linux/drivers/nvme/host/fc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4 */
   5#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6#include <linux/module.h>
   7#include <linux/parser.h>
   8#include <uapi/scsi/fc/fc_fs.h>
   9#include <uapi/scsi/fc/fc_els.h>
  10#include <linux/delay.h>
  11#include <linux/overflow.h>
  12#include <linux/blk-cgroup.h>
  13#include "nvme.h"
  14#include "fabrics.h"
  15#include <linux/nvme-fc-driver.h>
  16#include <linux/nvme-fc.h>
  17#include "fc.h"
  18#include <scsi/scsi_transport_fc.h>
  19
  20/* *************************** Data Structures/Defines ****************** */
  21
  22
  23enum nvme_fc_queue_flags {
  24        NVME_FC_Q_CONNECTED = 0,
  25        NVME_FC_Q_LIVE,
  26};
  27
  28#define NVME_FC_DEFAULT_DEV_LOSS_TMO    60      /* seconds */
  29#define NVME_FC_DEFAULT_RECONNECT_TMO   2       /* delay between reconnects
  30                                                 * when connected and a
  31                                                 * connection failure.
  32                                                 */
  33
  34struct nvme_fc_queue {
  35        struct nvme_fc_ctrl     *ctrl;
  36        struct device           *dev;
  37        struct blk_mq_hw_ctx    *hctx;
  38        void                    *lldd_handle;
  39        size_t                  cmnd_capsule_len;
  40        u32                     qnum;
  41        u32                     rqcnt;
  42        u32                     seqno;
  43
  44        u64                     connection_id;
  45        atomic_t                csn;
  46
  47        unsigned long           flags;
  48} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  49
  50enum nvme_fcop_flags {
  51        FCOP_FLAGS_TERMIO       = (1 << 0),
  52        FCOP_FLAGS_AEN          = (1 << 1),
  53};
  54
  55struct nvmefc_ls_req_op {
  56        struct nvmefc_ls_req    ls_req;
  57
  58        struct nvme_fc_rport    *rport;
  59        struct nvme_fc_queue    *queue;
  60        struct request          *rq;
  61        u32                     flags;
  62
  63        int                     ls_error;
  64        struct completion       ls_done;
  65        struct list_head        lsreq_list;     /* rport->ls_req_list */
  66        bool                    req_queued;
  67};
  68
  69struct nvmefc_ls_rcv_op {
  70        struct nvme_fc_rport            *rport;
  71        struct nvmefc_ls_rsp            *lsrsp;
  72        union nvmefc_ls_requests        *rqstbuf;
  73        union nvmefc_ls_responses       *rspbuf;
  74        u16                             rqstdatalen;
  75        bool                            handled;
  76        dma_addr_t                      rspdma;
  77        struct list_head                lsrcv_list;     /* rport->ls_rcv_list */
  78} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
  79
  80enum nvme_fcpop_state {
  81        FCPOP_STATE_UNINIT      = 0,
  82        FCPOP_STATE_IDLE        = 1,
  83        FCPOP_STATE_ACTIVE      = 2,
  84        FCPOP_STATE_ABORTED     = 3,
  85        FCPOP_STATE_COMPLETE    = 4,
  86};
  87
  88struct nvme_fc_fcp_op {
  89        struct nvme_request     nreq;           /*
  90                                                 * nvme/host/core.c
  91                                                 * requires this to be
  92                                                 * the 1st element in the
  93                                                 * private structure
  94                                                 * associated with the
  95                                                 * request.
  96                                                 */
  97        struct nvmefc_fcp_req   fcp_req;
  98
  99        struct nvme_fc_ctrl     *ctrl;
 100        struct nvme_fc_queue    *queue;
 101        struct request          *rq;
 102
 103        atomic_t                state;
 104        u32                     flags;
 105        u32                     rqno;
 106        u32                     nents;
 107
 108        struct nvme_fc_cmd_iu   cmd_iu;
 109        struct nvme_fc_ersp_iu  rsp_iu;
 110};
 111
 112struct nvme_fcp_op_w_sgl {
 113        struct nvme_fc_fcp_op   op;
 114        struct scatterlist      sgl[NVME_INLINE_SG_CNT];
 115        uint8_t                 priv[];
 116};
 117
 118struct nvme_fc_lport {
 119        struct nvme_fc_local_port       localport;
 120
 121        struct ida                      endp_cnt;
 122        struct list_head                port_list;      /* nvme_fc_port_list */
 123        struct list_head                endp_list;
 124        struct device                   *dev;   /* physical device for dma */
 125        struct nvme_fc_port_template    *ops;
 126        struct kref                     ref;
 127        atomic_t                        act_rport_cnt;
 128} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 129
 130struct nvme_fc_rport {
 131        struct nvme_fc_remote_port      remoteport;
 132
 133        struct list_head                endp_list; /* for lport->endp_list */
 134        struct list_head                ctrl_list;
 135        struct list_head                ls_req_list;
 136        struct list_head                ls_rcv_list;
 137        struct list_head                disc_list;
 138        struct device                   *dev;   /* physical device for dma */
 139        struct nvme_fc_lport            *lport;
 140        spinlock_t                      lock;
 141        struct kref                     ref;
 142        atomic_t                        act_ctrl_cnt;
 143        unsigned long                   dev_loss_end;
 144        struct work_struct              lsrcv_work;
 145} __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
 146
 147/* fc_ctrl flags values - specified as bit positions */
 148#define ASSOC_ACTIVE            0
 149#define ASSOC_FAILED            1
 150#define FCCTRL_TERMIO           2
 151
 152struct nvme_fc_ctrl {
 153        spinlock_t              lock;
 154        struct nvme_fc_queue    *queues;
 155        struct device           *dev;
 156        struct nvme_fc_lport    *lport;
 157        struct nvme_fc_rport    *rport;
 158        u32                     cnum;
 159
 160        bool                    ioq_live;
 161        u64                     association_id;
