linux/drivers/nvdimm/region_devs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
   4 */
   5#include <linux/scatterlist.h>
   6#include <linux/memregion.h>
   7#include <linux/highmem.h>
   8#include <linux/sched.h>
   9#include <linux/slab.h>
  10#include <linux/hash.h>
  11#include <linux/sort.h>
  12#include <linux/io.h>
  13#include <linux/nd.h>
  14#include "nd-core.h"
  15#include "nd.h"
  16
  17/*
  18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
  19 * irrelevant.
  20 */
  21#include <linux/io-64-nonatomic-hi-lo.h>
  22
  23static DEFINE_PER_CPU(int, flush_idx);
  24
  25static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
  26                struct nd_region_data *ndrd)
  27{
  28        int i, j;
  29
  30        dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
  31                        nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
  32        for (i = 0; i < (1 << ndrd->hints_shift); i++) {
  33                struct resource *res = &nvdimm->flush_wpq[i];
  34                unsigned long pfn = PHYS_PFN(res->start);
  35                void __iomem *flush_page;
  36
  37                /* check if flush hints share a page */
  38                for (j = 0; j < i; j++) {
  39                        struct resource *res_j = &nvdimm->flush_wpq[j];
  40                        unsigned long pfn_j = PHYS_PFN(res_j->start);
  41
  42                        if (pfn == pfn_j)
  43                                break;
  44                }
  45
  46                if (j < i)
  47                        flush_page = (void __iomem *) ((unsigned long)
  48                                        ndrd_get_flush_wpq(ndrd, dimm, j)
  49                                        & PAGE_MASK);
  50                else
  51                        flush_page = devm_nvdimm_ioremap(dev,
  52                                        PFN_PHYS(pfn), PAGE_SIZE);
  53                if (!flush_page)
  54                        return -ENXIO;
  55                ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
  56                                + (res->start & ~PAGE_MASK));
  57        }
  58
  59        return 0;
  60}
  61
  62int nd_region_activate(struct nd_region *nd_region)
  63{
  64        int i, j, num_flush = 0;
  65        struct nd_region_data *ndrd;
  66        struct device *dev = &nd_region->dev;
  67        size_t flush_data_size = sizeof(void *);
  68
  69        nvdimm_bus_lock(&nd_region->dev);
  70        for (i = 0; i < nd_region->ndr_mappings; i++) {
  71                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  72                struct nvdimm *nvdimm = nd_mapping->nvdimm;
  73
  74                if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
  75                        nvdimm_bus_unlock(&nd_region->dev);
  76                        return -EBUSY;
  77                }
  78
  79                /* at least one null hint slot per-dimm for the "no-hint" case */
  80                flush_data_size += sizeof(void *);
  81                num_flush = min_not_zero(num_flush, nvdimm->num_flush);
  82                if (!nvdimm->num_flush)
  83                        continue;
  84                flush_data_size += nvdimm->num_flush * sizeof(void *);
  85        }
  86        nvdimm_bus_unlock(&nd_region->dev);
  87
  88        ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
  89        if (!ndrd)
  90                return -ENOMEM;
  91        dev_set_drvdata(dev, ndrd);
  92
  93        if (!num_flush)
  94                return 0;
  95
  96        ndrd->hints_shift = ilog2(num_flush);
  97        for (i = 0; i < nd_region->ndr_mappings; i++) {
  98                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  99                struct nvdimm *nvdimm = nd_mapping->nvdimm;
 100                int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
 101
 102                if (rc)
 103                        return rc;
 104        }
 105
 106        /*
 107         * Clear out entries that are duplicates. This should prevent the
 108         * extra flushings.
 109         */
 110        for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
 111                /* ignore if NULL already */
 112                if (!ndrd_get_flush_wpq(ndrd, i, 0))
 113                        continue;
 114
 115                for (j = i + 1; j < nd_region->ndr_mappings; j++)
 116                        if (ndrd_get_flush_wpq(ndrd, i, 0) ==
 117                            ndrd_get_flush_wpq(ndrd, j, 0))
 118                                ndrd_set_flush_wpq(ndrd, j, 0, NULL);
 119        }
 120
 121        return 0;
 122}
 123
 124static void nd_region_release(struct device *dev)
 125{
 126        struct nd_region *nd_region = to_nd_region(dev);
 127        u16 i;
 128
 129        for (i = 0; i < nd_region->ndr_mappings; i++) {
 130                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 131                struct nvdimm *nvdimm = nd_mapping->nvdimm;
 132
 133                put_device(&nvdimm->dev);
 134        }
 135        free_percpu(nd_region->lane);
 136        memregion_free(nd_region->id);
 137        if (is_nd_blk(dev))
 138                kfree(to_nd_blk_region(dev));
 139        else
 140                kfree(nd_region);
 141}
 142
 143struct nd_region *to_nd_region(struct device *dev)
 144{
 145        struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
 146
 147        WARN_ON(dev->type->release != nd_region_release);
 148        return nd_region;
 149}
 150EXPORT_SYMBOL_GPL(to_nd_region);
 151
 152struct device *nd_region_dev(struct nd_region *nd_region)
 153{
 154        if (!nd_region)
 155                return NULL;
 156        return &nd_region->dev;
 157}
 158EXPORT_SYMBOL_GPL(nd_region_dev);
 159
 160struct nd_blk_region *to_nd_blk_region(struct device *dev)
 161{
 162        struct nd_region *nd_region = to_nd_region(dev);
 163
 164        WARN_ON(!is_nd_blk(dev));
 165        return container_of(nd_region, struct nd_blk_region, nd_region);
 166}
 167EXPORT_SYMBOL_GPL(to_nd_blk_region);
 168
 169void *nd_region_provider_data(struct nd_region *nd_region)
 170{
 171        return nd_region->provider_data;
 172}
 173EXPORT_SYMBOL_GPL(nd_region_provider_data);
 174
 175void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
 176{
 177        return ndbr->blk_provider_data;
 178}
 179EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
 180
 181void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
 182{
 183        ndbr->blk_provider_data = data;
 184}
 185EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
 186
 187/**
 188 * nd_region_to_nstype() - region to an integer namespace type
 189 * @nd_region: region-device to interrogate
 190 *
 191 * This is the 'nstype' attribute of a region as well, an input to the
 192 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
 193 * namespace devices with namespace drivers.
