linux/drivers/net/wireless/ralink/rt2x00/rt2x00queue.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4        <http://rt2x00.serialmonkey.com>
   5
   6 */
   7
   8/*
   9        Module: rt2x00
  10        Abstract: rt2x00 queue datastructures and routines
  11 */
  12
  13#ifndef RT2X00QUEUE_H
  14#define RT2X00QUEUE_H
  15
  16#include <linux/prefetch.h>
  17
  18/**
  19 * DOC: Entry frame size
  20 *
  21 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes,
  22 * for USB devices this restriction does not apply, but the value of
  23 * 2432 makes sense since it is big enough to contain the maximum fragment
  24 * size according to the ieee802.11 specs.
  25 * The aggregation size depends on support from the driver, but should
  26 * be something around 3840 bytes.
  27 */
  28#define DATA_FRAME_SIZE         2432
  29#define MGMT_FRAME_SIZE         256
  30#define AGGREGATION_SIZE        3840
  31
  32/**
  33 * enum data_queue_qid: Queue identification
  34 *
  35 * @QID_AC_VO: AC VO queue
  36 * @QID_AC_VI: AC VI queue
  37 * @QID_AC_BE: AC BE queue
  38 * @QID_AC_BK: AC BK queue
  39 * @QID_HCCA: HCCA queue
  40 * @QID_MGMT: MGMT queue (prio queue)
  41 * @QID_RX: RX queue
  42 * @QID_OTHER: None of the above (don't use, only present for completeness)
  43 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device)
  44 * @QID_ATIM: Atim queue (value unspecified, don't send it to device)
  45 */
  46enum data_queue_qid {
  47        QID_AC_VO = 0,
  48        QID_AC_VI = 1,
  49        QID_AC_BE = 2,
  50        QID_AC_BK = 3,
  51        QID_HCCA = 4,
  52        QID_MGMT = 13,
  53        QID_RX = 14,
  54        QID_OTHER = 15,
  55        QID_BEACON,
  56        QID_ATIM,
  57};
  58
  59/**
  60 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc
  61 *
  62 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX
  63 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX
  64 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by
  65 *      mac80211 but was stripped for processing by the driver.
  66 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211,
  67 *      don't try to pass it back.
  68 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the
  69 *      skb, instead of in the desc field.
  70 */
  71enum skb_frame_desc_flags {
  72        SKBDESC_DMA_MAPPED_RX = 1 << 0,
  73        SKBDESC_DMA_MAPPED_TX = 1 << 1,
  74        SKBDESC_IV_STRIPPED = 1 << 2,
  75        SKBDESC_NOT_MAC80211 = 1 << 3,
  76        SKBDESC_DESC_IN_SKB = 1 << 4,
  77};
  78
  79/**
  80 * struct skb_frame_desc: Descriptor information for the skb buffer
  81 *
  82 * This structure is placed over the driver_data array, this means that
  83 * this structure should not exceed the size of that array (40 bytes).
  84 *
  85 * @flags: Frame flags, see &enum skb_frame_desc_flags.
  86 * @desc_len: Length of the frame descriptor.
  87 * @tx_rate_idx: the index of the TX rate, used for TX status reporting
  88 * @tx_rate_flags: the TX rate flags, used for TX status reporting
  89 * @desc: Pointer to descriptor part of the frame.
  90 *      Note that this pointer could point to something outside
  91 *      of the scope of the skb->data pointer.
  92 * @iv: IV/EIV data used during encryption/decryption.
  93 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer.
  94 * @sta: The station where sk buffer was sent.
  95 */
  96struct skb_frame_desc {
  97        u8 flags;
  98
  99        u8 desc_len;
 100        u8 tx_rate_idx;
 101        u8 tx_rate_flags;
 102
 103        void *desc;
 104
 105        __le32 iv[2];
 106
 107        dma_addr_t skb_dma;
 108        struct ieee80211_sta *sta;
 109};
 110
 111/**
 112 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff.
