10070}
10071
10072static int ipw_net_stop(struct net_device *dev)
10073{
10074        IPW_DEBUG_INFO("dev->close\n");
10075        netif_stop_queue(dev);
10076        return 0;
10077}
10078
10079/*
10080todo:
10081
10082modify to send one tfd per fragment instead of using chunking.  otherwise
10083we need to heavily modify the libipw_skb_to_txb.
10084*/
10085
10086static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10087                             int pri)
10088{
10089        struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10090            txb->fragments[0]->data;
10091        int i = 0;
10092        struct tfd_frame *tfd;
10093#ifdef CONFIG_IPW2200_QOS
10094        int tx_id = ipw_get_tx_queue_number(priv, pri);
10095        struct clx2_tx_queue *txq = &priv->txq[tx_id];
10096#else
10097        struct clx2_tx_queue *txq = &priv->txq[0];
10098#endif
10099        struct clx2_queue *q = &txq->q;
10100        u8 id, hdr_len, unicast;
10101        int fc;
10102
10103        if (!(priv->status & STATUS_ASSOCIATED))
10104                goto drop;
10105
10106        hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10107        switch (priv->ieee->iw_mode) {
10108        case IW_MODE_ADHOC:
10109                unicast = !is_multicast_ether_addr(hdr->addr1);
10110                id = ipw_find_station(priv, hdr->addr1);
10111                if (id == IPW_INVALID_STATION) {
10112                        id = ipw_add_station(priv, hdr->addr1);
10113                        if (id == IPW_INVALID_STATION) {
10114                                IPW_WARNING("Attempt to send data to "
10115                                            "invalid cell: %pM\n",
10116                                            hdr->addr1);
10117                                goto drop;
10118                        }
10119                }
10120                break;
10121
10122        case IW_MODE_INFRA:
10123        default:
10124                unicast = !is_multicast_ether_addr(hdr->addr3);
10125                id = 0;
10126                break;
10127        }
10128
10129        tfd = &txq->bd[q->first_empty];
10130        txq->txb[q->first_empty] = txb;
10131        memset(tfd, 0, sizeof(*tfd));
10132        tfd->u.data.station_number = id;
10133
10134        tfd->control_flags.message_type = TX_FRAME_TYPE;
10135        tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10136
10137        tfd->u.data.cmd_id = DINO_CMD_TX;
10138        tfd->u.data.len = cpu_to_le16(txb->payload_size);
10139
10140        if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10141                tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10142        else
10143                tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10144
10145        if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10146                tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10147
10148        fc = le16_to_cpu(hdr->frame_ctl);
10149        hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10150
10151        memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10152
10153        if (likely(unicast))
10154                tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10155
10156        if (txb->encrypted && !priv->ieee->host_encrypt) {
10157                switch (priv->ieee->sec.level) {
10158                case SEC_LEVEL_3:
10159                        tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10160                            cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10161                        /* XXX: ACK flag must be set for CCMP even if it
10162                         * is a multicast/broadcast packet, because CCMP
10163                         * group communication encrypted by GTK is
10164                         * actually done by the AP. */
10165                        if (!unicast)
10166                                tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10167
10168                        tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10169                        tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10170                        tfd->u.data.key_index = 0;
10171                        tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10172                        break;
10173                case SEC_LEVEL_2:
10174                        tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10175                            cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10176                        tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10177                        tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10178                        tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10179                        break;
10180                case SEC_LEVEL_1:
10181                        tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10182                            cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10183                        tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10184                        if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10185                            40)
10186                                tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10187                        else
10188                                tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10189                        break;
10190                case SEC_LEVEL_0:
10191                        break;
10192                default:
10193                        printk(KERN_ERR "Unknown security level %d\n",
10194                               priv->ieee->sec.level);
10195                        break;
10196                }
10197        } else
10198                /* No hardware encryption */
10199                tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10200
10201#ifdef CONFIG_IPW2200_QOS
10202        if (fc & IEEE80211_STYPE_QOS_DATA)
10203                ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10204#endif                          /* CONFIG_IPW2200_QOS */
10205
10206        /* payload */
10207        tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10208                                                 txb->nr_frags));
10209        IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10210                       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10211        for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10212                IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10213                               i, le32_to_cpu(tfd->u.data.num_chunks),
10214                               txb->fragments[i]->len - hdr_len);
10215                IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10216                             i, tfd->u.data.num_chunks,
10217                             txb->fragments[i]->len - hdr_len);
10218                printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10219                           txb->fragments[i]->len - hdr_len);
10220
10221                tfd->u.data.chunk_ptr[i] =
10222                    cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10223                                               txb->fragments[i]->data + hdr_len,
10224                                               txb->fragments[i]->len - hdr_len,
10225                                               DMA_TO_DEVICE));
10226                tfd->u.data.chunk_len[i] =
10227                    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10228        }
10229
10230        if (i != txb->nr_frags) {
10231                struct sk_buff *skb;
10232                u16 remaining_bytes = 0;
10233                int j;
10234
10235                for (j = i; j < txb->nr_frags; j++)
10236                        remaining_bytes += txb->fragments[j]->len - hdr_len;
10237
10238                printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10239                       remaining_bytes);
10240                skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10241                if (skb != NULL) {
10242                        tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10243                        for (j = i; j < txb->nr_frags; j++) {
10244                                int size = txb->fragments[j]->len - hdr_len;
10245
10246                                printk(KERN_INFO "Adding frag %d %d...\n",
10247                                       j, size);
10248                                skb_put_data(skb,
10249                                             txb->fragments[j]->data + hdr_len,
10250                                             size);
10251                        }
10252                        dev_kfree_skb_any(txb->fragments[i]);
10253                        txb->fragments[i] = skb;
10254                        tfd->u.data.chunk_ptr[i] =
10255                            cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10256                                                       skb->data,
10257                                                       remaining_bytes,
10258                                                       DMA_TO_DEVICE));
10259
10260                        le32_add_cpu(&tfd->u.data.num_chunks, 1);
10261                }
10262        }
10263
10264        /* kick DMA */
10265        q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10266        ipw_write32(priv, q->reg_w, q->first_empty);
10267
10268        if (ipw_tx_queue_space(q) < q->high_mark)
10269                netif_stop_queue(priv->net_dev);
10270
10271        return NETDEV_TX_OK;
10272
10273      drop:
10274        IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10275        libipw_txb_free(txb);
10276        return NETDEV_TX_OK;
10277}
10278
10279static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10280{
10281        struct ipw_priv *priv = libipw_priv(dev);
10282#ifdef CONFIG_IPW2200_QOS
10283        int tx_id = ipw_get_tx_queue_number(priv, pri);
10284        struct clx2_tx_queue *txq = &priv->txq[tx_id];
10285#else
10286        struct clx2_tx_queue *txq = &priv->txq[0];
10287#endif                          /* CONFIG_IPW2200_QOS */
10288
10289        if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10290                return 1;
10291
10292        return 0;
10293}
10294
10295#ifdef CONFIG_IPW2200_PROMISCUOUS
