linux/drivers/net/wireless/rsi/rsi_91x_mgmt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2014 Redpine Signals Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/etherdevice.h>
  18#include <linux/timer.h>
  19#include "rsi_mgmt.h"
  20#include "rsi_common.h"
  21#include "rsi_ps.h"
  22#include "rsi_hal.h"
  23
  24static struct bootup_params boot_params_20 = {
  25        .magic_number = cpu_to_le16(0x5aa5),
  26        .crystal_good_time = 0x0,
  27        .valid = cpu_to_le32(VALID_20),
  28        .reserved_for_valids = 0x0,
  29        .bootup_mode_info = 0x0,
  30        .digital_loop_back_params = 0x0,
  31        .rtls_timestamp_en = 0x0,
  32        .host_spi_intr_cfg = 0x0,
  33        .device_clk_info = {{
  34                .pll_config_g = {
  35                        .tapll_info_g = {
  36                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  37                                              (TA_PLL_M_VAL_20)),
  38                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  39                        },
  40                        .pll960_info_g = {
  41                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  42                                                         (PLL960_N_VAL_20)),
  43                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  44                                .pll_reg_3 = 0x0,
  45                        },
  46                        .afepll_info_g = {
  47                                .pll_reg = cpu_to_le16(0x9f0),
  48                        }
  49                },
  50                .switch_clk_g = {
  51                        .switch_clk_info = cpu_to_le16(0xb),
  52                        .bbp_lmac_clk_reg_val = cpu_to_le16(0x111),
  53                        .umac_clock_reg_config = cpu_to_le16(0x48),
  54                        .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
  55                }
  56        },
  57        {
  58                .pll_config_g = {
  59                        .tapll_info_g = {
  60                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  61                                                         (TA_PLL_M_VAL_20)),
  62                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  63                        },
  64                        .pll960_info_g = {
  65                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  66                                                         (PLL960_N_VAL_20)),
  67                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  68                                .pll_reg_3 = 0x0,
  69                        },
  70                        .afepll_info_g = {
  71                                .pll_reg = cpu_to_le16(0x9f0),
  72                        }
  73                },
  74                .switch_clk_g = {
  75                        .switch_clk_info = 0x0,
  76                        .bbp_lmac_clk_reg_val = 0x0,
  77                        .umac_clock_reg_config = 0x0,
  78                        .qspi_uart_clock_reg_config = 0x0
  79                }
  80        },
  81        {
  82                .pll_config_g = {
  83                        .tapll_info_g = {
  84                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
  85                                                         (TA_PLL_M_VAL_20)),
  86                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
  87                        },
  88                        .pll960_info_g = {
  89                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
  90                                                         (PLL960_N_VAL_20)),
  91                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
  92                                .pll_reg_3 = 0x0,
  93                        },
  94                        .afepll_info_g = {
  95                                .pll_reg = cpu_to_le16(0x9f0),
  96                        }
  97                },
  98                .switch_clk_g = {
  99                        .switch_clk_info = 0x0,
 100                        .bbp_lmac_clk_reg_val = 0x0,
 101                        .umac_clock_reg_config = 0x0,
 102                        .qspi_uart_clock_reg_config = 0x0
 103                }
 104        } },
 105        .buckboost_wakeup_cnt = 0x0,
 106        .pmu_wakeup_wait = 0x0,
 107        .shutdown_wait_time = 0x0,
 108        .pmu_slp_clkout_sel = 0x0,
 109        .wdt_prog_value = 0x0,
 110        .wdt_soc_rst_delay = 0x0,
 111        .dcdc_operation_mode = 0x0,
 112        .soc_reset_wait_cnt = 0x0,
 113        .waiting_time_at_fresh_sleep = 0x0,
 114        .max_threshold_to_avoid_sleep = 0x0,
 115        .beacon_resedue_alg_en = 0,
 116};
 117
 118static struct bootup_params boot_params_40 = {
 119        .magic_number = cpu_to_le16(0x5aa5),
 120        .crystal_good_time = 0x0,
 121        .valid = cpu_to_le32(VALID_40),
 122        .reserved_for_valids = 0x0,
 123        .bootup_mode_info = 0x0,
 124        .digital_loop_back_params = 0x0,
 125        .rtls_timestamp_en = 0x0,
 126        .host_spi_intr_cfg = 0x0,
 127        .device_clk_info = {{
 128                .pll_config_g = {
 129                        .tapll_info_g = {
 130                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 131                                                         (TA_PLL_M_VAL_40)),
 132                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 133                        },
 134                        .pll960_info_g = {
 135                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 136                                                         (PLL960_N_VAL_40)),
 137                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 138                                .pll_reg_3 = 0x0,
 139                        },
 140                        .afepll_info_g = {
 141                                .pll_reg = cpu_to_le16(0x9f0),
 142                        }
 143                },
 144                .switch_clk_g = {
 145                        .switch_clk_info = cpu_to_le16(0x09),
 146                        .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
 147                        .umac_clock_reg_config = cpu_to_le16(0x48),
 148                        .qspi_uart_clock_reg_config = cpu_to_le16(0x1211)
 149                }
 150        },
 151        {
 152                .pll_config_g = {
 153                        .tapll_info_g = {
 154                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 155                                                         (TA_PLL_M_VAL_40)),
 156                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 157                        },
 158                        .pll960_info_g = {
 159                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 160                                                         (PLL960_N_VAL_40)),
 161                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 162                                .pll_reg_3 = 0x0,
 163                        },
 164                        .afepll_info_g = {
 165                                .pll_reg = cpu_to_le16(0x9f0),
 166                        }
 167                },
 168                .switch_clk_g = {
 169                        .switch_clk_info = 0x0,
 170                        .bbp_lmac_clk_reg_val = 0x0,
 171                        .umac_clock_reg_config = 0x0,
 172                        .qspi_uart_clock_reg_config = 0x0
 173                }
 174        },
 175        {
 176                .pll_config_g = {
 177                        .tapll_info_g = {
 178                                .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
 179                                                         (TA_PLL_M_VAL_40)),
 180                                .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
 181                        },
 182                        .pll960_info_g = {
 183                                .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
 184                                                         (PLL960_N_VAL_40)),
 185                                .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
 186                                .pll_reg_3 = 0x0,
 187                        },
 188                        .afepll_info_g = {
 189                                .pll_reg = cpu_to_le16(0x9f0),
 190                        }
 191                },
 192                .switch_clk_g = {
 193                        .switch_clk_info = 0x0,
 194                        .bbp_lmac_clk_reg_val = 0x0,
 195                        .umac_clock_reg_config = 0x0,
 196                        .qspi_uart_clock_reg_config = 0x0
 197                }
 198        } },
 199        .buckboost_wakeup_cnt = 0x0,
 200        .pmu_wakeup_wait = 0x0,
 201        .shutdown_wait_time = 0x0,
 202        .pmu_slp_clkout_sel = 0x0,
 203        .wdt_prog_value = 0x0,
 204        .wdt_soc_rst_delay = 0x0,
 205        .dcdc_operation_mode = 0x0,
 206        .soc_reset_wait_cnt = 0x0,
 207        .waiting_time_at_fresh_sleep = 0x0,
 208        .max_threshold_to_avoid_sleep = 0x0,
 209        .beacon_resedue_alg_en = 0,
 210};
 211
 212static struct bootup_params_9116 boot_params_9116_20 = {
 213        .magic_number = cpu_to_le16(LOADED_TOKEN),
 214        .valid = cpu_to_le32(VALID_20),
 215        .device_clk_info_9116 = {{
 216                .pll_config_9116_g = {
 217                        .pll_ctrl_set_reg = cpu_to_le16(0xd518),
 218                        .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
 219                        .pll_modem_conig_reg = cpu_to_le16(0x2000),
 220                        .soc_clk_config_reg = cpu_to_le16(0x0c18),
 221                        .adc_dac_strm1_config_reg = cpu_to_le16(0x1100),
 222                        .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
 223                },
 224                .switch_clk_9116_g = {
 225                        .switch_clk_info =
 226                                cpu_to_le32((RSI_SWITCH_TASS_CLK |
 227                                            RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
 228                                            RSI_SWITCH_BBP_LMAC_CLK_REG)),
 229                        .tass_clock_reg = cpu_to_le32(0x083C0503),
 230                        .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042001),
 231                        .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x02010001),
 232                        .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
 233                }
 234        },
 235        },
 236};
 237
 238static struct bootup_params_9116 boot_params_9116_40 = {
 239        .magic_number = cpu_to_le16(LOADED_TOKEN),
 240        .valid = cpu_to_le32(VALID_40),
 241        .device_clk_info_9116 = {{
 242                .pll_config_9116_g = {
 243                        .pll_ctrl_set_reg = cpu_to_le16(0xd518),
 244                        .pll_ctrl_clr_reg = cpu_to_le16(0x2ae7),
 245                        .pll_modem_conig_reg = cpu_to_le16(0x3000),
 246                        .soc_clk_config_reg = cpu_to_le16(0x0c18),
 247                        .adc_dac_strm1_config_reg = cpu_to_le16(0x0000),
 248                        .adc_dac_strm2_config_reg = cpu_to_le16(0x6600),
 249                },
 250                .switch_clk_9116_g = {
 251                        .switch_clk_info =
 252                                cpu_to_le32((RSI_SWITCH_TASS_CLK |
 253                                            RSI_SWITCH_WLAN_BBP_LMAC_CLK_REG |
 254                                            RSI_SWITCH_BBP_LMAC_CLK_REG |
 255                                            RSI_MODEM_CLK_160MHZ)),
 256                        .tass_clock_reg = cpu_to_le32(0x083C0503),
 257                        .wlan_bbp_lmac_clk_reg_val = cpu_to_le32(0x01042002),
 258                        .zbbt_bbp_lmac_clk_reg_val = cpu_to_le32(0x04010002),
 259                        .bbp_lmac_clk_en_val = cpu_to_le32(0x0000003b),
 260                }
 261        },
 262        },
 263};
 264
 265static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
 266
 267/**
 268 * rsi_set_default_parameters() - This function sets default parameters.
 269 * @common: Pointer to the driver private structure.