 113 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc
 114 */
 115static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb)
 116{
 117        BUILD_BUG_ON(sizeof(struct skb_frame_desc) >
 118                     IEEE80211_TX_INFO_DRIVER_DATA_SIZE);
 119        return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data;
 120}
 121
 122/**
 123 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc
 124 *
 125 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value.
 126 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value.
 127 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value.
 128 * @RXDONE_MY_BSS: Does this frame originate from device's BSS.
 129 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data.
 130 * @RXDONE_CRYPTO_ICV: Driver provided ICV data.
 131 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary.
 132 */
 133enum rxdone_entry_desc_flags {
 134        RXDONE_SIGNAL_PLCP = BIT(0),
 135        RXDONE_SIGNAL_BITRATE = BIT(1),
 136        RXDONE_SIGNAL_MCS = BIT(2),
 137        RXDONE_MY_BSS = BIT(3),
 138        RXDONE_CRYPTO_IV = BIT(4),
 139        RXDONE_CRYPTO_ICV = BIT(5),
 140        RXDONE_L2PAD = BIT(6),
 141};
 142
 143/**
 144 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags
 145 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags
 146 * from &rxdone_entry_desc to a signal value type.
 147 */
 148#define RXDONE_SIGNAL_MASK \
 149        ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS )
 150
 151/**
 152 * struct rxdone_entry_desc: RX Entry descriptor
 153 *
 154 * Summary of information that has been read from the RX frame descriptor.
 155 *
 156 * @timestamp: RX Timestamp
 157 * @signal: Signal of the received frame.
 158 * @rssi: RSSI of the received frame.
 159 * @size: Data size of the received frame.
 160 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags).
 161 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags).
 162 * @rate_mode: Rate mode (See @enum rate_modulation).
 163 * @cipher: Cipher type used during decryption.
 164 * @cipher_status: Decryption status.
 165 * @iv: IV/EIV data used during decryption.
 166 * @icv: ICV data used during decryption.
 167 */
 168struct rxdone_entry_desc {
 169        u64 timestamp;
 170        int signal;
 171        int rssi;
 172        int size;
 173        int flags;
 174        int dev_flags;
 175        u16 rate_mode;
 176        u16 enc_flags;
 177        enum mac80211_rx_encoding encoding;
 178        enum rate_info_bw bw;
 179        u8 cipher;
 180        u8 cipher_status;
 181
 182        __le32 iv[2];
 183        __le32 icv;
 184};
 185
 186/**
 187 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc
 188 *
 189 * Every txdone report has to contain the basic result of the
 190 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or
 191 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in
 192 * conjunction with all of these flags but should only be set
 193 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used
 194 * in conjunction with &TXDONE_FAILURE.
 195 *
 196 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission.
 197 * @TXDONE_SUCCESS: Frame was successfully send
 198 * @TXDONE_FALLBACK: Hardware used fallback rates for retries
 199 * @TXDONE_FAILURE: Frame was not successfully send
 200 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the
 201 *      frame transmission failed due to excessive retries.
 202 */
 203enum txdone_entry_desc_flags {
 204        TXDONE_UNKNOWN,
 205        TXDONE_SUCCESS,
 206        TXDONE_FALLBACK,
 207        TXDONE_FAILURE,
 208        TXDONE_EXCESSIVE_RETRY,
 209        TXDONE_AMPDU,
 210        TXDONE_NO_ACK_REQ,
 211};
 212
 213/**
 214 * struct txdone_entry_desc: TX done entry descriptor
 215 *
 216 * Summary of information that has been read from the TX frame descriptor
 217 * after the device is done with transmission.
 218 *
 219 * @flags: TX done flags (See &enum txdone_entry_desc_flags).
 220 * @retry: Retry count.
 221 */
 222struct txdone_entry_desc {
 223        unsigned long flags;
 224        int retry;
 225};
 226
 227/**
 228 * enum txentry_desc_flags: Status flags for TX entry descriptor
 229 *
 230 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame.
 231 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame.
 232 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter.
 233 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame.
 234 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment.
 235 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted.
 236 * @ENTRY_TXD_BURST: This frame belongs to the same burst event.