 162        struct nvmefc_ls_rcv_op *rcv_disconn;
 163
 164        struct list_head        ctrl_list;      /* rport->ctrl_list */
 165
 166        struct blk_mq_tag_set   admin_tag_set;
 167        struct blk_mq_tag_set   tag_set;
 168
 169        struct work_struct      ioerr_work;
 170        struct delayed_work     connect_work;
 171
 172        struct kref             ref;
 173        unsigned long           flags;
 174        u32                     iocnt;
 175        wait_queue_head_t       ioabort_wait;
 176
 177        struct nvme_fc_fcp_op   aen_ops[NVME_NR_AEN_COMMANDS];
 178
 179        struct nvme_ctrl        ctrl;
 180};
 181
 182static inline struct nvme_fc_ctrl *
 183to_fc_ctrl(struct nvme_ctrl *ctrl)
 184{
 185        return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
 186}
 187
 188static inline struct nvme_fc_lport *
 189localport_to_lport(struct nvme_fc_local_port *portptr)
 190{
 191        return container_of(portptr, struct nvme_fc_lport, localport);
 192}
 193
 194static inline struct nvme_fc_rport *
 195remoteport_to_rport(struct nvme_fc_remote_port *portptr)
 196{
 197        return container_of(portptr, struct nvme_fc_rport, remoteport);
 198}
 199
 200static inline struct nvmefc_ls_req_op *
 201ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
 202{
 203        return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
 204}
 205
 206static inline struct nvme_fc_fcp_op *
 207fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
 208{
 209        return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
 210}
 211
 212
 213
 214/* *************************** Globals **************************** */
 215
 216
 217static DEFINE_SPINLOCK(nvme_fc_lock);
 218
 219static LIST_HEAD(nvme_fc_lport_list);
 220static DEFINE_IDA(nvme_fc_local_port_cnt);
 221static DEFINE_IDA(nvme_fc_ctrl_cnt);
 222
 223static struct workqueue_struct *nvme_fc_wq;
 224
 225static bool nvme_fc_waiting_to_unload;
 226static DECLARE_COMPLETION(nvme_fc_unload_proceed);
 227
 228/*
 229 * These items are short-term. They will eventually be moved into
 230 * a generic FC class. See comments in module init.
 231 */
 232static struct device *fc_udev_device;
 233
 234static void nvme_fc_complete_rq(struct request *rq);
 235
 236/* *********************** FC-NVME Port Management ************************ */
 237
 238static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
 239                        struct nvme_fc_queue *, unsigned int);
 240
 241static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
 242
 243
 244static void
 245nvme_fc_free_lport(struct kref *ref)
 246{
 247        struct nvme_fc_lport *lport =
 248                container_of(ref, struct nvme_fc_lport, ref);
 249        unsigned long flags;
 250
 251        WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
 252        WARN_ON(!list_empty(&lport->endp_list));
 253
 254        /* remove from transport list */
 255        spin_lock_irqsave(&nvme_fc_lock, flags);
 256        list_del(&lport->port_list);
 257        if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
 258                complete(&nvme_fc_unload_proceed);
 259        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 260
 261        ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
 262        ida_destroy(&lport->endp_cnt);
 263
 264        put_device(lport->dev);
 265
 266        kfree(lport);
 267}
 268
 269static void
 270nvme_fc_lport_put(struct nvme_fc_lport *lport)
 271{
 272        kref_put(&lport->ref, nvme_fc_free_lport);
 273}
 274
 275static int
 276nvme_fc_lport_get(struct nvme_fc_lport *lport)
 277{
 278        return kref_get_unless_zero(&lport->ref);
 279}
 280
 281
 282static struct nvme_fc_lport *
 283nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
 284                        struct nvme_fc_port_template *ops,
 285                        struct device *dev)
 286{
 287        struct nvme_fc_lport *lport;
 288        unsigned long flags;
 289
 290        spin_lock_irqsave(&nvme_fc_lock, flags);
 291
 292        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
 293                if (lport->localport.node_name != pinfo->node_name ||
 294                    lport->localport.port_name != pinfo->port_name)
 295                        continue;
 296
 297                if (lport->dev != dev) {
 298                        lport = ERR_PTR(-EXDEV);
 299                        goto out_done;
 300                }
 301
 302                if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
 303                        lport = ERR_PTR(-EEXIST);
 304                        goto out_done;
 305                }
 306
 307                if (!nvme_fc_lport_get(lport)) {
 308                        /*
 309                         * fails if ref cnt already 0. If so,
 310                         * act as if lport already deleted
 311                         */
 312                        lport = NULL;
 313                        goto out_done;
 314                }
 315
 316                /* resume the lport */
 317
 318                lport->ops = ops;
 319                lport->localport.port_role = pinfo->port_role;
 320                lport->localport.port_id = pinfo->port_id;
 321                lport->localport.port_state = FC_OBJSTATE_ONLINE;
 322
 323                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 324
 325                return lport;
 326        }
 327
 328        lport = NULL;
 329
 330out_done:
 331        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 332
 333        return lport;
 334}
 335
 336/**
 337 * nvme_fc_register_localport - transport entry point called by an
 338 *                              LLDD to register the existence of a NVME
 339 *                              host FC port.
 340 * @pinfo:     pointer to information about the port to be registered
 341 * @template:  LLDD entrypoints and operational parameters for the port
 342 * @dev:       physical hardware device node port corresponds to. Will be
 343 *             used for DMA mappings
 344 * @portptr:   pointer to a local port pointer. Upon success, the routine
 345 *             will allocate a nvme_fc_local_port structure and place its
 346 *             address in the local port pointer. Upon failure, local port
 347 *             pointer will be set to 0.
