linux/drivers/net/wireless/intel/iwlwifi/iwl-trans.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
   2/*
   3 * Copyright (C) 2005-2014, 2018-2021 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
   7#ifndef __iwl_trans_h__
   8#define __iwl_trans_h__
   9
  10#include <linux/ieee80211.h>
  11#include <linux/mm.h> /* for page_address */
  12#include <linux/lockdep.h>
  13#include <linux/kernel.h>
  14
  15#include "iwl-debug.h"
  16#include "iwl-config.h"
  17#include "fw/img.h"
  18#include "iwl-op-mode.h"
  19#include <linux/firmware.h>
  20#include "fw/api/cmdhdr.h"
  21#include "fw/api/txq.h"
  22#include "fw/api/dbg-tlv.h"
  23#include "iwl-dbg-tlv.h"
  24
  25/**
  26 * DOC: Transport layer - what is it ?
  27 *
  28 * The transport layer is the layer that deals with the HW directly. It provides
  29 * an abstraction of the underlying HW to the upper layer. The transport layer
  30 * doesn't provide any policy, algorithm or anything of this kind, but only
  31 * mechanisms to make the HW do something. It is not completely stateless but
  32 * close to it.
  33 * We will have an implementation for each different supported bus.
  34 */
  35
  36/**
  37 * DOC: Life cycle of the transport layer
  38 *
  39 * The transport layer has a very precise life cycle.
  40 *
  41 *      1) A helper function is called during the module initialization and
  42 *         registers the bus driver's ops with the transport's alloc function.
  43 *      2) Bus's probe calls to the transport layer's allocation functions.
  44 *         Of course this function is bus specific.
  45 *      3) This allocation functions will spawn the upper layer which will
  46 *         register mac80211.
  47 *
  48 *      4) At some point (i.e. mac80211's start call), the op_mode will call
  49 *         the following sequence:
  50 *         start_hw
  51 *         start_fw
  52 *
  53 *      5) Then when finished (or reset):
  54 *         stop_device
  55 *
  56 *      6) Eventually, the free function will be called.
  57 */
  58
  59#define IWL_TRANS_FW_DBG_DOMAIN(trans)  IWL_FW_INI_DOMAIN_ALWAYS_ON
  60
  61#define FH_RSCSR_FRAME_SIZE_MSK         0x00003FFF      /* bits 0-13 */
  62#define FH_RSCSR_FRAME_INVALID          0x55550000
  63#define FH_RSCSR_FRAME_ALIGN            0x40
  64#define FH_RSCSR_RPA_EN                 BIT(25)
  65#define FH_RSCSR_RADA_EN                BIT(26)
  66#define FH_RSCSR_RXQ_POS                16
  67#define FH_RSCSR_RXQ_MASK               0x3F0000
  68
  69struct iwl_rx_packet {
  70        /*
  71         * The first 4 bytes of the RX frame header contain both the RX frame
  72         * size and some flags.
  73         * Bit fields:
  74         * 31:    flag flush RB request
  75         * 30:    flag ignore TC (terminal counter) request
  76         * 29:    flag fast IRQ request
  77         * 28-27: Reserved
  78         * 26:    RADA enabled
  79         * 25:    Offload enabled
  80         * 24:    RPF enabled
  81         * 23:    RSS enabled
  82         * 22:    Checksum enabled
  83         * 21-16: RX queue
  84         * 15-14: Reserved
  85         * 13-00: RX frame size
  86         */
  87        __le32 len_n_flags;
  88        struct iwl_cmd_header hdr;
  89        u8 data[];
  90} __packed;
  91
  92static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
  93{
  94        return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
  95}
  96
  97static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
  98{
  99        return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
 100}
 101
 102/**
 103 * enum CMD_MODE - how to send the host commands ?
 104 *
 105 * @CMD_ASYNC: Return right away and don't wait for the response
 106 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
 107 *      the response. The caller needs to call iwl_free_resp when done.
 108 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
 109 *      called after this command completes. Valid only with CMD_ASYNC.
 110 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
 111 *      SUSPEND and RESUME commands. We are in D3 mode when we set
 112 *      trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
 113 */
 114enum CMD_MODE {
 115        CMD_ASYNC               = BIT(0),
 116        CMD_WANT_SKB            = BIT(1),
 117        CMD_SEND_IN_RFKILL      = BIT(2),
 118        CMD_WANT_ASYNC_CALLBACK = BIT(3),
 119        CMD_SEND_IN_D3          = BIT(4),
 120};
 121
 122#define DEF_CMD_PAYLOAD_SIZE 320
 123
 124/**
 125 * struct iwl_device_cmd
 126 *
 127 * For allocation of the command and tx queues, this establishes the overall
 128 * size of the largest command we send to uCode, except for commands that
 129 * aren't fully copied and use other TFD space.
 130 */
 131struct iwl_device_cmd {
 132        union {
 133                struct {
 134                        struct iwl_cmd_header hdr;      /* uCode API */
 135                        u8 payload[DEF_CMD_PAYLOAD_SIZE];
 136                };
 137                struct {
 138                        struct iwl_cmd_header_wide hdr_wide;
 139                        u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
 140                                        sizeof(struct iwl_cmd_header_wide) +
 141                                        sizeof(struct iwl_cmd_header)];
 142                };
 143        };
 144} __packed;
 145
 146/**
 147 * struct iwl_device_tx_cmd - buffer for TX command
 148 * @hdr: the header
 149 * @payload: the payload placeholder
 150 *
 151 * The actual structure is sized dynamically according to need.
 152 */
 153struct iwl_device_tx_cmd {
 154        struct iwl_cmd_header hdr;
 155        u8 payload[];
 156} __packed;
 157
 158#define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
 159
 160/*
 161 * number of transfer buffers (fragments) per transmit frame descriptor;
 162 * this is just the driver's idea, the hardware supports 20
 163 */
 164#define IWL_MAX_CMD_TBS_PER_TFD 2
 165
 166/* We need 2 entries for the TX command and header, and another one might
 167 * be needed for potential data in the SKB's head. The remaining ones can
 168 * be used for frags.