 237 * @ENTRY_TXD_ACK: An ACK is required for this frame.
 238 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used.
 239 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted.
 240 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared).
 241 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware.
 242 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware.
 243 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU.
 244 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth.
 245 * @ENTRY_TXD_HT_SHORT_GI: Use short GI.
 246 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode.
 247 */
 248enum txentry_desc_flags {
 249        ENTRY_TXD_RTS_FRAME,
 250        ENTRY_TXD_CTS_FRAME,
 251        ENTRY_TXD_GENERATE_SEQ,
 252        ENTRY_TXD_FIRST_FRAGMENT,
 253        ENTRY_TXD_MORE_FRAG,
 254        ENTRY_TXD_REQ_TIMESTAMP,
 255        ENTRY_TXD_BURST,
 256        ENTRY_TXD_ACK,
 257        ENTRY_TXD_RETRY_MODE,
 258        ENTRY_TXD_ENCRYPT,
 259        ENTRY_TXD_ENCRYPT_PAIRWISE,
 260        ENTRY_TXD_ENCRYPT_IV,
 261        ENTRY_TXD_ENCRYPT_MMIC,
 262        ENTRY_TXD_HT_AMPDU,
 263        ENTRY_TXD_HT_BW_40,
 264        ENTRY_TXD_HT_SHORT_GI,
 265        ENTRY_TXD_HT_MIMO_PS,
 266};
 267
 268/**
 269 * struct txentry_desc: TX Entry descriptor
 270 *
 271 * Summary of information for the frame descriptor before sending a TX frame.
 272 *
 273 * @flags: Descriptor flags (See &enum queue_entry_flags).
 274 * @length: Length of the entire frame.
 275 * @header_length: Length of 802.11 header.
 276 * @length_high: PLCP length high word.
 277 * @length_low: PLCP length low word.
 278 * @signal: PLCP signal.
 279 * @service: PLCP service.
 280 * @msc: MCS.
 281 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8).
 282 * @ba_size: Size of the recepients RX reorder buffer - 1.
 283 * @rate_mode: Rate mode (See @enum rate_modulation).
 284 * @mpdu_density: MDPU density.
 285 * @retry_limit: Max number of retries.
 286 * @ifs: IFS value.
 287 * @txop: IFS value for 11n capable chips.
 288 * @cipher: Cipher type used for encryption.
 289 * @key_idx: Key index used for encryption.
 290 * @iv_offset: Position where IV should be inserted by hardware.
 291 * @iv_len: Length of IV data.
 292 */
 293struct txentry_desc {
 294        unsigned long flags;
 295
 296        u16 length;
 297        u16 header_length;
 298
 299        union {
 300                struct {
 301                        u16 length_high;
 302                        u16 length_low;
 303                        u16 signal;
 304                        u16 service;
 305                        enum ifs ifs;
 306                } plcp;
 307
 308                struct {
 309                        u16 mcs;
 310                        u8 stbc;
 311                        u8 ba_size;
 312                        u8 mpdu_density;
 313                        enum txop txop;
 314                        int wcid;
 315                } ht;
 316        } u;
 317
 318        enum rate_modulation rate_mode;
 319
 320        short retry_limit;
 321
 322        enum cipher cipher;
 323        u16 key_idx;
 324        u16 iv_offset;
 325        u16 iv_len;
 326};
 327
 328/**
 329 * enum queue_entry_flags: Status flags for queue entry
 330 *
 331 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface.
 332 *      As long as this bit is set, this entry may only be touched
 333 *      through the interface structure.
 334 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data
 335 *      transfer (either TX or RX depending on the queue). The entry should
 336 *      only be touched after the device has signaled it is done with it.
 337 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting
 338 *      for the signal to start sending.
 339 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred
 340 *      while transferring the data to the hardware. No TX status report will
 341 *      be expected from the hardware.
 342 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and
 343 *      returned. It is now waiting for the status reporting before the
 344 *      entry can be reused again.