 348 *
 349 * Returns:
 350 * a completion status. Must be 0 upon success; a negative errno
 351 * (ex: -ENXIO) upon failure.
 352 */
 353int
 354nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
 355                        struct nvme_fc_port_template *template,
 356                        struct device *dev,
 357                        struct nvme_fc_local_port **portptr)
 358{
 359        struct nvme_fc_lport *newrec;
 360        unsigned long flags;
 361        int ret, idx;
 362
 363        if (!template->localport_delete || !template->remoteport_delete ||
 364            !template->ls_req || !template->fcp_io ||
 365            !template->ls_abort || !template->fcp_abort ||
 366            !template->max_hw_queues || !template->max_sgl_segments ||
 367            !template->max_dif_sgl_segments || !template->dma_boundary) {
 368                ret = -EINVAL;
 369                goto out_reghost_failed;
 370        }
 371
 372        /*
 373         * look to see if there is already a localport that had been
 374         * deregistered and in the process of waiting for all the
 375         * references to fully be removed.  If the references haven't
 376         * expired, we can simply re-enable the localport. Remoteports
 377         * and controller reconnections should resume naturally.
 378         */
 379        newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
 380
 381        /* found an lport, but something about its state is bad */
 382        if (IS_ERR(newrec)) {
 383                ret = PTR_ERR(newrec);
 384                goto out_reghost_failed;
 385
 386        /* found existing lport, which was resumed */
 387        } else if (newrec) {
 388                *portptr = &newrec->localport;
 389                return 0;
 390        }
 391
 392        /* nothing found - allocate a new localport struct */
 393
 394        newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
 395                         GFP_KERNEL);
 396        if (!newrec) {
 397                ret = -ENOMEM;
 398                goto out_reghost_failed;
 399        }
 400
 401        idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
 402        if (idx < 0) {
 403                ret = -ENOSPC;
 404                goto out_fail_kfree;
 405        }
 406
 407        if (!get_device(dev) && dev) {
 408                ret = -ENODEV;
 409                goto out_ida_put;
 410        }
 411
 412        INIT_LIST_HEAD(&newrec->port_list);
 413        INIT_LIST_HEAD(&newrec->endp_list);
 414        kref_init(&newrec->ref);
 415        atomic_set(&newrec->act_rport_cnt, 0);
 416        newrec->ops = template;
 417        newrec->dev = dev;
 418        ida_init(&newrec->endp_cnt);
 419        if (template->local_priv_sz)
 420                newrec->localport.private = &newrec[1];
 421        else
 422                newrec->localport.private = NULL;
 423        newrec->localport.node_name = pinfo->node_name;
 424        newrec->localport.port_name = pinfo->port_name;
 425        newrec->localport.port_role = pinfo->port_role;
 426        newrec->localport.port_id = pinfo->port_id;
 427        newrec->localport.port_state = FC_OBJSTATE_ONLINE;
 428        newrec->localport.port_num = idx;
 429
 430        spin_lock_irqsave(&nvme_fc_lock, flags);
 431        list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
 432        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 433
 434        if (dev)
 435                dma_set_seg_boundary(dev, template->dma_boundary);
 436
 437        *portptr = &newrec->localport;
 438        return 0;
 439
 440out_ida_put:
 441        ida_simple_remove(&nvme_fc_local_port_cnt, idx);
 442out_fail_kfree:
 443        kfree(newrec);
 444out_reghost_failed:
 445        *portptr = NULL;
 446
 447        return ret;
 448}
 449EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
 450
 451/**
 452 * nvme_fc_unregister_localport - transport entry point called by an
 453 *                              LLDD to deregister/remove a previously
 454 *                              registered a NVME host FC port.
 455 * @portptr: pointer to the (registered) local port that is to be deregistered.
 456 *
 457 * Returns:
 458 * a completion status. Must be 0 upon success; a negative errno
 459 * (ex: -ENXIO) upon failure.
 460 */
 461int
 462nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
 463{
 464        struct nvme_fc_lport *lport = localport_to_lport(portptr);
 465        unsigned long flags;
 466
 467        if (!portptr)
 468                return -EINVAL;
 469
 470        spin_lock_irqsave(&nvme_fc_lock, flags);
 471
 472        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 473                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 474                return -EINVAL;
 475        }
 476        portptr->port_state = FC_OBJSTATE_DELETED;
 477
 478        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 479
 480        if (atomic_read(&lport->act_rport_cnt) == 0)
 481                lport->ops->localport_delete(&lport->localport);
 482
 483        nvme_fc_lport_put(lport);
 484
 485        return 0;
 486}
 487EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
 488
 489/*
 490 * TRADDR strings, per FC-NVME are fixed format:
 491 *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
 492 * udev event will only differ by prefix of what field is
 493 * being specified:
 494 *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
 495 *  19 + 43 + null_fudge = 64 characters
 496 */
 497#define FCNVME_TRADDR_LENGTH            64
 498
 499static void
 500nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
 501                struct nvme_fc_rport *rport)
 502{
 503        char hostaddr[FCNVME_TRADDR_LENGTH];    /* NVMEFC_HOST_TRADDR=...*/
 504        char tgtaddr[FCNVME_TRADDR_LENGTH];     /* NVMEFC_TRADDR=...*/
 505        char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
 506
 507        if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
 508                return;
 509
 510        snprintf(hostaddr, sizeof(hostaddr),
 511                "NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
 512                lport->localport.node_name, lport->localport.port_name);
 513        snprintf(tgtaddr, sizeof(tgtaddr),
 514                "NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
 515                rport->remoteport.node_name, rport->remoteport.port_name);
 516        kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
 517}
 518
 519static void
 520nvme_fc_free_rport(struct kref *ref)
 521{
 522        struct nvme_fc_rport *rport =
 523                container_of(ref, struct nvme_fc_rport, ref);
 524        struct nvme_fc_lport *lport =
 525                        localport_to_lport(rport->remoteport.localport);
 526        unsigned long flags;
 527
 528        WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
 529        WARN_ON(!list_empty(&rport->ctrl_list));
 530
 531        /* remove from lport list */
 532        spin_lock_irqsave(&nvme_fc_lock, flags);
 533        list_del(&rport->endp_list);
 534        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 535
 536        WARN_ON(!list_empty(&rport->disc_list));
 537        ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
 538
 539        kfree(rport);
 540
 541        nvme_fc_lport_put(lport);
 542}
 543
 544static void
 545nvme_fc_rport_put(struct nvme_fc_rport *rport)
 546{
 547        kref_put(&rport->ref, nvme_fc_free_rport);
 548}
 549
 550static int
 551nvme_fc_rport_get(struct nvme_fc_rport *rport)
 552{
 553        return kref_get_unless_zero(&rport->ref);
 554}
 555
 556static void
 557nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
 558{
 559        switch (ctrl->ctrl.state) {
 560        case NVME_CTRL_NEW:
 561        case NVME_CTRL_CONNECTING:
 562                /*
 563                 * As all reconnects were suppressed, schedule a
 564                 * connect.