 169 */
 170#define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
 171
 172/**
 173 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
 174 *
 175 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
 176 *      ring. The transport layer doesn't map the command's buffer to DMA, but
 177 *      rather copies it to a previously allocated DMA buffer. This flag tells
 178 *      the transport layer not to copy the command, but to map the existing
 179 *      buffer (that is passed in) instead. This saves the memcpy and allows
 180 *      commands that are bigger than the fixed buffer to be submitted.
 181 *      Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
 182 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
 183 *      chunk internally and free it again after the command completes. This
 184 *      can (currently) be used only once per command.
 185 *      Note that a TFD entry after a DUP one cannot be a normal copied one.
 186 */
 187enum iwl_hcmd_dataflag {
 188        IWL_HCMD_DFL_NOCOPY     = BIT(0),
 189        IWL_HCMD_DFL_DUP        = BIT(1),
 190};
 191
 192enum iwl_error_event_table_status {
 193        IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
 194        IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
 195        IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
 196        IWL_ERROR_EVENT_TABLE_TCM = BIT(3),
 197};
 198
 199/**
 200 * struct iwl_host_cmd - Host command to the uCode
 201 *
 202 * @data: array of chunks that composes the data of the host command
 203 * @resp_pkt: response packet, if %CMD_WANT_SKB was set
 204 * @_rx_page_order: (internally used to free response packet)
 205 * @_rx_page_addr: (internally used to free response packet)
 206 * @flags: can be CMD_*
 207 * @len: array of the lengths of the chunks in data
 208 * @dataflags: IWL_HCMD_DFL_*
 209 * @id: command id of the host command, for wide commands encoding the
 210 *      version and group as well
 211 */
 212struct iwl_host_cmd {
 213        const void *data[IWL_MAX_CMD_TBS_PER_TFD];
 214        struct iwl_rx_packet *resp_pkt;
 215        unsigned long _rx_page_addr;
 216        u32 _rx_page_order;
 217
 218        u32 flags;
 219        u32 id;
 220        u16 len[IWL_MAX_CMD_TBS_PER_TFD];
 221        u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
 222};
 223
 224static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
 225{
 226        free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
 227}
 228
 229struct iwl_rx_cmd_buffer {
 230        struct page *_page;
 231        int _offset;
 232        bool _page_stolen;
 233        u32 _rx_page_order;
 234        unsigned int truesize;
 235};
 236
 237static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
 238{
 239        return (void *)((unsigned long)page_address(r->_page) + r->_offset);
 240}
 241
 242static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
 243{
 244        return r->_offset;
 245}
 246
 247static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
 248{
 249        r->_page_stolen = true;
 250        get_page(r->_page);
 251        return r->_page;
 252}
 253
 254static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
 255{
 256        __free_pages(r->_page, r->_rx_page_order);
 257}
 258
 259#define MAX_NO_RECLAIM_CMDS     6
 260
 261#define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
 262
 263/*
 264 * Maximum number of HW queues the transport layer
 265 * currently supports
 266 */
 267#define IWL_MAX_HW_QUEUES               32
 268#define IWL_MAX_TVQM_QUEUES             512
 269
 270#define IWL_MAX_TID_COUNT       8
 271#define IWL_MGMT_TID            15
 272#define IWL_FRAME_LIMIT 64
 273#define IWL_MAX_RX_HW_QUEUES    16
 274#define IWL_9000_MAX_RX_HW_QUEUES       6
 275
 276/**
 277 * enum iwl_wowlan_status - WoWLAN image/device status
 278 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
 279 * @IWL_D3_STATUS_RESET: device was reset while suspended
 280 */
 281enum iwl_d3_status {
 282        IWL_D3_STATUS_ALIVE,
 283        IWL_D3_STATUS_RESET,
 284};
 285
 286/**
 287 * enum iwl_trans_status: transport status flags
 288 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
 289 * @STATUS_DEVICE_ENABLED: APM is enabled
 290 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
 291 * @STATUS_INT_ENABLED: interrupts are enabled
 292 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
 293 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
 294 * @STATUS_FW_ERROR: the fw is in error state
 295 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
 296 *      are sent
 297 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
 298 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
 299 */
 300enum iwl_trans_status {
 301        STATUS_SYNC_HCMD_ACTIVE,
 302        STATUS_DEVICE_ENABLED,
 303        STATUS_TPOWER_PMI,
 304        STATUS_INT_ENABLED,
 305        STATUS_RFKILL_HW,
 306        STATUS_RFKILL_OPMODE,
 307        STATUS_FW_ERROR,
 308        STATUS_TRANS_GOING_IDLE,
 309        STATUS_TRANS_IDLE,
 310        STATUS_TRANS_DEAD,
 311};
 312
 313static inline int
 314iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
 315{
 316        switch (rb_size) {
 317        case IWL_AMSDU_2K:
 318                return get_order(2 * 1024);
 319        case IWL_AMSDU_4K:
 320                return get_order(4 * 1024);
 321        case IWL_AMSDU_8K:
 322                return get_order(8 * 1024);
 323        case IWL_AMSDU_12K:
 324                return get_order(16 * 1024);
 325        default:
 326                WARN_ON(1);
 327                return -1;
 328        }
 329}
 330
 331static inline int
 332iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
 333{
 334        switch (rb_size) {
 335        case IWL_AMSDU_2K:
 336                return 2 * 1024;
 337        case IWL_AMSDU_4K:
 338                return 4 * 1024;
 339        case IWL_AMSDU_8K:
 340                return 8 * 1024;
 341        case IWL_AMSDU_12K:
 342                return 16 * 1024;
 343        default:
 344                WARN_ON(1);
 345                return 0;
 346        }
 347}
 348
 349struct iwl_hcmd_names {
 350        u8 cmd_id;
 351        const char *const cmd_name;
 352};
 353
 354#define HCMD_NAME(x)    \
 355        { .cmd_id = x, .cmd_name = #x }
 356
 357struct iwl_hcmd_arr {
 358        const struct iwl_hcmd_names *arr;
 359        int size;
 360};
 361
 362#define HCMD_ARR(x)     \
 363        { .arr = x, .size = ARRAY_SIZE(x) }
 364
 365/**
 366 * struct iwl_trans_config - transport configuration
 367 *
 368 * @op_mode: pointer to the upper layer.