 194 */
 195int nd_region_to_nstype(struct nd_region *nd_region)
 196{
 197        if (is_memory(&nd_region->dev)) {
 198                u16 i, label;
 199
 200                for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
 201                        struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 202                        struct nvdimm *nvdimm = nd_mapping->nvdimm;
 203
 204                        if (test_bit(NDD_LABELING, &nvdimm->flags))
 205                                label++;
 206                }
 207                if (label)
 208                        return ND_DEVICE_NAMESPACE_PMEM;
 209                else
 210                        return ND_DEVICE_NAMESPACE_IO;
 211        } else if (is_nd_blk(&nd_region->dev)) {
 212                return ND_DEVICE_NAMESPACE_BLK;
 213        }
 214
 215        return 0;
 216}
 217EXPORT_SYMBOL(nd_region_to_nstype);
 218
 219static unsigned long long region_size(struct nd_region *nd_region)
 220{
 221        if (is_memory(&nd_region->dev)) {
 222                return nd_region->ndr_size;
 223        } else if (nd_region->ndr_mappings == 1) {
 224                struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 225
 226                return nd_mapping->size;
 227        }
 228
 229        return 0;
 230}
 231
 232static ssize_t size_show(struct device *dev,
 233                struct device_attribute *attr, char *buf)
 234{
 235        struct nd_region *nd_region = to_nd_region(dev);
 236
 237        return sprintf(buf, "%llu\n", region_size(nd_region));
 238}
 239static DEVICE_ATTR_RO(size);
 240
 241static ssize_t deep_flush_show(struct device *dev,
 242                struct device_attribute *attr, char *buf)
 243{
 244        struct nd_region *nd_region = to_nd_region(dev);
 245
 246        /*
 247         * NOTE: in the nvdimm_has_flush() error case this attribute is
 248         * not visible.
 249         */
 250        return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
 251}
 252
 253static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
 254                const char *buf, size_t len)
 255{
 256        bool flush;
 257        int rc = strtobool(buf, &flush);
 258        struct nd_region *nd_region = to_nd_region(dev);
 259
 260        if (rc)
 261                return rc;
 262        if (!flush)
 263                return -EINVAL;
 264        rc = nvdimm_flush(nd_region, NULL);
 265        if (rc)
 266                return rc;
 267
 268        return len;
 269}
 270static DEVICE_ATTR_RW(deep_flush);
 271
 272static ssize_t mappings_show(struct device *dev,
 273                struct device_attribute *attr, char *buf)
 274{
 275        struct nd_region *nd_region = to_nd_region(dev);
 276
 277        return sprintf(buf, "%d\n", nd_region->ndr_mappings);
 278}
 279static DEVICE_ATTR_RO(mappings);
 280
 281static ssize_t nstype_show(struct device *dev,
 282                struct device_attribute *attr, char *buf)
 283{
 284        struct nd_region *nd_region = to_nd_region(dev);
 285
 286        return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
 287}
 288static DEVICE_ATTR_RO(nstype);
 289
 290static ssize_t set_cookie_show(struct device *dev,
 291                struct device_attribute *attr, char *buf)
 292{
 293        struct nd_region *nd_region = to_nd_region(dev);
 294        struct nd_interleave_set *nd_set = nd_region->nd_set;
 295        ssize_t rc = 0;
 296
 297        if (is_memory(dev) && nd_set)
 298                /* pass, should be precluded by region_visible */;
 299        else
 300                return -ENXIO;
 301
 302        /*
 303         * The cookie to show depends on which specification of the
 304         * labels we are using. If there are not labels then default to
 305         * the v1.1 namespace label cookie definition. To read all this
 306         * data we need to wait for probing to settle.