 345 */
 346enum queue_entry_flags {
 347        ENTRY_BCN_ASSIGNED,
 348        ENTRY_BCN_ENABLED,
 349        ENTRY_OWNER_DEVICE_DATA,
 350        ENTRY_DATA_PENDING,
 351        ENTRY_DATA_IO_FAILED,
 352        ENTRY_DATA_STATUS_PENDING,
 353};
 354
 355/**
 356 * struct queue_entry: Entry inside the &struct data_queue
 357 *
 358 * @flags: Entry flags, see &enum queue_entry_flags.
 359 * @last_action: Timestamp of last change.
 360 * @queue: The data queue (&struct data_queue) to which this entry belongs.
 361 * @skb: The buffer which is currently being transmitted (for TX queue),
 362 *      or used to directly receive data in (for RX queue).
 363 * @entry_idx: The entry index number.
 364 * @priv_data: Private data belonging to this queue entry. The pointer
 365 *      points to data specific to a particular driver and queue type.
 366 * @status: Device specific status
 367 */
 368struct queue_entry {
 369        unsigned long flags;
 370        unsigned long last_action;
 371
 372        struct data_queue *queue;
 373
 374        struct sk_buff *skb;
 375
 376        unsigned int entry_idx;
 377
 378        void *priv_data;
 379};
 380
 381/**
 382 * enum queue_index: Queue index type
 383 *
 384 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is
 385 *      owned by the hardware then the queue is considered to be full.
 386 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been
 387 *      transferred to the hardware.
 388 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by
 389 *      the hardware and for which we need to run the txdone handler. If this
 390 *      entry is not owned by the hardware the queue is considered to be empty.
 391 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size
 392 *      of the index array.
 393 */
 394enum queue_index {
 395        Q_INDEX,
 396        Q_INDEX_DMA_DONE,
 397        Q_INDEX_DONE,
 398        Q_INDEX_MAX,
 399};
 400
 401/**
 402 * enum data_queue_flags: Status flags for data queues
 403 *
 404 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the
 405 *      device might be DMA'ing skbuffers. TX queues will accept skbuffers to
 406 *      be transmitted and beacon queues will start beaconing the configured
 407 *      beacons.
 408 * @QUEUE_PAUSED: The queue has been started but is currently paused.
 409 *      When this bit is set, the queue has been stopped in mac80211,
 410 *      preventing new frames to be enqueued. However, a few frames
 411 *      might still appear shortly after the pausing...
 412 */
 413enum data_queue_flags {
 414        QUEUE_STARTED,
 415        QUEUE_PAUSED,
 416};
 417
 418/**
 419 * struct data_queue: Data queue
 420 *
 421 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to.
 422 * @entries: Base address of the &struct queue_entry which are
 423 *      part of this queue.
 424 * @qid: The queue identification, see &enum data_queue_qid.
 425 * @flags: Entry flags, see &enum queue_entry_flags.
 426 * @status_lock: The mutex for protecting the start/stop/flush
 427 *      handling on this queue.
 428 * @tx_lock: Spinlock to serialize tx operations on this queue.
 429 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or
 430 *      @index_crypt needs to be changed this lock should be grabbed to prevent
 431 *      index corruption due to concurrency.
 432 * @count: Number of frames handled in the queue.
 433 * @limit: Maximum number of entries in the queue.
 434 * @threshold: Minimum number of free entries before queue is kicked by force.
 435 * @length: Number of frames in queue.
 436 * @index: Index pointers to entry positions in the queue,
 437 *      use &enum queue_index to get a specific index field.
 438 * @wd_count: watchdog counter number of times entry does change
 439 *      in the queue
 440 * @wd_idx: index of queue entry saved by watchdog
 441 * @txop: maximum burst time.
 442 * @aifs: The aifs value for outgoing frames (field ignored in RX queue).
 443 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue).
 444 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue).
 445 * @data_size: Maximum data size for the frames in this queue.
 446 * @desc_size: Hardware descriptor size for the data in this queue.
 447 * @priv_size: Size of per-queue_entry private data.