 369 * @cmd_queue: the index of the command queue.
 370 *      Must be set before start_fw.
 371 * @cmd_fifo: the fifo for host commands
 372 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
 373 * @no_reclaim_cmds: Some devices erroneously don't set the
 374 *      SEQ_RX_FRAME bit on some notifications, this is the
 375 *      list of such notifications to filter. Max length is
 376 *      %MAX_NO_RECLAIM_CMDS.
 377 * @n_no_reclaim_cmds: # of commands in list
 378 * @rx_buf_size: RX buffer size needed for A-MSDUs
 379 *      if unset 4k will be the RX buffer size
 380 * @bc_table_dword: set to true if the BC table expects the byte count to be
 381 *      in DWORD (as opposed to bytes)
 382 * @scd_set_active: should the transport configure the SCD for HCMD queue
 383 * @command_groups: array of command groups, each member is an array of the
 384 *      commands in the group; for debugging only
 385 * @command_groups_size: number of command groups, to avoid illegal access
 386 * @cb_data_offs: offset inside skb->cb to store transport data at, must have
 387 *      space for at least two pointers
 388 * @fw_reset_handshake: firmware supports reset flow handshake
 389 */
 390struct iwl_trans_config {
 391        struct iwl_op_mode *op_mode;
 392
 393        u8 cmd_queue;
 394        u8 cmd_fifo;
 395        unsigned int cmd_q_wdg_timeout;
 396        const u8 *no_reclaim_cmds;
 397        unsigned int n_no_reclaim_cmds;
 398
 399        enum iwl_amsdu_size rx_buf_size;
 400        bool bc_table_dword;
 401        bool scd_set_active;
 402        const struct iwl_hcmd_arr *command_groups;
 403        int command_groups_size;
 404
 405        u8 cb_data_offs;
 406        bool fw_reset_handshake;
 407};
 408
 409struct iwl_trans_dump_data {
 410        u32 len;
 411        u8 data[];
 412};
 413
 414struct iwl_trans;
 415
 416struct iwl_trans_txq_scd_cfg {
 417        u8 fifo;
 418        u8 sta_id;
 419        u8 tid;
 420        bool aggregate;
 421        int frame_limit;
 422};
 423
 424/**
 425 * struct iwl_trans_rxq_dma_data - RX queue DMA data
 426 * @fr_bd_cb: DMA address of free BD cyclic buffer
 427 * @fr_bd_wid: Initial write index of the free BD cyclic buffer
 428 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
 429 * @ur_bd_cb: DMA address of used BD cyclic buffer
 430 */
 431struct iwl_trans_rxq_dma_data {
 432        u64 fr_bd_cb;
 433        u32 fr_bd_wid;
 434        u64 urbd_stts_wrptr;
 435        u64 ur_bd_cb;
 436};
 437
 438/**
 439 * struct iwl_trans_ops - transport specific operations
 440 *
 441 * All the handlers MUST be implemented
 442 *
 443 * @start_hw: starts the HW. From that point on, the HW can send interrupts.
 444 *      May sleep.
 445 * @op_mode_leave: Turn off the HW RF kill indication if on
 446 *      May sleep
 447 * @start_fw: allocates and inits all the resources for the transport
 448 *      layer. Also kick a fw image.
 449 *      May sleep
 450 * @fw_alive: called when the fw sends alive notification. If the fw provides
 451 *      the SCD base address in SRAM, then provide it here, or 0 otherwise.
 452 *      May sleep
 453 * @stop_device: stops the whole device (embedded CPU put to reset) and stops
 454 *      the HW. From that point on, the HW will be stopped but will still issue
 455 *      an interrupt if the HW RF kill switch is triggered.
 456 *      This callback must do the right thing and not crash even if %start_hw()
 457 *      was called but not &start_fw(). May sleep.
 458 * @d3_suspend: put the device into the correct mode for WoWLAN during
 459 *      suspend. This is optional, if not implemented WoWLAN will not be
 460 *      supported. This callback may sleep.
 461 * @d3_resume: resume the device after WoWLAN, enabling the opmode to
 462 *      talk to the WoWLAN image to get its status. This is optional, if not
 463 *      implemented WoWLAN will not be supported. This callback may sleep.
 464 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
 465 *      If RFkill is asserted in the middle of a SYNC host command, it must
 466 *      return -ERFKILL straight away.
 467 *      May sleep only if CMD_ASYNC is not set
 468 * @tx: send an skb. The transport relies on the op_mode to zero the
 469 *      the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
 470 *      the CSUM will be taken care of (TCP CSUM and IP header in case of
 471 *      IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
 472 *      header if it is IPv4.
 473 *      Must be atomic
 474 * @reclaim: free packet until ssn. Returns a list of freed packets.
 475 *      Must be atomic
 476 * @txq_enable: setup a queue. To setup an AC queue, use the
 477 *      iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
 478 *      this one. The op_mode must not configure the HCMD queue. The scheduler
 479 *      configuration may be %NULL, in which case the hardware will not be
 480 *      configured. If true is returned, the operation mode needs to increment
 481 *      the sequence number of the packets routed to this queue because of a
 482 *      hardware scheduler bug. May sleep.
 483 * @txq_disable: de-configure a Tx queue to send AMPDUs
 484 *      Must be atomic
 485 * @txq_set_shared_mode: change Tx queue shared/unshared marking
 486 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
 487 * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
 488 * @freeze_txq_timer: prevents the timer of the queue from firing until the
 489 *      queue is set to awake. Must be atomic.