 307         */
 308        nd_device_lock(dev);
 309        nvdimm_bus_lock(dev);
 310        wait_nvdimm_bus_probe_idle(dev);
 311        if (nd_region->ndr_mappings) {
 312                struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 313                struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 314
 315                if (ndd) {
 316                        struct nd_namespace_index *nsindex;
 317
 318                        nsindex = to_namespace_index(ndd, ndd->ns_current);
 319                        rc = sprintf(buf, "%#llx\n",
 320                                        nd_region_interleave_set_cookie(nd_region,
 321                                                nsindex));
 322                }
 323        }
 324        nvdimm_bus_unlock(dev);
 325        nd_device_unlock(dev);
 326
 327        if (rc)
 328                return rc;
 329        return sprintf(buf, "%#llx\n", nd_set->cookie1);
 330}
 331static DEVICE_ATTR_RO(set_cookie);
 332
 333resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
 334{
 335        resource_size_t blk_max_overlap = 0, available, overlap;
 336        int i;
 337
 338        WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 339
 340 retry:
 341        available = 0;
 342        overlap = blk_max_overlap;
 343        for (i = 0; i < nd_region->ndr_mappings; i++) {
 344                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 345                struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 346
 347                /* if a dimm is disabled the available capacity is zero */
 348                if (!ndd)
 349                        return 0;
 350
 351                if (is_memory(&nd_region->dev)) {
 352                        available += nd_pmem_available_dpa(nd_region,
 353                                        nd_mapping, &overlap);
 354                        if (overlap > blk_max_overlap) {
 355                                blk_max_overlap = overlap;
 356                                goto retry;
 357                        }
 358                } else if (is_nd_blk(&nd_region->dev))
 359                        available += nd_blk_available_dpa(nd_region);
 360        }
 361
 362        return available;
 363}
 364
 365resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
 366{
 367        resource_size_t available = 0;
 368        int i;
 369
 370        if (is_memory(&nd_region->dev))
 371                available = PHYS_ADDR_MAX;
 372
 373        WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 374        for (i = 0; i < nd_region->ndr_mappings; i++) {
 375                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 376
 377                if (is_memory(&nd_region->dev))
 378                        available = min(available,
 379                                        nd_pmem_max_contiguous_dpa(nd_region,
 380                                                                   nd_mapping));
 381                else if (is_nd_blk(&nd_region->dev))
 382                        available += nd_blk_available_dpa(nd_region);
 383        }
 384        if (is_memory(&nd_region->dev))
 385                return available * nd_region->ndr_mappings;
 386        return available;
 387}
 388
 389static ssize_t available_size_show(struct device *dev,
 390                struct device_attribute *attr, char *buf)
 391{
 392        struct nd_region *nd_region = to_nd_region(dev);
 393        unsigned long long available = 0;
 394
 395        /*
 396         * Flush in-flight updates and grab a snapshot of the available
 397         * size.  Of course, this value is potentially invalidated the
 398         * memory nvdimm_bus_lock() is dropped, but that's userspace's
 399         * problem to not race itself.
 400         */
 401        nd_device_lock(dev);
 402        nvdimm_bus_lock(dev);
 403        wait_nvdimm_bus_probe_idle(dev);
 404        available = nd_region_available_dpa(nd_region);
 405        nvdimm_bus_unlock(dev);
 406        nd_device_unlock(dev);
 407
 408        return sprintf(buf, "%llu\n", available);
 409}
 410static DEVICE_ATTR_RO(available_size);
 411
 412static ssize_t max_available_extent_show(struct device *dev,
 413                struct device_attribute *attr, char *buf)
 414{
 415        struct nd_region *nd_region = to_nd_region(dev);
 416        unsigned long long available = 0;
 417
 418        nd_device_lock(dev);
 419        nvdimm_bus_lock(dev);
 420        wait_nvdimm_bus_probe_idle(dev);
 421        available = nd_region_allocatable_dpa(nd_region);
 422        nvdimm_bus_unlock(dev);
 423        nd_device_unlock(dev);
 424
 425        return sprintf(buf, "%llu\n", available);
 426}
 427static DEVICE_ATTR_RO(max_available_extent);
 428
 429static ssize_t init_namespaces_show(struct device *dev,
 430                struct device_attribute *attr, char *buf)
 431{
 432        struct nd_region_data *ndrd = dev_get_drvdata(dev);
 433        ssize_t rc;
 434
 435        nvdimm_bus_lock(dev);
 436        if (ndrd)
 437                rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
 438        else
 439                rc = -ENXIO;
 440        nvdimm_bus_unlock(dev);
 441
 442        return rc;
 443}
 444static DEVICE_ATTR_RO(init_namespaces);
 445
 446static ssize_t namespace_seed_show(struct device *dev,
 447                struct device_attribute *attr, char *buf)
 448{
 449        struct nd_region *nd_region = to_nd_region(dev);
 450        ssize_t rc;
 451
 452        nvdimm_bus_lock(dev);
 453        if (nd_region->ns_seed)
 454                rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
 455        else
 456                rc = sprintf(buf, "\n");
 457        nvdimm_bus_unlock(dev);
 458        return rc;
 459}
 460static DEVICE_ATTR_RO(namespace_seed);
