linux/drivers/net/wireless/ralink/rt2x00/rt2500pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4        <http://rt2x00.serialmonkey.com>
   5
   6 */
   7
   8/*
   9        Module: rt2500pci
  10        Abstract: rt2500pci device specific routines.
  11        Supported chipsets: RT2560.
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/etherdevice.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/pci.h>
  19#include <linux/eeprom_93cx6.h>
  20#include <linux/slab.h>
  21
  22#include "rt2x00.h"
  23#include "rt2x00mmio.h"
  24#include "rt2x00pci.h"
  25#include "rt2500pci.h"
  26
  27/*
  28 * Register access.
  29 * All access to the CSR registers will go through the methods
  30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
  31 * BBP and RF register require indirect register access,
  32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  33 * These indirect registers work with busy bits,
  34 * and we will try maximal REGISTER_BUSY_COUNT times to access
  35 * the register while taking a REGISTER_BUSY_DELAY us delay
  36 * between each attampt. When the busy bit is still set at that time,
  37 * the access attempt is considered to have failed,
  38 * and we will print an error.
  39 */
  40#define WAIT_FOR_BBP(__dev, __reg) \
  41        rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  42#define WAIT_FOR_RF(__dev, __reg) \
  43        rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  44
  45static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  46                                const unsigned int word, const u8 value)
  47{
  48        u32 reg;
  49
  50        mutex_lock(&rt2x00dev->csr_mutex);
  51
  52        /*
  53         * Wait until the BBP becomes available, afterwards we
  54         * can safely write the new data into the register.
  55         */
  56        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  57                reg = 0;
  58                rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  59                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  60                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  61                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  62
  63                rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  64        }
  65
  66        mutex_unlock(&rt2x00dev->csr_mutex);
  67}
  68
  69static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70                             const unsigned int word)
  71{
  72        u32 reg;
  73        u8 value;
  74
  75        mutex_lock(&rt2x00dev->csr_mutex);
  76
  77        /*
  78         * Wait until the BBP becomes available, afterwards we
  79         * can safely write the read request into the register.
  80         * After the data has been written, we wait until hardware
  81         * returns the correct value, if at any time the register
  82         * doesn't become available in time, reg will be 0xffffffff
  83         * which means we return 0xff to the caller.
  84         */
  85        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  86                reg = 0;
  87                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  88                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  89                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  90
  91                rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  92
  93                WAIT_FOR_BBP(rt2x00dev, &reg);
  94        }
  95
  96        value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  97
  98        mutex_unlock(&rt2x00dev->csr_mutex);
  99
 100        return value;
 101}
 102
 103static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 104                               const unsigned int word, const u32 value)
 105{
 106        u32 reg;
 107
 108        mutex_lock(&rt2x00dev->csr_mutex);
 109
 110        /*
 111         * Wait until the RF becomes available, afterwards we
 112         * can safely write the new data into the register.
 113         */
 114        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 115                reg = 0;
 116                rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 117                rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 118                rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 119                rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 120
 121                rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 122                rt2x00_rf_write(rt2x00dev, word, value);
 123        }
 124
 125        mutex_unlock(&rt2x00dev->csr_mutex);
 126}
 127
 128static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 129{
 130        struct rt2x00_dev *rt2x00dev = eeprom->data;
 131        u32 reg;
 132
 133        reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
 134
 135        eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 136        eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 137        eeprom->reg_data_clock =
 138            !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 139        eeprom->reg_chip_select =
 140            !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 141}
 142
 143static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 144{
 145        struct rt2x00_dev *rt2x00dev = eeprom->data;
 146        u32 reg = 0;
 147
 148        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 149        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 150        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 151                           !!eeprom->reg_data_clock);
 152        rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 153                           !!eeprom->reg_chip_select);
 154
 155        rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 156}
 157
 158#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 159static const struct rt2x00debug rt2500pci_rt2x00debug = {
 160        .owner  = THIS_MODULE,
 161        .csr    = {
 162                .read           = rt2x00mmio_register_read,
 163                .write          = rt2x00mmio_register_write,
 164                .flags          = RT2X00DEBUGFS_OFFSET,
 165                .word_base      = CSR_REG_BASE,
 166                .word_size      = sizeof(u32),
 167                .word_count     = CSR_REG_SIZE / sizeof(u32),
 168        },
 169        .eeprom = {
 170                .read           = rt2x00_eeprom_read,
 171                .write          = rt2x00_eeprom_write,
 172                .word_base      = EEPROM_BASE,
 173                .word_size      = sizeof(u16),
 174                .word_count     = EEPROM_SIZE / sizeof(u16),
 175        },
 176        .bbp    = {
 177                .read           = rt2500pci_bbp_read,
 178                .write          = rt2500pci_bbp_write,
 179                .word_base      = BBP_BASE,
 180                .word_size      = sizeof(u8),
 181                .word_count     = BBP_SIZE / sizeof(u8),
 182        },
 183        .rf     = {
 184                .read           = rt2x00_rf_read,
 185                .write          = rt2500pci_rf_write,
 186                .word_base      = RF_BASE,
 187                .word_size      = sizeof(u32),
 188                .word_count     = RF_SIZE / sizeof(u32),
 189        },
 190};
 191#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 192
 193static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 194{
 195        u32 reg;
 196
 197        reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
 198        return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 199}
 200
 201#ifdef CONFIG_RT2X00_LIB_LEDS
 202static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 203                                     enum led_brightness brightness)
 204{
 205        struct rt2x00_led *led =
 206            container_of(led_cdev, struct rt2x00_led, led_dev);
 207        unsigned int enabled = brightness != LED_OFF;
 208        u32 reg;
 209
 210        reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 211
 212        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 213                rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 214        else if (led->type == LED_TYPE_ACTIVITY)
 215                rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 216
 217        rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 218}
 219
 220static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 221                               unsigned long *delay_on,
 222                               unsigned long *delay_off)
 223{
 224        struct rt2x00_led *led =
 225            container_of(led_cdev, struct rt2x00_led, led_dev);
 226        u32 reg;
 227
 228        reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 229        rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 230        rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 231        rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 232
 233        return 0;
 234}
 235
 236static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 237                               struct rt2x00_led *led,
 238                               enum led_type type)
 239{
 240        led->rt2x00dev = rt2x00dev;
 241        led->type = type;
 242        led->led_dev.brightness_set = rt2500pci_brightness_set;
 243        led->led_dev.blink_set = rt2500pci_blink_set;
 244        led->flags = LED_INITIALIZED;
 245}
 246#endif /* CONFIG_RT2X00_LIB_LEDS */
 247
 248/*
 249 * Configuration handlers.