 270 *
 271 * Return: none
 272 */
 273static void rsi_set_default_parameters(struct rsi_common *common)
 274{
 275        common->band = NL80211_BAND_2GHZ;
 276        common->channel_width = BW_20MHZ;
 277        common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
 278        common->channel = 1;
 279        common->min_rate = 0xffff;
 280        common->fsm_state = FSM_CARD_NOT_READY;
 281        common->iface_down = true;
 282        common->endpoint = EP_2GHZ_20MHZ;
 283        common->driver_mode = 1; /* End to end mode */
 284        common->lp_ps_handshake_mode = 0; /* Default no handShake mode*/
 285        common->ulp_ps_handshake_mode = 2; /* Default PKT handShake mode*/
 286        common->rf_power_val = 0; /* Default 1.9V */
 287        common->wlan_rf_power_mode = 0;
 288        common->obm_ant_sel_val = 2;
 289        common->beacon_interval = RSI_BEACON_INTERVAL;
 290        common->dtim_cnt = RSI_DTIM_COUNT;
 291        common->w9116_features.pll_mode = 0x0;
 292        common->w9116_features.rf_type = 1;
 293        common->w9116_features.wireless_mode = 0;
 294        common->w9116_features.enable_ppe = 0;
 295        common->w9116_features.afe_type = 1;
 296        common->w9116_features.dpd = 0;
 297        common->w9116_features.sifs_tx_enable = 0;
 298        common->w9116_features.ps_options = 0;
 299}
 300
 301void init_bgscan_params(struct rsi_common *common)
 302{
 303        memset((u8 *)&common->bgscan, 0, sizeof(struct rsi_bgscan_params));
 304        common->bgscan.bgscan_threshold = RSI_DEF_BGSCAN_THRLD;
 305        common->bgscan.roam_threshold = RSI_DEF_ROAM_THRLD;
 306        common->bgscan.bgscan_periodicity = RSI_BGSCAN_PERIODICITY;
 307        common->bgscan.num_bgscan_channels = 0;
 308        common->bgscan.two_probe = 1;
 309        common->bgscan.active_scan_duration = RSI_ACTIVE_SCAN_TIME;
 310        common->bgscan.passive_scan_duration = RSI_PASSIVE_SCAN_TIME;
 311}
 312
 313/**
 314 * rsi_set_contention_vals() - This function sets the contention values for the
 315 *                             backoff procedure.
 316 * @common: Pointer to the driver private structure.
 317 *
 318 * Return: None.
 319 */
 320static void rsi_set_contention_vals(struct rsi_common *common)
 321{
 322        u8 ii = 0;
 323
 324        for (; ii < NUM_EDCA_QUEUES; ii++) {
 325                common->tx_qinfo[ii].wme_params =
 326                        (((common->edca_params[ii].cw_min / 2) +
 327                          (common->edca_params[ii].aifs)) *
 328                          WMM_SHORT_SLOT_TIME + SIFS_DURATION);
 329                common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
 330                common->tx_qinfo[ii].pkt_contended = 0;
 331        }
 332}
 333
 334/**
 335 * rsi_send_internal_mgmt_frame() - This function sends management frames to
 336 *                                  firmware.Also schedules packet to queue
 337 *                                  for transmission.
 338 * @common: Pointer to the driver private structure.
 339 * @skb: Pointer to the socket buffer structure.
 340 *
 341 * Return: 0 on success, -1 on failure.
 342 */
 343static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
 344                                        struct sk_buff *skb)
 345{
 346        struct skb_info *tx_params;
 347        struct rsi_cmd_desc *desc;
 348
 349        if (skb == NULL) {
 350                rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
 351                return -ENOMEM;
 352        }
 353        desc = (struct rsi_cmd_desc *)skb->data;
 354        desc->desc_dword0.len_qno |= cpu_to_le16(DESC_IMMEDIATE_WAKEUP);
 355        skb->priority = MGMT_SOFT_Q;
 356        tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
 357        tx_params->flags |= INTERNAL_MGMT_PKT;
 358        skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
 359        rsi_set_event(&common->tx_thread.event);
 360        return 0;
 361}
 362
 363/**
 364 * rsi_load_radio_caps() - This function is used to send radio capabilities
 365 *                         values to firmware.
 366 * @common: Pointer to the driver private structure.
 367 *
 368 * Return: 0 on success, corresponding negative error code on failure.
 369 */
 370static int rsi_load_radio_caps(struct rsi_common *common)
 371{
 372        struct rsi_radio_caps *radio_caps;
 373        struct rsi_hw *adapter = common->priv;
 374        u16 inx = 0;
 375        u8 ii;
 376        u8 radio_id = 0;
 377        u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
 378                      0xf0, 0xf0, 0xf0, 0xf0,
 379                      0xf0, 0xf0, 0xf0, 0xf0,
 380                      0xf0, 0xf0, 0xf0, 0xf0,
 381                      0xf0, 0xf0, 0xf0, 0xf0};
 382        struct sk_buff *skb;
 383        u16 frame_len = sizeof(struct rsi_radio_caps);
 384
 385        rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
 386
 387        skb = dev_alloc_skb(frame_len);
 388
 389        if (!skb) {
 390                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 391                        __func__);
 392                return -ENOMEM;
 393        }
 394
 395        memset(skb->data, 0, frame_len);
 396        radio_caps = (struct rsi_radio_caps *)skb->data;
 397
 398        radio_caps->desc_dword0.frame_type = RADIO_CAPABILITIES;
 399        radio_caps->channel_num = common->channel;
 400        radio_caps->rf_model = RSI_RF_TYPE;
 401
 402        radio_caps->radio_cfg_info = RSI_LMAC_CLOCK_80MHZ;
 403        if (common->channel_width == BW_40MHZ) {
 404                radio_caps->radio_cfg_info |= RSI_ENABLE_40MHZ;
 405
 406                if (common->fsm_state == FSM_MAC_INIT_DONE) {
 407                        struct ieee80211_hw *hw = adapter->hw;
 408                        struct ieee80211_conf *conf = &hw->conf;
 409
 410                        if (conf_is_ht40_plus(conf)) {
 411                                radio_caps->ppe_ack_rate =
 412                                        cpu_to_le16(LOWER_20_ENABLE |
 413                                                    (LOWER_20_ENABLE >> 12));
 414                        } else if (conf_is_ht40_minus(conf)) {
 415                                radio_caps->ppe_ack_rate =
 416                                        cpu_to_le16(UPPER_20_ENABLE |
 417                                                    (UPPER_20_ENABLE >> 12));
 418                        } else {
 419                                radio_caps->ppe_ack_rate =
 420                                        cpu_to_le16((BW_40MHZ << 12) |
 421                                                    FULL40M_ENABLE);
 422                        }
 423                }
 424        }
 425        radio_caps->radio_info |= radio_id;
 426
 427        if (adapter->device_model == RSI_DEV_9116 &&
 428            common->channel_width == BW_20MHZ)
 429                radio_caps->radio_cfg_info &= ~0x3;
 430
 431        radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
 432        radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
 433        radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
 434        radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
 435        radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
 436        radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
 437
 438        for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
 439                radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
 440                radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
 441                radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
 442                radio_caps->qos_params[ii].txop_q = 0;
 443        }
 444
 445        for (ii = 0; ii < NUM_EDCA_QUEUES; ii++) {
 446                if (common->edca_params[ii].cw_max > 0) {
 447                        radio_caps->qos_params[ii].cont_win_min_q =
 448                                cpu_to_le16(common->edca_params[ii].cw_min);
 449                        radio_caps->qos_params[ii].cont_win_max_q =
 450                                cpu_to_le16(common->edca_params[ii].cw_max);
 451                        radio_caps->qos_params[ii].aifsn_val_q =
 452                                cpu_to_le16(common->edca_params[ii].aifs << 8);
 453                        radio_caps->qos_params[ii].txop_q =
 454                                cpu_to_le16(common->edca_params[ii].txop);
 455                }
 456        }
 457
 458        radio_caps->qos_params[BROADCAST_HW_Q].txop_q = cpu_to_le16(0xffff);
 459        radio_caps->qos_params[MGMT_HW_Q].txop_q = 0;
 460        radio_caps->qos_params[BEACON_HW_Q].txop_q = cpu_to_le16(0xffff);
 461
 462        memcpy(&common->rate_pwr[0], &gc[0], 40);
 463        for (ii = 0; ii < 20; ii++)
 464                radio_caps->gcpd_per_rate[inx++] =
 465                        cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
 466
 467        rsi_set_len_qno(&radio_caps->desc_dword0.len_qno,
 468                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 469
 470        skb_put(skb, frame_len);
 471
 472        return rsi_send_internal_mgmt_frame(common, skb);
 473}
 474
 475/**
 476 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
 477 * @common: Pointer to the driver private structure.
 478 * @msg: Pointer to received packet.
 479 * @msg_len: Length of the received packet.
 480 *
 481 * Return: 0 on success, -1 on failure.
 482 */
 483static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
 484                                u8 *msg,
 485                                s32 msg_len)
 486{
 487        struct rsi_hw *adapter = common->priv;
 488        struct ieee80211_tx_info *info;
 489        struct skb_info *rx_params;
 490        u8 pad_bytes = msg[4];
 491        struct sk_buff *skb;
 492
 493        if (!adapter->sc_nvifs)
 494                return -ENOLINK;
 495
 496        msg_len -= pad_bytes;
 497        if (msg_len <= 0) {
 498                rsi_dbg(MGMT_RX_ZONE,
 499                        "%s: Invalid rx msg of len = %d\n",
 500                        __func__, msg_len);
 501                return -EINVAL;
 502        }
 503
 504        skb = dev_alloc_skb(msg_len);
 505        if (!skb)
 506                return -ENOMEM;
 507
 508        skb_put_data(skb,
 509                     (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
 510                     msg_len);
 511
 512        info = IEEE80211_SKB_CB(skb);
 513        rx_params = (struct skb_info *)info->driver_data;
 514        rx_params->rssi = rsi_get_rssi(msg);
 515        rx_params->channel = rsi_get_channel(msg);
 516        rsi_indicate_pkt_to_os(common, skb);
 517
 518        return 0;
 519}
 520
 521/**
 522 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
 523 *                                   frame to firmware.
 524 * @common: Pointer to the driver private structure.
 525 * @opmode: Operating mode of device.
 526 * @notify_event: Notification about station connection.
 527 * @bssid: bssid.
 528 * @qos_enable: Qos is enabled.
 529 * @aid: Aid (unique for all STA).
 530 * @sta_id: station id.
 531 * @vif: Pointer to the ieee80211_vif structure.
 532 *
 533 * Return: status: 0 on success, corresponding negative error code on failure.
 534 */
 535int rsi_hal_send_sta_notify_frame(struct rsi_common *common, enum opmode opmode,
 536                                  u8 notify_event, const unsigned char *bssid,
 537                                  u8 qos_enable, u16 aid, u16 sta_id,
 538                                  struct ieee80211_vif *vif)
 539{
 540        struct sk_buff *skb = NULL;
 541        struct rsi_peer_notify *peer_notify;
 542        u16 vap_id = ((struct vif_priv *)vif->drv_priv)->vap_id;
 543        int status;
 544        u16 frame_len = sizeof(struct rsi_peer_notify);
 545
 546        rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
 547
 548        skb = dev_alloc_skb(frame_len);
 549
 550        if (!skb) {
 551                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 552                        __func__);
 553                return -ENOMEM;
 554        }
 555
 556        memset(skb->data, 0, frame_len);
 557        peer_notify = (struct rsi_peer_notify *)skb->data;
 558
 559        if (opmode == RSI_OPMODE_STA)
 560                peer_notify->command = cpu_to_le16(PEER_TYPE_AP << 1);
 561        else if (opmode == RSI_OPMODE_AP)
 562                peer_notify->command = cpu_to_le16(PEER_TYPE_STA << 1);
 563
 564        switch (notify_event) {
 565        case STA_CONNECTED:
 566                peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
 567                break;
 568        case STA_DISCONNECTED:
 569                peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
 570                break;
 571        default:
 572                break;
 573        }
 574
 575        peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
 576        ether_addr_copy(peer_notify->mac_addr, bssid);
 577        peer_notify->mpdu_density = cpu_to_le16(RSI_MPDU_DENSITY);
 578        peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
 579
 580        rsi_set_len_qno(&peer_notify->desc.desc_dword0.len_qno,
 581                        (frame_len - FRAME_DESC_SZ),
 582                        RSI_WIFI_MGMT_Q);
 583        peer_notify->desc.desc_dword0.frame_type = PEER_NOTIFY;
 584        peer_notify->desc.desc_dword3.qid_tid = sta_id;
 585        peer_notify->desc.desc_dword3.sta_id = vap_id;
 586
 587        skb_put(skb, frame_len);
 588
 589        status = rsi_send_internal_mgmt_frame(common, skb);
 590
 591        if ((vif->type == NL80211_IFTYPE_STATION) &&
 592            (!status && qos_enable)) {
 593                rsi_set_contention_vals(common);
 594                status = rsi_load_radio_caps(common);
 595        }
 596        return status;
 597}
 598
 599/**
 600 * rsi_send_aggregation_params_frame() - This function sends the ampdu
 601 *                                       indication frame to firmware.