 461
 462static ssize_t btt_seed_show(struct device *dev,
 463                struct device_attribute *attr, char *buf)
 464{
 465        struct nd_region *nd_region = to_nd_region(dev);
 466        ssize_t rc;
 467
 468        nvdimm_bus_lock(dev);
 469        if (nd_region->btt_seed)
 470                rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
 471        else
 472                rc = sprintf(buf, "\n");
 473        nvdimm_bus_unlock(dev);
 474
 475        return rc;
 476}
 477static DEVICE_ATTR_RO(btt_seed);
 478
 479static ssize_t pfn_seed_show(struct device *dev,
 480                struct device_attribute *attr, char *buf)
 481{
 482        struct nd_region *nd_region = to_nd_region(dev);
 483        ssize_t rc;
 484
 485        nvdimm_bus_lock(dev);
 486        if (nd_region->pfn_seed)
 487                rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
 488        else
 489                rc = sprintf(buf, "\n");
 490        nvdimm_bus_unlock(dev);
 491
 492        return rc;
 493}
 494static DEVICE_ATTR_RO(pfn_seed);
 495
 496static ssize_t dax_seed_show(struct device *dev,
 497                struct device_attribute *attr, char *buf)
 498{
 499        struct nd_region *nd_region = to_nd_region(dev);
 500        ssize_t rc;
 501
 502        nvdimm_bus_lock(dev);
 503        if (nd_region->dax_seed)
 504                rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
 505        else
 506                rc = sprintf(buf, "\n");
 507        nvdimm_bus_unlock(dev);
 508
 509        return rc;
 510}
 511static DEVICE_ATTR_RO(dax_seed);
 512
 513static ssize_t read_only_show(struct device *dev,
 514                struct device_attribute *attr, char *buf)
 515{
 516        struct nd_region *nd_region = to_nd_region(dev);
 517
 518        return sprintf(buf, "%d\n", nd_region->ro);
 519}
 520
 521static int revalidate_read_only(struct device *dev, void *data)
 522{
 523        nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
 524        return 0;
 525}
 526
 527static ssize_t read_only_store(struct device *dev,
 528                struct device_attribute *attr, const char *buf, size_t len)
 529{
 530        bool ro;
 531        int rc = strtobool(buf, &ro);
 532        struct nd_region *nd_region = to_nd_region(dev);
 533
 534        if (rc)
 535                return rc;
 536
 537        nd_region->ro = ro;
 538        device_for_each_child(dev, NULL, revalidate_read_only);
 539        return len;
 540}
 541static DEVICE_ATTR_RW(read_only);
 542
 543static ssize_t align_show(struct device *dev,
 544                struct device_attribute *attr, char *buf)
 545{
 546        struct nd_region *nd_region = to_nd_region(dev);
 547
 548        return sprintf(buf, "%#lx\n", nd_region->align);
 549}
 550
 551static ssize_t align_store(struct device *dev,
 552                struct device_attribute *attr, const char *buf, size_t len)
 553{
 554        struct nd_region *nd_region = to_nd_region(dev);
 555        unsigned long val, dpa;
 556        u32 remainder;
 557        int rc;
 558
 559        rc = kstrtoul(buf, 0, &val);
 560        if (rc)
 561                return rc;
 562
 563        if (!nd_region->ndr_mappings)
 564                return -ENXIO;
 565
 566        /*
 567         * Ensure space-align is evenly divisible by the region
 568         * interleave-width because the kernel typically has no facility
 569         * to determine which DIMM(s), dimm-physical-addresses, would
 570         * contribute to the tail capacity in system-physical-address
 571         * space for the namespace.
 572         */
 573        dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
 574        if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
 575                        || val > region_size(nd_region) || remainder)
 576                return -EINVAL;
 577
 578        /*
 579         * Given that space allocation consults this value multiple
 580         * times ensure it does not change for the duration of the
 581         * allocation.
 582         */
 583        nvdimm_bus_lock(dev);
 584        nd_region->align = val;
 585        nvdimm_bus_unlock(dev);
 586
 587        return len;
 588}
 589static DEVICE_ATTR_RW(align);
 590
 591static ssize_t region_badblocks_show(struct device *dev,
 592                struct device_attribute *attr, char *buf)
 593{
 594        struct nd_region *nd_region = to_nd_region(dev);
 595        ssize_t rc;
 596
 597        nd_device_lock(dev);
 598        if (dev->driver)
 599                rc = badblocks_show(&nd_region->bb, buf, 0);
 600        else
 601                rc = -ENXIO;
 602        nd_device_unlock(dev);
 603
 604        return rc;
 605}
 606static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
 607
 608static ssize_t resource_show(struct device *dev,
 609                struct device_attribute *attr, char *buf)
 610{
 611        struct nd_region *nd_region = to_nd_region(dev);
 612
 613        return sprintf(buf, "%#llx\n", nd_region->ndr_start);
 614}
 615static DEVICE_ATTR_ADMIN_RO(resource);
 616
 617static ssize_t persistence_domain_show(struct device *dev,
 618                struct device_attribute *attr, char *buf)
 619{
 620        struct nd_region *nd_region = to_nd_region(dev);
 621
 622        if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
 623                return sprintf(buf, "cpu_cache\n");
 624        else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
 625                return sprintf(buf, "memory_controller\n");
 626        else
 627                return sprintf(buf, "\n");
 628}
 629static DEVICE_ATTR_RO(persistence_domain);
 630
 631static struct attribute *nd_region_attributes[] = {
 632        &dev_attr_size.attr,
 633        &dev_attr_align.attr,