 250 */
 251static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 252                                    const unsigned int filter_flags)
 253{
 254        u32 reg;
 255
 256        /*
 257         * Start configuration steps.
 258         * Note that the version error will always be dropped
 259         * and broadcast frames will always be accepted since
 260         * there is no filter for it at this time.
 261         */
 262        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 263        rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 264                           !(filter_flags & FIF_FCSFAIL));
 265        rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 266                           !(filter_flags & FIF_PLCPFAIL));
 267        rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 268                           !(filter_flags & FIF_CONTROL));
 269        rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 270                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 271        rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 272                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 273                           !rt2x00dev->intf_ap_count);
 274        rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 275        rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 276                           !(filter_flags & FIF_ALLMULTI));
 277        rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 278        rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 279}
 280
 281static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 282                                  struct rt2x00_intf *intf,
 283                                  struct rt2x00intf_conf *conf,
 284                                  const unsigned int flags)
 285{
 286        struct data_queue *queue = rt2x00dev->bcn;
 287        unsigned int bcn_preload;
 288        u32 reg;
 289
 290        if (flags & CONFIG_UPDATE_TYPE) {
 291                /*
 292                 * Enable beacon config
 293                 */
 294                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 295                reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
 296                rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 297                rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 298                rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 299
 300                /*
 301                 * Enable synchronisation.
 302                 */
 303                reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 304                rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 305                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 306        }
 307
 308        if (flags & CONFIG_UPDATE_MAC)
 309                rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 310                                              conf->mac, sizeof(conf->mac));
 311
 312        if (flags & CONFIG_UPDATE_BSSID)
 313                rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 314                                              conf->bssid, sizeof(conf->bssid));
 315}
 316
 317static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 318                                 struct rt2x00lib_erp *erp,
 319                                 u32 changed)
 320{
 321        int preamble_mask;
 322        u32 reg;
 323
 324        /*
 325         * When short preamble is enabled, we should set bit 0x08
 326         */
 327        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 328                preamble_mask = erp->short_preamble << 3;
 329
 330                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
 331                rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 332                rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 333                rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 334                rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 335                rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 336
 337                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
 338                rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 339                rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 340                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 341                                   GET_DURATION(ACK_SIZE, 10));
 342                rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 343
 344                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
 345                rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 346                rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 347                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 348                                   GET_DURATION(ACK_SIZE, 20));
 349                rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 350
 351                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
 352                rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 353                rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 354                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 355                                   GET_DURATION(ACK_SIZE, 55));
 356                rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 357
 358                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
 359                rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 360                rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 361                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 362                                   GET_DURATION(ACK_SIZE, 110));
 363                rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 364        }
 365
 366        if (changed & BSS_CHANGED_BASIC_RATES)
 367                rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 368
 369        if (changed & BSS_CHANGED_ERP_SLOT) {
 370                reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 371                rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 372                rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 373
 374                reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
 375                rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 376                rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 377                rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 378
 379                reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
 380                rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 381                rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 382                rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 383        }
 384
 385        if (changed & BSS_CHANGED_BEACON_INT) {
 386                reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
 387                rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 388                                   erp->beacon_int * 16);
 389                rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 390                                   erp->beacon_int * 16);
 391                rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 392        }
 393
 394}
 395
 396static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 397                                 struct antenna_setup *ant)
 398{
 399        u32 reg;
 400        u8 r14;
 401        u8 r2;
 402
 403        /*
 404         * We should never come here because rt2x00lib is supposed
 405         * to catch this and send us the correct antenna explicitely.
 406         */
 407        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 408               ant->tx == ANTENNA_SW_DIVERSITY);
 409
 410        reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
 411        r14 = rt2500pci_bbp_read(rt2x00dev, 14);
 412        r2 = rt2500pci_bbp_read(rt2x00dev, 2);
 413
 414        /*
 415         * Configure the TX antenna.
 416         */
 417        switch (ant->tx) {
 418        case ANTENNA_A:
 419                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 420                rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 421                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 422                break;
 423        case ANTENNA_B:
 424        default:
 425                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 426                rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 427                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 428                break;
 429        }
 430
 431        /*
 432         * Configure the RX antenna.
 433         */
 434        switch (ant->rx) {
 435        case ANTENNA_A:
 436                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 437                break;
 438        case ANTENNA_B:
 439        default:
 440                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 441                break;
 442        }
 443
 444        /*
 445         * RT2525E and RT5222 need to flip TX I/Q
 446         */
 447        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 448                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 449                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 450                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 451
 452                /*
 453                 * RT2525E does not need RX I/Q Flip.
 454                 */
 455                if (rt2x00_rf(rt2x00dev, RF2525E))
 456                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 457        } else {
 458                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 459                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 460        }
 461
 462        rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
 463        rt2500pci_bbp_write(rt2x00dev, 14, r14);
 464        rt2500pci_bbp_write(rt2x00dev, 2, r2);
 465}
 466
 467static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 468                                     struct rf_channel *rf, const int txpower)
 469{
 470        u8 r70;
 471
 472        /*
 473         * Set TXpower.
 474         */
 475        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 476
 477        /*
 478         * Switch on tuning bits.
 479         * For RT2523 devices we do not need to update the R1 register.
 480         */
 481        if (!rt2x00_rf(rt2x00dev, RF2523))
 482                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 483        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 484
 485        /*
 486         * For RT2525 we should first set the channel to half band higher.
 487         */
 488        if (rt2x00_rf(rt2x00dev, RF2525)) {
 489                static const u32 vals[] = {
 490                        0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 491                        0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 492                        0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 493                        0x00080d2e, 0x00080d3a
 494                };
 495
 496                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 497                rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 498                rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 499                if (rf->rf4)
 500                        rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 501        }
 502
 503        rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 504        rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 505        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 506        if (rf->rf4)
 507                rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 508
 509        /*
 510         * Channel 14 requires the Japan filter bit to be set.