 602 * @common: Pointer to the driver private structure.
 603 * @tid: traffic identifier.
 604 * @ssn: ssn.
 605 * @buf_size: buffer size.
 606 * @event: notification about station connection.
 607 * @sta_id: station id.
 608 *
 609 * Return: 0 on success, corresponding negative error code on failure.
 610 */
 611int rsi_send_aggregation_params_frame(struct rsi_common *common,
 612                                      u16 tid,
 613                                      u16 ssn,
 614                                      u8 buf_size,
 615                                      u8 event,
 616                                      u8 sta_id)
 617{
 618        struct sk_buff *skb = NULL;
 619        struct rsi_aggr_params *aggr_params;
 620        u16 frame_len = sizeof(struct rsi_aggr_params);
 621
 622        skb = dev_alloc_skb(frame_len);
 623
 624        if (!skb) {
 625                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 626                        __func__);
 627                return -ENOMEM;
 628        }
 629
 630        memset(skb->data, 0, frame_len);
 631        aggr_params = (struct rsi_aggr_params *)skb->data;
 632
 633        rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
 634
 635        rsi_set_len_qno(&aggr_params->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
 636        aggr_params->desc_dword0.frame_type = AMPDU_IND;
 637
 638        aggr_params->aggr_params = tid & RSI_AGGR_PARAMS_TID_MASK;
 639        aggr_params->peer_id = sta_id;
 640        if (event == STA_TX_ADDBA_DONE) {
 641                aggr_params->seq_start = cpu_to_le16(ssn);
 642                aggr_params->baw_size = cpu_to_le16(buf_size);
 643                aggr_params->aggr_params |= RSI_AGGR_PARAMS_START;
 644        } else if (event == STA_RX_ADDBA_DONE) {
 645                aggr_params->seq_start = cpu_to_le16(ssn);
 646                aggr_params->aggr_params |= (RSI_AGGR_PARAMS_START |
 647                                             RSI_AGGR_PARAMS_RX_AGGR);
 648        } else if (event == STA_RX_DELBA) {
 649                aggr_params->aggr_params |= RSI_AGGR_PARAMS_RX_AGGR;
 650        }
 651
 652        skb_put(skb, frame_len);
 653
 654        return rsi_send_internal_mgmt_frame(common, skb);
 655}
 656
 657/**
 658 * rsi_program_bb_rf() - This function starts base band and RF programming.
 659 *                       This is called after initial configurations are done.
 660 * @common: Pointer to the driver private structure.
 661 *
 662 * Return: 0 on success, corresponding negative error code on failure.
 663 */
 664static int rsi_program_bb_rf(struct rsi_common *common)
 665{
 666        struct sk_buff *skb;
 667        struct rsi_bb_rf_prog *bb_rf_prog;
 668        u16 frame_len = sizeof(struct rsi_bb_rf_prog);
 669
 670        rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
 671
 672        skb = dev_alloc_skb(frame_len);
 673        if (!skb) {
 674                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 675                        __func__);
 676                return -ENOMEM;
 677        }
 678
 679        memset(skb->data, 0, frame_len);
 680        bb_rf_prog = (struct rsi_bb_rf_prog *)skb->data;
 681
 682        rsi_set_len_qno(&bb_rf_prog->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
 683        bb_rf_prog->desc_dword0.frame_type = BBP_PROG_IN_TA;
 684        bb_rf_prog->endpoint = common->endpoint;
 685        bb_rf_prog->rf_power_mode = common->wlan_rf_power_mode;
 686
 687        if (common->rf_reset) {
 688                bb_rf_prog->flags =  cpu_to_le16(RF_RESET_ENABLE);
 689                rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
 690                        __func__);
 691                common->rf_reset = 0;
 692        }
 693        common->bb_rf_prog_count = 1;
 694        bb_rf_prog->flags |= cpu_to_le16(PUT_BBP_RESET | BBP_REG_WRITE |
 695                                         (RSI_RF_TYPE << 4));
 696        skb_put(skb, frame_len);
 697
 698        return rsi_send_internal_mgmt_frame(common, skb);
 699}
 700
 701/**
 702 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
 703 * @common: Pointer to the driver private structure.
 704 * @mode: Operating mode of device.
 705 * @mac_addr: MAC address
 706 * @vap_id: Rate information - offset and mask
 707 * @vap_status: VAP status - ADD, DELETE or UPDATE
 708 *
 709 * Return: 0 on success, corresponding negative error code on failure.
 710 */
 711int rsi_set_vap_capabilities(struct rsi_common *common,
 712                             enum opmode mode,
 713                             u8 *mac_addr,
 714                             u8 vap_id,
 715                             u8 vap_status)
 716{
 717        struct sk_buff *skb = NULL;
 718        struct rsi_vap_caps *vap_caps;
 719        struct rsi_hw *adapter = common->priv;
 720        struct ieee80211_hw *hw = adapter->hw;
 721        struct ieee80211_conf *conf = &hw->conf;
 722        u16 frame_len = sizeof(struct rsi_vap_caps);
 723
 724        rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
 725
 726        skb = dev_alloc_skb(frame_len);
 727        if (!skb) {
 728                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 729                        __func__);
 730                return -ENOMEM;
 731        }
 732
 733        memset(skb->data, 0, frame_len);
 734        vap_caps = (struct rsi_vap_caps *)skb->data;
 735
 736        rsi_set_len_qno(&vap_caps->desc_dword0.len_qno,
 737                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 738        vap_caps->desc_dword0.frame_type = VAP_CAPABILITIES;
 739        vap_caps->status = vap_status;
 740        vap_caps->vif_type = mode;
 741        vap_caps->channel_bw = common->channel_width;
 742        vap_caps->vap_id = vap_id;
 743        vap_caps->radioid_macid = ((common->mac_id & 0xf) << 4) |
 744                                   (common->radio_id & 0xf);
 745
 746        memcpy(vap_caps->mac_addr, mac_addr, IEEE80211_ADDR_LEN);
 747        vap_caps->keep_alive_period = cpu_to_le16(90);
 748        vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
 749
 750        vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
 751
 752        if (common->band == NL80211_BAND_5GHZ) {
 753                vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_6);
 754                vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
 755        } else {
 756                vap_caps->default_ctrl_rate = cpu_to_le16(RSI_RATE_1);
 757                vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_1);
 758        }
 759        if (conf_is_ht40(conf)) {
 760                if (conf_is_ht40_minus(conf))
 761                        vap_caps->ctrl_rate_flags =
 762                                cpu_to_le16(UPPER_20_ENABLE);
 763                else if (conf_is_ht40_plus(conf))
 764                        vap_caps->ctrl_rate_flags =
 765                                cpu_to_le16(LOWER_20_ENABLE);
 766                else
 767                        vap_caps->ctrl_rate_flags =
 768                                cpu_to_le16(FULL40M_ENABLE);
 769        }
 770
 771        vap_caps->default_data_rate = 0;
 772        vap_caps->beacon_interval = cpu_to_le16(common->beacon_interval);
 773        vap_caps->dtim_period = cpu_to_le16(common->dtim_cnt);
 774
 775        skb_put(skb, frame_len);
 776
 777        return rsi_send_internal_mgmt_frame(common, skb);
 778}
 779
 780/**
 781 * rsi_hal_load_key() - This function is used to load keys within the firmware.
 782 * @common: Pointer to the driver private structure.
 783 * @data: Pointer to the key data.
 784 * @key_len: Key length to be loaded.
 785 * @key_type: Type of key: GROUP/PAIRWISE.
 786 * @key_id: Key index.
 787 * @cipher: Type of cipher used.
 788 * @sta_id: Station id.
 789 * @vif: Pointer to the ieee80211_vif structure.
 790 *
 791 * Return: 0 on success, -1 on failure.
 792 */
 793int rsi_hal_load_key(struct rsi_common *common,
 794                     u8 *data,
 795                     u16 key_len,
 796                     u8 key_type,
 797                     u8 key_id,
 798                     u32 cipher,
 799                     s16 sta_id,
 800                     struct ieee80211_vif *vif)
 801{
 802        struct sk_buff *skb = NULL;
 803        struct rsi_set_key *set_key;
 804        u16 key_descriptor = 0;
 805        u16 frame_len = sizeof(struct rsi_set_key);
 806
 807        rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
 808
 809        skb = dev_alloc_skb(frame_len);
 810        if (!skb) {
 811                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 812                        __func__);
 813                return -ENOMEM;
 814        }
 815
 816        memset(skb->data, 0, frame_len);
 817        set_key = (struct rsi_set_key *)skb->data;
 818
 819        if (key_type == RSI_GROUP_KEY) {
 820                key_descriptor = RSI_KEY_TYPE_BROADCAST;
 821                if (vif->type == NL80211_IFTYPE_AP)
 822                        key_descriptor |= RSI_KEY_MODE_AP;
 823        }
 824        if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
 825            (cipher == WLAN_CIPHER_SUITE_WEP104)) {
 826                key_id = 0;
 827                key_descriptor |= RSI_WEP_KEY;
 828                if (key_len >= 13)
 829                        key_descriptor |= RSI_WEP_KEY_104;
 830        } else if (cipher != KEY_TYPE_CLEAR) {
 831                key_descriptor |= RSI_CIPHER_WPA;
 832                if (cipher == WLAN_CIPHER_SUITE_TKIP)
 833                        key_descriptor |= RSI_CIPHER_TKIP;
 834        }
 835        key_descriptor |= RSI_PROTECT_DATA_FRAMES;
 836        key_descriptor |= (key_id << RSI_KEY_ID_OFFSET);
 837
 838        rsi_set_len_qno(&set_key->desc_dword0.len_qno,
 839                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
 840        set_key->desc_dword0.frame_type = SET_KEY_REQ;
 841        set_key->key_desc = cpu_to_le16(key_descriptor);
 842        set_key->sta_id = sta_id;
 843
 844        if (data) {
 845                if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
 846                    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
 847                        memcpy(&set_key->key[key_id][1], data, key_len * 2);
 848                } else {
 849                        memcpy(&set_key->key[0][0], data, key_len);
 850                }
 851                memcpy(set_key->tx_mic_key, &data[16], 8);
 852                memcpy(set_key->rx_mic_key, &data[24], 8);
 853        } else {
 854                memset(&set_key[FRAME_DESC_SZ], 0, frame_len - FRAME_DESC_SZ);
 855        }
 856
 857        skb_put(skb, frame_len);
 858
 859        return rsi_send_internal_mgmt_frame(common, skb);
 860}
 861
 862/*
 863 * This function sends the common device configuration parameters to device.