 490 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
 491 *      that the transport needs to refcount the calls since this function
 492 *      will be called several times with block = true, and then the queues
 493 *      need to be unblocked only after the same number of calls with
 494 *      block = false.
 495 * @write8: write a u8 to a register at offset ofs from the BAR
 496 * @write32: write a u32 to a register at offset ofs from the BAR
 497 * @read32: read a u32 register at offset ofs from the BAR
 498 * @read_prph: read a DWORD from a periphery register
 499 * @write_prph: write a DWORD to a periphery register
 500 * @read_mem: read device's SRAM in DWORD
 501 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
 502 *      will be zeroed.
 503 * @read_config32: read a u32 value from the device's config space at
 504 *      the given offset.
 505 * @configure: configure parameters required by the transport layer from
 506 *      the op_mode. May be called several times before start_fw, can't be
 507 *      called after that.
 508 * @set_pmi: set the power pmi state
 509 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
 510 *      Sleeping is not allowed between grab_nic_access and
 511 *      release_nic_access.
 512 * @release_nic_access: let the NIC go to sleep. The "flags" parameter
 513 *      must be the same one that was sent before to the grab_nic_access.
 514 * @set_bits_mask - set SRAM register according to value and mask.
 515 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
 516 *      TX'ed commands and similar. The buffer will be vfree'd by the caller.
 517 *      Note that the transport must fill in the proper file headers.
 518 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
 519 *      of the trans debugfs
 520 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
 521 *      context info.
 522 * @interrupts: disable/enable interrupts to transport
 523 */
 524struct iwl_trans_ops {
 525
 526        int (*start_hw)(struct iwl_trans *iwl_trans);
 527        void (*op_mode_leave)(struct iwl_trans *iwl_trans);
 528        int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
 529                        bool run_in_rfkill);
 530        void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
 531        void (*stop_device)(struct iwl_trans *trans);
 532
 533        int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
 534        int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
 535                         bool test, bool reset);
 536
 537        int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
 538
 539        int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
 540                  struct iwl_device_tx_cmd *dev_cmd, int queue);
 541        void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
 542                        struct sk_buff_head *skbs);
 543
 544        void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
 545
 546        bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
 547                           const struct iwl_trans_txq_scd_cfg *cfg,
 548                           unsigned int queue_wdg_timeout);
 549        void (*txq_disable)(struct iwl_trans *trans, int queue,
 550                            bool configure_scd);
 551        /* 22000 functions */
 552        int (*txq_alloc)(struct iwl_trans *trans,
 553                         __le16 flags, u8 sta_id, u8 tid,
 554                         int cmd_id, int size,
 555                         unsigned int queue_wdg_timeout);
 556        void (*txq_free)(struct iwl_trans *trans, int queue);
 557        int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
 558                            struct iwl_trans_rxq_dma_data *data);
 559
 560        void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
 561                                    bool shared);
 562
 563        int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
 564        int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
 565        void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
 566                                 bool freeze);
 567        void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
 568
 569        void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
 570        void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
 571        u32 (*read32)(struct iwl_trans *trans, u32 ofs);
 572        u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
 573        void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
 574        int (*read_mem)(struct iwl_trans *trans, u32 addr,
 575                        void *buf, int dwords);
 576        int (*write_mem)(struct iwl_trans *trans, u32 addr,
 577                         const void *buf, int dwords);
 578        int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
 579        void (*configure)(struct iwl_trans *trans,
 580                          const struct iwl_trans_config *trans_cfg);
 581        void (*set_pmi)(struct iwl_trans *trans, bool state);
 582        void (*sw_reset)(struct iwl_trans *trans);
 583        bool (*grab_nic_access)(struct iwl_trans *trans);
 584        void (*release_nic_access)(struct iwl_trans *trans);
 585        void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
 586                              u32 value);
 587
 588        struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
 589                                                 u32 dump_mask);
 590        void (*debugfs_cleanup)(struct iwl_trans *trans);
 591        void (*sync_nmi)(struct iwl_trans *trans);
 592        int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
 593        int (*set_reduce_power)(struct iwl_trans *trans,
 594                                const void *data, u32 len);
 595        void (*interrupts)(struct iwl_trans *trans, bool enable);
 596};
 597
 598/**
 599 * enum iwl_trans_state - state of the transport layer
 600 *
 601 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
 602 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
 603 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
 604 */
 605enum iwl_trans_state {
 606        IWL_TRANS_NO_FW,
 607        IWL_TRANS_FW_STARTED,
 608        IWL_TRANS_FW_ALIVE,
 609};
 610
 611/**
 612 * DOC: Platform power management
 613 *
 614 * In system-wide power management the entire platform goes into a low
 615 * power state (e.g. idle or suspend to RAM) at the same time and the
 616 * device is configured as a wakeup source for the entire platform.
 617 * This is usually triggered by userspace activity (e.g. the user
 618 * presses the suspend button or a power management daemon decides to
 619 * put the platform in low power mode).  The device's behavior in this
 620 * mode is dictated by the wake-on-WLAN configuration.
 621 *
 622 * The terms used for the device's behavior are as follows:
 623 *
 624 *      - D0: the device is fully powered and the host is awake;
 625 *      - D3: the device is in low power mode and only reacts to
 626 *              specific events (e.g. magic-packet received or scan
 627 *              results found);
 628 *
 629 * These terms reflect the power modes in the firmware and are not to
 630 * be confused with the physical device power state.
 631 */
 632
 633/**
 634 * enum iwl_plat_pm_mode - platform power management mode
 635 *
 636 * This enumeration describes the device's platform power management
 637 * behavior when in system-wide suspend (i.e WoWLAN).
 638 *
 639 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
 640 *      device.  In system-wide suspend mode, it means that the all
 641 *      connections will be closed automatically by mac80211 before
 642 *      the platform is suspended.