 565                 */
 566                dev_info(ctrl->ctrl.device,
 567                        "NVME-FC{%d}: connectivity re-established. "
 568                        "Attempting reconnect\n", ctrl->cnum);
 569
 570                queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
 571                break;
 572
 573        case NVME_CTRL_RESETTING:
 574                /*
 575                 * Controller is already in the process of terminating the
 576                 * association. No need to do anything further. The reconnect
 577                 * step will naturally occur after the reset completes.
 578                 */
 579                break;
 580
 581        default:
 582                /* no action to take - let it delete */
 583                break;
 584        }
 585}
 586
 587static struct nvme_fc_rport *
 588nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
 589                                struct nvme_fc_port_info *pinfo)
 590{
 591        struct nvme_fc_rport *rport;
 592        struct nvme_fc_ctrl *ctrl;
 593        unsigned long flags;
 594
 595        spin_lock_irqsave(&nvme_fc_lock, flags);
 596
 597        list_for_each_entry(rport, &lport->endp_list, endp_list) {
 598                if (rport->remoteport.node_name != pinfo->node_name ||
 599                    rport->remoteport.port_name != pinfo->port_name)
 600                        continue;
 601
 602                if (!nvme_fc_rport_get(rport)) {
 603                        rport = ERR_PTR(-ENOLCK);
 604                        goto out_done;
 605                }
 606
 607                spin_unlock_irqrestore(&nvme_fc_lock, flags);
 608
 609                spin_lock_irqsave(&rport->lock, flags);
 610
 611                /* has it been unregistered */
 612                if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
 613                        /* means lldd called us twice */
 614                        spin_unlock_irqrestore(&rport->lock, flags);
 615                        nvme_fc_rport_put(rport);
 616                        return ERR_PTR(-ESTALE);
 617                }
 618
 619                rport->remoteport.port_role = pinfo->port_role;
 620                rport->remoteport.port_id = pinfo->port_id;
 621                rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
 622                rport->dev_loss_end = 0;
 623
 624                /*
 625                 * kick off a reconnect attempt on all associations to the
 626                 * remote port. A successful reconnects will resume i/o.
 627                 */
 628                list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
 629                        nvme_fc_resume_controller(ctrl);
 630
 631                spin_unlock_irqrestore(&rport->lock, flags);
 632
 633                return rport;
 634        }
 635
 636        rport = NULL;
 637
 638out_done:
 639        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 640
 641        return rport;
 642}
 643
 644static inline void
 645__nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
 646                        struct nvme_fc_port_info *pinfo)
 647{
 648        if (pinfo->dev_loss_tmo)
 649                rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
 650        else
 651                rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
 652}
 653
 654/**
 655 * nvme_fc_register_remoteport - transport entry point called by an
 656 *                              LLDD to register the existence of a NVME
 657 *                              subsystem FC port on its fabric.
 658 * @localport: pointer to the (registered) local port that the remote
 659 *             subsystem port is connected to.
 660 * @pinfo:     pointer to information about the port to be registered
 661 * @portptr:   pointer to a remote port pointer. Upon success, the routine
 662 *             will allocate a nvme_fc_remote_port structure and place its
 663 *             address in the remote port pointer. Upon failure, remote port
 664 *             pointer will be set to 0.
 665 *
 666 * Returns:
 667 * a completion status. Must be 0 upon success; a negative errno
 668 * (ex: -ENXIO) upon failure.
 669 */
 670int
 671nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
 672                                struct nvme_fc_port_info *pinfo,
 673                                struct nvme_fc_remote_port **portptr)
 674{
 675        struct nvme_fc_lport *lport = localport_to_lport(localport);
 676        struct nvme_fc_rport *newrec;
 677        unsigned long flags;
 678        int ret, idx;
 679
 680        if (!nvme_fc_lport_get(lport)) {
 681                ret = -ESHUTDOWN;
 682                goto out_reghost_failed;
 683        }
 684
 685        /*
 686         * look to see if there is already a remoteport that is waiting
 687         * for a reconnect (within dev_loss_tmo) with the same WWN's.
 688         * If so, transition to it and reconnect.