 864 * This frame includes the useful information to make device works on
 865 * specific operating mode.
 866 */
 867static int rsi_send_common_dev_params(struct rsi_common *common)
 868{
 869        struct sk_buff *skb;
 870        u16 frame_len;
 871        struct rsi_config_vals *dev_cfgs;
 872
 873        frame_len = sizeof(struct rsi_config_vals);
 874
 875        rsi_dbg(MGMT_TX_ZONE, "Sending common device config params\n");
 876        skb = dev_alloc_skb(frame_len);
 877        if (!skb) {
 878                rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
 879                return -ENOMEM;
 880        }
 881
 882        memset(skb->data, 0, frame_len);
 883
 884        dev_cfgs = (struct rsi_config_vals *)skb->data;
 885        memset(dev_cfgs, 0, (sizeof(struct rsi_config_vals)));
 886
 887        rsi_set_len_qno(&dev_cfgs->len_qno, (frame_len - FRAME_DESC_SZ),
 888                        RSI_COEX_Q);
 889        dev_cfgs->pkt_type = COMMON_DEV_CONFIG;
 890
 891        dev_cfgs->lp_ps_handshake = common->lp_ps_handshake_mode;
 892        dev_cfgs->ulp_ps_handshake = common->ulp_ps_handshake_mode;
 893
 894        dev_cfgs->unused_ulp_gpio = RSI_UNUSED_ULP_GPIO_BITMAP;
 895        dev_cfgs->unused_soc_gpio_bitmap =
 896                                cpu_to_le32(RSI_UNUSED_SOC_GPIO_BITMAP);
 897
 898        dev_cfgs->opermode = common->oper_mode;
 899        dev_cfgs->wlan_rf_pwr_mode = common->wlan_rf_power_mode;
 900        dev_cfgs->driver_mode = common->driver_mode;
 901        dev_cfgs->region_code = NL80211_DFS_FCC;
 902        dev_cfgs->antenna_sel_val = common->obm_ant_sel_val;
 903
 904        skb_put(skb, frame_len);
 905
 906        return rsi_send_internal_mgmt_frame(common, skb);
 907}
 908
 909/*
 910 * rsi_load_bootup_params() - This function send bootup params to the firmware.
 911 * @common: Pointer to the driver private structure.
 912 *
 913 * Return: 0 on success, corresponding error code on failure.
 914 */
 915static int rsi_load_bootup_params(struct rsi_common *common)
 916{
 917        struct sk_buff *skb;
 918        struct rsi_boot_params *boot_params;
 919
 920        rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
 921        skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
 922        if (!skb) {
 923                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
 924                        __func__);
 925                return -ENOMEM;
 926        }
 927
 928        memset(skb->data, 0, sizeof(struct rsi_boot_params));
 929        boot_params = (struct rsi_boot_params *)skb->data;
 930
 931        rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
 932
 933        if (common->channel_width == BW_40MHZ) {
 934                memcpy(&boot_params->bootup_params,
 935                       &boot_params_40,
 936                       sizeof(struct bootup_params));
 937                rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
 938                        UMAC_CLK_40BW);
 939                boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
 940        } else {
 941                memcpy(&boot_params->bootup_params,
 942                       &boot_params_20,
 943                       sizeof(struct bootup_params));
 944                if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
 945                        boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
 946                        rsi_dbg(MGMT_TX_ZONE,
 947                                "%s: Packet 20MHZ <=== %d\n", __func__,
 948                                UMAC_CLK_20BW);
 949                } else {
 950                        boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
 951                        rsi_dbg(MGMT_TX_ZONE,
 952                                "%s: Packet 20MHZ <=== %d\n", __func__,
 953                                UMAC_CLK_40MHZ);
 954                }
 955        }
 956
 957        /**
 958         * Bit{0:11} indicates length of the Packet
 959         * Bit{12:15} indicates host queue number
 960         */
 961        boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
 962                                    (RSI_WIFI_MGMT_Q << 12));
 963        boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
 964
 965        skb_put(skb, sizeof(struct rsi_boot_params));
 966
 967        return rsi_send_internal_mgmt_frame(common, skb);
 968}
 969
 970static int rsi_load_9116_bootup_params(struct rsi_common *common)
 971{
 972        struct sk_buff *skb;
 973        struct rsi_boot_params_9116 *boot_params;
 974
 975        rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
 976
 977        skb = dev_alloc_skb(sizeof(struct rsi_boot_params_9116));
 978        if (!skb)
 979                return -ENOMEM;
 980        memset(skb->data, 0, sizeof(struct rsi_boot_params));
 981        boot_params = (struct rsi_boot_params_9116 *)skb->data;
 982
 983        if (common->channel_width == BW_40MHZ) {
 984                memcpy(&boot_params->bootup_params,
 985                       &boot_params_9116_40,
 986                       sizeof(struct bootup_params_9116));
 987                rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
 988                        UMAC_CLK_40BW);
 989                boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40BW);
 990        } else {
 991                memcpy(&boot_params->bootup_params,
 992                       &boot_params_9116_20,
 993                       sizeof(struct bootup_params_9116));
 994                if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
 995                        boot_params->umac_clk = cpu_to_le16(UMAC_CLK_20BW);
 996                        rsi_dbg(MGMT_TX_ZONE,
 997                                "%s: Packet 20MHZ <=== %d\n", __func__,
 998                                UMAC_CLK_20BW);
 999                } else {
1000                        boot_params->umac_clk = cpu_to_le16(UMAC_CLK_40MHZ);
1001                        rsi_dbg(MGMT_TX_ZONE,
1002                                "%s: Packet 20MHZ <=== %d\n", __func__,
1003                                UMAC_CLK_40MHZ);
1004                }
1005        }
1006        rsi_set_len_qno(&boot_params->desc_dword0.len_qno,
1007                        sizeof(struct bootup_params_9116), RSI_WIFI_MGMT_Q);
1008        boot_params->desc_dword0.frame_type = BOOTUP_PARAMS_REQUEST;
1009        skb_put(skb, sizeof(struct rsi_boot_params_9116));
1010
1011        return rsi_send_internal_mgmt_frame(common, skb);
1012}
1013
1014/**
1015 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
1016 *                        internal management frame to indicate it to firmware.
1017 * @common: Pointer to the driver private structure.
1018 *
1019 * Return: 0 on success, corresponding error code on failure.
1020 */
1021static int rsi_send_reset_mac(struct rsi_common *common)
1022{
1023        struct sk_buff *skb;
1024        struct rsi_mac_frame *mgmt_frame;
1025
1026        rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
1027
1028        skb = dev_alloc_skb(FRAME_DESC_SZ);
1029        if (!skb) {
1030                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1031                        __func__);
1032                return -ENOMEM;
1033        }
1034
1035        memset(skb->data, 0, FRAME_DESC_SZ);
1036        mgmt_frame = (struct rsi_mac_frame *)skb->data;
1037
1038        mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1039        mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
1040        mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
1041
1042#define RSI_9116_DEF_TA_AGGR    3
1043        if (common->priv->device_model == RSI_DEV_9116)
1044                mgmt_frame->desc_word[3] |=
1045                        cpu_to_le16(RSI_9116_DEF_TA_AGGR << 8);
1046
1047        skb_put(skb, FRAME_DESC_SZ);
1048
1049        return rsi_send_internal_mgmt_frame(common, skb);
1050}
1051
1052/**
1053 * rsi_band_check() - This function programs the band
1054 * @common: Pointer to the driver private structure.
1055 * @curchan: Pointer to the current channel structure.
1056 *
1057 * Return: 0 on success, corresponding error code on failure.
1058 */
1059int rsi_band_check(struct rsi_common *common,
1060                   struct ieee80211_channel *curchan)
1061{
1062        struct rsi_hw *adapter = common->priv;
1063        struct ieee80211_hw *hw = adapter->hw;
1064        u8 prev_bw = common->channel_width;
1065        u8 prev_ep = common->endpoint;
1066        int status = 0;
1067
1068        if (common->band != curchan->band) {
1069                common->rf_reset = 1;
1070                common->band = curchan->band;
1071        }
1072
1073        if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
1074            (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
1075                common->channel_width = BW_20MHZ;
1076        else
1077                common->channel_width = BW_40MHZ;
1078
1079        if (common->band == NL80211_BAND_2GHZ) {
1080                if (common->channel_width)
1081                        common->endpoint = EP_2GHZ_40MHZ;
1082                else
1083                        common->endpoint = EP_2GHZ_20MHZ;
1084        } else {
1085                if (common->channel_width)
1086                        common->endpoint = EP_5GHZ_40MHZ;
1087                else
1088                        common->endpoint = EP_5GHZ_20MHZ;
1089        }
1090
1091        if (common->endpoint != prev_ep) {
1092                status = rsi_program_bb_rf(common);
1093                if (status)
1094                        return status;
1095        }
1096
1097        if (common->channel_width != prev_bw) {
1098                if (adapter->device_model == RSI_DEV_9116)
1099                        status = rsi_load_9116_bootup_params(common);
1100                else
1101                        status = rsi_load_bootup_params(common);
1102                if (status)
1103                        return status;
1104
1105                status = rsi_load_radio_caps(common);
1106                if (status)
1107                        return status;
1108        }
1109
1110        return status;
1111}
1112
1113/**
1114 * rsi_set_channel() - This function programs the channel.
1115 * @common: Pointer to the driver private structure.
1116 * @channel: Channel value to be set.
1117 *
1118 * Return: 0 on success, corresponding error code on failure.
1119 */
1120int rsi_set_channel(struct rsi_common *common,
1121                    struct ieee80211_channel *channel)
1122{
1123        struct sk_buff *skb = NULL;
1124        struct rsi_chan_config *chan_cfg;
1125        u16 frame_len = sizeof(struct rsi_chan_config);
1126
1127        rsi_dbg(MGMT_TX_ZONE,
1128                "%s: Sending scan req frame\n", __func__);
1129
1130        skb = dev_alloc_skb(frame_len);
1131        if (!skb) {
1132                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1133                        __func__);
1134                return -ENOMEM;
1135        }
1136
1137        if (!channel) {
1138                dev_kfree_skb(skb);
1139                return 0;
1140        }
1141        memset(skb->data, 0, frame_len);
1142        chan_cfg = (struct rsi_chan_config *)skb->data;
1143
1144        rsi_set_len_qno(&chan_cfg->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1145        chan_cfg->desc_dword0.frame_type = SCAN_REQUEST;
1146        chan_cfg->channel_number = channel->hw_value;
1147        chan_cfg->antenna_gain_offset_2g = channel->max_antenna_gain;
1148        chan_cfg->antenna_gain_offset_5g = channel->max_antenna_gain;
1149        chan_cfg->region_rftype = (RSI_RF_TYPE & 0xf) << 4;
1150
1151        if ((channel->flags & IEEE80211_CHAN_NO_IR) ||
1152            (channel->flags & IEEE80211_CHAN_RADAR)) {
1153                chan_cfg->antenna_gain_offset_2g |= RSI_CHAN_RADAR;
1154        } else {
1155                if (common->tx_power < channel->max_power)
1156                        chan_cfg->tx_power = cpu_to_le16(common->tx_power);
1157                else
1158                        chan_cfg->tx_power = cpu_to_le16(channel->max_power);
1159        }
1160        chan_cfg->region_rftype |= (common->priv->dfs_region & 0xf);
1161
1162        if (common->channel_width == BW_40MHZ)
1163                chan_cfg->channel_width = 0x1;
1164
1165        common->channel = channel->hw_value;
1166
1167        skb_put(skb, frame_len);
1168
1169        return rsi_send_internal_mgmt_frame(common, skb);
1170}
1171
1172/**
1173 * rsi_send_radio_params_update() - This function sends the radio
1174 *                              parameters update to device
1175 * @common: Pointer to the driver private structure.