10296static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10297                                      struct libipw_txb *txb)
10298{
10299        struct libipw_rx_stats dummystats;
10300        struct ieee80211_hdr *hdr;
10301        u8 n;
10302        u16 filter = priv->prom_priv->filter;
10303        int hdr_only = 0;
10304
10305        if (filter & IPW_PROM_NO_TX)
10306                return;
10307
10308        memset(&dummystats, 0, sizeof(dummystats));
10309
10310        /* Filtering of fragment chains is done against the first fragment */
10311        hdr = (void *)txb->fragments[0]->data;
10312        if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10313                if (filter & IPW_PROM_NO_MGMT)
10314                        return;
10315                if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10316                        hdr_only = 1;
10317        } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10318                if (filter & IPW_PROM_NO_CTL)
10319                        return;
10320                if (filter & IPW_PROM_CTL_HEADER_ONLY)
10321                        hdr_only = 1;
10322        } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10323                if (filter & IPW_PROM_NO_DATA)
10324                        return;
10325                if (filter & IPW_PROM_DATA_HEADER_ONLY)
10326                        hdr_only = 1;
10327        }
10328
10329        for(n=0; n<txb->nr_frags; ++n) {
10330                struct sk_buff *src = txb->fragments[n];
10331                struct sk_buff *dst;
10332                struct ieee80211_radiotap_header *rt_hdr;
10333                int len;
10334
10335                if (hdr_only) {
10336                        hdr = (void *)src->data;
10337                        len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10338                } else
10339                        len = src->len;
10340
10341                dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10342                if (!dst)
10343                        continue;
10344
10345                rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10346
10347                rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10348                rt_hdr->it_pad = 0;
10349                rt_hdr->it_present = 0; /* after all, it's just an idea */
10350                rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10351
10352                *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10353                        ieee80211chan2mhz(priv->channel));
10354                if (priv->channel > 14)         /* 802.11a */
10355                        *(__le16*)skb_put(dst, sizeof(u16)) =
10356                                cpu_to_le16(IEEE80211_CHAN_OFDM |
10357                                             IEEE80211_CHAN_5GHZ);
10358                else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10359                        *(__le16*)skb_put(dst, sizeof(u16)) =
10360                                cpu_to_le16(IEEE80211_CHAN_CCK |
10361                                             IEEE80211_CHAN_2GHZ);
10362                else            /* 802.11g */
10363                        *(__le16*)skb_put(dst, sizeof(u16)) =
10364                                cpu_to_le16(IEEE80211_CHAN_OFDM |
10365                                 IEEE80211_CHAN_2GHZ);
10366
10367                rt_hdr->it_len = cpu_to_le16(dst->len);
10368
10369                skb_copy_from_linear_data(src, skb_put(dst, len), len);
10370
10371                if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10372                        dev_kfree_skb_any(dst);
10373        }
10374}
10375#endif
10376
10377static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10378                                           struct net_device *dev, int pri)
10379{
10380        struct ipw_priv *priv = libipw_priv(dev);
10381        unsigned long flags;
10382        netdev_tx_t ret;
10383
10384        IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10385        spin_lock_irqsave(&priv->lock, flags);
10386
10387#ifdef CONFIG_IPW2200_PROMISCUOUS
10388        if (rtap_iface && netif_running(priv->prom_net_dev))
10389                ipw_handle_promiscuous_tx(priv, txb);
10390#endif
10391
10392        ret = ipw_tx_skb(priv, txb, pri);
10393        if (ret == NETDEV_TX_OK)
10394                __ipw_led_activity_on(priv);
10395        spin_unlock_irqrestore(&priv->lock, flags);
10396
10397        return ret;
10398}
10399
10400static void ipw_net_set_multicast_list(struct net_device *dev)
10401{
10402
10403}
10404
10405static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10406{
10407        struct ipw_priv *priv = libipw_priv(dev);
10408        struct sockaddr *addr = p;
10409
10410        if (!is_valid_ether_addr(addr->sa_data))
10411                return -EADDRNOTAVAIL;
10412        mutex_lock(&priv->mutex);
10413        priv->config |= CFG_CUSTOM_MAC;
10414        memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10415        printk(KERN_INFO "%s: Setting MAC to %pM\n",
10416               priv->net_dev->name, priv->mac_addr);
10417        schedule_work(&priv->adapter_restart);
10418        mutex_unlock(&priv->mutex);
10419        return 0;
10420}
10421
10422static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10423                                    struct ethtool_drvinfo *info)
10424{
10425        struct ipw_priv *p = libipw_priv(dev);
10426        char vers[64];
10427        char date[32];
10428        u32 len;
10429
10430        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10431        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10432
10433        len = sizeof(vers);
10434        ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10435        len = sizeof(date);
10436        ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10437
10438        snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10439                 vers, date);
10440        strlcpy(info->bus_info, pci_name(p->pci_dev),
10441                sizeof(info->bus_info));
10442}
10443
10444static u32 ipw_ethtool_get_link(struct net_device *dev)
10445{
10446        struct ipw_priv *priv = libipw_priv(dev);
10447        return (priv->status & STATUS_ASSOCIATED) != 0;
10448}
10449
10450static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10451{
10452        return IPW_EEPROM_IMAGE_SIZE;
10453}
10454
10455static int ipw_ethtool_get_eeprom(struct net_device *dev,
10456                                  struct ethtool_eeprom *eeprom, u8 * bytes)
10457{
10458        struct ipw_priv *p = libipw_priv(dev);
10459
10460        if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10461                return -EINVAL;
10462        mutex_lock(&p->mutex);
10463        memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10464        mutex_unlock(&p->mutex);
10465        return 0;
10466}
10467
10468static int ipw_ethtool_set_eeprom(struct net_device *dev,
10469                                  struct ethtool_eeprom *eeprom, u8 * bytes)
10470{
10471        struct ipw_priv *p = libipw_priv(dev);
10472        int i;
10473
10474        if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10475                return -EINVAL;
10476        mutex_lock(&p->mutex);
10477        memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10478        for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10479                ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10480        mutex_unlock(&p->mutex);
10481        return 0;
10482}
10483
10484static const struct ethtool_ops ipw_ethtool_ops = {
10485        .get_link = ipw_ethtool_get_link,
10486        .get_drvinfo = ipw_ethtool_get_drvinfo,
10487        .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10488        .get_eeprom = ipw_ethtool_get_eeprom,
10489        .set_eeprom = ipw_ethtool_set_eeprom,
10490};
10491
10492static irqreturn_t ipw_isr(int irq, void *data)
10493{
10494        struct ipw_priv *priv = data;
10495        u32 inta, inta_mask;
10496
10497        if (!priv)
10498                return IRQ_NONE;
10499
10500        spin_lock(&priv->irq_lock);
10501
10502        if (!(priv->status & STATUS_INT_ENABLED)) {
10503                /* IRQ is disabled */
10504                goto none;
10505        }
10506
10507        inta = ipw_read32(priv, IPW_INTA_RW);
10508        inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10509
10510        if (inta == 0xFFFFFFFF) {
10511                /* Hardware disappeared */
10512                IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10513                goto none;
10514        }
10515
10516        if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10517                /* Shared interrupt */
10518                goto none;
10519        }
10520
10521        /* tell the device to stop sending interrupts */
10522        __ipw_disable_interrupts(priv);
10523
10524        /* ack current interrupts */
10525        inta &= (IPW_INTA_MASK_ALL & inta_mask);
10526        ipw_write32(priv, IPW_INTA_RW, inta);
10527
10528        /* Cache INTA value for our tasklet */
10529        priv->isr_inta = inta;
10530
10531        tasklet_schedule(&priv->irq_tasklet);
10532
10533        spin_unlock(&priv->irq_lock);
10534
10535        return IRQ_HANDLED;
10536      none:
10537        spin_unlock(&priv->irq_lock);
10538        return IRQ_NONE;
10539}
10540
10541static void ipw_rf_kill(void *adapter)
10542{
10543        struct ipw_priv *priv = adapter;
10544        unsigned long flags;
10545
10546        spin_lock_irqsave(&priv->lock, flags);
10547
10548        if (rf_kill_active(priv)) {
10549                IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10550                schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10551                goto exit_unlock;
10552        }
10553
10554        /* RF Kill is now disabled, so bring the device back up */
10555
10556        if (!(priv->status & STATUS_RF_KILL_MASK)) {
10557                IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10558                                  "device\n");
10559
10560                /* we can not do an adapter restart while inside an irq lock */
10561                schedule_work(&priv->adapter_restart);
10562        } else
10563                IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10564                                  "enabled\n");