 689         */
 690        newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
 691
 692        /* found an rport, but something about its state is bad */
 693        if (IS_ERR(newrec)) {
 694                ret = PTR_ERR(newrec);
 695                goto out_lport_put;
 696
 697        /* found existing rport, which was resumed */
 698        } else if (newrec) {
 699                nvme_fc_lport_put(lport);
 700                __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 701                nvme_fc_signal_discovery_scan(lport, newrec);
 702                *portptr = &newrec->remoteport;
 703                return 0;
 704        }
 705
 706        /* nothing found - allocate a new remoteport struct */
 707
 708        newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
 709                         GFP_KERNEL);
 710        if (!newrec) {
 711                ret = -ENOMEM;
 712                goto out_lport_put;
 713        }
 714
 715        idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
 716        if (idx < 0) {
 717                ret = -ENOSPC;
 718                goto out_kfree_rport;
 719        }
 720
 721        INIT_LIST_HEAD(&newrec->endp_list);
 722        INIT_LIST_HEAD(&newrec->ctrl_list);
 723        INIT_LIST_HEAD(&newrec->ls_req_list);
 724        INIT_LIST_HEAD(&newrec->disc_list);
 725        kref_init(&newrec->ref);
 726        atomic_set(&newrec->act_ctrl_cnt, 0);
 727        spin_lock_init(&newrec->lock);
 728        newrec->remoteport.localport = &lport->localport;
 729        INIT_LIST_HEAD(&newrec->ls_rcv_list);
 730        newrec->dev = lport->dev;
 731        newrec->lport = lport;
 732        if (lport->ops->remote_priv_sz)
 733                newrec->remoteport.private = &newrec[1];
 734        else
 735                newrec->remoteport.private = NULL;
 736        newrec->remoteport.port_role = pinfo->port_role;
 737        newrec->remoteport.node_name = pinfo->node_name;
 738        newrec->remoteport.port_name = pinfo->port_name;
 739        newrec->remoteport.port_id = pinfo->port_id;
 740        newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
 741        newrec->remoteport.port_num = idx;
 742        __nvme_fc_set_dev_loss_tmo(newrec, pinfo);
 743        INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
 744
 745        spin_lock_irqsave(&nvme_fc_lock, flags);
 746        list_add_tail(&newrec->endp_list, &lport->endp_list);
 747        spin_unlock_irqrestore(&nvme_fc_lock, flags);
 748
 749        nvme_fc_signal_discovery_scan(lport, newrec);
 750
 751        *portptr = &newrec->remoteport;
 752        return 0;
 753
 754out_kfree_rport:
 755        kfree(newrec);
 756out_lport_put:
 757        nvme_fc_lport_put(lport);
 758out_reghost_failed:
 759        *portptr = NULL;
 760        return ret;
 761}
 762EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
 763
 764static int
 765nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
 766{
 767        struct nvmefc_ls_req_op *lsop;
 768        unsigned long flags;
 769
 770restart:
 771        spin_lock_irqsave(&rport->lock, flags);
 772
 773        list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
 774                if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
 775                        lsop->flags |= FCOP_FLAGS_TERMIO;
 776                        spin_unlock_irqrestore(&rport->lock, flags);
 777                        rport->lport->ops->ls_abort(&rport->lport->localport,
 778                                                &rport->remoteport,
 779                                                &lsop->ls_req);
 780                        goto restart;
 781                }
 782        }
 783        spin_unlock_irqrestore(&rport->lock, flags);
 784
 785        return 0;
 786}
 787
 788static void
 789nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
 790{
 791        dev_info(ctrl->ctrl.device,
 792                "NVME-FC{%d}: controller connectivity lost. Awaiting "
 793                "Reconnect", ctrl->cnum);
 794
 795        switch (ctrl->ctrl.state) {
 796        case NVME_CTRL_NEW:
 797        case NVME_CTRL_LIVE:
 798                /*
 799                 * Schedule a controller reset. The reset will terminate the
 800                 * association and schedule the reconnect timer.  Reconnects
 801                 * will be attempted until either the ctlr_loss_tmo
 802                 * (max_retries * connect_delay) expires or the remoteport's
 803                 * dev_loss_tmo expires.
 804                 */
 805                if (nvme_reset_ctrl(&ctrl->ctrl)) {
 806                        dev_warn(ctrl->ctrl.device,
 807                                "NVME-FC{%d}: Couldn't schedule reset.\n",
 808                                ctrl->cnum);
 809                        nvme_delete_ctrl(&ctrl->ctrl);
 810                }
 811                break;
 812
 813        case NVME_CTRL_CONNECTING:
 814                /*
 815                 * The association has already been terminated and the
 816                 * controller is attempting reconnects.  No need to do anything
 817                 * futher.  Reconnects will be attempted until either the
 818                 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
 819                 * remoteport's dev_loss_tmo expires.
 820                 */
 821                break;
 822
 823        case NVME_CTRL_RESETTING:
 824                /*
 825                 * Controller is already in the process of terminating the
 826                 * association.  No need to do anything further. The reconnect
 827                 * step will kick in naturally after the association is
 828                 * terminated.
 829                 */
 830                break;
 831
 832        case NVME_CTRL_DELETING:
 833        case NVME_CTRL_DELETING_NOIO:
 834        default:
 835                /* no action to take - let it delete */
 836                break;
 837        }
 838}
 839
 840/**
 841 * nvme_fc_unregister_remoteport - transport entry point called by an
 842 *                              LLDD to deregister/remove a previously
 843 *                              registered a NVME subsystem FC port.
 844 * @portptr: pointer to the (registered) remote port that is to be
 845 *           deregistered.
 846 *
 847 * Returns:
 848 * a completion status. Must be 0 upon success; a negative errno
 849 * (ex: -ENXIO) upon failure.