 448 * @usb_endpoint: Device endpoint used for communication (USB only)
 449 * @usb_maxpacket: Max packet size for given endpoint (USB only)
 450 */
 451struct data_queue {
 452        struct rt2x00_dev *rt2x00dev;
 453        struct queue_entry *entries;
 454
 455        enum data_queue_qid qid;
 456        unsigned long flags;
 457
 458        struct mutex status_lock;
 459        spinlock_t tx_lock;
 460        spinlock_t index_lock;
 461
 462        unsigned int count;
 463        unsigned short limit;
 464        unsigned short threshold;
 465        unsigned short length;
 466        unsigned short index[Q_INDEX_MAX];
 467
 468        unsigned short wd_count;
 469        unsigned int wd_idx;
 470
 471        unsigned short txop;
 472        unsigned short aifs;
 473        unsigned short cw_min;
 474        unsigned short cw_max;
 475
 476        unsigned short data_size;
 477        unsigned char  desc_size;
 478        unsigned char  winfo_size;
 479        unsigned short priv_size;
 480
 481        unsigned short usb_endpoint;
 482        unsigned short usb_maxpacket;
 483};
 484
 485/**
 486 * queue_end - Return pointer to the last queue (HELPER MACRO).
 487 * @__dev: Pointer to &struct rt2x00_dev
 488 *
 489 * Using the base rx pointer and the maximum number of available queues,
 490 * this macro will return the address of 1 position beyond  the end of the
 491 * queues array.
 492 */
 493#define queue_end(__dev) \
 494        &(__dev)->rx[(__dev)->data_queues]
 495
 496/**
 497 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO).
 498 * @__dev: Pointer to &struct rt2x00_dev
 499 *
 500 * Using the base tx pointer and the maximum number of available TX
 501 * queues, this macro will return the address of 1 position beyond
 502 * the end of the TX queue array.
 503 */
 504#define tx_queue_end(__dev) \
 505        &(__dev)->tx[(__dev)->ops->tx_queues]
 506
 507/**
 508 * queue_next - Return pointer to next queue in list (HELPER MACRO).
 509 * @__queue: Current queue for which we need the next queue
 510 *
 511 * Using the current queue address we take the address directly
 512 * after the queue to take the next queue. Note that this macro
 513 * should be used carefully since it does not protect against
 514 * moving past the end of the list. (See macros &queue_end and
 515 * &tx_queue_end for determining the end of the queue).
 516 */
 517#define queue_next(__queue) \
 518        &(__queue)[1]
 519
 520/**
 521 * queue_loop - Loop through the queues within a specific range (HELPER MACRO).
 522 * @__entry: Pointer where the current queue entry will be stored in.
 523 * @__start: Start queue pointer.
 524 * @__end: End queue pointer.
 525 *
 526 * This macro will loop through all queues between &__start and &__end.
 527 */
 528#define queue_loop(__entry, __start, __end)                     \
 529        for ((__entry) = (__start);                             \
 530             prefetch(queue_next(__entry)), (__entry) != (__end);\
 531             (__entry) = queue_next(__entry))
 532
 533/**
 534 * queue_for_each - Loop through all queues
 535 * @__dev: Pointer to &struct rt2x00_dev
 536 * @__entry: Pointer where the current queue entry will be stored in.
 537 *
 538 * This macro will loop through all available queues.
 539 */
 540#define queue_for_each(__dev, __entry) \
 541        queue_loop(__entry, (__dev)->rx, queue_end(__dev))
 542
 543/**
 544 * tx_queue_for_each - Loop through the TX queues
 545 * @__dev: Pointer to &struct rt2x00_dev
 546 * @__entry: Pointer where the current queue entry will be stored in.
 547 *
 548 * This macro will loop through all TX related queues excluding
 549 * the Beacon and Atim queues.
 550 */
 551#define tx_queue_for_each(__dev, __entry) \
 552        queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev))
 553
 554/**
 555 * txall_queue_for_each - Loop through all TX related queues
 556 * @__dev: Pointer to &struct rt2x00_dev
 557 * @__entry: Pointer where the current queue entry will be stored in.
 558 *
 559 * This macro will loop through all TX related queues including
 560 * the Beacon and Atim queues.