 643 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
 644 */
 645enum iwl_plat_pm_mode {
 646        IWL_PLAT_PM_MODE_DISABLED,
 647        IWL_PLAT_PM_MODE_D3,
 648};
 649
 650/**
 651 * enum iwl_ini_cfg_state
 652 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
 653 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
 654 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
 655 *      are corrupted. The rest of the debug TLVs will still be used
 656 */
 657enum iwl_ini_cfg_state {
 658        IWL_INI_CFG_STATE_NOT_LOADED,
 659        IWL_INI_CFG_STATE_LOADED,
 660        IWL_INI_CFG_STATE_CORRUPTED,
 661};
 662
 663/* Max time to wait for nmi interrupt */
 664#define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
 665
 666/**
 667 * struct iwl_dram_data
 668 * @physical: page phy pointer
 669 * @block: pointer to the allocated block/page
 670 * @size: size of the block/page
 671 */
 672struct iwl_dram_data {
 673        dma_addr_t physical;
 674        void *block;
 675        int size;
 676};
 677
 678/**
 679 * struct iwl_fw_mon - fw monitor per allocation id
 680 * @num_frags: number of fragments
 681 * @frags: an array of DRAM buffer fragments
 682 */
 683struct iwl_fw_mon {
 684        u32 num_frags;
 685        struct iwl_dram_data *frags;
 686};
 687
 688/**
 689 * struct iwl_self_init_dram - dram data used by self init process
 690 * @fw: lmac and umac dram data
 691 * @fw_cnt: total number of items in array
 692 * @paging: paging dram data
 693 * @paging_cnt: total number of items in array
 694 */
 695struct iwl_self_init_dram {
 696        struct iwl_dram_data *fw;
 697        int fw_cnt;
 698        struct iwl_dram_data *paging;
 699        int paging_cnt;
 700};
 701
 702/**
 703 * struct iwl_trans_debug - transport debug related data
 704 *
 705 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
 706 * @rec_on: true iff there is a fw debug recording currently active
 707 * @dest_tlv: points to the destination TLV for debug
 708 * @conf_tlv: array of pointers to configuration TLVs for debug
 709 * @trigger_tlv: array of pointers to triggers TLVs for debug
 710 * @lmac_error_event_table: addrs of lmacs error tables
 711 * @umac_error_event_table: addr of umac error table
 712 * @tcm_error_event_table: address of TCM error table
 713 * @error_event_table_tlv_status: bitmap that indicates what error table
 714 *      pointers was recevied via TLV. uses enum &iwl_error_event_table_status
 715 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
 716 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
 717 * @fw_mon_cfg: debug buffer allocation configuration
 718 * @fw_mon_ini: DRAM buffer fragments per allocation id
 719 * @fw_mon: DRAM buffer for firmware monitor
 720 * @hw_error: equals true if hw error interrupt was received from the FW
 721 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
 722 * @active_regions: active regions
 723 * @debug_info_tlv_list: list of debug info TLVs
 724 * @time_point: array of debug time points
 725 * @periodic_trig_list: periodic triggers list
 726 * @domains_bitmap: bitmap of active domains other than
 727 *      &IWL_FW_INI_DOMAIN_ALWAYS_ON
 728 */
 729struct iwl_trans_debug {
 730        u8 n_dest_reg;
 731        bool rec_on;
 732
 733        const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
 734        const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
 735        struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
 736
 737        u32 lmac_error_event_table[2];
 738        u32 umac_error_event_table;
 739        u32 tcm_error_event_table;
 740        unsigned int error_event_table_tlv_status;
 741
 742        enum iwl_ini_cfg_state internal_ini_cfg;
 743        enum iwl_ini_cfg_state external_ini_cfg;
 744
 745        struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
 746        struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
 747
 748        struct iwl_dram_data fw_mon;
 749
 750        bool hw_error;
 751        enum iwl_fw_ini_buffer_location ini_dest;
 752
 753        u64 unsupported_region_msk;
 754        struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
 755        struct list_head debug_info_tlv_list;
 756        struct iwl_dbg_tlv_time_point_data
 757                time_point[IWL_FW_INI_TIME_POINT_NUM];
 758        struct list_head periodic_trig_list;
 759
 760        u32 domains_bitmap;
 761};
 762
 763struct iwl_dma_ptr {
 764        dma_addr_t dma;
 765        void *addr;
 766        size_t size;
 767};
 768
 769struct iwl_cmd_meta {
 770        /* only for SYNC commands, iff the reply skb is wanted */
 771        struct iwl_host_cmd *source;
 772        u32 flags;
 773        u32 tbs;
 774};
 775
 776/*
 777 * The FH will write back to the first TB only, so we need to copy some data
 778 * into the buffer regardless of whether it should be mapped or not.
 779 * This indicates how big the first TB must be to include the scratch buffer
 780 * and the assigned PN.
 781 * Since PN location is 8 bytes at offset 12, it's 20 now.
 782 * If we make it bigger then allocations will be bigger and copy slower, so
 783 * that's probably not useful.
 784 */
 785#define IWL_FIRST_TB_SIZE       20
 786#define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
 787
 788struct iwl_pcie_txq_entry {
 789        void *cmd;
 790        struct sk_buff *skb;
 791        /* buffer to free after command completes */
 792        const void *free_buf;
 793        struct iwl_cmd_meta meta;
 794};
 795
 796struct iwl_pcie_first_tb_buf {
 797        u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
 798};
 799
 800/**
 801 * struct iwl_txq - Tx Queue for DMA
 802 * @q: generic Rx/Tx queue descriptor
 803 * @tfds: transmit frame descriptors (DMA memory)
 804 * @first_tb_bufs: start of command headers, including scratch buffers, for
 805 *      the writeback -- this is DMA memory and an array holding one buffer
 806 *      for each command on the queue
 807 * @first_tb_dma: DMA address for the first_tb_bufs start
 808 * @entries: transmit entries (driver state)
 809 * @lock: queue lock
 810 * @stuck_timer: timer that fires if queue gets stuck
 811 * @trans: pointer back to transport (for timer)
 812 * @need_update: indicates need to update read/write index
 813 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
 814 * @wd_timeout: queue watchdog timeout (jiffies) - per queue
 815 * @frozen: tx stuck queue timer is frozen
 816 * @frozen_expiry_remainder: remember how long until the timer fires
 817 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
 818 * @write_ptr: 1-st empty entry (index) host_w
 819 * @read_ptr: last used entry (index) host_r
 820 * @dma_addr:  physical addr for BD's
 821 * @n_window: safe queue window
 822 * @id: queue id
 823 * @low_mark: low watermark, resume queue if free space more than this
 824 * @high_mark: high watermark, stop queue if free space less than this
 825 *
 826 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
 827 * descriptors) and required locking structures.