 850 */
 851int
 852nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
 853{
 854        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 855        struct nvme_fc_ctrl *ctrl;
 856        unsigned long flags;
 857
 858        if (!portptr)
 859                return -EINVAL;
 860
 861        spin_lock_irqsave(&rport->lock, flags);
 862
 863        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 864                spin_unlock_irqrestore(&rport->lock, flags);
 865                return -EINVAL;
 866        }
 867        portptr->port_state = FC_OBJSTATE_DELETED;
 868
 869        rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
 870
 871        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
 872                /* if dev_loss_tmo==0, dev loss is immediate */
 873                if (!portptr->dev_loss_tmo) {
 874                        dev_warn(ctrl->ctrl.device,
 875                                "NVME-FC{%d}: controller connectivity lost.\n",
 876                                ctrl->cnum);
 877                        nvme_delete_ctrl(&ctrl->ctrl);
 878                } else
 879                        nvme_fc_ctrl_connectivity_loss(ctrl);
 880        }
 881
 882        spin_unlock_irqrestore(&rport->lock, flags);
 883
 884        nvme_fc_abort_lsops(rport);
 885
 886        if (atomic_read(&rport->act_ctrl_cnt) == 0)
 887                rport->lport->ops->remoteport_delete(portptr);
 888
 889        /*
 890         * release the reference, which will allow, if all controllers
 891         * go away, which should only occur after dev_loss_tmo occurs,
 892         * for the rport to be torn down.
 893         */
 894        nvme_fc_rport_put(rport);
 895
 896        return 0;
 897}
 898EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
 899
 900/**
 901 * nvme_fc_rescan_remoteport - transport entry point called by an
 902 *                              LLDD to request a nvme device rescan.
 903 * @remoteport: pointer to the (registered) remote port that is to be
 904 *              rescanned.
 905 *
 906 * Returns: N/A
 907 */
 908void
 909nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
 910{
 911        struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
 912
 913        nvme_fc_signal_discovery_scan(rport->lport, rport);
 914}
 915EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
 916
 917int
 918nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
 919                        u32 dev_loss_tmo)
 920{
 921        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
 922        unsigned long flags;
 923
 924        spin_lock_irqsave(&rport->lock, flags);
 925
 926        if (portptr->port_state != FC_OBJSTATE_ONLINE) {
 927                spin_unlock_irqrestore(&rport->lock, flags);
 928                return -EINVAL;
 929        }
 930
 931        /* a dev_loss_tmo of 0 (immediate) is allowed to be set */
 932        rport->remoteport.dev_loss_tmo = dev_loss_tmo;
 933
 934        spin_unlock_irqrestore(&rport->lock, flags);
 935
 936        return 0;
 937}
 938EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
 939
 940
 941/* *********************** FC-NVME DMA Handling **************************** */
 942
 943/*
 944 * The fcloop device passes in a NULL device pointer. Real LLD's will
 945 * pass in a valid device pointer. If NULL is passed to the dma mapping
 946 * routines, depending on the platform, it may or may not succeed, and
 947 * may crash.
 948 *
 949 * As such:
 950 * Wrapper all the dma routines and check the dev pointer.
 951 *
 952 * If simple mappings (return just a dma address, we'll noop them,
 953 * returning a dma address of 0.
 954 *
 955 * On more complex mappings (dma_map_sg), a pseudo routine fills
 956 * in the scatter list, setting all dma addresses to 0.
 957 */
 958
 959static inline dma_addr_t
 960fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 961                enum dma_data_direction dir)
 962{
 963        return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 964}
 965
 966static inline int
 967fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 968{
 969        return dev ? dma_mapping_error(dev, dma_addr) : 0;
 970}
 971
 972static inline void
 973fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 974        enum dma_data_direction dir)
 975{
 976        if (dev)
 977                dma_unmap_single(dev, addr, size, dir);
 978}
 979
 980static inline void
 981fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 982                enum dma_data_direction dir)
 983{
 984        if (dev)
 985                dma_sync_single_for_cpu(dev, addr, size, dir);
 986}
 987
 988static inline void
 989fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 990                enum dma_data_direction dir)
 991{
 992        if (dev)
 993                dma_sync_single_for_device(dev, addr, size, dir);
 994}
 995
 996/* pseudo dma_map_sg call */
 997static int
 998fc_map_sg(struct scatterlist *sg, int nents)
 999{
1000        struct scatterlist *s;
1001        int i;
1002
1003        WARN_ON(nents == 0 || sg[0].length == 0);
1004
1005        for_each_sg(sg, s, nents, i) {
1006                s->dma_address = 0L;
1007#ifdef CONFIG_NEED_SG_DMA_LENGTH
1008                s->dma_length = s->length;
1009#endif
1010        }
1011        return nents;
1012}
1013
1014static inline int
1015fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1016                enum dma_data_direction dir)
1017{
1018        return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1019}
1020
1021static inline void
1022fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1023                enum dma_data_direction dir)
1024{
1025        if (dev)
1026                dma_unmap_sg(dev, sg, nents, dir);
1027}
1028
1029/* *********************** FC-NVME LS Handling **************************** */
1030
1031static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1032static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1033
1034static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1035
1036static void
1037__nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1038{
1039        struct nvme_fc_rport *rport = lsop->rport;
1040        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1041        unsigned long flags;
1042
1043        spin_lock_irqsave(&rport->lock, flags);
1044
1045        if (!lsop->req_queued) {
1046                spin_unlock_irqrestore(&rport->lock, flags);
1047                return;
1048        }
1049
1050        list_del(&lsop->lsreq_list);
1051
1052        lsop->req_queued = false;
1053
1054        spin_unlock_irqrestore(&rport->lock, flags);
1055
1056        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1057                                  (lsreq->rqstlen + lsreq->rsplen),
1058                                  DMA_BIDIRECTIONAL);
1059
1060        nvme_fc_rport_put(rport);
1061}
1062
1063static int
1064__nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1065                struct nvmefc_ls_req_op *lsop,
1066                void (*done)(struct nvmefc_ls_req *req, int status))
1067{
1068        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1069        unsigned long flags;
1070        int ret = 0;
1071
1072        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1073                return -ECONNREFUSED;