10565
10566      exit_unlock:
10567        spin_unlock_irqrestore(&priv->lock, flags);
10568}
10569
10570static void ipw_bg_rf_kill(struct work_struct *work)
10571{
10572        struct ipw_priv *priv =
10573                container_of(work, struct ipw_priv, rf_kill.work);
10574        mutex_lock(&priv->mutex);
10575        ipw_rf_kill(priv);
10576        mutex_unlock(&priv->mutex);
10577}
10578
10579static void ipw_link_up(struct ipw_priv *priv)
10580{
10581        priv->last_seq_num = -1;
10582        priv->last_frag_num = -1;
10583        priv->last_packet_time = 0;
10584
10585        netif_carrier_on(priv->net_dev);
10586
10587        cancel_delayed_work(&priv->request_scan);
10588        cancel_delayed_work(&priv->request_direct_scan);
10589        cancel_delayed_work(&priv->request_passive_scan);
10590        cancel_delayed_work(&priv->scan_event);
10591        ipw_reset_stats(priv);
10592        /* Ensure the rate is updated immediately */
10593        priv->last_rate = ipw_get_current_rate(priv);
10594        ipw_gather_stats(priv);
10595        ipw_led_link_up(priv);
10596        notify_wx_assoc_event(priv);
10597
10598        if (priv->config & CFG_BACKGROUND_SCAN)
10599                schedule_delayed_work(&priv->request_scan, HZ);
10600}
10601
10602static void ipw_bg_link_up(struct work_struct *work)
10603{
10604        struct ipw_priv *priv =
10605                container_of(work, struct ipw_priv, link_up);
10606        mutex_lock(&priv->mutex);
10607        ipw_link_up(priv);
10608        mutex_unlock(&priv->mutex);
10609}
10610
10611static void ipw_link_down(struct ipw_priv *priv)
10612{
10613        ipw_led_link_down(priv);
10614        netif_carrier_off(priv->net_dev);
10615        notify_wx_assoc_event(priv);
10616
10617        /* Cancel any queued work ... */
10618        cancel_delayed_work(&priv->request_scan);
10619        cancel_delayed_work(&priv->request_direct_scan);
10620        cancel_delayed_work(&priv->request_passive_scan);
10621        cancel_delayed_work(&priv->adhoc_check);
10622        cancel_delayed_work(&priv->gather_stats);
10623
10624        ipw_reset_stats(priv);
10625
10626        if (!(priv->status & STATUS_EXIT_PENDING)) {
10627                /* Queue up another scan... */
10628                schedule_delayed_work(&priv->request_scan, 0);
10629        } else
10630                cancel_delayed_work(&priv->scan_event);
10631}
10632
10633static void ipw_bg_link_down(struct work_struct *work)
10634{
10635        struct ipw_priv *priv =
10636                container_of(work, struct ipw_priv, link_down);
10637        mutex_lock(&priv->mutex);
10638        ipw_link_down(priv);
10639        mutex_unlock(&priv->mutex);
10640}
10641
10642static void ipw_setup_deferred_work(struct ipw_priv *priv)
10643{
10644        init_waitqueue_head(&priv->wait_command_queue);
10645        init_waitqueue_head(&priv->wait_state);
10646
10647        INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10648        INIT_WORK(&priv->associate, ipw_bg_associate);
10649        INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10650        INIT_WORK(&priv->system_config, ipw_system_config);
10651        INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10652        INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10653        INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10654        INIT_WORK(&priv->up, ipw_bg_up);
10655        INIT_WORK(&priv->down, ipw_bg_down);
10656        INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10657        INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10658        INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10659        INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10660        INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10661        INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10662        INIT_WORK(&priv->roam, ipw_bg_roam);
10663        INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10664        INIT_WORK(&priv->link_up, ipw_bg_link_up);
10665        INIT_WORK(&priv->link_down, ipw_bg_link_down);
10666        INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10667        INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10668        INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10669        INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10670
10671#ifdef CONFIG_IPW2200_QOS
10672        INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10673#endif                          /* CONFIG_IPW2200_QOS */
10674
10675        tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10676}
10677
10678static void shim__set_security(struct net_device *dev,
10679                               struct libipw_security *sec)
10680{
10681        struct ipw_priv *priv = libipw_priv(dev);
10682        int i;
10683        for (i = 0; i < 4; i++) {
10684                if (sec->flags & (1 << i)) {
10685                        priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10686                        priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10687                        if (sec->key_sizes[i] == 0)
10688                                priv->ieee->sec.flags &= ~(1 << i);
10689                        else {
10690                                memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10691                                       sec->key_sizes[i]);
10692                                priv->ieee->sec.flags |= (1 << i);
10693                        }
10694                        priv->status |= STATUS_SECURITY_UPDATED;
10695                } else if (sec->level != SEC_LEVEL_1)
10696                        priv->ieee->sec.flags &= ~(1 << i);
10697        }
10698
10699        if (sec->flags & SEC_ACTIVE_KEY) {
10700                priv->ieee->sec.active_key = sec->active_key;
10701                priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10702                priv->status |= STATUS_SECURITY_UPDATED;
10703        } else
10704                priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10705
10706        if ((sec->flags & SEC_AUTH_MODE) &&
10707            (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10708                priv->ieee->sec.auth_mode = sec->auth_mode;
10709                priv->ieee->sec.flags |= SEC_AUTH_MODE;
10710                if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10711                        priv->capability |= CAP_SHARED_KEY;
10712                else
10713                        priv->capability &= ~CAP_SHARED_KEY;
10714                priv->status |= STATUS_SECURITY_UPDATED;
10715        }
10716
10717        if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10718                priv->ieee->sec.flags |= SEC_ENABLED;
10719                priv->ieee->sec.enabled = sec->enabled;
10720                priv->status |= STATUS_SECURITY_UPDATED;
10721                if (sec->enabled)
10722                        priv->capability |= CAP_PRIVACY_ON;
10723                else
10724                        priv->capability &= ~CAP_PRIVACY_ON;
10725        }
10726
10727        if (sec->flags & SEC_ENCRYPT)
10728                priv->ieee->sec.encrypt = sec->encrypt;
10729
10730        if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10731                priv->ieee->sec.level = sec->level;
10732                priv->ieee->sec.flags |= SEC_LEVEL;
10733                priv->status |= STATUS_SECURITY_UPDATED;
10734        }
10735
10736        if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10737                ipw_set_hwcrypto_keys(priv);
10738
10739        /* To match current functionality of ipw2100 (which works well w/
10740         * various supplicants, we don't force a disassociate if the
10741         * privacy capability changes ... */
10742#if 0
10743        if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10744            (((priv->assoc_request.capability &
10745               cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10746             (!(priv->assoc_request.capability &
10747                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10748                IPW_DEBUG_ASSOC("Disassociating due to capability "
10749                                "change.\n");
10750                ipw_disassociate(priv);
10751        }
10752#endif
10753}
10754
10755static int init_supported_rates(struct ipw_priv *priv,
10756                                struct ipw_supported_rates *rates)
10757{
10758        /* TODO: Mask out rates based on priv->rates_mask */
10759
10760        memset(rates, 0, sizeof(*rates));
10761        /* configure supported rates */
10762        switch (priv->ieee->freq_band) {
10763        case LIBIPW_52GHZ_BAND:
10764                rates->ieee_mode = IPW_A_MODE;
10765                rates->purpose = IPW_RATE_CAPABILITIES;
10766                ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10767                                        LIBIPW_OFDM_DEFAULT_RATES_MASK);
10768                break;
10769
10770        default:                /* Mixed or 2.4Ghz */
10771                rates->ieee_mode = IPW_G_MODE;
10772                rates->purpose = IPW_RATE_CAPABILITIES;
10773                ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10774                                       LIBIPW_CCK_DEFAULT_RATES_MASK);
10775                if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10776                        ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10777                                                LIBIPW_OFDM_DEFAULT_RATES_MASK);
10778                }
10779                break;
10780        }
10781
10782        return 0;
10783}
10784
10785static int ipw_config(struct ipw_priv *priv)
10786{
10787        /* This is only called from ipw_up, which resets/reloads the firmware
10788           so, we don't need to first disable the card before we configure
10789           it */
10790        if (ipw_set_tx_power(priv))
10791                goto error;
10792
10793        /* initialize adapter address */
10794        if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10795                goto error;
10796
10797        /* set basic system config settings */
10798        init_sys_config(&priv->sys_config);
10799
10800        /* Support Bluetooth if we have BT h/w on board, and user wants to.