 634        &dev_attr_nstype.attr,
 635        &dev_attr_mappings.attr,
 636        &dev_attr_btt_seed.attr,
 637        &dev_attr_pfn_seed.attr,
 638        &dev_attr_dax_seed.attr,
 639        &dev_attr_deep_flush.attr,
 640        &dev_attr_read_only.attr,
 641        &dev_attr_set_cookie.attr,
 642        &dev_attr_available_size.attr,
 643        &dev_attr_max_available_extent.attr,
 644        &dev_attr_namespace_seed.attr,
 645        &dev_attr_init_namespaces.attr,
 646        &dev_attr_badblocks.attr,
 647        &dev_attr_resource.attr,
 648        &dev_attr_persistence_domain.attr,
 649        NULL,
 650};
 651
 652static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
 653{
 654        struct device *dev = container_of(kobj, typeof(*dev), kobj);
 655        struct nd_region *nd_region = to_nd_region(dev);
 656        struct nd_interleave_set *nd_set = nd_region->nd_set;
 657        int type = nd_region_to_nstype(nd_region);
 658
 659        if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
 660                return 0;
 661
 662        if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
 663                return 0;
 664
 665        if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
 666                return 0;
 667
 668        if (a == &dev_attr_resource.attr && !is_memory(dev))
 669                return 0;
 670
 671        if (a == &dev_attr_deep_flush.attr) {
 672                int has_flush = nvdimm_has_flush(nd_region);
 673
 674                if (has_flush == 1)
 675                        return a->mode;
 676                else if (has_flush == 0)
 677                        return 0444;
 678                else
 679                        return 0;
 680        }
 681
 682        if (a == &dev_attr_persistence_domain.attr) {
 683                if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
 684                                        | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
 685                        return 0;
 686                return a->mode;
 687        }
 688
 689        if (a == &dev_attr_align.attr)
 690                return a->mode;
 691
 692        if (a != &dev_attr_set_cookie.attr
 693                        && a != &dev_attr_available_size.attr)
 694                return a->mode;
 695
 696        if ((type == ND_DEVICE_NAMESPACE_PMEM
 697                                || type == ND_DEVICE_NAMESPACE_BLK)
 698                        && a == &dev_attr_available_size.attr)
 699                return a->mode;
 700        else if (is_memory(dev) && nd_set)
 701                return a->mode;
 702
 703        return 0;
 704}
 705
 706static ssize_t mappingN(struct device *dev, char *buf, int n)
 707{
 708        struct nd_region *nd_region = to_nd_region(dev);
 709        struct nd_mapping *nd_mapping;
 710        struct nvdimm *nvdimm;
 711
 712        if (n >= nd_region->ndr_mappings)
 713                return -ENXIO;
 714        nd_mapping = &nd_region->mapping[n];
 715        nvdimm = nd_mapping->nvdimm;
 716
 717        return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
 718                        nd_mapping->start, nd_mapping->size,
 719                        nd_mapping->position);
 720}
 721
 722#define REGION_MAPPING(idx) \
 723static ssize_t mapping##idx##_show(struct device *dev,          \
 724                struct device_attribute *attr, char *buf)       \
 725{                                                               \
 726        return mappingN(dev, buf, idx);                         \
 727}                                                               \
 728static DEVICE_ATTR_RO(mapping##idx)
 729
 730/*
 731 * 32 should be enough for a while, even in the presence of socket
 732 * interleave a 32-way interleave set is a degenerate case.
 733 */
 734REGION_MAPPING(0);
 735REGION_MAPPING(1);
 736REGION_MAPPING(2);
 737REGION_MAPPING(3);
 738REGION_MAPPING(4);
 739REGION_MAPPING(5);
 740REGION_MAPPING(6);
 741REGION_MAPPING(7);
 742REGION_MAPPING(8);
 743REGION_MAPPING(9);
 744REGION_MAPPING(10);
 745REGION_MAPPING(11);
 746REGION_MAPPING(12);
 747REGION_MAPPING(13);
 748REGION_MAPPING(14);
 749REGION_MAPPING(15);
 750REGION_MAPPING(16);
 751REGION_MAPPING(17);
 752REGION_MAPPING(18);
 753REGION_MAPPING(19);
 754REGION_MAPPING(20);
 755REGION_MAPPING(21);
 756REGION_MAPPING(22);
 757REGION_MAPPING(23);
 758REGION_MAPPING(24);
 759REGION_MAPPING(25);
 760REGION_MAPPING(26);
 761REGION_MAPPING(27);
 762REGION_MAPPING(28);
 763REGION_MAPPING(29);
 764REGION_MAPPING(30);
 765REGION_MAPPING(31);
 766
 767static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
 768{
 769        struct device *dev = container_of(kobj, struct device, kobj);
 770        struct nd_region *nd_region = to_nd_region(dev);
 771
 772        if (n < nd_region->ndr_mappings)
 773                return a->mode;
 774        return 0;
 775}
 776
 777static struct attribute *mapping_attributes[] = {
 778        &dev_attr_mapping0.attr,
 779        &dev_attr_mapping1.attr,
 780        &dev_attr_mapping2.attr,
 781        &dev_attr_mapping3.attr,
 782        &dev_attr_mapping4.attr,
 783        &dev_attr_mapping5.attr,
 784        &dev_attr_mapping6.attr,
 785        &dev_attr_mapping7.attr,
 786        &dev_attr_mapping8.attr,
 787        &dev_attr_mapping9.attr,
 788        &dev_attr_mapping10.attr,
 789        &dev_attr_mapping11.attr,
 790        &dev_attr_mapping12.attr,
 791        &dev_attr_mapping13.attr,
 792        &dev_attr_mapping14.attr,
 793        &dev_attr_mapping15.attr,
 794        &dev_attr_mapping16.attr,
 795        &dev_attr_mapping17.attr,
 796        &dev_attr_mapping18.attr,
 797        &dev_attr_mapping19.attr,
 798        &dev_attr_mapping20.attr,
 799        &dev_attr_mapping21.attr,
 800        &dev_attr_mapping22.attr,