 511         */
 512        r70 = 0x46;
 513        rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 514        rt2500pci_bbp_write(rt2x00dev, 70, r70);
 515
 516        msleep(1);
 517
 518        /*
 519         * Switch off tuning bits.
 520         * For RT2523 devices we do not need to update the R1 register.
 521         */
 522        if (!rt2x00_rf(rt2x00dev, RF2523)) {
 523                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 524                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 525        }
 526
 527        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 528        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 529
 530        /*
 531         * Clear false CRC during channel switch.
 532         */
 533        rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
 534}
 535
 536static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 537                                     const int txpower)
 538{
 539        u32 rf3;
 540
 541        rf3 = rt2x00_rf_read(rt2x00dev, 3);
 542        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 543        rt2500pci_rf_write(rt2x00dev, 3, rf3);
 544}
 545
 546static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 547                                         struct rt2x00lib_conf *libconf)
 548{
 549        u32 reg;
 550
 551        reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 552        rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 553                           libconf->conf->long_frame_max_tx_count);
 554        rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 555                           libconf->conf->short_frame_max_tx_count);
 556        rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 557}
 558
 559static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 560                                struct rt2x00lib_conf *libconf)
 561{
 562        enum dev_state state =
 563            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 564                STATE_SLEEP : STATE_AWAKE;
 565        u32 reg;
 566
 567        if (state == STATE_SLEEP) {
 568                reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 569                rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 570                                   (rt2x00dev->beacon_int - 20) * 16);
 571                rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 572                                   libconf->conf->listen_interval - 1);
 573
 574                /* We must first disable autowake before it can be enabled */
 575                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 576                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 577
 578                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 579                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 580        } else {
 581                reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 582                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 583                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 584        }
 585
 586        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 587}
 588
 589static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 590                             struct rt2x00lib_conf *libconf,
 591                             const unsigned int flags)
 592{
 593        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 594                rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 595                                         libconf->conf->power_level);
 596        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 597            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 598                rt2500pci_config_txpower(rt2x00dev,
 599                                         libconf->conf->power_level);
 600        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 601                rt2500pci_config_retry_limit(rt2x00dev, libconf);
 602        if (flags & IEEE80211_CONF_CHANGE_PS)
 603                rt2500pci_config_ps(rt2x00dev, libconf);
 604}
 605
 606/*
 607 * Link tuning
 608 */
 609static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 610                                 struct link_qual *qual)
 611{
 612        u32 reg;
 613
 614        /*
 615         * Update FCS error count from register.
 616         */
 617        reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 618        qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 619
 620        /*
 621         * Update False CCA count from register.
 622         */
 623        reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
 624        qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 625}
 626
 627static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 628                                     struct link_qual *qual, u8 vgc_level)
 629{
 630        if (qual->vgc_level_reg != vgc_level) {
 631                rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 632                qual->vgc_level = vgc_level;
 633                qual->vgc_level_reg = vgc_level;
 634        }
 635}
 636
 637static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 638                                  struct link_qual *qual)
 639{
 640        rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 641}
 642
 643static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 644                                 struct link_qual *qual, const u32 count)
 645{
 646        /*
 647         * To prevent collisions with MAC ASIC on chipsets
 648         * up to version C the link tuning should halt after 20
 649         * seconds while being associated.
 650         */
 651        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 652            rt2x00dev->intf_associated && count > 20)
 653                return;
 654
 655        /*
 656         * Chipset versions C and lower should directly continue
 657         * to the dynamic CCA tuning. Chipset version D and higher
 658         * should go straight to dynamic CCA tuning when they
 659         * are not associated.
 660         */
 661        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 662            !rt2x00dev->intf_associated)
 663                goto dynamic_cca_tune;
 664
 665        /*
 666         * A too low RSSI will cause too much false CCA which will
 667         * then corrupt the R17 tuning. To remidy this the tuning should
 668         * be stopped (While making sure the R17 value will not exceed limits)
 669         */
 670        if (qual->rssi < -80 && count > 20) {
 671                if (qual->vgc_level_reg >= 0x41)
 672                        rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 673                return;
 674        }
 675
 676        /*
 677         * Special big-R17 for short distance
 678         */
 679        if (qual->rssi >= -58) {
 680                rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 681                return;
 682        }
 683
 684        /*
 685         * Special mid-R17 for middle distance
 686         */
 687        if (qual->rssi >= -74) {
 688                rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 689                return;
 690        }
 691
 692        /*
 693         * Leave short or middle distance condition, restore r17
 694         * to the dynamic tuning range.
 695         */
 696        if (qual->vgc_level_reg >= 0x41) {
 697                rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 698                return;
 699        }
 700
 701dynamic_cca_tune:
 702
 703        /*
 704         * R17 is inside the dynamic tuning range,
 705         * start tuning the link based on the false cca counter.
 706         */
 707        if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 708                rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 709        else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 710                rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 711}
 712
 713/*
 714 * Queue handlers.
 715 */
 716static void rt2500pci_start_queue(struct data_queue *queue)
 717{
 718        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 719        u32 reg;
 720
 721        switch (queue->qid) {
 722        case QID_RX:
 723                reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 724                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 725                rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 726                break;
 727        case QID_BEACON:
 728                reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 729                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 730                rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 731                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 732                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 733                break;
 734        default:
 735                break;
 736        }
 737}
 738
 739static void rt2500pci_kick_queue(struct data_queue *queue)
 740{
 741        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 742        u32 reg;
 743
 744        switch (queue->qid) {
 745        case QID_AC_VO:
 746                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 747                rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 748                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 749                break;
 750        case QID_AC_VI:
 751                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 752                rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 753                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 754                break;
 755        case QID_ATIM:
 756                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 757                rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 758                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 759                break;
 760        default:
 761                break;
 762        }
 763}
 764
 765static void rt2500pci_stop_queue(struct data_queue *queue)
 766{
 767        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 768        u32 reg;
 769
 770        switch (queue->qid) {
 771        case QID_AC_VO:
 772        case QID_AC_VI:
 773        case QID_ATIM:
 774                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 775                rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 776                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 777                break;
 778        case QID_RX:
 779                reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 780                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 781                rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 782                break;
 783        case QID_BEACON:
 784                reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 785                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 786                rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 787                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 788                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 789
 790                /*
 791                 * Wait for possibly running tbtt tasklets.