1176 *
1177 * Return: 0 on success, corresponding error code on failure.
1178 */
1179int rsi_send_radio_params_update(struct rsi_common *common)
1180{
1181        struct rsi_mac_frame *cmd_frame;
1182        struct sk_buff *skb = NULL;
1183
1184        rsi_dbg(MGMT_TX_ZONE,
1185                "%s: Sending Radio Params update frame\n", __func__);
1186
1187        skb = dev_alloc_skb(FRAME_DESC_SZ);
1188        if (!skb) {
1189                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1190                        __func__);
1191                return -ENOMEM;
1192        }
1193
1194        memset(skb->data, 0, FRAME_DESC_SZ);
1195        cmd_frame = (struct rsi_mac_frame *)skb->data;
1196
1197        cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1198        cmd_frame->desc_word[1] = cpu_to_le16(RADIO_PARAMS_UPDATE);
1199        cmd_frame->desc_word[3] = cpu_to_le16(BIT(0));
1200
1201        cmd_frame->desc_word[3] |= cpu_to_le16(common->tx_power << 8);
1202
1203        skb_put(skb, FRAME_DESC_SZ);
1204
1205        return rsi_send_internal_mgmt_frame(common, skb);
1206}
1207
1208/* This function programs the threshold. */
1209int rsi_send_vap_dynamic_update(struct rsi_common *common)
1210{
1211        struct sk_buff *skb;
1212        struct rsi_dynamic_s *dynamic_frame;
1213
1214        rsi_dbg(MGMT_TX_ZONE,
1215                "%s: Sending vap update indication frame\n", __func__);
1216
1217        skb = dev_alloc_skb(sizeof(struct rsi_dynamic_s));
1218        if (!skb)
1219                return -ENOMEM;
1220
1221        memset(skb->data, 0, sizeof(struct rsi_dynamic_s));
1222        dynamic_frame = (struct rsi_dynamic_s *)skb->data;
1223        rsi_set_len_qno(&dynamic_frame->desc_dword0.len_qno,
1224                        sizeof(dynamic_frame->frame_body), RSI_WIFI_MGMT_Q);
1225
1226        dynamic_frame->desc_dword0.frame_type = VAP_DYNAMIC_UPDATE;
1227        dynamic_frame->desc_dword2.pkt_info =
1228                                        cpu_to_le32(common->rts_threshold);
1229
1230        if (common->wow_flags & RSI_WOW_ENABLED) {
1231                /* Beacon miss threshold */
1232                dynamic_frame->desc_dword3.token =
1233                                        cpu_to_le16(RSI_BCN_MISS_THRESHOLD);
1234                dynamic_frame->frame_body.keep_alive_period =
1235                                        cpu_to_le16(RSI_WOW_KEEPALIVE);
1236        } else {
1237                dynamic_frame->frame_body.keep_alive_period =
1238                                        cpu_to_le16(RSI_DEF_KEEPALIVE);
1239        }
1240
1241        dynamic_frame->desc_dword3.sta_id = 0; /* vap id */
1242
1243        skb_put(skb, sizeof(struct rsi_dynamic_s));
1244
1245        return rsi_send_internal_mgmt_frame(common, skb);
1246}
1247
1248/**
1249 * rsi_compare() - This function is used to compare two integers
1250 * @a: pointer to the first integer
1251 * @b: pointer to the second integer
1252 *
1253 * Return: 0 if both are equal, -1 if the first is smaller, else 1
1254 */
1255static int rsi_compare(const void *a, const void *b)
1256{
1257        u16 _a = *(const u16 *)(a);
1258        u16 _b = *(const u16 *)(b);
1259
1260        if (_a > _b)
1261                return -1;
1262
1263        if (_a < _b)
1264                return 1;
1265
1266        return 0;
1267}
1268
1269/**
1270 * rsi_map_rates() - This function is used to map selected rates to hw rates.
1271 * @rate: The standard rate to be mapped.
1272 * @offset: Offset that will be returned.
1273 *
1274 * Return: 0 if it is a mcs rate, else 1
1275 */
1276static bool rsi_map_rates(u16 rate, int *offset)
1277{
1278        int kk;
1279        for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
1280                if (rate == mcs[kk]) {
1281                        *offset = kk;
1282                        return false;
1283                }
1284        }
1285
1286        for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
1287                if (rate == rsi_rates[kk].bitrate / 5) {
1288                        *offset = kk;
1289                        break;
1290                }
1291        }
1292        return true;
1293}
1294
1295/**
1296 * rsi_send_auto_rate_request() - This function is to set rates for connection
1297 *                                and send autorate request to firmware.
1298 * @common: Pointer to the driver private structure.
1299 * @sta: mac80211 station.
1300 * @sta_id: station id.
1301 * @vif: Pointer to the ieee80211_vif structure.
1302 *
1303 * Return: 0 on success, corresponding error code on failure.
1304 */
1305static int rsi_send_auto_rate_request(struct rsi_common *common,
1306                                      struct ieee80211_sta *sta,
1307                                      u16 sta_id,
1308                                      struct ieee80211_vif *vif)
1309{
1310        struct sk_buff *skb;
1311        struct rsi_auto_rate *auto_rate;
1312        int ii = 0, jj = 0, kk = 0;
1313        struct ieee80211_hw *hw = common->priv->hw;
1314        u8 band = hw->conf.chandef.chan->band;
1315        u8 num_supported_rates = 0;
1316        u8 rate_table_offset, rate_offset = 0;
1317        u32 rate_bitmap;
1318        u16 *selected_rates, min_rate;
1319        bool is_ht = false, is_sgi = false;
1320        u16 frame_len = sizeof(struct rsi_auto_rate);
1321
1322        rsi_dbg(MGMT_TX_ZONE,
1323                "%s: Sending auto rate request frame\n", __func__);
1324
1325        skb = dev_alloc_skb(frame_len);
1326        if (!skb) {
1327                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1328                        __func__);
1329                return -ENOMEM;
1330        }
1331
1332        memset(skb->data, 0, frame_len);
1333        selected_rates = kzalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1334        if (!selected_rates) {
1335                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1336                        __func__);
1337                dev_kfree_skb(skb);
1338                return -ENOMEM;
1339        }
1340
1341        auto_rate = (struct rsi_auto_rate *)skb->data;
1342
1343        auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1344        auto_rate->collision_tolerance = cpu_to_le16(3);
1345        auto_rate->failure_limit = cpu_to_le16(3);
1346        auto_rate->initial_boundary = cpu_to_le16(3);
1347        auto_rate->max_threshold_limt = cpu_to_le16(27);
1348
1349        auto_rate->desc.desc_dword0.frame_type = AUTO_RATE_IND;
1350
1351        if (common->channel_width == BW_40MHZ)
1352                auto_rate->desc.desc_dword3.qid_tid = BW_40MHZ;
1353        auto_rate->desc.desc_dword3.sta_id = sta_id;
1354
1355        if (vif->type == NL80211_IFTYPE_STATION) {
1356                rate_bitmap = common->bitrate_mask[band];
1357                is_ht = common->vif_info[0].is_ht;
1358                is_sgi = common->vif_info[0].sgi;
1359        } else {
1360                rate_bitmap = sta->supp_rates[band];
1361                is_ht = sta->ht_cap.ht_supported;
1362                if ((sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
1363                    (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
1364                        is_sgi = true;
1365        }
1366
1367        if (band == NL80211_BAND_2GHZ) {
1368                if ((rate_bitmap == 0) && (is_ht))
1369                        min_rate = RSI_RATE_MCS0;
1370                else
1371                        min_rate = RSI_RATE_1;
1372                rate_table_offset = 0;
1373        } else {
1374                if ((rate_bitmap == 0) && (is_ht))
1375                        min_rate = RSI_RATE_MCS0;
1376                else
1377                        min_rate = RSI_RATE_6;
1378                rate_table_offset = 4;
1379        }
1380
1381        for (ii = 0, jj = 0;
1382             ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1383                if (rate_bitmap & BIT(ii)) {
1384                        selected_rates[jj++] =
1385                        (rsi_rates[ii + rate_table_offset].bitrate / 5);
1386                        rate_offset++;
1387                }
1388        }
1389        num_supported_rates = jj;
1390
1391        if (is_ht) {
1392                for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1393                        selected_rates[jj++] = mcs[ii];
1394                num_supported_rates += ARRAY_SIZE(mcs);
1395                rate_offset += ARRAY_SIZE(mcs);
1396        }
1397
1398        sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1399
1400        /* mapping the rates to RSI rates */
1401        for (ii = 0; ii < jj; ii++) {
1402                if (rsi_map_rates(selected_rates[ii], &kk)) {
1403                        auto_rate->supported_rates[ii] =
1404                                cpu_to_le16(rsi_rates[kk].hw_value);
1405                } else {
1406                        auto_rate->supported_rates[ii] =
1407                                cpu_to_le16(rsi_mcsrates[kk]);
1408                }
1409        }
1410
1411        /* loading HT rates in the bottom half of the auto rate table */
1412        if (is_ht) {
1413                for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1414                     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1415                        if (is_sgi || conf_is_ht40(&common->priv->hw->conf))
1416                                auto_rate->supported_rates[ii++] =
1417                                        cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1418                        else
1419                                auto_rate->supported_rates[ii++] =
1420                                        cpu_to_le16(rsi_mcsrates[kk]);
1421                        auto_rate->supported_rates[ii] =
1422                                cpu_to_le16(rsi_mcsrates[kk--]);
1423                }
1424
1425                for (; ii < (RSI_TBL_SZ - 1); ii++) {
1426                        auto_rate->supported_rates[ii] =
1427                                cpu_to_le16(rsi_mcsrates[0]);
1428                }
1429        }
1430
1431        for (; ii < RSI_TBL_SZ; ii++)
1432                auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1433
1434        auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1435        auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1436        num_supported_rates *= 2;
1437
1438        rsi_set_len_qno(&auto_rate->desc.desc_dword0.len_qno,
1439                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1440
1441        skb_put(skb, frame_len);
1442        kfree(selected_rates);
1443
1444        return rsi_send_internal_mgmt_frame(common, skb);
1445}
1446
1447/**
1448 * rsi_inform_bss_status() - This function informs about bss status with the
1449 *                           help of sta notify params by sending an internal
1450 *                           management frame to firmware.
1451 * @common: Pointer to the driver private structure.
1452 * @opmode: Operating mode of device.
1453 * @status: Bss status type.
1454 * @addr: Address of the register.
1455 * @qos_enable: Qos is enabled.