 801        &dev_attr_mapping23.attr,
 802        &dev_attr_mapping24.attr,
 803        &dev_attr_mapping25.attr,
 804        &dev_attr_mapping26.attr,
 805        &dev_attr_mapping27.attr,
 806        &dev_attr_mapping28.attr,
 807        &dev_attr_mapping29.attr,
 808        &dev_attr_mapping30.attr,
 809        &dev_attr_mapping31.attr,
 810        NULL,
 811};
 812
 813static const struct attribute_group nd_mapping_attribute_group = {
 814        .is_visible = mapping_visible,
 815        .attrs = mapping_attributes,
 816};
 817
 818static const struct attribute_group nd_region_attribute_group = {
 819        .attrs = nd_region_attributes,
 820        .is_visible = region_visible,
 821};
 822
 823static const struct attribute_group *nd_region_attribute_groups[] = {
 824        &nd_device_attribute_group,
 825        &nd_region_attribute_group,
 826        &nd_numa_attribute_group,
 827        &nd_mapping_attribute_group,
 828        NULL,
 829};
 830
 831static const struct device_type nd_blk_device_type = {
 832        .name = "nd_blk",
 833        .release = nd_region_release,
 834        .groups = nd_region_attribute_groups,
 835};
 836
 837static const struct device_type nd_pmem_device_type = {
 838        .name = "nd_pmem",
 839        .release = nd_region_release,
 840        .groups = nd_region_attribute_groups,
 841};
 842
 843static const struct device_type nd_volatile_device_type = {
 844        .name = "nd_volatile",
 845        .release = nd_region_release,
 846        .groups = nd_region_attribute_groups,
 847};
 848
 849bool is_nd_pmem(struct device *dev)
 850{
 851        return dev ? dev->type == &nd_pmem_device_type : false;
 852}
 853
 854bool is_nd_blk(struct device *dev)
 855{
 856        return dev ? dev->type == &nd_blk_device_type : false;
 857}
 858
 859bool is_nd_volatile(struct device *dev)
 860{
 861        return dev ? dev->type == &nd_volatile_device_type : false;
 862}
 863
 864u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
 865                struct nd_namespace_index *nsindex)
 866{
 867        struct nd_interleave_set *nd_set = nd_region->nd_set;
 868
 869        if (!nd_set)
 870                return 0;
 871
 872        if (nsindex && __le16_to_cpu(nsindex->major) == 1
 873                        && __le16_to_cpu(nsindex->minor) == 1)
 874                return nd_set->cookie1;
 875        return nd_set->cookie2;
 876}
 877
 878u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
 879{
 880        struct nd_interleave_set *nd_set = nd_region->nd_set;
 881
 882        if (nd_set)
 883                return nd_set->altcookie;
 884        return 0;
 885}
 886
 887void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
 888{
 889        struct nd_label_ent *label_ent, *e;
 890
 891        lockdep_assert_held(&nd_mapping->lock);
 892        list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
 893                list_del(&label_ent->list);
 894                kfree(label_ent);
 895        }
 896}
 897
 898/*
 899 * When a namespace is activated create new seeds for the next
 900 * namespace, or namespace-personality to be configured.
 901 */
 902void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
 903{
 904        nvdimm_bus_lock(dev);
 905        if (nd_region->ns_seed == dev) {
 906                nd_region_create_ns_seed(nd_region);
 907        } else if (is_nd_btt(dev)) {
 908                struct nd_btt *nd_btt = to_nd_btt(dev);
 909
 910                if (nd_region->btt_seed == dev)
 911                        nd_region_create_btt_seed(nd_region);
 912                if (nd_region->ns_seed == &nd_btt->ndns->dev)
 913                        nd_region_create_ns_seed(nd_region);
 914        } else if (is_nd_pfn(dev)) {
 915                struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 916
 917                if (nd_region->pfn_seed == dev)
 918                        nd_region_create_pfn_seed(nd_region);
 919                if (nd_region->ns_seed == &nd_pfn->ndns->dev)
 920                        nd_region_create_ns_seed(nd_region);
 921        } else if (is_nd_dax(dev)) {
 922                struct nd_dax *nd_dax = to_nd_dax(dev);
 923
 924                if (nd_region->dax_seed == dev)
 925                        nd_region_create_dax_seed(nd_region);
 926                if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
 927                        nd_region_create_ns_seed(nd_region);
 928        }
 929        nvdimm_bus_unlock(dev);
 930}
 931
 932int nd_blk_region_init(struct nd_region *nd_region)
 933{
 934        struct device *dev = &nd_region->dev;
 935        struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
 936
 937        if (!is_nd_blk(dev))
 938                return 0;
 939
 940        if (nd_region->ndr_mappings < 1) {
 941                dev_dbg(dev, "invalid BLK region\n");
 942                return -ENXIO;
 943        }
 944
 945        return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
 946}
 947
 948/**
 949 * nd_region_acquire_lane - allocate and lock a lane
 950 * @nd_region: region id and number of lanes possible
 951 *
 952 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
 953 * We optimize for the common case where there are 256 lanes, one
 954 * per-cpu.  For larger systems we need to lock to share lanes.  For now
 955 * this implementation assumes the cost of maintaining an allocator for
 956 * free lanes is on the order of the lock hold time, so it implements a
 957 * static lane = cpu % num_lanes mapping.
 958 *
 959 * In the case of a BTT instance on top of a BLK namespace a lane may be
 960 * acquired recursively.  We lock on the first instance.
 961 *
 962 * In the case of a BTT instance on top of PMEM, we only acquire a lane
 963 * for the BTT metadata updates.