 792                 */
 793                tasklet_kill(&rt2x00dev->tbtt_tasklet);
 794                break;
 795        default:
 796                break;
 797        }
 798}
 799
 800/*
 801 * Initialization functions.
 802 */
 803static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 804{
 805        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 806        u32 word;
 807
 808        if (entry->queue->qid == QID_RX) {
 809                word = rt2x00_desc_read(entry_priv->desc, 0);
 810
 811                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 812        } else {
 813                word = rt2x00_desc_read(entry_priv->desc, 0);
 814
 815                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 816                        rt2x00_get_field32(word, TXD_W0_VALID));
 817        }
 818}
 819
 820static void rt2500pci_clear_entry(struct queue_entry *entry)
 821{
 822        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 823        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 824        u32 word;
 825
 826        if (entry->queue->qid == QID_RX) {
 827                word = rt2x00_desc_read(entry_priv->desc, 1);
 828                rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 829                rt2x00_desc_write(entry_priv->desc, 1, word);
 830
 831                word = rt2x00_desc_read(entry_priv->desc, 0);
 832                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 833                rt2x00_desc_write(entry_priv->desc, 0, word);
 834        } else {
 835                word = rt2x00_desc_read(entry_priv->desc, 0);
 836                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 837                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 838                rt2x00_desc_write(entry_priv->desc, 0, word);
 839        }
 840}
 841
 842static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 843{
 844        struct queue_entry_priv_mmio *entry_priv;
 845        u32 reg;
 846
 847        /*
 848         * Initialize registers.
 849         */
 850        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
 851        rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 852        rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 853        rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 854        rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 855        rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 856
 857        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 858        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
 859        rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 860                           entry_priv->desc_dma);
 861        rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 862
 863        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 864        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
 865        rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 866                           entry_priv->desc_dma);
 867        rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 868
 869        entry_priv = rt2x00dev->atim->entries[0].priv_data;
 870        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
 871        rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 872                           entry_priv->desc_dma);
 873        rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 874
 875        entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 876        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
 877        rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 878                           entry_priv->desc_dma);
 879        rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 880
 881        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
 882        rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 883        rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 884        rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 885
 886        entry_priv = rt2x00dev->rx->entries[0].priv_data;
 887        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
 888        rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 889                           entry_priv->desc_dma);
 890        rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 891
 892        return 0;
 893}
 894
 895static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 896{
 897        u32 reg;
 898
 899        rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 900        rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 901        rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
 902        rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 903
 904        reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
 905        rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 906        rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 907        rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 908        rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 909
 910        reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
 911        rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 912                           rt2x00dev->rx->data_size / 128);
 913        rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 914
 915        /*
 916         * Always use CWmin and CWmax set in descriptor.
 917         */
 918        reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 919        rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 920        rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 921
 922        reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 923        rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 924        rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 925        rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 926        rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 927        rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 928        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 929        rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 930        rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 931        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 932
 933        rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
 934
 935        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
 936        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 937        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 938        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 939        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 940        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 941        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 942        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 943        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 944        rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
 945
 946        reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
 947        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 948        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 949        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 950        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 951        rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
 952
 953        reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
 954        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 955        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 956        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 957        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 958        rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
 959
 960        reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
 961        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 962        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 963        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 964        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 965        rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
 966
 967        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
 968        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 969        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 970        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 971        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 972        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 973        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 974        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 975        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 976        rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 977
 978        reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
 979        rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 980        rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 981        rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 982        rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 983        rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 984        rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
 985        rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
 986        rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
 987
 988        rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 989
 990        rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 991        rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
 992
 993        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 994                return -EBUSY;
 995
 996        rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
 997        rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
 998
 999        reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000        rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1001        rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002
1003        reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1005        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1006        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1007        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1008        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1009        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1010        rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011
1012        rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013
1014        rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015
1016        reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1018        rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1019        rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1020        rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021
1022        reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1024        rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1025        rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026
1027        /*
1028         * We must clear the FCS and FIFO error count.
1029         * These registers are cleared on read,
1030         * so we may pass a useless variable to store the value.
1031         */
1032        reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033        reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034
1035        return 0;
1036}
1037
1038static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039{
1040        unsigned int i;
1041        u8 value;
1042
1043        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044                value = rt2500pci_bbp_read(rt2x00dev, 0);
1045                if ((value != 0xff) && (value != 0x00))
1046                        return 0;
1047                udelay(REGISTER_BUSY_DELAY);
1048        }
1049
1050        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051        return -EACCES;
1052}
1053
1054static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055{
1056        unsigned int i;
1057        u16 eeprom;
1058        u8 reg_id;
1059        u8 value;
1060
1061        if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062                return -EACCES;
1063
1064        rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065        rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066        rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067        rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068        rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069        rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070        rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071        rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072        rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073        rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074        rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075        rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076        rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077        rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078        rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079        rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080        rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081        rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082        rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083        rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084        rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085        rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086        rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087        rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088        rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089        rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090        rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091        rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092        rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093        rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094
1095        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097
1098                if (eeprom != 0xffff && eeprom != 0x0000) {
1099                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101                        rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102                }
1103        }
1104
1105        return 0;
1106}
1107
1108/*
1109 * Device state switch handlers.
1110 */
1111static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112                                 enum dev_state state)
1113{
1114        int mask = (state == STATE_RADIO_IRQ_OFF);
1115        u32 reg;
1116        unsigned long flags;
1117
1118        /*
1119         * When interrupts are being enabled, the interrupt registers
1120         * should clear the register to assure a clean state.
1121         */
1122        if (state == STATE_RADIO_IRQ_ON) {
1123                reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124                rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125        }
1126
1127        /*
1128         * Only toggle the interrupts bits we are going to use.