1074
1075        if (!nvme_fc_rport_get(rport))
1076                return -ESHUTDOWN;
1077
1078        lsreq->done = done;
1079        lsop->rport = rport;
1080        lsop->req_queued = false;
1081        INIT_LIST_HEAD(&lsop->lsreq_list);
1082        init_completion(&lsop->ls_done);
1083
1084        lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1085                                  lsreq->rqstlen + lsreq->rsplen,
1086                                  DMA_BIDIRECTIONAL);
1087        if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1088                ret = -EFAULT;
1089                goto out_putrport;
1090        }
1091        lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1092
1093        spin_lock_irqsave(&rport->lock, flags);
1094
1095        list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1096
1097        lsop->req_queued = true;
1098
1099        spin_unlock_irqrestore(&rport->lock, flags);
1100
1101        ret = rport->lport->ops->ls_req(&rport->lport->localport,
1102                                        &rport->remoteport, lsreq);
1103        if (ret)
1104                goto out_unlink;
1105
1106        return 0;
1107
1108out_unlink:
1109        lsop->ls_error = ret;
1110        spin_lock_irqsave(&rport->lock, flags);
1111        lsop->req_queued = false;
1112        list_del(&lsop->lsreq_list);
1113        spin_unlock_irqrestore(&rport->lock, flags);
1114        fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1115                                  (lsreq->rqstlen + lsreq->rsplen),
1116                                  DMA_BIDIRECTIONAL);
1117out_putrport:
1118        nvme_fc_rport_put(rport);
1119
1120        return ret;
1121}
1122
1123static void
1124nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1125{
1126        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1127
1128        lsop->ls_error = status;
1129        complete(&lsop->ls_done);
1130}
1131
1132static int
1133nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1134{
1135        struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1136        struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1137        int ret;
1138
1139        ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1140
1141        if (!ret) {
1142                /*
1143                 * No timeout/not interruptible as we need the struct
1144                 * to exist until the lldd calls us back. Thus mandate
1145                 * wait until driver calls back. lldd responsible for
1146                 * the timeout action
1147                 */
1148                wait_for_completion(&lsop->ls_done);
1149
1150                __nvme_fc_finish_ls_req(lsop);
1151
1152                ret = lsop->ls_error;
1153        }
1154
1155        if (ret)
1156                return ret;
1157
1158        /* ACC or RJT payload ? */
1159        if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1160                return -ENXIO;
1161
1162        return 0;
1163}
1164
1165static int
1166nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1167                struct nvmefc_ls_req_op *lsop,
1168                void (*done)(struct nvmefc_ls_req *req, int status))
1169{
1170        /* don't wait for completion */
1171
1172        return __nvme_fc_send_ls_req(rport, lsop, done);
1173}
1174
1175static int
1176nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1177        struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1178{
1179        struct nvmefc_ls_req_op *lsop;
1180        struct nvmefc_ls_req *lsreq;
1181        struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1182        struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1183        unsigned long flags;
1184        int ret, fcret = 0;
1185
1186        lsop = kzalloc((sizeof(*lsop) +
1187                         sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1188                         ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1189        if (!lsop) {
1190                dev_info(ctrl->ctrl.device,
1191                        "NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1192                        ctrl->cnum);
1193                ret = -ENOMEM;
1194                goto out_no_memory;
1195        }
1196
1197        assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1198        assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1199        lsreq = &lsop->ls_req;
1200        if (ctrl->lport->ops->lsrqst_priv_sz)
1201                lsreq->private = &assoc_acc[1];
1202        else
1203                lsreq->private = NULL;
1204
1205        assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1206        assoc_rqst->desc_list_len =
1207                        cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1208
1209        assoc_rqst->assoc_cmd.desc_tag =
1210                        cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1211        assoc_rqst->assoc_cmd.desc_len =
1212                        fcnvme_lsdesc_len(
1213                                sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1214
1215        assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1216        assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1217        /* Linux supports only Dynamic controllers */
1218        assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1219        uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1220        strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1221                min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1222        strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1223                min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1224
1225        lsop->queue = queue;
1226        lsreq->rqstaddr = assoc_rqst;
1227        lsreq->rqstlen = sizeof(*assoc_rqst);
1228        lsreq->rspaddr = assoc_acc;
1229        lsreq->rsplen = sizeof(*assoc_acc);
1230        lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1231
1232        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1233        if (ret)
1234                goto out_free_buffer;
1235
1236        /* process connect LS completion */
1237
1238        /* validate the ACC response */
1239        if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1240                fcret = VERR_LSACC;
1241        else if (assoc_acc->hdr.desc_list_len !=
1242                        fcnvme_lsdesc_len(
1243                                sizeof(struct fcnvme_ls_cr_assoc_acc)))
1244                fcret = VERR_CR_ASSOC_ACC_LEN;
1245        else if (assoc_acc->hdr.rqst.desc_tag !=
1246                        cpu_to_be32(FCNVME_LSDESC_RQST))
1247                fcret = VERR_LSDESC_RQST;
1248        else if (assoc_acc->hdr.rqst.desc_len !=
1249                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1250                fcret = VERR_LSDESC_RQST_LEN;
1251        else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1252                fcret = VERR_CR_ASSOC;
1253        else if (assoc_acc->associd.desc_tag !=
1254                        cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1255                fcret = VERR_ASSOC_ID;
1256        else if (assoc_acc->associd.desc_len !=