 964 */
 965unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
 966{
 967        unsigned int cpu, lane;
 968
 969        cpu = get_cpu();
 970        if (nd_region->num_lanes < nr_cpu_ids) {
 971                struct nd_percpu_lane *ndl_lock, *ndl_count;
 972
 973                lane = cpu % nd_region->num_lanes;
 974                ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 975                ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 976                if (ndl_count->count++ == 0)
 977                        spin_lock(&ndl_lock->lock);
 978        } else
 979                lane = cpu;
 980
 981        return lane;
 982}
 983EXPORT_SYMBOL(nd_region_acquire_lane);
 984
 985void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
 986{
 987        if (nd_region->num_lanes < nr_cpu_ids) {
 988                unsigned int cpu = get_cpu();
 989                struct nd_percpu_lane *ndl_lock, *ndl_count;
 990
 991                ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 992                ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 993                if (--ndl_count->count == 0)
 994                        spin_unlock(&ndl_lock->lock);
 995                put_cpu();
 996        }
 997        put_cpu();
 998}
 999EXPORT_SYMBOL(nd_region_release_lane);
1000
1001/*
1002 * PowerPC requires this alignment for memremap_pages(). All other archs
1003 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
1004 */
1005#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
1006
1007static unsigned long default_align(struct nd_region *nd_region)
1008{
1009        unsigned long align;
1010        int i, mappings;
1011        u32 remainder;
1012
1013        if (is_nd_blk(&nd_region->dev))
1014                align = PAGE_SIZE;
1015        else
1016                align = MEMREMAP_COMPAT_ALIGN_MAX;
1017
1018        for (i = 0; i < nd_region->ndr_mappings; i++) {
1019                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1020                struct nvdimm *nvdimm = nd_mapping->nvdimm;
1021
1022                if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
1023                        align = MEMREMAP_COMPAT_ALIGN_MAX;
1024                        break;
1025                }
1026        }
1027
1028        mappings = max_t(u16, 1, nd_region->ndr_mappings);
1029        div_u64_rem(align, mappings, &remainder);
1030        if (remainder)
1031                align *= mappings;
1032
1033        return align;
1034}
1035
1036static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
1037                struct nd_region_desc *ndr_desc,
1038                const struct device_type *dev_type, const char *caller)
1039{
1040        struct nd_region *nd_region;
1041        struct device *dev;
1042        void *region_buf;
1043        unsigned int i;
1044        int ro = 0;
1045
1046        for (i = 0; i < ndr_desc->num_mappings; i++) {
1047                struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1048                struct nvdimm *nvdimm = mapping->nvdimm;
1049
1050                if ((mapping->start | mapping->size) % PAGE_SIZE) {
1051                        dev_err(&nvdimm_bus->dev,
1052                                "%s: %s mapping%d is not %ld aligned\n",
1053                                caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
1054                        return NULL;
1055                }
1056
1057                if (test_bit(NDD_UNARMED, &nvdimm->flags))
1058                        ro = 1;
1059
1060                if (test_bit(NDD_NOBLK, &nvdimm->flags)
1061                                && dev_type == &nd_blk_device_type) {
1062                        dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1063                                        caller, dev_name(&nvdimm->dev), i);
1064                        return NULL;
1065                }
1066        }
1067
1068        if (dev_type == &nd_blk_device_type) {
1069                struct nd_blk_region_desc *ndbr_desc;
1070                struct nd_blk_region *ndbr;
1071
1072                ndbr_desc = to_blk_region_desc(ndr_desc);
1073                ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1074                                * ndr_desc->num_mappings,
1075                                GFP_KERNEL);
1076                if (ndbr) {
1077                        nd_region = &ndbr->nd_region;
1078                        ndbr->enable = ndbr_desc->enable;
1079                        ndbr->do_io = ndbr_desc->do_io;
1080                }
1081                region_buf = ndbr;
1082        } else {
1083                nd_region = kzalloc(struct_size(nd_region, mapping,
1084                                                ndr_desc->num_mappings),
1085                                    GFP_KERNEL);
1086                region_buf = nd_region;
1087        }
1088
1089        if (!region_buf)
1090                return NULL;
1091        nd_region->id = memregion_alloc(GFP_KERNEL);
1092        if (nd_region->id < 0)
1093                goto err_id;
1094
1095        nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1096        if (!nd_region->lane)
1097                goto err_percpu;
1098
1099        for (i = 0; i < nr_cpu_ids; i++) {
1100                struct nd_percpu_lane *ndl;
1101
1102                ndl = per_cpu_ptr(nd_region->lane, i);
1103                spin_lock_init(&ndl->lock);
1104                ndl->count = 0;
1105        }
1106
1107        for (i = 0; i < ndr_desc->num_mappings; i++) {
1108                struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1109                struct nvdimm *nvdimm = mapping->nvdimm;
1110
1111                nd_region->mapping[i].nvdimm = nvdimm;
1112                nd_region->mapping[i].start = mapping->start;
1113                nd_region->mapping[i].size = mapping->size;
1114                nd_region->mapping[i].position = mapping->position;
1115                INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1116                mutex_init(&nd_region->mapping[i].lock);
1117
1118                get_device(&nvdimm->dev);
1119        }
1120        nd_region->ndr_mappings = ndr_desc->num_mappings;
1121        nd_region->provider_data = ndr_desc->provider_data;
1122        nd_region->nd_set = ndr_desc->nd_set;
1123        nd_region->num_lanes = ndr_desc->num_lanes;
1124        nd_region->flags = ndr_desc->flags;
1125        nd_region->ro = ro;
1126        nd_region->numa_node = ndr_desc->numa_node;
1127        nd_region->target_node = ndr_desc->target_node;
1128        ida_init(&nd_region->ns_ida);
1129        ida_init(&nd_region->btt_ida);
1130        ida_init(&nd_region->pfn_ida);
1131        ida_init(&nd_region->dax_ida);
1132        dev = &nd_region->dev;
1133        dev_set_name(dev, "region%d", nd_region->id);
1134        dev->parent = &nvdimm_bus->dev;