1129         * Non-checked interrupt bits are disabled by default.
1130         */
1131        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132
1133        reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134        rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1135        rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1136        rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1137        rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1138        rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1139        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140
1141        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142
1143        if (state == STATE_RADIO_IRQ_OFF) {
1144                /*
1145                 * Ensure that all tasklets are finished.
1146                 */
1147                tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148                tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150        }
1151}
1152
1153static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154{
1155        /*
1156         * Initialize all registers.
1157         */
1158        if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159                     rt2500pci_init_registers(rt2x00dev) ||
1160                     rt2500pci_init_bbp(rt2x00dev)))
1161                return -EIO;
1162
1163        return 0;
1164}
1165
1166static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167{
1168        /*
1169         * Disable power
1170         */
1171        rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172}
1173
1174static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175                               enum dev_state state)
1176{
1177        u32 reg, reg2;
1178        unsigned int i;
1179        char put_to_sleep;
1180        char bbp_state;
1181        char rf_state;
1182
1183        put_to_sleep = (state != STATE_AWAKE);
1184
1185        reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186        rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1187        rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1188        rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1189        rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190        rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191
1192        /*
1193         * Device is not guaranteed to be in the requested state yet.
1194         * We must wait until the register indicates that the
1195         * device has entered the correct state.
1196         */
1197        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198                reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199                bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200                rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201                if (bbp_state == state && rf_state == state)
1202                        return 0;
1203                rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204                msleep(10);
1205        }
1206
1207        return -EBUSY;
1208}
1209
1210static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211                                      enum dev_state state)
1212{
1213        int retval = 0;
1214
1215        switch (state) {
1216        case STATE_RADIO_ON:
1217                retval = rt2500pci_enable_radio(rt2x00dev);
1218                break;
1219        case STATE_RADIO_OFF:
1220                rt2500pci_disable_radio(rt2x00dev);
1221                break;
1222        case STATE_RADIO_IRQ_ON:
1223        case STATE_RADIO_IRQ_OFF:
1224                rt2500pci_toggle_irq(rt2x00dev, state);
1225                break;
1226        case STATE_DEEP_SLEEP:
1227        case STATE_SLEEP:
1228        case STATE_STANDBY:
1229        case STATE_AWAKE:
1230                retval = rt2500pci_set_state(rt2x00dev, state);
1231                break;
1232        default:
1233                retval = -ENOTSUPP;
1234                break;
1235        }
1236
1237        if (unlikely(retval))
1238                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239                           state, retval);
1240
1241        return retval;
1242}
1243
1244/*
1245 * TX descriptor initialization
1246 */
1247static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248                                    struct txentry_desc *txdesc)
1249{
1250        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252        __le32 *txd = entry_priv->desc;
1253        u32 word;
1254
1255        /*
1256         * Start writing the descriptor words.
1257         */
1258        word = rt2x00_desc_read(txd, 1);
1259        rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260        rt2x00_desc_write(txd, 1, word);
1261
1262        word = rt2x00_desc_read(txd, 2);
1263        rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264        rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265        rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266        rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267        rt2x00_desc_write(txd, 2, word);
1268
1269        word = rt2x00_desc_read(txd, 3);
1270        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273                           txdesc->u.plcp.length_low);
1274        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275                           txdesc->u.plcp.length_high);
1276        rt2x00_desc_write(txd, 3, word);
1277
1278        word = rt2x00_desc_read(txd, 10);
1279        rt2x00_set_field32(&word, TXD_W10_RTS,
1280                           test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281        rt2x00_desc_write(txd, 10, word);
1282
1283        /*
1284         * Writing TXD word 0 must the last to prevent a race condition with
1285         * the device, whereby the device may take hold of the TXD before we
1286         * finished updating it.
1287         */
1288        word = rt2x00_desc_read(txd, 0);
1289        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293        rt2x00_set_field32(&word, TXD_W0_ACK,
1294                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297        rt2x00_set_field32(&word, TXD_W0_OFDM,
1298                           (txdesc->rate_mode == RATE_MODE_OFDM));
1299        rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305        rt2x00_desc_write(txd, 0, word);
1306
1307        /*
1308         * Register descriptor details in skb frame descriptor.
1309         */
1310        skbdesc->desc = txd;
1311        skbdesc->desc_len = TXD_DESC_SIZE;
1312}
1313
1314/*
1315 * TX data initialization
1316 */
1317static void rt2500pci_write_beacon(struct queue_entry *entry,
1318                                   struct txentry_desc *txdesc)
1319{
1320        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321        u32 reg;
1322
1323        /*
1324         * Disable beaconing while we are reloading the beacon data,
1325         * otherwise we might be sending out invalid data.
1326         */
1327        reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1329        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330
1331        if (rt2x00queue_map_txskb(entry)) {
1332                rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333                goto out;
1334        }
1335
1336        /*
1337         * Write the TX descriptor for the beacon.
1338         */
1339        rt2500pci_write_tx_desc(entry, txdesc);
1340
1341        /*
1342         * Dump beacon to userspace through debugfs.
1343         */
1344        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345out:
1346        /*
1347         * Enable beaconing again.
1348         */
1349        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1350        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351}
1352
1353/*
1354 * RX control handlers
1355 */
1356static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357                                  struct rxdone_entry_desc *rxdesc)
1358{
1359        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360        u32 word0;
1361        u32 word2;
1362
1363        word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364        word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365
1366        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370
1371        /*
1372         * Obtain the status about this packet.
1373         * When frame was received with an OFDM bitrate,
1374         * the signal is the PLCP value. If it was received with
1375         * a CCK bitrate the signal is the rate in 100kbit/s.
1376         */
1377        rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378        rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379            entry->queue->rt2x00dev->rssi_offset;
1380        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381
1382        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384        else
1385                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387                rxdesc->dev_flags |= RXDONE_MY_BSS;
1388}
1389
1390/*
1391 * Interrupt functions.