10801         * Does not support BT priority yet (don't abort or defer our Tx) */
10802        if (bt_coexist) {
10803                unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10804
10805                if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10806                        priv->sys_config.bt_coexistence
10807                            |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10808                if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10809                        priv->sys_config.bt_coexistence
10810                            |= CFG_BT_COEXISTENCE_OOB;
10811        }
10812
10813#ifdef CONFIG_IPW2200_PROMISCUOUS
10814        if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10815                priv->sys_config.accept_all_data_frames = 1;
10816                priv->sys_config.accept_non_directed_frames = 1;
10817                priv->sys_config.accept_all_mgmt_bcpr = 1;
10818                priv->sys_config.accept_all_mgmt_frames = 1;
10819        }
10820#endif
10821
10822        if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10823                priv->sys_config.answer_broadcast_ssid_probe = 1;
10824        else
10825                priv->sys_config.answer_broadcast_ssid_probe = 0;
10826
10827        if (ipw_send_system_config(priv))
10828                goto error;
10829
10830        init_supported_rates(priv, &priv->rates);
10831        if (ipw_send_supported_rates(priv, &priv->rates))
10832                goto error;
10833
10834        /* Set request-to-send threshold */
10835        if (priv->rts_threshold) {
10836                if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10837                        goto error;
10838        }
10839#ifdef CONFIG_IPW2200_QOS
10840        IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10841        ipw_qos_activate(priv, NULL);
10842#endif                          /* CONFIG_IPW2200_QOS */
10843
10844        if (ipw_set_random_seed(priv))
10845                goto error;
10846
10847        /* final state transition to the RUN state */
10848        if (ipw_send_host_complete(priv))
10849                goto error;
10850
10851        priv->status |= STATUS_INIT;
10852
10853        ipw_led_init(priv);
10854        ipw_led_radio_on(priv);
10855        priv->notif_missed_beacons = 0;
10856
10857        /* Set hardware WEP key if it is configured. */
10858        if ((priv->capability & CAP_PRIVACY_ON) &&
10859            (priv->ieee->sec.level == SEC_LEVEL_1) &&
10860            !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10861                ipw_set_hwcrypto_keys(priv);
10862
10863        return 0;
10864
10865      error:
10866        return -EIO;
10867}
10868
10869/*
10870 * NOTE:
10871 *
10872 * These tables have been tested in conjunction with the
10873 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10874 *
10875 * Altering this values, using it on other hardware, or in geographies
10876 * not intended for resale of the above mentioned Intel adapters has
10877 * not been tested.
10878 *
10879 * Remember to update the table in README.ipw2200 when changing this
10880 * table.
10881 *
10882 */
10883static const struct libipw_geo ipw_geos[] = {
10884        {                       /* Restricted */
10885         "---",
10886         .bg_channels = 11,
10887         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10888                {2427, 4}, {2432, 5}, {2437, 6},
10889                {2442, 7}, {2447, 8}, {2452, 9},
10890                {2457, 10}, {2462, 11}},
10891         },
10892
10893        {                       /* Custom US/Canada */
10894         "ZZF",
10895         .bg_channels = 11,
10896         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10897                {2427, 4}, {2432, 5}, {2437, 6},
10898                {2442, 7}, {2447, 8}, {2452, 9},
10899                {2457, 10}, {2462, 11}},
10900         .a_channels = 8,
10901         .a = {{5180, 36},
10902               {5200, 40},
10903               {5220, 44},
10904               {5240, 48},
10905               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10906               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10907               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10908               {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10909         },
10910
10911        {                       /* Rest of World */
10912         "ZZD",
10913         .bg_channels = 13,
10914         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10915                {2427, 4}, {2432, 5}, {2437, 6},
10916                {2442, 7}, {2447, 8}, {2452, 9},
10917                {2457, 10}, {2462, 11}, {2467, 12},
10918                {2472, 13}},
10919         },
10920
10921        {                       /* Custom USA & Europe & High */
10922         "ZZA",
10923         .bg_channels = 11,
10924         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925                {2427, 4}, {2432, 5}, {2437, 6},
10926                {2442, 7}, {2447, 8}, {2452, 9},
10927                {2457, 10}, {2462, 11}},
10928         .a_channels = 13,
10929         .a = {{5180, 36},
10930               {5200, 40},
10931               {5220, 44},
10932               {5240, 48},
10933               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10934               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10935               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10936               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10937               {5745, 149},
10938               {5765, 153},
10939               {5785, 157},
10940               {5805, 161},
10941               {5825, 165}},
10942         },
10943
10944        {                       /* Custom NA & Europe */
10945         "ZZB",
10946         .bg_channels = 11,
10947         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10948                {2427, 4}, {2432, 5}, {2437, 6},
10949                {2442, 7}, {2447, 8}, {2452, 9},
10950                {2457, 10}, {2462, 11}},
10951         .a_channels = 13,
10952         .a = {{5180, 36},
10953               {5200, 40},
10954               {5220, 44},
10955               {5240, 48},
10956               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10957               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10958               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10959               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10960               {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10961               {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10962               {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10963               {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10964               {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10965         },
10966
10967        {                       /* Custom Japan */
10968         "ZZC",
10969         .bg_channels = 11,
10970         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10971                {2427, 4}, {2432, 5}, {2437, 6},
10972                {2442, 7}, {2447, 8}, {2452, 9},
10973                {2457, 10}, {2462, 11}},
10974         .a_channels = 4,
10975         .a = {{5170, 34}, {5190, 38},
10976               {5210, 42}, {5230, 46}},
10977         },
10978
10979        {                       /* Custom */
10980         "ZZM",
10981         .bg_channels = 11,
10982         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10983                {2427, 4}, {2432, 5}, {2437, 6},
10984                {2442, 7}, {2447, 8}, {2452, 9},
10985                {2457, 10}, {2462, 11}},
10986         },
10987
10988        {                       /* Europe */
10989         "ZZE",
10990         .bg_channels = 13,
10991         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992                {2427, 4}, {2432, 5}, {2437, 6},
10993                {2442, 7}, {2447, 8}, {2452, 9},
10994                {2457, 10}, {2462, 11}, {2467, 12},
10995                {2472, 13}},
10996         .a_channels = 19,
10997         .a = {{5180, 36},
10998               {5200, 40},
10999               {5220, 44},
11000               {5240, 48},
11001               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11002               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11003               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11004               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11005               {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11006               {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11007               {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11008               {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11009               {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11010               {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11011               {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11012               {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11013               {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11014               {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11015               {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11016         },
11017
11018        {                       /* Custom Japan */
11019         "ZZJ",
11020         .bg_channels = 14,
11021         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022                {2427, 4}, {2432, 5}, {2437, 6},
11023                {2442, 7}, {2447, 8}, {2452, 9},
11024                {2457, 10}, {2462, 11}, {2467, 12},
11025                {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11026         .a_channels = 4,
11027         .a = {{5170, 34}, {5190, 38},
11028               {5210, 42}, {5230, 46}},