 828 *
 829 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
 830 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
 831 * there might be HW changes in the future). For the normal TX
 832 * queues, n_window, which is the size of the software queue data
 833 * is also 256; however, for the command queue, n_window is only
 834 * 32 since we don't need so many commands pending. Since the HW
 835 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
 836 * This means that we end up with the following:
 837 *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
 838 *  SW entries:           | 0      | ... | 31          |
 839 * where N is a number between 0 and 7. This means that the SW
 840 * data is a window overlayed over the HW queue.
 841 */
 842struct iwl_txq {
 843        void *tfds;
 844        struct iwl_pcie_first_tb_buf *first_tb_bufs;
 845        dma_addr_t first_tb_dma;
 846        struct iwl_pcie_txq_entry *entries;
 847        /* lock for syncing changes on the queue */
 848        spinlock_t lock;
 849        unsigned long frozen_expiry_remainder;
 850        struct timer_list stuck_timer;
 851        struct iwl_trans *trans;
 852        bool need_update;
 853        bool frozen;
 854        bool ampdu;
 855        int block;
 856        unsigned long wd_timeout;
 857        struct sk_buff_head overflow_q;
 858        struct iwl_dma_ptr bc_tbl;
 859
 860        int write_ptr;
 861        int read_ptr;
 862        dma_addr_t dma_addr;
 863        int n_window;
 864        u32 id;
 865        int low_mark;
 866        int high_mark;
 867
 868        bool overflow_tx;
 869};
 870
 871/**
 872 * struct iwl_trans_txqs - transport tx queues data
 873 *
 874 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
 875 * @page_offs: offset from skb->cb to mac header page pointer
 876 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
 877 * @queue_used - bit mask of used queues
 878 * @queue_stopped - bit mask of stopped queues
 879 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
 880 */
 881struct iwl_trans_txqs {
 882        unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
 883        unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
 884        struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
 885        struct dma_pool *bc_pool;
 886        size_t bc_tbl_size;
 887        bool bc_table_dword;
 888        u8 page_offs;
 889        u8 dev_cmd_offs;
 890        struct iwl_tso_hdr_page __percpu *tso_hdr_page;
 891
 892        struct {
 893                u8 fifo;
 894                u8 q_id;
 895                unsigned int wdg_timeout;
 896        } cmd;
 897
 898        struct {
 899                u8 max_tbs;
 900                u16 size;
 901                u8 addr_size;
 902        } tfd;
 903
 904        struct iwl_dma_ptr scd_bc_tbls;
 905};
 906
 907/**
 908 * struct iwl_trans - transport common data
 909 *
 910 * @ops - pointer to iwl_trans_ops
 911 * @op_mode - pointer to the op_mode
 912 * @trans_cfg: the trans-specific configuration part
 913 * @cfg - pointer to the configuration
 914 * @drv - pointer to iwl_drv
 915 * @status: a bit-mask of transport status flags
 916 * @dev - pointer to struct device * that represents the device
 917 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
 918 *      0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
 919 * @hw_rf_id a u32 with the device RF ID
 920 * @hw_id: a u32 with the ID of the device / sub-device.
 921 *      Set during transport allocation.
 922 * @hw_id_str: a string with info about HW ID. Set during transport allocation.
 923 * @pm_support: set to true in start_hw if link pm is supported
 924 * @ltr_enabled: set to true if the LTR is enabled
 925 * @wide_cmd_header: true when ucode supports wide command header format
 926 * @wait_command_queue: wait queue for sync commands
 927 * @num_rx_queues: number of RX queues allocated by the transport;
 928 *      the transport must set this before calling iwl_drv_start()
 929 * @iml_len: the length of the image loader
 930 * @iml: a pointer to the image loader itself
 931 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
 932 *      The user should use iwl_trans_{alloc,free}_tx_cmd.
 933 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
 934 *      starting the firmware, used for tracing
 935 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
 936 *      start of the 802.11 header in the @rx_mpdu_cmd
 937 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
 938 * @system_pm_mode: the system-wide power management mode in use.
 939 *      This mode is set dynamically, depending on the WoWLAN values
 940 *      configured from the userspace at runtime.
 941 * @iwl_trans_txqs: transport tx queues data.