1456 * @aid: Aid (unique for all STAs).
1457 * @sta: mac80211 station.
1458 * @sta_id: station id.
1459 * @assoc_cap: capabilities.
1460 * @vif: Pointer to the ieee80211_vif structure.
1461 *
1462 * Return: None.
1463 */
1464void rsi_inform_bss_status(struct rsi_common *common,
1465                           enum opmode opmode,
1466                           u8 status,
1467                           const u8 *addr,
1468                           u8 qos_enable,
1469                           u16 aid,
1470                           struct ieee80211_sta *sta,
1471                           u16 sta_id,
1472                           u16 assoc_cap,
1473                           struct ieee80211_vif *vif)
1474{
1475        if (status) {
1476                if (opmode == RSI_OPMODE_STA)
1477                        common->hw_data_qs_blocked = true;
1478                rsi_hal_send_sta_notify_frame(common,
1479                                              opmode,
1480                                              STA_CONNECTED,
1481                                              addr,
1482                                              qos_enable,
1483                                              aid, sta_id,
1484                                              vif);
1485                if (common->min_rate == 0xffff)
1486                        rsi_send_auto_rate_request(common, sta, sta_id, vif);
1487                if (opmode == RSI_OPMODE_STA &&
1488                    !(assoc_cap & WLAN_CAPABILITY_PRIVACY) &&
1489                    !rsi_send_block_unblock_frame(common, false))
1490                        common->hw_data_qs_blocked = false;
1491        } else {
1492                if (opmode == RSI_OPMODE_STA)
1493                        common->hw_data_qs_blocked = true;
1494
1495                if (!(common->wow_flags & RSI_WOW_ENABLED))
1496                        rsi_hal_send_sta_notify_frame(common, opmode,
1497                                                      STA_DISCONNECTED, addr,
1498                                                      qos_enable, aid, sta_id,
1499                                                      vif);
1500                if (opmode == RSI_OPMODE_STA)
1501                        rsi_send_block_unblock_frame(common, true);
1502        }
1503}
1504
1505/**
1506 * rsi_eeprom_read() - This function sends a frame to read the mac address
1507 *                     from the eeprom.
1508 * @common: Pointer to the driver private structure.
1509 *
1510 * Return: 0 on success, -1 on failure.
1511 */
1512static int rsi_eeprom_read(struct rsi_common *common)
1513{
1514        struct rsi_eeprom_read_frame *mgmt_frame;
1515        struct rsi_hw *adapter = common->priv;
1516        struct sk_buff *skb;
1517
1518        rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1519
1520        skb = dev_alloc_skb(FRAME_DESC_SZ);
1521        if (!skb) {
1522                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1523                        __func__);
1524                return -ENOMEM;
1525        }
1526
1527        memset(skb->data, 0, FRAME_DESC_SZ);
1528        mgmt_frame = (struct rsi_eeprom_read_frame *)skb->data;
1529
1530        /* FrameType */
1531        rsi_set_len_qno(&mgmt_frame->len_qno, 0, RSI_WIFI_MGMT_Q);
1532        mgmt_frame->pkt_type = EEPROM_READ;
1533
1534        /* Number of bytes to read */
1535        mgmt_frame->pkt_info =
1536                cpu_to_le32((adapter->eeprom.length << RSI_EEPROM_LEN_OFFSET) &
1537                            RSI_EEPROM_LEN_MASK);
1538        mgmt_frame->pkt_info |= cpu_to_le32((3 << RSI_EEPROM_HDR_SIZE_OFFSET) &
1539                                            RSI_EEPROM_HDR_SIZE_MASK);
1540
1541        /* Address to read */
1542        mgmt_frame->eeprom_offset = cpu_to_le32(adapter->eeprom.offset);
1543
1544        skb_put(skb, FRAME_DESC_SZ);
1545
1546        return rsi_send_internal_mgmt_frame(common, skb);
1547}
1548
1549/**
1550 * rsi_send_block_unblock_frame() - This function sends a frame to block/unblock
1551 *                                  data queues in the firmware
1552 *
1553 * @common: Pointer to the driver private structure.
1554 * @block_event: Event block if true, unblock if false
1555 * returns 0 on success, -1 on failure.
1556 */
1557int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1558{
1559        struct rsi_block_unblock_data *mgmt_frame;
1560        struct sk_buff *skb;
1561
1562        rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1563
1564        skb = dev_alloc_skb(FRAME_DESC_SZ);
1565        if (!skb) {
1566                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1567                        __func__);
1568                return -ENOMEM;
1569        }
1570
1571        memset(skb->data, 0, FRAME_DESC_SZ);
1572        mgmt_frame = (struct rsi_block_unblock_data *)skb->data;
1573
1574        rsi_set_len_qno(&mgmt_frame->desc_dword0.len_qno, 0, RSI_WIFI_MGMT_Q);
1575        mgmt_frame->desc_dword0.frame_type = BLOCK_HW_QUEUE;
1576        mgmt_frame->host_quiet_info = QUIET_INFO_VALID;
1577
1578        if (block_event) {
1579                rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1580                mgmt_frame->block_q_bitmap = cpu_to_le16(0xf);
1581                mgmt_frame->block_q_bitmap |= cpu_to_le16(0xf << 4);
1582        } else {
1583                rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1584                mgmt_frame->unblock_q_bitmap = cpu_to_le16(0xf);
1585                mgmt_frame->unblock_q_bitmap |= cpu_to_le16(0xf << 4);
1586        }
1587
1588        skb_put(skb, FRAME_DESC_SZ);
1589
1590        return rsi_send_internal_mgmt_frame(common, skb);
1591}
1592
1593/**
1594 * rsi_send_rx_filter_frame() - Sends a frame to filter the RX packets
1595 *
1596 * @common: Pointer to the driver private structure.
1597 * @rx_filter_word: Flags of filter packets
1598 *
1599 * Returns 0 on success, -1 on failure.
1600 */
1601int rsi_send_rx_filter_frame(struct rsi_common *common, u16 rx_filter_word)
1602{
1603        struct rsi_mac_frame *cmd_frame;
1604        struct sk_buff *skb;
1605
1606        rsi_dbg(MGMT_TX_ZONE, "Sending RX filter frame\n");
1607
1608        skb = dev_alloc_skb(FRAME_DESC_SZ);
1609        if (!skb) {
1610                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1611                        __func__);
1612                return -ENOMEM;
1613        }
1614
1615        memset(skb->data, 0, FRAME_DESC_SZ);
1616        cmd_frame = (struct rsi_mac_frame *)skb->data;
1617
1618        cmd_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1619        cmd_frame->desc_word[1] = cpu_to_le16(SET_RX_FILTER);
1620        cmd_frame->desc_word[4] = cpu_to_le16(rx_filter_word);
1621
1622        skb_put(skb, FRAME_DESC_SZ);
1623
1624        return rsi_send_internal_mgmt_frame(common, skb);
1625}
1626
1627int rsi_send_ps_request(struct rsi_hw *adapter, bool enable,
1628                        struct ieee80211_vif *vif)
1629{
1630        struct rsi_common *common = adapter->priv;
1631        struct ieee80211_bss_conf *bss = &vif->bss_conf;
1632        struct rsi_request_ps *ps;
1633        struct rsi_ps_info *ps_info;
1634        struct sk_buff *skb;
1635        int frame_len = sizeof(*ps);
1636
1637        skb = dev_alloc_skb(frame_len);
1638        if (!skb)
1639                return -ENOMEM;
1640        memset(skb->data, 0, frame_len);
1641
1642        ps = (struct rsi_request_ps *)skb->data;
1643        ps_info = &adapter->ps_info;
1644
1645        rsi_set_len_qno(&ps->desc.desc_dword0.len_qno,
1646                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1647        ps->desc.desc_dword0.frame_type = WAKEUP_SLEEP_REQUEST;
1648        if (enable) {
1649                ps->ps_sleep.enable = RSI_PS_ENABLE;
1650                ps->desc.desc_dword3.token = cpu_to_le16(RSI_SLEEP_REQUEST);
1651        } else {
1652                ps->ps_sleep.enable = RSI_PS_DISABLE;
1653                ps->desc.desc_dword0.len_qno |= cpu_to_le16(RSI_PS_DISABLE_IND);
1654                ps->desc.desc_dword3.token = cpu_to_le16(RSI_WAKEUP_REQUEST);
1655        }
1656
1657        ps->ps_uapsd_acs = common->uapsd_bitmap;
1658
1659        ps->ps_sleep.sleep_type = ps_info->sleep_type;
1660        ps->ps_sleep.num_bcns_per_lis_int =
1661                cpu_to_le16(ps_info->num_bcns_per_lis_int);
1662        ps->ps_sleep.sleep_duration =
1663                cpu_to_le32(ps_info->deep_sleep_wakeup_period);
1664
1665        if (bss->assoc)
1666                ps->ps_sleep.connected_sleep = RSI_CONNECTED_SLEEP;
1667        else
1668                ps->ps_sleep.connected_sleep = RSI_DEEP_SLEEP;
1669
1670        ps->ps_listen_interval = cpu_to_le32(ps_info->listen_interval);
1671        ps->ps_dtim_interval_duration =
1672                cpu_to_le32(ps_info->dtim_interval_duration);
1673
1674        if (ps_info->listen_interval > ps_info->dtim_interval_duration)
1675                ps->ps_listen_interval = cpu_to_le32(RSI_PS_DISABLE);
1676
1677        ps->ps_num_dtim_intervals = cpu_to_le16(ps_info->num_dtims_per_sleep);
1678        skb_put(skb, frame_len);
1679
1680        return rsi_send_internal_mgmt_frame(common, skb);
1681}
1682
1683static int rsi_send_w9116_features(struct rsi_common *common)
1684{
1685        struct rsi_wlan_9116_features *w9116_features;
1686        u16 frame_len = sizeof(struct rsi_wlan_9116_features);
1687        struct sk_buff *skb;
1688
1689        rsi_dbg(MGMT_TX_ZONE,
1690                "%s: Sending wlan 9116 features\n", __func__);
1691
1692        skb = dev_alloc_skb(frame_len);
1693        if (!skb)
1694                return -ENOMEM;
1695        memset(skb->data, 0, frame_len);
1696
1697        w9116_features = (struct rsi_wlan_9116_features *)skb->data;
1698
1699        w9116_features->pll_mode = common->w9116_features.pll_mode;
1700        w9116_features->rf_type = common->w9116_features.rf_type;
1701        w9116_features->wireless_mode = common->w9116_features.wireless_mode;
1702        w9116_features->enable_ppe = common->w9116_features.enable_ppe;
1703        w9116_features->afe_type = common->w9116_features.afe_type;
1704        if (common->w9116_features.dpd)
1705                w9116_features->feature_enable |= cpu_to_le32(RSI_DPD);
1706        if (common->w9116_features.sifs_tx_enable)
1707                w9116_features->feature_enable |=
1708                        cpu_to_le32(RSI_SIFS_TX_ENABLE);
1709        if (common->w9116_features.ps_options & RSI_DUTY_CYCLING)
1710                w9116_features->feature_enable |= cpu_to_le32(RSI_DUTY_CYCLING);
1711        if (common->w9116_features.ps_options & RSI_END_OF_FRAME)
1712                w9116_features->feature_enable |= cpu_to_le32(RSI_END_OF_FRAME);
1713        w9116_features->feature_enable |=
1714                cpu_to_le32((common->w9116_features.ps_options & ~0x3) << 2);
1715
1716        rsi_set_len_qno(&w9116_features->desc.desc_dword0.len_qno,
1717                        frame_len - FRAME_DESC_SZ, RSI_WIFI_MGMT_Q);
1718        w9116_features->desc.desc_dword0.frame_type = FEATURES_ENABLE;
1719        skb_put(skb, frame_len);
1720
1721        return rsi_send_internal_mgmt_frame(common, skb);
1722}
1723
1724/**
1725 * rsi_set_antenna() - This function send antenna configuration request
1726 *                     to device
1727 *
1728 * @common: Pointer to the driver private structure.