11029         },
11030
11031        {                       /* Rest of World */
11032         "ZZR",
11033         .bg_channels = 14,
11034         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11035                {2427, 4}, {2432, 5}, {2437, 6},
11036                {2442, 7}, {2447, 8}, {2452, 9},
11037                {2457, 10}, {2462, 11}, {2467, 12},
11038                {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11039                             LIBIPW_CH_PASSIVE_ONLY}},
11040         },
11041
11042        {                       /* High Band */
11043         "ZZH",
11044         .bg_channels = 13,
11045         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11046                {2427, 4}, {2432, 5}, {2437, 6},
11047                {2442, 7}, {2447, 8}, {2452, 9},
11048                {2457, 10}, {2462, 11},
11049                {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11050                {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11051         .a_channels = 4,
11052         .a = {{5745, 149}, {5765, 153},
11053               {5785, 157}, {5805, 161}},
11054         },
11055
11056        {                       /* Custom Europe */
11057         "ZZG",
11058         .bg_channels = 13,
11059         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060                {2427, 4}, {2432, 5}, {2437, 6},
11061                {2442, 7}, {2447, 8}, {2452, 9},
11062                {2457, 10}, {2462, 11},
11063                {2467, 12}, {2472, 13}},
11064         .a_channels = 4,
11065         .a = {{5180, 36}, {5200, 40},
11066               {5220, 44}, {5240, 48}},
11067         },
11068
11069        {                       /* Europe */
11070         "ZZK",
11071         .bg_channels = 13,
11072         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11073                {2427, 4}, {2432, 5}, {2437, 6},
11074                {2442, 7}, {2447, 8}, {2452, 9},
11075                {2457, 10}, {2462, 11},
11076                {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11077                {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11078         .a_channels = 24,
11079         .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11080               {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11081               {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11082               {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11083               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11084               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11085               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11086               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11087               {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11088               {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11089               {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11090               {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11091               {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11092               {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11093               {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11094               {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11095               {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11096               {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11097               {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11098               {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11099               {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11100               {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11101               {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11102               {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11103         },
11104
11105        {                       /* Europe */
11106         "ZZL",
11107         .bg_channels = 11,
11108         .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11109                {2427, 4}, {2432, 5}, {2437, 6},
11110                {2442, 7}, {2447, 8}, {2452, 9},
11111                {2457, 10}, {2462, 11}},
11112         .a_channels = 13,
11113         .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11114               {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11115               {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11116               {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11117               {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11118               {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11119               {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11120               {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11121               {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11122               {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11123               {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11124               {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11125               {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11126         }
11127};
11128
11129static void ipw_set_geo(struct ipw_priv *priv)
11130{
11131        int j;
11132
11133        for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11134                if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11135                            ipw_geos[j].name, 3))
11136                        break;
11137        }
11138
11139        if (j == ARRAY_SIZE(ipw_geos)) {
11140                IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11141                            priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11142                            priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11143                            priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11144                j = 0;
11145        }
11146
11147        libipw_set_geo(priv->ieee, &ipw_geos[j]);
11148}
11149
11150#define MAX_HW_RESTARTS 5
11151static int ipw_up(struct ipw_priv *priv)
11152{
11153        int rc, i;
11154
11155        /* Age scan list entries found before suspend */
11156        if (priv->suspend_time) {
11157                libipw_networks_age(priv->ieee, priv->suspend_time);
11158                priv->suspend_time = 0;
11159        }
11160
11161        if (priv->status & STATUS_EXIT_PENDING)
11162                return -EIO;
11163
11164        if (cmdlog && !priv->cmdlog) {
11165                priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11166                                       GFP_KERNEL);
11167                if (priv->cmdlog == NULL) {
11168                        IPW_ERROR("Error allocating %d command log entries.\n",
11169                                  cmdlog);
11170                        return -ENOMEM;
11171                } else {
11172                        priv->cmdlog_len = cmdlog;
11173                }
11174        }
11175
11176        for (i = 0; i < MAX_HW_RESTARTS; i++) {
11177                /* Load the microcode, firmware, and eeprom.
11178                 * Also start the clocks. */
11179                rc = ipw_load(priv);
11180                if (rc) {
11181                        IPW_ERROR("Unable to load firmware: %d\n", rc);
11182                        return rc;
11183                }
11184
11185                ipw_init_ordinals(priv);
11186                if (!(priv->config & CFG_CUSTOM_MAC))
11187                        eeprom_parse_mac(priv, priv->mac_addr);
11188                memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11189
11190                ipw_set_geo(priv);
11191
11192                if (priv->status & STATUS_RF_KILL_SW) {
11193                        IPW_WARNING("Radio disabled by module parameter.\n");
11194                        return 0;
11195                } else if (rf_kill_active(priv)) {
11196                        IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11197                                    "Kill switch must be turned off for "
11198                                    "wireless networking to work.\n");
11199                        schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11200                        return 0;
11201                }
11202
11203                rc = ipw_config(priv);
11204                if (!rc) {
11205                        IPW_DEBUG_INFO("Configured device on count %i\n", i);
11206
11207                        /* If configure to try and auto-associate, kick
11208                         * off a scan. */
11209                        schedule_delayed_work(&priv->request_scan, 0);
11210
11211                        return 0;
11212                }
11213
11214                IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11215                IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11216                               i, MAX_HW_RESTARTS);
11217
11218                /* We had an error bringing up the hardware, so take it
11219                 * all the way back down so we can try again */
11220                ipw_down(priv);
11221        }
11222
11223        /* tried to restart and config the device for as long as our
11224         * patience could withstand */
11225        IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11226
11227        return -EIO;
11228}
11229
11230static void ipw_bg_up(struct work_struct *work)
11231{
11232        struct ipw_priv *priv =
11233                container_of(work, struct ipw_priv, up);
11234        mutex_lock(&priv->mutex);
11235        ipw_up(priv);
11236        mutex_unlock(&priv->mutex);
11237}
11238
11239static void ipw_deinit(struct ipw_priv *priv)
11240{
11241        int i;
11242
11243        if (priv->status & STATUS_SCANNING) {