1392 */
1393static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394                             const enum data_queue_qid queue_idx)
1395{
1396        struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397        struct queue_entry_priv_mmio *entry_priv;
1398        struct queue_entry *entry;
1399        struct txdone_entry_desc txdesc;
1400        u32 word;
1401
1402        while (!rt2x00queue_empty(queue)) {
1403                entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404                entry_priv = entry->priv_data;
1405                word = rt2x00_desc_read(entry_priv->desc, 0);
1406
1407                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408                    !rt2x00_get_field32(word, TXD_W0_VALID))
1409                        break;
1410
1411                /*
1412                 * Obtain the status about this packet.
1413                 */
1414                txdesc.flags = 0;
1415                switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416                case 0: /* Success */
1417                case 1: /* Success with retry */
1418                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419                        break;
1420                case 2: /* Failure, excessive retries */
1421                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422                        fallthrough;    /* this is a failed frame! */
1423                default: /* Failure */
1424                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
1425                }
1426                txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427
1428                rt2x00lib_txdone(entry, &txdesc);
1429        }
1430}
1431
1432static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433                                              struct rt2x00_field32 irq_field)
1434{
1435        u32 reg;
1436
1437        /*
1438         * Enable a single interrupt. The interrupt mask register
1439         * access needs locking.
1440         */
1441        spin_lock_irq(&rt2x00dev->irqmask_lock);
1442
1443        reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444        rt2x00_set_field32(&reg, irq_field, 0);
1445        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446
1447        spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448}
1449
1450static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
1451{
1452        struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1453                                                    txstatus_tasklet);
1454        u32 reg;
1455
1456        /*
1457         * Handle all tx queues.
1458         */
1459        rt2500pci_txdone(rt2x00dev, QID_ATIM);
1460        rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1461        rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1462
1463        /*
1464         * Enable all TXDONE interrupts again.
1465         */
1466        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1467                spin_lock_irq(&rt2x00dev->irqmask_lock);
1468
1469                reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1470                rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1471                rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1472                rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1473                rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1474
1475                spin_unlock_irq(&rt2x00dev->irqmask_lock);
1476        }
1477}
1478
1479static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
1480{
1481        struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
1482        rt2x00lib_beacondone(rt2x00dev);
1483        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1484                rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1485}
1486
1487static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
1488{
1489        struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1490                                                    rxdone_tasklet);
1491        if (rt2x00mmio_rxdone(rt2x00dev))
1492                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1493        else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1494                rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1495}
1496
1497static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1498{
1499        struct rt2x00_dev *rt2x00dev = dev_instance;
1500        u32 reg, mask;
1501
1502        /*
1503         * Get the interrupt sources & saved to local variable.
1504         * Write register value back to clear pending interrupts.
1505         */
1506        reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1507        rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1508
1509        if (!reg)
1510                return IRQ_NONE;
1511
1512        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1513                return IRQ_HANDLED;
1514
1515        mask = reg;
1516
1517        /*
1518         * Schedule tasklets for interrupt handling.
1519         */
1520        if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1521                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1522
1523        if (rt2x00_get_field32(reg, CSR7_RXDONE))
1524                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1525
1526        if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1527            rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1528            rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1529                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1530                /*
1531                 * Mask out all txdone interrupts.
1532                 */
1533                rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1534                rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1535                rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1536        }
1537
1538        /*
1539         * Disable all interrupts for which a tasklet was scheduled right now,
1540         * the tasklet will reenable the appropriate interrupts.
1541         */
1542        spin_lock(&rt2x00dev->irqmask_lock);
1543
1544        reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1545        reg |= mask;
1546        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1547
1548        spin_unlock(&rt2x00dev->irqmask_lock);
1549
1550        return IRQ_HANDLED;
1551}
1552
1553/*
1554 * Device probe functions.
1555 */
1556static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1557{
1558        struct eeprom_93cx6 eeprom;
1559        u32 reg;
1560        u16 word;
1561        u8 *mac;
1562
1563        reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1564
1565        eeprom.data = rt2x00dev;
1566        eeprom.register_read = rt2500pci_eepromregister_read;
1567        eeprom.register_write = rt2500pci_eepromregister_write;
1568        eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1569            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1570        eeprom.reg_data_in = 0;
1571        eeprom.reg_data_out = 0;
1572        eeprom.reg_data_clock = 0;
1573        eeprom.reg_chip_select = 0;
1574
1575        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1576                               EEPROM_SIZE / sizeof(u16));
1577
1578        /*
1579         * Start validation of the data that has been read.
1580         */
1581        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1582        rt2x00lib_set_mac_address(rt2x00dev, mac);
1583
1584        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1585        if (word == 0xffff) {
1586                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1587                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1588                                   ANTENNA_SW_DIVERSITY);
1589                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1590                                   ANTENNA_SW_DIVERSITY);
1591                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1592                                   LED_MODE_DEFAULT);
1593                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1594                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1595                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1596                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1597                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1598        }
1599
1600        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1601        if (word == 0xffff) {
1602                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1603                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1604                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1605                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1606                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1607        }
1608
1609        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1610        if (word == 0xffff) {
1611                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1612                                   DEFAULT_RSSI_OFFSET);
1613                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1614                rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1615                                  word);
1616        }
1617
1618        return 0;
1619}
1620
1621static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1622{
1623        u32 reg;
1624        u16 value;
1625        u16 eeprom;
1626
1627        /*
1628         * Read EEPROM word for configuration.
1629         */
1630        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1631
1632        /*
1633         * Identify RF chipset.
1634         */
1635        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1636        reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1637        rt2x00_set_chip(rt2x00dev, RT2560, value,
1638                        rt2x00_get_field32(reg, CSR0_REVISION));
1639
1640        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1641            !rt2x00_rf(rt2x00dev, RF2523) &&
1642            !rt2x00_rf(rt2x00dev, RF2524) &&
1643            !rt2x00_rf(rt2x00dev, RF2525) &&
1644            !rt2x00_rf(rt2x00dev, RF2525E) &&
1645            !rt2x00_rf(rt2x00dev, RF5222)) {
1646                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1647                return -ENODEV;
1648        }
1649
1650        /*
1651         * Identify default antenna configuration.
1652         */
1653        rt2x00dev->default_ant.tx =
1654            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1655        rt2x00dev->default_ant.rx =
1656            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1657
1658        /*
1659         * Store led mode, for correct led behaviour.