 561 */
 562#define txall_queue_for_each(__dev, __entry) \
 563        queue_loop(__entry, (__dev)->tx, queue_end(__dev))
 564
 565/**
 566 * rt2x00queue_for_each_entry - Loop through all entries in the queue
 567 * @queue: Pointer to @data_queue
 568 * @start: &enum queue_index Pointer to start index
 569 * @end: &enum queue_index Pointer to end index
 570 * @data: Data to pass to the callback function
 571 * @fn: The function to call for each &struct queue_entry
 572 *
 573 * This will walk through all entries in the queue, in chronological
 574 * order. This means it will start at the current @start pointer
 575 * and will walk through the queue until it reaches the @end pointer.
 576 *
 577 * If fn returns true for an entry rt2x00queue_for_each_entry will stop
 578 * processing and return true as well.
 579 */
 580bool rt2x00queue_for_each_entry(struct data_queue *queue,
 581                                enum queue_index start,
 582                                enum queue_index end,
 583                                void *data,
 584                                bool (*fn)(struct queue_entry *entry,
 585                                           void *data));
 586
 587/**
 588 * rt2x00queue_empty - Check if the queue is empty.
 589 * @queue: Queue to check if empty.
 590 */
 591static inline int rt2x00queue_empty(struct data_queue *queue)
 592{
 593        return queue->length == 0;
 594}
 595
 596/**
 597 * rt2x00queue_full - Check if the queue is full.
 598 * @queue: Queue to check if full.
 599 */
 600static inline int rt2x00queue_full(struct data_queue *queue)
 601{
 602        return queue->length == queue->limit;
 603}
 604
 605/**
 606 * rt2x00queue_free - Check the number of available entries in queue.
 607 * @queue: Queue to check.
 608 */
 609static inline int rt2x00queue_available(struct data_queue *queue)
 610{
 611        return queue->limit - queue->length;
 612}
 613
 614/**
 615 * rt2x00queue_threshold - Check if the queue is below threshold
 616 * @queue: Queue to check.
 617 */
 618static inline int rt2x00queue_threshold(struct data_queue *queue)
 619{
 620        return rt2x00queue_available(queue) < queue->threshold;
 621}
 622/**
 623 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers
 624 * @entry: Queue entry to check.
 625 */
 626static inline int rt2x00queue_dma_timeout(struct queue_entry *entry)
 627{
 628        if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))
 629                return false;
 630        return time_after(jiffies, entry->last_action + msecs_to_jiffies(100));
 631}
 632
 633/**
 634 * _rt2x00_desc_read - Read a word from the hardware descriptor.
 635 * @desc: Base descriptor address
 636 * @word: Word index from where the descriptor should be read.
 637 */
 638static inline __le32 _rt2x00_desc_read(__le32 *desc, const u8 word)
 639{
 640        return desc[word];
 641}
 642
 643/**
 644 * rt2x00_desc_read - Read a word from the hardware descriptor, this
 645 * function will take care of the byte ordering.
 646 * @desc: Base descriptor address
 647 * @word: Word index from where the descriptor should be read.
 648 */
 649static inline u32 rt2x00_desc_read(__le32 *desc, const u8 word)
 650{
 651        return le32_to_cpu(_rt2x00_desc_read(desc, word));
 652}
 653
 654/**
 655 * rt2x00_desc_write - write a word to the hardware descriptor, this
 656 * function will take care of the byte ordering.
 657 * @desc: Base descriptor address
 658 * @word: Word index from where the descriptor should be written.
 659 * @value: Value that should be written into the descriptor.
 660 */
 661static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value)
 662{
 663        desc[word] = value;
 664}
 665
 666/**
 667 * rt2x00_desc_write - write a word to the hardware descriptor.
 668 * @desc: Base descriptor address
 669 * @word: Word index from where the descriptor should be written.
 670 * @value: Value that should be written into the descriptor.
 671 */
 672static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value)
 673{
 674        _rt2x00_desc_write(desc, word, cpu_to_le32(value));
 675}
 676
 677#endif /* RT2X00QUEUE_H */
 678