11244                IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11245                ipw_abort_scan(priv);
11246        }
11247
11248        if (priv->status & STATUS_ASSOCIATED) {
11249                IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11250                ipw_disassociate(priv);
11251        }
11252
11253        ipw_led_shutdown(priv);
11254
11255        /* Wait up to 1s for status to change to not scanning and not
11256         * associated (disassociation can take a while for a ful 802.11
11257         * exchange */
11258        for (i = 1000; i && (priv->status &
11259                             (STATUS_DISASSOCIATING |
11260                              STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11261                udelay(10);
11262
11263        if (priv->status & (STATUS_DISASSOCIATING |
11264                            STATUS_ASSOCIATED | STATUS_SCANNING))
11265                IPW_DEBUG_INFO("Still associated or scanning...\n");
11266        else
11267                IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11268
11269        /* Attempt to disable the card */
11270        ipw_send_card_disable(priv, 0);
11271
11272        priv->status &= ~STATUS_INIT;
11273}
11274
11275static void ipw_down(struct ipw_priv *priv)
11276{
11277        int exit_pending = priv->status & STATUS_EXIT_PENDING;
11278
11279        priv->status |= STATUS_EXIT_PENDING;
11280
11281        if (ipw_is_init(priv))
11282                ipw_deinit(priv);
11283
11284        /* Wipe out the EXIT_PENDING status bit if we are not actually
11285         * exiting the module */
11286        if (!exit_pending)
11287                priv->status &= ~STATUS_EXIT_PENDING;
11288
11289        /* tell the device to stop sending interrupts */
11290        ipw_disable_interrupts(priv);
11291
11292        /* Clear all bits but the RF Kill */
11293        priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11294        netif_carrier_off(priv->net_dev);
11295
11296        ipw_stop_nic(priv);
11297
11298        ipw_led_radio_off(priv);
11299}
11300
11301static void ipw_bg_down(struct work_struct *work)
11302{
11303        struct ipw_priv *priv =
11304                container_of(work, struct ipw_priv, down);
11305        mutex_lock(&priv->mutex);
11306        ipw_down(priv);
11307        mutex_unlock(&priv->mutex);
11308}
11309
11310static int ipw_wdev_init(struct net_device *dev)
11311{
11312        int i, rc = 0;
11313        struct ipw_priv *priv = libipw_priv(dev);
11314        const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11315        struct wireless_dev *wdev = &priv->ieee->wdev;
11316
11317        memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11318
11319        /* fill-out priv->ieee->bg_band */
11320        if (geo->bg_channels) {
11321                struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11322
11323                bg_band->band = NL80211_BAND_2GHZ;
11324                bg_band->n_channels = geo->bg_channels;
11325                bg_band->channels = kcalloc(geo->bg_channels,
11326                                            sizeof(struct ieee80211_channel),
11327                                            GFP_KERNEL);
11328                if (!bg_band->channels) {
11329                        rc = -ENOMEM;
11330                        goto out;
11331                }
11332                /* translate geo->bg to bg_band.channels */
11333                for (i = 0; i < geo->bg_channels; i++) {
11334                        bg_band->channels[i].band = NL80211_BAND_2GHZ;
11335                        bg_band->channels[i].center_freq = geo->bg[i].freq;
11336                        bg_band->channels[i].hw_value = geo->bg[i].channel;
11337                        bg_band->channels[i].max_power = geo->bg[i].max_power;
11338                        if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11339                                bg_band->channels[i].flags |=
11340                                        IEEE80211_CHAN_NO_IR;
11341                        if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11342                                bg_band->channels[i].flags |=
11343                                        IEEE80211_CHAN_NO_IR;
11344                        if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11345                                bg_band->channels[i].flags |=
11346                                        IEEE80211_CHAN_RADAR;
11347                        /* No equivalent for LIBIPW_CH_80211H_RULES,
11348                           LIBIPW_CH_UNIFORM_SPREADING, or
11349                           LIBIPW_CH_B_ONLY... */
11350                }
11351                /* point at bitrate info */
11352                bg_band->bitrates = ipw2200_bg_rates;
11353                bg_band->n_bitrates = ipw2200_num_bg_rates;
11354
11355                wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11356        }
11357
11358        /* fill-out priv->ieee->a_band */
11359        if (geo->a_channels) {
11360                struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11361
11362                a_band->band = NL80211_BAND_5GHZ;
11363                a_band->n_channels = geo->a_channels;
11364                a_band->channels = kcalloc(geo->a_channels,
11365                                           sizeof(struct ieee80211_channel),
11366                                           GFP_KERNEL);
11367                if (!a_band->channels) {
11368                        rc = -ENOMEM;
11369                        goto out;
11370                }
11371                /* translate geo->a to a_band.channels */
11372                for (i = 0; i < geo->a_channels; i++) {
11373                        a_band->channels[i].band = NL80211_BAND_5GHZ;
11374                        a_band->channels[i].center_freq = geo->a[i].freq;
11375                        a_band->channels[i].hw_value = geo->a[i].channel;
11376                        a_band->channels[i].max_power = geo->a[i].max_power;
11377                        if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11378                                a_band->channels[i].flags |=
11379                                        IEEE80211_CHAN_NO_IR;
11380                        if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11381                                a_band->channels[i].flags |=
11382                                        IEEE80211_CHAN_NO_IR;
11383                        if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11384                                a_band->channels[i].flags |=
11385                                        IEEE80211_CHAN_RADAR;
11386                        /* No equivalent for LIBIPW_CH_80211H_RULES,
11387                           LIBIPW_CH_UNIFORM_SPREADING, or
11388                           LIBIPW_CH_B_ONLY... */
11389                }
11390                /* point at bitrate info */
11391                a_band->bitrates = ipw2200_a_rates;
11392                a_band->n_bitrates = ipw2200_num_a_rates;
11393
11394                wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11395        }
11396
11397        wdev->wiphy->cipher_suites = ipw_cipher_suites;
11398        wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11399
11400        set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11401
11402        /* With that information in place, we can now register the wiphy... */
11403        if (wiphy_register(wdev->wiphy))
11404                rc = -EIO;
11405out:
11406        return rc;
11407}
11408
11409/* PCI driver stuff */
11410static const struct pci_device_id card_ids[] = {
11411        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11412        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11413        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11414        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11415        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11416        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11417        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11418        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11419        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11420        {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11421        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11422        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11423        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11424        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11425        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11426        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11427        {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11428        {PCI_VDEVICE(INTEL, 0x104f), 0},
11429        {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11430        {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11431        {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11432        {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11433
11434        /* required last entry */
11435        {0,}
11436};
11437
11438MODULE_DEVICE_TABLE(pci, card_ids);
11439
11440static struct attribute *ipw_sysfs_entries[] = {
11441        &dev_attr_rf_kill.attr,
11442        &dev_attr_direct_dword.attr,
11443        &dev_attr_indirect_byte.attr,
11444        &dev_attr_indirect_dword.attr,
11445        &dev_attr_mem_gpio_reg.attr,
11446        &dev_attr_command_event_reg.attr,
11447        &dev_attr_nic_type.attr,
11448        &dev_attr_status.attr,
11449        &dev_attr_cfg.attr,
11450        &dev_attr_error.attr,
11451        &dev_attr_event_log.attr,
11452        &dev_attr_cmd_log.attr,
11453        &dev_attr_eeprom_delay.attr,
11454        &dev_attr_ucode_version.attr,
11455        &dev_attr_rtc.attr,
11456        &dev_attr_scan_age.attr,