1660         */
1661#ifdef CONFIG_RT2X00_LIB_LEDS
1662        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1663
1664        rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1665        if (value == LED_MODE_TXRX_ACTIVITY ||
1666            value == LED_MODE_DEFAULT ||
1667            value == LED_MODE_ASUS)
1668                rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1669                                   LED_TYPE_ACTIVITY);
1670#endif /* CONFIG_RT2X00_LIB_LEDS */
1671
1672        /*
1673         * Detect if this device has an hardware controlled radio.
1674         */
1675        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1676                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1677                /*
1678                 * On this device RFKILL initialized during probe does not work.
1679                 */
1680                __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1681        }
1682
1683        /*
1684         * Check if the BBP tuning should be enabled.
1685         */
1686        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1687        if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1688                __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1689
1690        /*
1691         * Read the RSSI <-> dBm offset information.
1692         */
1693        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1694        rt2x00dev->rssi_offset =
1695            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1696
1697        return 0;
1698}
1699
1700/*
1701 * RF value list for RF2522
1702 * Supports: 2.4 GHz
1703 */
1704static const struct rf_channel rf_vals_bg_2522[] = {
1705        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1706        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1707        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1708        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1709        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1710        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1711        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1712        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1713        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1714        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1715        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1716        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1717        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1718        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1719};
1720
1721/*
1722 * RF value list for RF2523
1723 * Supports: 2.4 GHz
1724 */
1725static const struct rf_channel rf_vals_bg_2523[] = {
1726        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1727        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1728        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1729        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1730        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1731        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1732        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1733        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1734        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1735        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1736        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1737        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1738        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1739        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1740};
1741
1742/*
1743 * RF value list for RF2524
1744 * Supports: 2.4 GHz
1745 */
1746static const struct rf_channel rf_vals_bg_2524[] = {
1747        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1748        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1749        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1750        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1751        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1752        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1753        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1754        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1755        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1756        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1757        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1758        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1759        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1760        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1761};
1762
1763/*
1764 * RF value list for RF2525
1765 * Supports: 2.4 GHz
1766 */
1767static const struct rf_channel rf_vals_bg_2525[] = {
1768        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1769        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1770        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1771        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1772        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1773        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1774        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1775        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1776        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1777        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1778        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1779        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1780        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1781        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1782};
1783
1784/*
1785 * RF value list for RF2525e
1786 * Supports: 2.4 GHz
1787 */
1788static const struct rf_channel rf_vals_bg_2525e[] = {
1789        { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1790        { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1791        { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1792        { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1793        { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1794        { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1795        { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1796        { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1797        { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1798        { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1799        { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1800        { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1801        { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1802        { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1803};
1804
1805/*
1806 * RF value list for RF5222
1807 * Supports: 2.4 GHz & 5.2 GHz
1808 */
1809static const struct rf_channel rf_vals_5222[] = {
1810        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1811        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1812        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1813        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1814        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1815        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1816        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1817        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1818        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1819        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1820        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1821        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1822        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1823        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1824
1825        /* 802.11 UNI / HyperLan 2 */
1826        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1827        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1828        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1829        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1830        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1831        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1832        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1833        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1834
1835        /* 802.11 HyperLan 2 */
1836        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1837        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1838        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1839        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1840        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1841        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1842        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1843        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1844        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1845        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1846
1847        /* 802.11 UNII */
1848        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1849        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1850        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1851        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1852        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1853};
1854
1855static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1856{
1857        struct hw_mode_spec *spec = &rt2x00dev->spec;
1858        struct channel_info *info;
1859        char *tx_power;
1860        unsigned int i;
1861
1862        /*
1863         * Initialize all hw fields.
1864         */
1865        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1866        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1867        ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1868        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1869
1870        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1871        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1872                                rt2x00_eeprom_addr(rt2x00dev,
1873                                                   EEPROM_MAC_ADDR_0));
1874
1875        /*
1876         * Disable powersaving as default.
1877         */
1878        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1879
1880        /*
1881         * Initialize hw_mode information.
1882         */
1883        spec->supported_bands = SUPPORT_BAND_2GHZ;
1884        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1885
1886        if (rt2x00_rf(rt2x00dev, RF2522)) {
1887                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1888                spec->channels = rf_vals_bg_2522;
1889        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1890                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1891                spec->channels = rf_vals_bg_2523;
1892        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1893                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1894                spec->channels = rf_vals_bg_2524;
1895        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1896                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1897                spec->channels = rf_vals_bg_2525;
1898        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1899                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1900                spec->channels = rf_vals_bg_2525e;
1901        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1902                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1903                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1904                spec->channels = rf_vals_5222;
1905        }
1906
1907        /*
1908         * Create channel information array
1909         */
1910        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1911        if (!info)
1912                return -ENOMEM;
1913
1914        spec->channels_info = info;
1915
1916        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1917        for (i = 0; i < 14; i++) {
1918                info[i].max_power = MAX_TXPOWER;
1919                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1920        }
1921
1922        if (spec->num_channels > 14) {
1923                for (i = 14; i < spec->num_channels; i++) {
1924                        info[i].max_power = MAX_TXPOWER;
1925                        info[i].default_power1 = DEFAULT_TXPOWER;
1926                }
1927        }
1928
1929        return 0;
1930}
1931
1932static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1933{
1934        int retval;
1935        u32 reg;
1936
1937        /*
1938         * Allocate eeprom data.
1939         */
1940        retval = rt2500pci_validate_eeprom(rt2x00dev);
1941        if (retval)
1942                return retval;
1943
1944        retval = rt2500pci_init_eeprom(rt2x00dev);
1945        if (retval)
1946                return retval;
1947
1948        /*
1949         * Enable rfkill polling by setting GPIO direction of the
1950         * rfkill switch GPIO pin correctly.
1951         */
1952        reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1953        rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1954        rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1955
1956        /*
1957         * Initialize hw specifications.
1958         */
1959        retval = rt2500pci_probe_hw_mode(rt2x00dev);
1960        if (retval)
1961                return retval;
1962
1963        /*
1964         * This device requires the atim queue and DMA-mapped skbs.