1729 * @antenna: bitmap for tx antenna selection
1730 *
1731 * Return: 0 on Success, negative error code on failure
1732 */
1733int rsi_set_antenna(struct rsi_common *common, u8 antenna)
1734{
1735        struct rsi_ant_sel_frame *ant_sel_frame;
1736        struct sk_buff *skb;
1737
1738        skb = dev_alloc_skb(FRAME_DESC_SZ);
1739        if (!skb) {
1740                rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1741                        __func__);
1742                return -ENOMEM;
1743        }
1744
1745        memset(skb->data, 0, FRAME_DESC_SZ);
1746
1747        ant_sel_frame = (struct rsi_ant_sel_frame *)skb->data;
1748        ant_sel_frame->desc_dword0.frame_type = ANT_SEL_FRAME;
1749        ant_sel_frame->sub_frame_type = ANTENNA_SEL_TYPE;
1750        ant_sel_frame->ant_value = cpu_to_le16(antenna & ANTENNA_MASK_VALUE);
1751        rsi_set_len_qno(&ant_sel_frame->desc_dword0.len_qno,
1752                        0, RSI_WIFI_MGMT_Q);
1753        skb_put(skb, FRAME_DESC_SZ);
1754
1755        return rsi_send_internal_mgmt_frame(common, skb);
1756}
1757
1758static int rsi_send_beacon(struct rsi_common *common)
1759{
1760        struct sk_buff *skb = NULL;
1761        u8 dword_align_bytes = 0;
1762
1763        skb = dev_alloc_skb(MAX_MGMT_PKT_SIZE);
1764        if (!skb)
1765                return -ENOMEM;
1766
1767        memset(skb->data, 0, MAX_MGMT_PKT_SIZE);
1768
1769        dword_align_bytes = ((unsigned long)skb->data & 0x3f);
1770        if (dword_align_bytes)
1771                skb_pull(skb, (64 - dword_align_bytes));
1772        if (rsi_prepare_beacon(common, skb)) {
1773                rsi_dbg(ERR_ZONE, "Failed to prepare beacon\n");
1774                dev_kfree_skb(skb);
1775                return -EINVAL;
1776        }
1777        skb_queue_tail(&common->tx_queue[MGMT_BEACON_Q], skb);
1778        rsi_set_event(&common->tx_thread.event);
1779        rsi_dbg(DATA_TX_ZONE, "%s: Added to beacon queue\n", __func__);
1780
1781        return 0;
1782}
1783
1784#ifdef CONFIG_PM
1785int rsi_send_wowlan_request(struct rsi_common *common, u16 flags,
1786                            u16 sleep_status)
1787{
1788        struct rsi_wowlan_req *cmd_frame;
1789        struct sk_buff *skb;
1790        u8 length;
1791
1792        rsi_dbg(ERR_ZONE, "%s: Sending wowlan request frame\n", __func__);
1793
1794        length = sizeof(*cmd_frame);
1795        skb = dev_alloc_skb(length);
1796        if (!skb)
1797                return -ENOMEM;
1798        memset(skb->data, 0, length);
1799        cmd_frame = (struct rsi_wowlan_req *)skb->data;
1800
1801        rsi_set_len_qno(&cmd_frame->desc.desc_dword0.len_qno,
1802                        (length - FRAME_DESC_SZ),
1803                        RSI_WIFI_MGMT_Q);
1804        cmd_frame->desc.desc_dword0.frame_type = WOWLAN_CONFIG_PARAMS;
1805        cmd_frame->host_sleep_status = sleep_status;
1806        if (common->secinfo.gtk_cipher)
1807                flags |= RSI_WOW_GTK_REKEY;
1808        if (sleep_status)
1809                cmd_frame->wow_flags = flags;
1810        rsi_dbg(INFO_ZONE, "Host_Sleep_Status : %d Flags : %d\n",
1811                cmd_frame->host_sleep_status, cmd_frame->wow_flags);
1812
1813        skb_put(skb, length);
1814
1815        return rsi_send_internal_mgmt_frame(common, skb);
1816}
1817#endif
1818
1819int rsi_send_bgscan_params(struct rsi_common *common, int enable)
1820{
1821        struct rsi_bgscan_params *params = &common->bgscan;
1822        struct cfg80211_scan_request *scan_req = common->hwscan;
1823        struct rsi_bgscan_config *bgscan;
1824        struct sk_buff *skb;
1825        u16 frame_len = sizeof(*bgscan);
1826        u8 i;
1827
1828        rsi_dbg(MGMT_TX_ZONE, "%s: Sending bgscan params frame\n", __func__);
1829
1830        skb = dev_alloc_skb(frame_len);
1831        if (!skb)
1832                return -ENOMEM;
1833        memset(skb->data, 0, frame_len);
1834
1835        bgscan = (struct rsi_bgscan_config *)skb->data;
1836        rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1837                        (frame_len - FRAME_DESC_SZ), RSI_WIFI_MGMT_Q);
1838        bgscan->desc_dword0.frame_type = BG_SCAN_PARAMS;
1839        bgscan->bgscan_threshold = cpu_to_le16(params->bgscan_threshold);
1840        bgscan->roam_threshold = cpu_to_le16(params->roam_threshold);
1841        if (enable)
1842                bgscan->bgscan_periodicity =
1843                        cpu_to_le16(params->bgscan_periodicity);
1844        bgscan->active_scan_duration =
1845                        cpu_to_le16(params->active_scan_duration);
1846        bgscan->passive_scan_duration =
1847                        cpu_to_le16(params->passive_scan_duration);
1848        bgscan->two_probe = params->two_probe;
1849
1850        bgscan->num_bgscan_channels = scan_req->n_channels;
1851        for (i = 0; i < bgscan->num_bgscan_channels; i++)
1852                bgscan->channels2scan[i] =
1853                        cpu_to_le16(scan_req->channels[i]->hw_value);
1854
1855        skb_put(skb, frame_len);
1856
1857        return rsi_send_internal_mgmt_frame(common, skb);
1858}
1859
1860/* This function sends the probe request to be used by firmware in
1861 * background scan
1862 */
1863int rsi_send_bgscan_probe_req(struct rsi_common *common,
1864                              struct ieee80211_vif *vif)
1865{
1866        struct cfg80211_scan_request *scan_req = common->hwscan;
1867        struct rsi_bgscan_probe *bgscan;
1868        struct sk_buff *skb;
1869        struct sk_buff *probereq_skb;
1870        u16 frame_len = sizeof(*bgscan);
1871        size_t ssid_len = 0;
1872        u8 *ssid = NULL;
1873
1874        rsi_dbg(MGMT_TX_ZONE,
1875                "%s: Sending bgscan probe req frame\n", __func__);
1876
1877        if (common->priv->sc_nvifs <= 0)
1878                return -ENODEV;
1879
1880        if (scan_req->n_ssids) {
1881                ssid = scan_req->ssids[0].ssid;
1882                ssid_len = scan_req->ssids[0].ssid_len;
1883        }
1884
1885        skb = dev_alloc_skb(frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1886        if (!skb)
1887                return -ENOMEM;
1888        memset(skb->data, 0, frame_len + MAX_BGSCAN_PROBE_REQ_LEN);
1889
1890        bgscan = (struct rsi_bgscan_probe *)skb->data;
1891        bgscan->desc_dword0.frame_type = BG_SCAN_PROBE_REQ;
1892        bgscan->flags = cpu_to_le16(HOST_BG_SCAN_TRIG);
1893        if (common->band == NL80211_BAND_5GHZ) {
1894                bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_6);
1895                bgscan->def_chan = cpu_to_le16(40);
1896        } else {
1897                bgscan->mgmt_rate = cpu_to_le16(RSI_RATE_1);
1898                bgscan->def_chan = cpu_to_le16(11);
1899        }
1900        bgscan->channel_scan_time = cpu_to_le16(RSI_CHANNEL_SCAN_TIME);
1901
1902        probereq_skb = ieee80211_probereq_get(common->priv->hw, vif->addr, ssid,
1903                                              ssid_len, scan_req->ie_len);
1904        if (!probereq_skb) {
1905                dev_kfree_skb(skb);
1906                return -ENOMEM;
1907        }
1908
1909        memcpy(&skb->data[frame_len], probereq_skb->data, probereq_skb->len);
1910
1911        bgscan->probe_req_length = cpu_to_le16(probereq_skb->len);
1912
1913        rsi_set_len_qno(&bgscan->desc_dword0.len_qno,
1914                        (frame_len - FRAME_DESC_SZ + probereq_skb->len),
1915                        RSI_WIFI_MGMT_Q);
1916
1917        skb_put(skb, frame_len + probereq_skb->len);
1918
1919        dev_kfree_skb(probereq_skb);
1920
1921        return rsi_send_internal_mgmt_frame(common, skb);
1922}
1923
1924/**
1925 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1926 * @common: Pointer to the driver private structure.
1927 * @msg: Pointer to received packet.
1928 *
1929 * Return: 0 on success, -1 on failure.