1135        dev->type = dev_type;
1136        dev->groups = ndr_desc->attr_groups;
1137        dev->of_node = ndr_desc->of_node;
1138        nd_region->ndr_size = resource_size(ndr_desc->res);
1139        nd_region->ndr_start = ndr_desc->res->start;
1140        nd_region->align = default_align(nd_region);
1141        if (ndr_desc->flush)
1142                nd_region->flush = ndr_desc->flush;
1143        else
1144                nd_region->flush = NULL;
1145
1146        nd_device_register(dev);
1147
1148        return nd_region;
1149
1150 err_percpu:
1151        memregion_free(nd_region->id);
1152 err_id:
1153        kfree(region_buf);
1154        return NULL;
1155}
1156
1157struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1158                struct nd_region_desc *ndr_desc)
1159{
1160        ndr_desc->num_lanes = ND_MAX_LANES;
1161        return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1162                        __func__);
1163}
1164EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1165
1166struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1167                struct nd_region_desc *ndr_desc)
1168{
1169        if (ndr_desc->num_mappings > 1)
1170                return NULL;
1171        ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1172        return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1173                        __func__);
1174}
1175EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1176
1177struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1178                struct nd_region_desc *ndr_desc)
1179{
1180        ndr_desc->num_lanes = ND_MAX_LANES;
1181        return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1182                        __func__);
1183}
1184EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1185
1186int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1187{
1188        int rc = 0;
1189
1190        if (!nd_region->flush)
1191                rc = generic_nvdimm_flush(nd_region);
1192        else {
1193                if (nd_region->flush(nd_region, bio))
1194                        rc = -EIO;
1195        }
1196
1197        return rc;
1198}
1199/**
1200 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1201 * @nd_region: blk or interleaved pmem region
1202 */
1203int generic_nvdimm_flush(struct nd_region *nd_region)
1204{
1205        struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1206        int i, idx;
1207
1208        /*
1209         * Try to encourage some diversity in flush hint addresses
1210         * across cpus assuming a limited number of flush hints.
1211         */
1212        idx = this_cpu_read(flush_idx);
1213        idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1214
1215        /*
1216         * The pmem_wmb() is needed to 'sfence' all
1217         * previous writes such that they are architecturally visible for
1218         * the platform buffer flush. Note that we've already arranged for pmem
1219         * writes to avoid the cache via memcpy_flushcache().  The final
1220         * wmb() ensures ordering for the NVDIMM flush write.
1221         */
1222        pmem_wmb();
1223        for (i = 0; i < nd_region->ndr_mappings; i++)
1224                if (ndrd_get_flush_wpq(ndrd, i, 0))
1225                        writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1226        wmb();
1227
1228        return 0;
1229}
1230EXPORT_SYMBOL_GPL(nvdimm_flush);
1231
1232/**
1233 * nvdimm_has_flush - determine write flushing requirements
1234 * @nd_region: blk or interleaved pmem region
1235 *
1236 * Returns 1 if writes require flushing
1237 * Returns 0 if writes do not require flushing
1238 * Returns -ENXIO if flushing capability can not be determined
1239 */
1240int nvdimm_has_flush(struct nd_region *nd_region)
1241{
1242        int i;
1243
1244        /* no nvdimm or pmem api == flushing capability unknown */
1245        if (nd_region->ndr_mappings == 0
1246                        || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1247                return -ENXIO;
1248
1249        /* Test if an explicit flush function is defined */
1250        if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1251                return 1;
1252
1253        /* Test if any flush hints for the region are available */
1254        for (i = 0; i < nd_region->ndr_mappings; i++) {
1255                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1256                struct nvdimm *nvdimm = nd_mapping->nvdimm;
1257
1258                /* flush hints present / available */
1259                if (nvdimm->num_flush)
1260                        return 1;
1261        }
1262
1263        /*
1264         * The platform defines dimm devices without hints nor explicit flush,
1265         * assume platform persistence mechanism like ADR
1266         */
1267        return 0;
1268}
1269EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1270
1271int nvdimm_has_cache(struct nd_region *nd_region)
1272{
1273        return is_nd_pmem(&nd_region->dev) &&
1274                !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1275}
1276EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1277
1278bool is_nvdimm_sync(struct nd_region *nd_region)
1279{
1280        if (is_nd_volatile(&nd_region->dev))
1281                return true;
1282
1283        return is_nd_pmem(&nd_region->dev) &&
1284                !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1285}
1286EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1287
1288struct conflict_context {
1289        struct nd_region *nd_region;
1290        resource_size_t start, size;
1291};
1292
1293static int region_conflict(struct device *dev, void *data)
1294{
1295        struct nd_region *nd_region;
1296        struct conflict_context *ctx = data;
1297        resource_size_t res_end, region_end, region_start;
1298
1299        if (!is_memory(dev))
1300                return 0;
1301
1302        nd_region = to_nd_region(dev);
1303        if (nd_region == ctx->nd_region)
1304                return 0;
1305
1306        res_end = ctx->start + ctx->size;
1307        region_start = nd_region->ndr_start;
1308        region_end = region_start + nd_region->ndr_size;
1309        if (ctx->start >= region_start && ctx->start < region_end)
1310                return -EBUSY;
1311        if (res_end > region_start && res_end <= region_end)
1312                return -EBUSY;
1313        return 0;
1314}
1315
1316int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1317                resource_size_t size)
1318{
1319        struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1320        struct conflict_context ctx = {
1321                .nd_region = nd_region,
1322                .start = start,
1323                .size = size,
1324        };
1325
1326        return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1327}
1328