11457        &dev_attr_led.attr,
11458        &dev_attr_speed_scan.attr,
11459        &dev_attr_net_stats.attr,
11460        &dev_attr_channels.attr,
11461#ifdef CONFIG_IPW2200_PROMISCUOUS
11462        &dev_attr_rtap_iface.attr,
11463        &dev_attr_rtap_filter.attr,
11464#endif
11465        NULL
11466};
11467
11468static const struct attribute_group ipw_attribute_group = {
11469        .name = NULL,           /* put in device directory */
11470        .attrs = ipw_sysfs_entries,
11471};
11472
11473#ifdef CONFIG_IPW2200_PROMISCUOUS
11474static int ipw_prom_open(struct net_device *dev)
11475{
11476        struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11477        struct ipw_priv *priv = prom_priv->priv;
11478
11479        IPW_DEBUG_INFO("prom dev->open\n");
11480        netif_carrier_off(dev);
11481
11482        if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11483                priv->sys_config.accept_all_data_frames = 1;
11484                priv->sys_config.accept_non_directed_frames = 1;
11485                priv->sys_config.accept_all_mgmt_bcpr = 1;
11486                priv->sys_config.accept_all_mgmt_frames = 1;
11487
11488                ipw_send_system_config(priv);
11489        }
11490
11491        return 0;
11492}
11493
11494static int ipw_prom_stop(struct net_device *dev)
11495{
11496        struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11497        struct ipw_priv *priv = prom_priv->priv;
11498
11499        IPW_DEBUG_INFO("prom dev->stop\n");
11500
11501        if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11502                priv->sys_config.accept_all_data_frames = 0;
11503                priv->sys_config.accept_non_directed_frames = 0;
11504                priv->sys_config.accept_all_mgmt_bcpr = 0;
11505                priv->sys_config.accept_all_mgmt_frames = 0;
11506
11507                ipw_send_system_config(priv);
11508        }
11509
11510        return 0;
11511}
11512
11513static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11514                                            struct net_device *dev)
11515{
11516        IPW_DEBUG_INFO("prom dev->xmit\n");
11517        dev_kfree_skb(skb);
11518        return NETDEV_TX_OK;
11519}
11520
11521static const struct net_device_ops ipw_prom_netdev_ops = {
11522        .ndo_open               = ipw_prom_open,
11523        .ndo_stop               = ipw_prom_stop,
11524        .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11525        .ndo_set_mac_address    = eth_mac_addr,
11526        .ndo_validate_addr      = eth_validate_addr,
11527};
11528
11529static int ipw_prom_alloc(struct ipw_priv *priv)
11530{
11531        int rc = 0;
11532
11533        if (priv->prom_net_dev)
11534                return -EPERM;
11535
11536        priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11537        if (priv->prom_net_dev == NULL)
11538                return -ENOMEM;
11539
11540        priv->prom_priv = libipw_priv(priv->prom_net_dev);
11541        priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11542        priv->prom_priv->priv = priv;
11543
11544        strcpy(priv->prom_net_dev->name, "rtap%d");
11545        memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11546
11547        priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11548        priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11549
11550        priv->prom_net_dev->min_mtu = 68;
11551        priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11552
11553        priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11554        SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11555
11556        rc = register_netdev(priv->prom_net_dev);
11557        if (rc) {
11558                free_libipw(priv->prom_net_dev, 1);
11559                priv->prom_net_dev = NULL;
11560                return rc;
11561        }
11562
11563        return 0;
11564}
11565
11566static void ipw_prom_free(struct ipw_priv *priv)
11567{
11568        if (!priv->prom_net_dev)
11569                return;
11570
11571        unregister_netdev(priv->prom_net_dev);
11572        free_libipw(priv->prom_net_dev, 1);
11573
11574        priv->prom_net_dev = NULL;
11575}
11576
11577#endif
11578
11579static const struct net_device_ops ipw_netdev_ops = {
11580        .ndo_open               = ipw_net_open,
11581        .ndo_stop               = ipw_net_stop,
11582        .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11583        .ndo_set_mac_address    = ipw_net_set_mac_address,
11584        .ndo_start_xmit         = libipw_xmit,
11585        .ndo_validate_addr      = eth_validate_addr,
11586};
11587
11588static int ipw_pci_probe(struct pci_dev *pdev,
11589                                   const struct pci_device_id *ent)
11590{
11591        int err = 0;
11592        struct net_device *net_dev;
11593        void __iomem *base;
11594        u32 length, val;
11595        struct ipw_priv *priv;
11596        int i;
11597
11598        net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11599        if (net_dev == NULL) {
11600                err = -ENOMEM;
11601                goto out;
11602        }
11603
11604        priv = libipw_priv(net_dev);
11605        priv->ieee = netdev_priv(net_dev);
11606
11607        priv->net_dev = net_dev;
11608        priv->pci_dev = pdev;
11609        ipw_debug_level = debug;
11610        spin_lock_init(&priv->irq_lock);
11611        spin_lock_init(&priv->lock);
11612        for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11613                INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11614
11615        mutex_init(&priv->mutex);
11616        if (pci_enable_device(pdev)) {
11617                err = -ENODEV;
11618                goto out_free_libipw;
11619        }
11620
11621        pci_set_master(pdev);
11622
11623        err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11624        if (!err)
11625                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11626        if (err) {
11627                printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11628                goto out_pci_disable_device;
11629        }
11630
11631        pci_set_drvdata(pdev, priv);
11632
11633        err = pci_request_regions(pdev, DRV_NAME);
11634        if (err)
11635                goto out_pci_disable_device;
11636
11637        /* We disable the RETRY_TIMEOUT register (0x41) to keep
11638         * PCI Tx retries from interfering with C3 CPU state */
11639        pci_read_config_dword(pdev, 0x40, &val);
11640        if ((val & 0x0000ff00) != 0)
11641                pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11642
11643        length = pci_resource_len(pdev, 0);
11644        priv->hw_len = length;
11645
11646        base = pci_ioremap_bar(pdev, 0);
11647        if (!base) {
11648                err = -ENODEV;
11649                goto out_pci_release_regions;
11650        }
11651
11652        priv->hw_base = base;
11653        IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11654        IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11655
11656        ipw_setup_deferred_work(priv);
11657
11658        ipw_sw_reset(priv, 1);
11659
11660        err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11661        if (err) {
11662                IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11663                goto out_iounmap;
11664        }
11665
11666        SET_NETDEV_DEV(net_dev, &pdev->dev);
11667
11668        mutex_lock(&priv->mutex);
11669
11670        priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11671        priv->ieee->set_security = shim__set_security;
11672        priv->ieee->is_queue_full = ipw_net_is_queue_full;
11673
11674#ifdef CONFIG_IPW2200_QOS
11675        priv->ieee->is_qos_active = ipw_is_qos_active;
11676        priv->ieee->handle_probe_response = ipw_handle_beacon;
11677        priv->ieee->handle_beacon = ipw_handle_probe_response;
11678        priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11679#endif                          /* CONFIG_IPW2200_QOS */
11680
11681        priv->ieee->perfect_rssi = -20;
11682        priv->ieee->worst_rssi = -85;
11683
11684        net_dev->netdev_ops = &ipw_netdev_ops;
11685        priv->wireless_data.spy_data = &priv->ieee->spy_data;
11686        net_dev->wireless_data = &priv->wireless_data;
11687        net_dev->wireless_handlers = &ipw_wx_handler_def;
11688        net_dev->ethtool_ops = &ipw_ethtool_ops;
11689
11690        net_dev->min_mtu = 68;
11691        net_dev->max_mtu = LIBIPW_DATA_LEN;
11692
11693        err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11694        if (err) {
11695                IPW_ERROR("failed to create sysfs device attributes\n");
11696                mutex_unlock(&priv->mutex);
11697                goto out_release_irq;
11698        }
11699
11700        if (ipw_up(priv)) {
11701                mutex_unlock(&priv->mutex);
11702                err = -EIO;
11703                goto out_remove_sysfs;
11704        }
11705
11706        mutex_unlock(&priv->mutex);
11707
11708        err = ipw_wdev_init(net_dev);
11709        if (err) {
11710                IPW_ERROR("failed to register wireless device\n");
11711                goto out_remove_sysfs;
11712        }
11713
11714        err = register_netdev(net_dev);
11715        if (err) {
11716                IPW_ERROR("failed to register network device\n");
11717                goto out_unregister_wiphy;
11718        }
11719
11720#ifdef CONFIG_IPW2200_PROMISCUOUS
11721        if (rtap_iface) {
11722                err = ipw_prom_alloc(priv);
11723                if (err) {
11724                        IPW_ERROR("Failed to register promiscuous network "
11725                                  "device (error %d).\n", err);
11726                        unregister_netdev(priv->net_dev);
11727                        goto out_unregister_wiphy;
11728                }