1930 */
1931static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1932                                      u8 *msg)
1933{
1934        struct rsi_hw *adapter = common->priv;
1935        u8 sub_type = (msg[15] & 0xff);
1936        u16 msg_len = ((u16 *)msg)[0] & 0xfff;
1937        u8 offset;
1938
1939        switch (sub_type) {
1940        case BOOTUP_PARAMS_REQUEST:
1941                rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1942                        __func__);
1943                if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1944                        if (adapter->device_model == RSI_DEV_9116) {
1945                                common->band = NL80211_BAND_5GHZ;
1946                                common->num_supp_bands = 2;
1947
1948                                if (rsi_send_reset_mac(common))
1949                                        goto out;
1950                                else
1951                                        common->fsm_state = FSM_RESET_MAC_SENT;
1952                        } else {
1953                                adapter->eeprom.length =
1954                                        (IEEE80211_ADDR_LEN +
1955                                         WLAN_MAC_MAGIC_WORD_LEN +
1956                                         WLAN_HOST_MODE_LEN);
1957                                adapter->eeprom.offset = WLAN_MAC_EEPROM_ADDR;
1958                                if (rsi_eeprom_read(common)) {
1959                                        common->fsm_state = FSM_CARD_NOT_READY;
1960                                        goto out;
1961                                }
1962                                common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1963                        }
1964                } else {
1965                        rsi_dbg(INFO_ZONE,
1966                                "%s: Received bootup params cfm in %d state\n",
1967                                 __func__, common->fsm_state);
1968                        return 0;
1969                }
1970                break;
1971
1972        case EEPROM_READ:
1973                rsi_dbg(FSM_ZONE, "EEPROM READ confirm received\n");
1974                if (msg_len <= 0) {
1975                        rsi_dbg(FSM_ZONE,
1976                                "%s: [EEPROM_READ] Invalid len %d\n",
1977                                __func__, msg_len);
1978                        goto out;
1979                }
1980                if (msg[16] != MAGIC_WORD) {
1981                        rsi_dbg(FSM_ZONE,
1982                                "%s: [EEPROM_READ] Invalid token\n", __func__);
1983                        common->fsm_state = FSM_CARD_NOT_READY;
1984                        goto out;
1985                }
1986                if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1987                        offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN +
1988                                  WLAN_MAC_MAGIC_WORD_LEN);
1989                        memcpy(common->mac_addr, &msg[offset], ETH_ALEN);
1990                        adapter->eeprom.length =
1991                                ((WLAN_MAC_MAGIC_WORD_LEN + 3) & (~3));
1992                        adapter->eeprom.offset = WLAN_EEPROM_RFTYPE_ADDR;
1993                        if (rsi_eeprom_read(common)) {
1994                                rsi_dbg(ERR_ZONE,
1995                                        "%s: Failed reading RF band\n",
1996                                        __func__);
1997                                common->fsm_state = FSM_CARD_NOT_READY;
1998                                goto out;
1999                        }
2000                        common->fsm_state = FSM_EEPROM_READ_RF_TYPE;
2001                } else if (common->fsm_state == FSM_EEPROM_READ_RF_TYPE) {
2002                        if ((msg[17] & 0x3) == 0x3) {
2003                                rsi_dbg(INIT_ZONE, "Dual band supported\n");
2004                                common->band = NL80211_BAND_5GHZ;
2005                                common->num_supp_bands = 2;
2006                        } else if ((msg[17] & 0x3) == 0x1) {
2007                                rsi_dbg(INIT_ZONE,
2008                                        "Only 2.4Ghz band supported\n");
2009                                common->band = NL80211_BAND_2GHZ;
2010                                common->num_supp_bands = 1;
2011                        }
2012                        if (rsi_send_reset_mac(common))
2013                                goto out;
2014                        common->fsm_state = FSM_RESET_MAC_SENT;
2015                } else {
2016                        rsi_dbg(ERR_ZONE, "%s: Invalid EEPROM read type\n",
2017                                __func__);
2018                        return 0;
2019                }
2020                break;
2021
2022        case RESET_MAC_REQ:
2023                if (common->fsm_state == FSM_RESET_MAC_SENT) {
2024                        rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
2025                                __func__);
2026
2027                        if (rsi_load_radio_caps(common))
2028                                goto out;
2029                        else
2030                                common->fsm_state = FSM_RADIO_CAPS_SENT;
2031                } else {
2032                        rsi_dbg(ERR_ZONE,
2033                                "%s: Received reset mac cfm in %d state\n",
2034                                 __func__, common->fsm_state);
2035                        return 0;
2036                }
2037                break;
2038
2039        case RADIO_CAPABILITIES:
2040                if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
2041                        common->rf_reset = 1;
2042                        if (adapter->device_model == RSI_DEV_9116 &&
2043                            rsi_send_w9116_features(common)) {
2044                                rsi_dbg(ERR_ZONE,
2045                                        "Failed to send 9116 features\n");
2046                                goto out;
2047                        }
2048                        if (rsi_program_bb_rf(common)) {
2049                                goto out;
2050                        } else {
2051                                common->fsm_state = FSM_BB_RF_PROG_SENT;
2052                                rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
2053                                        __func__);
2054                        }
2055                } else {
2056                        rsi_dbg(INFO_ZONE,
2057                                "%s: Received radio caps cfm in %d state\n",
2058                                 __func__, common->fsm_state);
2059                        return 0;
2060                }
2061                break;
2062
2063        case BB_PROG_VALUES_REQUEST:
2064        case RF_PROG_VALUES_REQUEST:
2065        case BBP_PROG_IN_TA:
2066                rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
2067                if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
2068                        common->bb_rf_prog_count--;
2069                        if (!common->bb_rf_prog_count) {
2070                                common->fsm_state = FSM_MAC_INIT_DONE;
2071                                if (common->reinit_hw) {
2072                                        complete(&common->wlan_init_completion);
2073                                } else {
2074                                        return rsi_mac80211_attach(common);
2075                                }
2076                        }
2077                } else {
2078                        rsi_dbg(INFO_ZONE,
2079                                "%s: Received bbb_rf cfm in %d state\n",
2080                                 __func__, common->fsm_state);
2081                        return 0;
2082                }
2083                break;
2084
2085        case SCAN_REQUEST:
2086                rsi_dbg(INFO_ZONE, "Set channel confirm\n");
2087                break;
2088
2089        case WAKEUP_SLEEP_REQUEST:
2090                rsi_dbg(INFO_ZONE, "Wakeup/Sleep confirmation.\n");
2091                return rsi_handle_ps_confirm(adapter, msg);
2092
2093        case BG_SCAN_PROBE_REQ:
2094                rsi_dbg(INFO_ZONE, "BG scan complete event\n");
2095                if (common->bgscan_en) {
2096                        struct cfg80211_scan_info info;
2097
2098                        if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
2099                                common->bgscan_en = 0;
2100                        info.aborted = false;
2101                        ieee80211_scan_completed(adapter->hw, &info);
2102                }
2103                rsi_dbg(INFO_ZONE, "Background scan completed\n");
2104                break;
2105
2106        default:
2107                rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
2108                        __func__);
2109                break;
2110        }
2111        return 0;
2112out:
2113        rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
2114                __func__);
2115        return -EINVAL;
2116}
2117
2118int rsi_handle_card_ready(struct rsi_common *common, u8 *msg)
2119{
2120        int status;
2121
2122        switch (common->fsm_state) {
2123        case FSM_CARD_NOT_READY:
2124                rsi_dbg(INIT_ZONE, "Card ready indication from Common HAL\n");
2125                rsi_set_default_parameters(common);
2126                if (rsi_send_common_dev_params(common) < 0)
2127                        return -EINVAL;
2128                common->fsm_state = FSM_COMMON_DEV_PARAMS_SENT;
2129                break;
2130        case FSM_COMMON_DEV_PARAMS_SENT:
2131                rsi_dbg(INIT_ZONE, "Card ready indication from WLAN HAL\n");
2132
2133                if (common->priv->device_model == RSI_DEV_9116) {
2134                        if (msg[16] != MAGIC_WORD) {
2135                                rsi_dbg(FSM_ZONE,
2136                                        "%s: [EEPROM_READ] Invalid token\n",
2137                                        __func__);
2138                                common->fsm_state = FSM_CARD_NOT_READY;
2139                                return -EINVAL;
2140                        }
2141                        memcpy(common->mac_addr, &msg[20], ETH_ALEN);
2142                        rsi_dbg(INIT_ZONE, "MAC Addr %pM", common->mac_addr);
2143                }
2144                /* Get usb buffer status register address */
2145                common->priv->usb_buffer_status_reg = *(u32 *)&msg[8];
2146                rsi_dbg(INFO_ZONE, "USB buffer status register = %x\n",
2147                        common->priv->usb_buffer_status_reg);
2148
2149                if (common->priv->device_model == RSI_DEV_9116)
2150                        status = rsi_load_9116_bootup_params(common);
2151                else
2152                        status = rsi_load_bootup_params(common);
2153                if (status < 0) {
2154                        common->fsm_state = FSM_CARD_NOT_READY;
2155                        return status;
2156                }
2157                common->fsm_state = FSM_BOOT_PARAMS_SENT;
2158                break;
2159        default:
2160                rsi_dbg(ERR_ZONE,
2161                        "%s: card ready indication in invalid state %d.\n",
2162                        __func__, common->fsm_state);
2163                return -EINVAL;
2164        }
2165
2166        return 0;
2167}
2168
2169/**
2170 * rsi_mgmt_pkt_recv() - This function processes the management packets
2171 *                       received from the hardware.
2172 * @common: Pointer to the driver private structure.
2173 * @msg: Pointer to the received packet.
2174 *
2175 * Return: 0 on success, -1 on failure.
2176 */
2177int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
2178{
2179        s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
2180        u16 msg_type = (msg[2]);
2181
2182        rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
2183                __func__, msg_len, msg_type);
2184
2185        switch (msg_type) {
2186        case TA_CONFIRM_TYPE:
2187                return rsi_handle_ta_confirm_type(common, msg);
2188        case CARD_READY_IND:
2189                common->hibernate_resume = false;
2190                rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
2191                        __func__);
2192                return rsi_handle_card_ready(common, msg);
2193        case TX_STATUS_IND:
2194                switch (msg[RSI_TX_STATUS_TYPE]) {
2195                case PROBEREQ_CONFIRM:
2196                        common->mgmt_q_block = false;
2197                        rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
2198                                __func__);
2199                        break;
2200                case EAPOL4_CONFIRM:
2201                        if (msg[RSI_TX_STATUS]) {
2202                                common->eapol4_confirm = true;
2203                                if (!rsi_send_block_unblock_frame(common,
2204                                                                  false))
2205                                        common->hw_data_qs_blocked = false;
2206                        }
2207                }
2208                break;
2209        case BEACON_EVENT_IND:
2210                rsi_dbg(INFO_ZONE, "Beacon event\n");
2211                if (common->fsm_state != FSM_MAC_INIT_DONE)
2212                        return -1;
2213                if (common->iface_down)
2214                        return -1;
2215                if (!common->beacon_enabled)
2216                        return -1;
2217                rsi_send_beacon(common);
2218                break;
2219        case WOWLAN_WAKEUP_REASON:
2220                rsi_dbg(ERR_ZONE, "\n\nWakeup Type: %x\n", msg[15]);
2221                switch (msg[15]) {
2222                case RSI_UNICAST_MAGIC_PKT:
2223                        rsi_dbg(ERR_ZONE,
2224                                "*** Wakeup for Unicast magic packet ***\n");
2225                        break;
2226                case RSI_BROADCAST_MAGICPKT:
2227                        rsi_dbg(ERR_ZONE,
2228                                "*** Wakeup for Broadcast magic packet ***\n");
2229                        break;
2230                case RSI_EAPOL_PKT:
2231                        rsi_dbg(ERR_ZONE,
2232                                "*** Wakeup for GTK renewal ***\n");
2233                        break;
2234                case RSI_DISCONNECT_PKT:
2235                        rsi_dbg(ERR_ZONE,
2236                                "*** Wakeup for Disconnect ***\n");
2237                        break;
2238                case RSI_HW_BMISS_PKT:
2239                        rsi_dbg(ERR_ZONE,
2240                                "*** Wakeup for HW Beacon miss ***\n");
2241                        break;
2242                default:
2243                        rsi_dbg(ERR_ZONE,
2244                                "##### Un-intentional Wakeup #####\n");
2245                        break;
2246        }
2247        break;
2248        case RX_DOT11_MGMT:
2249                return rsi_mgmt_pkt_to_core(common, msg, msg_len);
2250        default:
2251                rsi_dbg(INFO_ZONE, "Received packet type: 0x%x\n", msg_type);
2252        }
2253        return 0;
2254}
2255