1965         */
1966        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1967        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1968        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1969
1970        /*
1971         * Set the rssi offset.
1972         */
1973        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1974
1975        return 0;
1976}
1977
1978/*
1979 * IEEE80211 stack callback functions.
1980 */
1981static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1982                             struct ieee80211_vif *vif)
1983{
1984        struct rt2x00_dev *rt2x00dev = hw->priv;
1985        u64 tsf;
1986        u32 reg;
1987
1988        reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1989        tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1990        reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1991        tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1992
1993        return tsf;
1994}
1995
1996static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1997{
1998        struct rt2x00_dev *rt2x00dev = hw->priv;
1999        u32 reg;
2000
2001        reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2002        return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2003}
2004
2005static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2006        .tx                     = rt2x00mac_tx,
2007        .start                  = rt2x00mac_start,
2008        .stop                   = rt2x00mac_stop,
2009        .add_interface          = rt2x00mac_add_interface,
2010        .remove_interface       = rt2x00mac_remove_interface,
2011        .config                 = rt2x00mac_config,
2012        .configure_filter       = rt2x00mac_configure_filter,
2013        .sw_scan_start          = rt2x00mac_sw_scan_start,
2014        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2015        .get_stats              = rt2x00mac_get_stats,
2016        .bss_info_changed       = rt2x00mac_bss_info_changed,
2017        .conf_tx                = rt2x00mac_conf_tx,
2018        .get_tsf                = rt2500pci_get_tsf,
2019        .tx_last_beacon         = rt2500pci_tx_last_beacon,
2020        .rfkill_poll            = rt2x00mac_rfkill_poll,
2021        .flush                  = rt2x00mac_flush,
2022        .set_antenna            = rt2x00mac_set_antenna,
2023        .get_antenna            = rt2x00mac_get_antenna,
2024        .get_ringparam          = rt2x00mac_get_ringparam,
2025        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2026};
2027
2028static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2029        .irq_handler            = rt2500pci_interrupt,
2030        .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2031        .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2032        .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2033        .probe_hw               = rt2500pci_probe_hw,
2034        .initialize             = rt2x00mmio_initialize,
2035        .uninitialize           = rt2x00mmio_uninitialize,
2036        .get_entry_state        = rt2500pci_get_entry_state,
2037        .clear_entry            = rt2500pci_clear_entry,
2038        .set_device_state       = rt2500pci_set_device_state,
2039        .rfkill_poll            = rt2500pci_rfkill_poll,
2040        .link_stats             = rt2500pci_link_stats,
2041        .reset_tuner            = rt2500pci_reset_tuner,
2042        .link_tuner             = rt2500pci_link_tuner,
2043        .start_queue            = rt2500pci_start_queue,
2044        .kick_queue             = rt2500pci_kick_queue,
2045        .stop_queue             = rt2500pci_stop_queue,
2046        .flush_queue            = rt2x00mmio_flush_queue,
2047        .write_tx_desc          = rt2500pci_write_tx_desc,
2048        .write_beacon           = rt2500pci_write_beacon,
2049        .fill_rxdone            = rt2500pci_fill_rxdone,
2050        .config_filter          = rt2500pci_config_filter,
2051        .config_intf            = rt2500pci_config_intf,
2052        .config_erp             = rt2500pci_config_erp,
2053        .config_ant             = rt2500pci_config_ant,
2054        .config                 = rt2500pci_config,
2055};
2056
2057static void rt2500pci_queue_init(struct data_queue *queue)
2058{
2059        switch (queue->qid) {
2060        case QID_RX:
2061                queue->limit = 32;
2062                queue->data_size = DATA_FRAME_SIZE;
2063                queue->desc_size = RXD_DESC_SIZE;
2064                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2065                break;
2066
2067        case QID_AC_VO:
2068        case QID_AC_VI:
2069        case QID_AC_BE:
2070        case QID_AC_BK:
2071                queue->limit = 32;
2072                queue->data_size = DATA_FRAME_SIZE;
2073                queue->desc_size = TXD_DESC_SIZE;
2074                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2075                break;
2076
2077        case QID_BEACON:
2078                queue->limit = 1;
2079                queue->data_size = MGMT_FRAME_SIZE;
2080                queue->desc_size = TXD_DESC_SIZE;
2081                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2082                break;
2083
2084        case QID_ATIM:
2085                queue->limit = 8;
2086                queue->data_size = DATA_FRAME_SIZE;
2087                queue->desc_size = TXD_DESC_SIZE;
2088                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2089                break;
2090
2091        default:
2092                BUG();
2093                break;
2094        }
2095}
2096
2097static const struct rt2x00_ops rt2500pci_ops = {
2098        .name                   = KBUILD_MODNAME,
2099        .max_ap_intf            = 1,
2100        .eeprom_size            = EEPROM_SIZE,
2101        .rf_size                = RF_SIZE,
2102        .tx_queues              = NUM_TX_QUEUES,
2103        .queue_init             = rt2500pci_queue_init,
2104        .lib                    = &rt2500pci_rt2x00_ops,
2105        .hw                     = &rt2500pci_mac80211_ops,
2106#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2107        .debugfs                = &rt2500pci_rt2x00debug,
2108#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2109};
2110
2111/*
2112 * RT2500pci module information.
2113 */
2114static const struct pci_device_id rt2500pci_device_table[] = {
2115        { PCI_DEVICE(0x1814, 0x0201) },
2116        { 0, }
2117};
2118
2119MODULE_AUTHOR(DRV_PROJECT);
2120MODULE_VERSION(DRV_VERSION);
2121MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2122MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2123MODULE_LICENSE("GPL");
2124
2125static int rt2500pci_probe(struct pci_dev *pci_dev,
2126                           const struct pci_device_id *id)
2127{
2128        return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2129}
2130
2131static struct pci_driver rt2500pci_driver = {
2132        .name           = KBUILD_MODNAME,
2133        .id_table       = rt2500pci_device_table,
2134        .probe          = rt2500pci_probe,
2135        .remove         = rt2x00pci_remove,
2136        .driver.pm      = &rt2x00pci_pm_ops,
2137};
2138
2139module_pci_driver(rt2500pci_driver);
2140