 942 */
 943struct iwl_trans {
 944        const struct iwl_trans_ops *ops;
 945        struct iwl_op_mode *op_mode;
 946        const struct iwl_cfg_trans_params *trans_cfg;
 947        const struct iwl_cfg *cfg;
 948        struct iwl_drv *drv;
 949        enum iwl_trans_state state;
 950        unsigned long status;
 951
 952        struct device *dev;
 953        u32 max_skb_frags;
 954        u32 hw_rev;
 955        u32 hw_rf_id;
 956        u32 hw_id;
 957        char hw_id_str[52];
 958        u32 sku_id[3];
 959
 960        u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
 961
 962        bool pm_support;
 963        bool ltr_enabled;
 964        u8 pnvm_loaded:1;
 965        u8 reduce_power_loaded:1;
 966
 967        const struct iwl_hcmd_arr *command_groups;
 968        int command_groups_size;
 969        bool wide_cmd_header;
 970
 971        wait_queue_head_t wait_command_queue;
 972        u8 num_rx_queues;
 973
 974        size_t iml_len;
 975        u8 *iml;
 976
 977        /* The following fields are internal only */
 978        struct kmem_cache *dev_cmd_pool;
 979        char dev_cmd_pool_name[50];
 980
 981        struct dentry *dbgfs_dir;
 982
 983#ifdef CONFIG_LOCKDEP
 984        struct lockdep_map sync_cmd_lockdep_map;
 985#endif
 986
 987        struct iwl_trans_debug dbg;
 988        struct iwl_self_init_dram init_dram;
 989
 990        enum iwl_plat_pm_mode system_pm_mode;
 991
 992        const char *name;
 993        struct iwl_trans_txqs txqs;
 994
 995        /* pointer to trans specific struct */
 996        /*Ensure that this pointer will always be aligned to sizeof pointer */
 997        char trans_specific[] __aligned(sizeof(void *));
 998};
 999
1000const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1001int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1002
1003static inline void iwl_trans_configure(struct iwl_trans *trans,
1004                                       const struct iwl_trans_config *trans_cfg)
1005{
1006        trans->op_mode = trans_cfg->op_mode;
1007
1008        trans->ops->configure(trans, trans_cfg);
1009        WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1010}
1011
1012static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1013{
1014        might_sleep();
1015
1016        return trans->ops->start_hw(trans);
1017}
1018
1019static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1020{
1021        might_sleep();
1022
1023        if (trans->ops->op_mode_leave)
1024                trans->ops->op_mode_leave(trans);
1025
1026        trans->op_mode = NULL;
1027
1028        trans->state = IWL_TRANS_NO_FW;
1029}
1030
1031static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1032{
1033        might_sleep();
1034
1035        trans->state = IWL_TRANS_FW_ALIVE;
1036
1037        trans->ops->fw_alive(trans, scd_addr);
1038}
1039
1040static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1041                                     const struct fw_img *fw,
1042                                     bool run_in_rfkill)
1043{
1044        int ret;
1045
1046        might_sleep();
1047
1048        WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1049
1050        clear_bit(STATUS_FW_ERROR, &trans->status);
1051        ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1052        if (ret == 0)
1053                trans->state = IWL_TRANS_FW_STARTED;
1054
1055        return ret;
1056}
1057
1058static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1059{
1060        might_sleep();
1061
1062        trans->ops->stop_device(trans);
1063
1064        trans->state = IWL_TRANS_NO_FW;
1065}
1066
1067static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1068                                       bool reset)
1069{
1070        might_sleep();
1071        if (!trans->ops->d3_suspend)
1072                return 0;
1073
1074        return trans->ops->d3_suspend(trans, test, reset);
1075}
1076
1077static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1078                                      enum iwl_d3_status *status,
1079                                      bool test, bool reset)
1080{
1081        might_sleep();
1082        if (!trans->ops->d3_resume)
1083                return 0;
1084
1085        return trans->ops->d3_resume(trans, status, test, reset);
1086}
1087
1088static inline struct iwl_trans_dump_data *
1089iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask)
1090{
1091        if (!trans->ops->dump_data)
1092                return NULL;
1093        return trans->ops->dump_data(trans, dump_mask);
1094}
1095
1096static inline struct iwl_device_tx_cmd *
1097iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1098{
1099        return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1100}
1101
1102int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1103
1104static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1105                                         struct iwl_device_tx_cmd *dev_cmd)
1106{
1107        kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1108}
1109
1110static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1111                               struct iwl_device_tx_cmd *dev_cmd, int queue)
1112{
1113        if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1114                return -EIO;
1115
1116        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1117                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1118                return -EIO;
1119        }
1120
1121        return trans->ops->tx(trans, skb, dev_cmd, queue);
1122}
1123
1124static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1125                                     int ssn, struct sk_buff_head *skbs)
1126{
1127        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1128                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1129                return;
1130        }
1131
1132        trans->ops->reclaim(trans, queue, ssn, skbs);
1133}
1134
1135static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1136                                        int ptr)
1137{
1138        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1139                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1140                return;
1141        }
1142
1143        trans->ops->set_q_ptrs(trans, queue, ptr);
1144}
1145
1146static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1147                                         bool configure_scd)
1148{
1149        trans->ops->txq_disable(trans, queue, configure_scd);
1150}
1151
1152static inline bool
1153iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1154                         const struct iwl_trans_txq_scd_cfg *cfg,
1155                         unsigned int queue_wdg_timeout)
1156{
1157        might_sleep();
1158
1159        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1160                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1161                return false;
1162        }
1163
1164        return trans->ops->txq_enable(trans, queue, ssn,
1165                                      cfg, queue_wdg_timeout);
1166}
1167
1168static inline int
1169iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1170                           struct iwl_trans_rxq_dma_data *data)
1171{
1172        if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1173                return -ENOTSUPP;
1174
1175        return trans->ops->rxq_dma_data(trans, queue, data);
1176}
1177
1178static inline void
1179iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1180{
1181        if (WARN_ON_ONCE(!trans->ops->txq_free))
1182                return;
1183
1184        trans->ops->txq_free(trans, queue);
1185}
1186
1187static inline int
1188iwl_trans_txq_alloc(struct iwl_trans *trans,
1189                    __le16 flags, u8 sta_id, u8 tid,
1190                    int cmd_id, int size,
1191                    unsigned int wdg_timeout)
1192{
1193        might_sleep();
1194
1195        if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1196                return -ENOTSUPP;
1197
1198        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1199                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1200                return -EIO;
1201        }
1202
1203        return trans->ops->txq_alloc(trans, flags, sta_id, tid,
1204                                     cmd_id, size, wdg_timeout);
1205}
1206
1207static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1208                                                 int queue, bool shared_mode)
1209{
1210        if (trans->ops->txq_set_shared_mode)
1211                trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1212}
1213
1214static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1215                                        int fifo, int sta_id, int tid,