11729        }
11730#endif
11731
11732        printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11733               "channels, %d 802.11a channels)\n",
11734               priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11735               priv->ieee->geo.a_channels);
11736
11737        return 0;
11738
11739      out_unregister_wiphy:
11740        wiphy_unregister(priv->ieee->wdev.wiphy);
11741        kfree(priv->ieee->a_band.channels);
11742        kfree(priv->ieee->bg_band.channels);
11743      out_remove_sysfs:
11744        sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11745      out_release_irq:
11746        free_irq(pdev->irq, priv);
11747      out_iounmap:
11748        iounmap(priv->hw_base);
11749      out_pci_release_regions:
11750        pci_release_regions(pdev);
11751      out_pci_disable_device:
11752        pci_disable_device(pdev);
11753      out_free_libipw:
11754        free_libipw(priv->net_dev, 0);
11755      out:
11756        return err;
11757}
11758
11759static void ipw_pci_remove(struct pci_dev *pdev)
11760{
11761        struct ipw_priv *priv = pci_get_drvdata(pdev);
11762        struct list_head *p, *q;
11763        int i;
11764
11765        if (!priv)
11766                return;
11767
11768        mutex_lock(&priv->mutex);
11769
11770        priv->status |= STATUS_EXIT_PENDING;
11771        ipw_down(priv);
11772        sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11773
11774        mutex_unlock(&priv->mutex);
11775
11776        unregister_netdev(priv->net_dev);
11777
11778        if (priv->rxq) {
11779                ipw_rx_queue_free(priv, priv->rxq);
11780                priv->rxq = NULL;
11781        }
11782        ipw_tx_queue_free(priv);
11783
11784        if (priv->cmdlog) {
11785                kfree(priv->cmdlog);
11786                priv->cmdlog = NULL;
11787        }
11788
11789        /* make sure all works are inactive */
11790        cancel_delayed_work_sync(&priv->adhoc_check);
11791        cancel_work_sync(&priv->associate);
11792        cancel_work_sync(&priv->disassociate);
11793        cancel_work_sync(&priv->system_config);
11794        cancel_work_sync(&priv->rx_replenish);
11795        cancel_work_sync(&priv->adapter_restart);
11796        cancel_delayed_work_sync(&priv->rf_kill);
11797        cancel_work_sync(&priv->up);
11798        cancel_work_sync(&priv->down);
11799        cancel_delayed_work_sync(&priv->request_scan);
11800        cancel_delayed_work_sync(&priv->request_direct_scan);
11801        cancel_delayed_work_sync(&priv->request_passive_scan);
11802        cancel_delayed_work_sync(&priv->scan_event);
11803        cancel_delayed_work_sync(&priv->gather_stats);
11804        cancel_work_sync(&priv->abort_scan);
11805        cancel_work_sync(&priv->roam);
11806        cancel_delayed_work_sync(&priv->scan_check);
11807        cancel_work_sync(&priv->link_up);
11808        cancel_work_sync(&priv->link_down);
11809        cancel_delayed_work_sync(&priv->led_link_on);
11810        cancel_delayed_work_sync(&priv->led_link_off);
11811        cancel_delayed_work_sync(&priv->led_act_off);
11812        cancel_work_sync(&priv->merge_networks);
11813
11814        /* Free MAC hash list for ADHOC */
11815        for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11816                list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11817                        list_del(p);
11818                        kfree(list_entry(p, struct ipw_ibss_seq, list));
11819                }
11820        }
11821
11822        kfree(priv->error);
11823        priv->error = NULL;
11824
11825#ifdef CONFIG_IPW2200_PROMISCUOUS
11826        ipw_prom_free(priv);
11827#endif
11828
11829        free_irq(pdev->irq, priv);
11830        iounmap(priv->hw_base);
11831        pci_release_regions(pdev);
11832        pci_disable_device(pdev);
11833        /* wiphy_unregister needs to be here, before free_libipw */
11834        wiphy_unregister(priv->ieee->wdev.wiphy);
11835        kfree(priv->ieee->a_band.channels);
11836        kfree(priv->ieee->bg_band.channels);
11837        free_libipw(priv->net_dev, 0);
11838        free_firmware();
11839}
11840
11841static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11842{
11843        struct ipw_priv *priv = dev_get_drvdata(dev_d);
11844        struct net_device *dev = priv->net_dev;
11845
11846        printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11847
11848        /* Take down the device; powers it off, etc. */
11849        ipw_down(priv);
11850
11851        /* Remove the PRESENT state of the device */
11852        netif_device_detach(dev);
11853
11854        priv->suspend_at = ktime_get_boottime_seconds();
11855
11856        return 0;
11857}
11858
11859static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11860{
11861        struct pci_dev *pdev = to_pci_dev(dev_d);
11862        struct ipw_priv *priv = pci_get_drvdata(pdev);
11863        struct net_device *dev = priv->net_dev;
11864        u32 val;
11865
11866        printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11867
11868        /*
11869         * Suspend/Resume resets the PCI configuration space, so we have to
11870         * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11871         * from interfering with C3 CPU state. pci_restore_state won't help
11872         * here since it only restores the first 64 bytes pci config header.
11873         */
11874        pci_read_config_dword(pdev, 0x40, &val);
11875        if ((val & 0x0000ff00) != 0)
11876                pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11877
11878        /* Set the device back into the PRESENT state; this will also wake
11879         * the queue of needed */
11880        netif_device_attach(dev);
11881
11882        priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11883
11884        /* Bring the device back up */
11885        schedule_work(&priv->up);
11886
11887        return 0;
11888}
11889
11890static void ipw_pci_shutdown(struct pci_dev *pdev)
11891{
11892        struct ipw_priv *priv = pci_get_drvdata(pdev);
11893
11894        /* Take down the device; powers it off, etc. */
11895        ipw_down(priv);
11896
11897        pci_disable_device(pdev);
11898}
11899
11900static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11901
11902/* driver initialization stuff */
11903static struct pci_driver ipw_driver = {
11904        .name = DRV_NAME,
11905        .id_table = card_ids,
11906        .probe = ipw_pci_probe,
11907        .remove = ipw_pci_remove,
11908        .driver.pm = &ipw_pci_pm_ops,
11909        .shutdown = ipw_pci_shutdown,
11910};
11911
11912static int __init ipw_init(void)
11913{
11914        int ret;
11915
11916        printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11917        printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11918
11919        ret = pci_register_driver(&ipw_driver);
11920        if (ret) {
11921                IPW_ERROR("Unable to initialize PCI module\n");
11922                return ret;
11923        }
11924
11925        ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11926        if (ret) {
11927                IPW_ERROR("Unable to create driver sysfs file\n");
11928                pci_unregister_driver(&ipw_driver);
11929                return ret;
11930        }
11931
11932        return ret;
11933}
11934
11935static void __exit ipw_exit(void)
11936{
11937        driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11938        pci_unregister_driver(&ipw_driver);
11939}
11940
11941module_param(disable, int, 0444);
11942MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11943
11944module_param(associate, int, 0444);
11945MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11946
11947module_param(auto_create, int, 0444);
11948MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11949
11950module_param_named(led, led_support, int, 0444);
11951MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11952
11953module_param(debug, int, 0444);
11954MODULE_PARM_DESC(debug, "debug output mask");
11955
11956module_param_named(channel, default_channel, int, 0444);
11957MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11958
11959#ifdef CONFIG_IPW2200_PROMISCUOUS
11960module_param(rtap_iface, int, 0444);
11961MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11962#endif
11963
11964#ifdef CONFIG_IPW2200_QOS
11965module_param(qos_enable, int, 0444);
11966MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11967
11968module_param(qos_burst_enable, int, 0444);
11969MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11970
11971module_param(qos_no_ack_mask, int, 0444);
11972MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11973
11974module_param(burst_duration_CCK, int, 0444);
11975MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11976
11977module_param(burst_duration_OFDM, int, 0444);
11978MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11979#endif                          /* CONFIG_IPW2200_QOS */
11980
11981#ifdef CONFIG_IPW2200_MONITOR
11982module_param_named(mode, network_mode, int, 0444);
11983MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11984#else
11985module_param_named(mode, network_mode, int, 0444);
11986MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11987#endif
11988
11989module_param(bt_coexist, int, 0444);
11990MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11991
11992module_param(hwcrypto, int, 0444);
11993MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11994
11995module_param(cmdlog, int, 0444);
11996MODULE_PARM_DESC(cmdlog,
11997                 "allocate a ring buffer for logging firmware commands");
11998
11999module_param(roaming, int, 0444);
12000MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12001
12002module_param(antenna, int, 0444);
12003MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12004
12005module_exit(ipw_exit);
12006module_init(ipw_init);
12007