1216                                        int frame_limit, u16 ssn,
1217                                        unsigned int queue_wdg_timeout)
1218{
1219        struct iwl_trans_txq_scd_cfg cfg = {
1220                .fifo = fifo,
1221                .sta_id = sta_id,
1222                .tid = tid,
1223                .frame_limit = frame_limit,
1224                .aggregate = sta_id >= 0,
1225        };
1226
1227        iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1228}
1229
1230static inline
1231void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1232                             unsigned int queue_wdg_timeout)
1233{
1234        struct iwl_trans_txq_scd_cfg cfg = {
1235                .fifo = fifo,
1236                .sta_id = -1,
1237                .tid = IWL_MAX_TID_COUNT,
1238                .frame_limit = IWL_FRAME_LIMIT,
1239                .aggregate = false,
1240        };
1241
1242        iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1243}
1244
1245static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1246                                              unsigned long txqs,
1247                                              bool freeze)
1248{
1249        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1250                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1251                return;
1252        }
1253
1254        if (trans->ops->freeze_txq_timer)
1255                trans->ops->freeze_txq_timer(trans, txqs, freeze);
1256}
1257
1258static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1259                                            bool block)
1260{
1261        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1262                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1263                return;
1264        }
1265
1266        if (trans->ops->block_txq_ptrs)
1267                trans->ops->block_txq_ptrs(trans, block);
1268}
1269
1270static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1271                                                 u32 txqs)
1272{
1273        if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1274                return -ENOTSUPP;
1275
1276        /* No need to wait if the firmware is not alive */
1277        if (trans->state != IWL_TRANS_FW_ALIVE) {
1278                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1279                return -EIO;
1280        }
1281
1282        return trans->ops->wait_tx_queues_empty(trans, txqs);
1283}
1284
1285static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1286{
1287        if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1288                return -ENOTSUPP;
1289
1290        if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1291                IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1292                return -EIO;
1293        }
1294
1295        return trans->ops->wait_txq_empty(trans, queue);
1296}
1297
1298static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1299{
1300        trans->ops->write8(trans, ofs, val);
1301}
1302
1303static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1304{
1305        trans->ops->write32(trans, ofs, val);
1306}
1307
1308static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1309{
1310        return trans->ops->read32(trans, ofs);
1311}
1312
1313static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1314{
1315        return trans->ops->read_prph(trans, ofs);
1316}
1317
1318static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1319                                        u32 val)
1320{
1321        return trans->ops->write_prph(trans, ofs, val);
1322}
1323
1324static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1325                                     void *buf, int dwords)
1326{
1327        return trans->ops->read_mem(trans, addr, buf, dwords);
1328}
1329
1330#define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)                   \
1331        do {                                                                  \
1332                if (__builtin_constant_p(bufsize))                            \
1333                        BUILD_BUG_ON((bufsize) % sizeof(u32));                \
1334                iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1335        } while (0)
1336
1337static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1338{
1339        u32 value;
1340
1341        if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1342                return 0xa5a5a5a5;
1343
1344        return value;
1345}
1346
1347static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1348                                      const void *buf, int dwords)
1349{
1350        return trans->ops->write_mem(trans, addr, buf, dwords);
1351}
1352
1353static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1354                                        u32 val)
1355{
1356        return iwl_trans_write_mem(trans, addr, &val, 1);
1357}
1358
1359static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1360{
1361        if (trans->ops->set_pmi)
1362                trans->ops->set_pmi(trans, state);
1363}
1364
1365static inline void iwl_trans_sw_reset(struct iwl_trans *trans)
1366{
1367        if (trans->ops->sw_reset)
1368                trans->ops->sw_reset(trans);
1369}
1370
1371static inline void
1372iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1373{
1374        trans->ops->set_bits_mask(trans, reg, mask, value);
1375}
1376
1377#define iwl_trans_grab_nic_access(trans)                \
1378        __cond_lock(nic_access,                         \
1379                    likely((trans)->ops->grab_nic_access(trans)))
1380
1381static inline void __releases(nic_access)
1382iwl_trans_release_nic_access(struct iwl_trans *trans)
1383{
1384        trans->ops->release_nic_access(trans);
1385        __release(nic_access);
1386}
1387
1388static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1389{
1390        if (WARN_ON_ONCE(!trans->op_mode))
1391                return;
1392
1393        /* prevent double restarts due to the same erroneous FW */
1394        if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1395                iwl_op_mode_nic_error(trans->op_mode, sync);
1396                trans->state = IWL_TRANS_NO_FW;
1397        }
1398}
1399
1400static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1401{
1402        return trans->state == IWL_TRANS_FW_ALIVE;
1403}
1404
1405static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1406{
1407        if (trans->ops->sync_nmi)
1408                trans->ops->sync_nmi(trans);
1409}
1410
1411void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1412                                  u32 sw_err_bit);
1413
1414static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1415                                     const void *data, u32 len)
1416{
1417        if (trans->ops->set_pnvm) {
1418                int ret = trans->ops->set_pnvm(trans, data, len);
1419
1420                if (ret)
1421                        return ret;
1422        }
1423
1424        trans->pnvm_loaded = true;
1425
1426        return 0;
1427}
1428
1429static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1430                                             const void *data, u32 len)
1431{
1432        if (trans->ops->set_reduce_power) {
1433                int ret = trans->ops->set_reduce_power(trans, data, len);
1434
1435                if (ret)
1436                        return ret;
1437        }
1438
1439        trans->reduce_power_loaded = true;
1440        return 0;
1441}
1442
1443static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1444{
1445        return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1446                trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1447}
1448
1449static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1450{
1451        if (trans->ops->interrupts)
1452                trans->ops->interrupts(trans, enable);
1453}
1454
1455/*****************************************************
1456 * transport helper functions
1457 *****************************************************/
1458struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1459                          struct device *dev,
1460                          const struct iwl_trans_ops *ops,
1461                          const struct iwl_cfg_trans_params *cfg_trans);
1462int iwl_trans_init(struct iwl_trans *trans);
1463void iwl_trans_free(struct iwl_trans *trans);
1464
1465/*****************************************************
1466* driver (transport) register/unregister functions
1467******************************************************/
1468int __must_check iwl_pci_register_driver(void);
1469void iwl_pci_unregister_driver(void);
1470
1471#endif /* __iwl_trans_h__ */
1472