1257                        fcnvme_lsdesc_len(
1258                                sizeof(struct fcnvme_lsdesc_assoc_id)))
1259                fcret = VERR_ASSOC_ID_LEN;
1260        else if (assoc_acc->connectid.desc_tag !=
1261                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1262                fcret = VERR_CONN_ID;
1263        else if (assoc_acc->connectid.desc_len !=
1264                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1265                fcret = VERR_CONN_ID_LEN;
1266
1267        if (fcret) {
1268                ret = -EBADF;
1269                dev_err(ctrl->dev,
1270                        "q %d Create Association LS failed: %s\n",
1271                        queue->qnum, validation_errors[fcret]);
1272        } else {
1273                spin_lock_irqsave(&ctrl->lock, flags);
1274                ctrl->association_id =
1275                        be64_to_cpu(assoc_acc->associd.association_id);
1276                queue->connection_id =
1277                        be64_to_cpu(assoc_acc->connectid.connection_id);
1278                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1279                spin_unlock_irqrestore(&ctrl->lock, flags);
1280        }
1281
1282out_free_buffer:
1283        kfree(lsop);
1284out_no_memory:
1285        if (ret)
1286                dev_err(ctrl->dev,
1287                        "queue %d connect admin queue failed (%d).\n",
1288                        queue->qnum, ret);
1289        return ret;
1290}
1291
1292static int
1293nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1294                        u16 qsize, u16 ersp_ratio)
1295{
1296        struct nvmefc_ls_req_op *lsop;
1297        struct nvmefc_ls_req *lsreq;
1298        struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1299        struct fcnvme_ls_cr_conn_acc *conn_acc;
1300        int ret, fcret = 0;
1301
1302        lsop = kzalloc((sizeof(*lsop) +
1303                         sizeof(*conn_rqst) + sizeof(*conn_acc) +
1304                         ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1305        if (!lsop) {
1306                dev_info(ctrl->ctrl.device,
1307                        "NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1308                        ctrl->cnum);
1309                ret = -ENOMEM;
1310                goto out_no_memory;
1311        }
1312
1313        conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1314        conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1315        lsreq = &lsop->ls_req;
1316        if (ctrl->lport->ops->lsrqst_priv_sz)
1317                lsreq->private = (void *)&conn_acc[1];
1318        else
1319                lsreq->private = NULL;
1320
1321        conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1322        conn_rqst->desc_list_len = cpu_to_be32(
1323                                sizeof(struct fcnvme_lsdesc_assoc_id) +
1324                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1325
1326        conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1327        conn_rqst->associd.desc_len =
1328                        fcnvme_lsdesc_len(
1329                                sizeof(struct fcnvme_lsdesc_assoc_id));
1330        conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1331        conn_rqst->connect_cmd.desc_tag =
1332                        cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1333        conn_rqst->connect_cmd.desc_len =
1334                        fcnvme_lsdesc_len(
1335                                sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1336        conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1337        conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1338        conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1339
1340        lsop->queue = queue;
1341        lsreq->rqstaddr = conn_rqst;
1342        lsreq->rqstlen = sizeof(*conn_rqst);
1343        lsreq->rspaddr = conn_acc;
1344        lsreq->rsplen = sizeof(*conn_acc);
1345        lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1346
1347        ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1348        if (ret)
1349                goto out_free_buffer;
1350
1351        /* process connect LS completion */
1352
1353        /* validate the ACC response */
1354        if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1355                fcret = VERR_LSACC;
1356        else if (conn_acc->hdr.desc_list_len !=
1357                        fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1358                fcret = VERR_CR_CONN_ACC_LEN;
1359        else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1360                fcret = VERR_LSDESC_RQST;
1361        else if (conn_acc->hdr.rqst.desc_len !=
1362                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1363                fcret = VERR_LSDESC_RQST_LEN;
1364        else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1365                fcret = VERR_CR_CONN;
1366        else if (conn_acc->connectid.desc_tag !=
1367                        cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1368                fcret = VERR_CONN_ID;
1369        else if (conn_acc->connectid.desc_len !=
1370                        fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1371                fcret = VERR_CONN_ID_LEN;
1372
1373        if (fcret) {
1374                ret = -EBADF;
1375                dev_err(ctrl->dev,
1376                        "q %d Create I/O Connection LS failed: %s\n",
1377                        queue->qnum, validation_errors[fcret]);
1378        } else {
1379                queue->connection_id =
1380                        be64_to_cpu(conn_acc->connectid.connection_id);
1381                set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1382        }
1383
1384out_free_buffer:
1385        kfree(lsop);
1386out_no_memory:
1387        if (ret)
1388                dev_err(ctrl->dev,
1389                        "queue %d connect I/O queue failed (%d).\n",
1390                        queue->qnum, ret);
1391        return ret;
1392}
1393
1394static void
1395nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1396{
1397        struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1398
1399        __nvme_fc_finish_ls_req(lsop);
1400
1401        /* fc-nvme initiator doesn't care about success or failure of cmd */
1402
1403        kfree(lsop);
1404}
1405
1406/*
1407 * This routine sends a FC-NVME LS to disconnect (aka terminate)
1408 * the FC-NVME Association.  Terminating the association also
1409 * terminates the FC-NVME connections (per queue, both admin and io
1410 * queues) that are part of the association. E.g. things are torn
1411 * down, and the related FC-NVME Association ID and Connection IDs
1412 * become invalid.
1413 *
1414 * The behavior of the fc-nvme initiator is such that it's
1415 * understanding of the association and connections will implicitly
1416 * be torn down. The action is implicit as it may be due to a loss of
1417 * connectivity with the fc-nvme target, so you may never get a
1418 * response even if you tried.  As such, the action of this routine
1419 * is to asynchronously send the LS, ignore any results of the LS, and
1420 * continue on with terminating the association. If the fc-nvme target
1421 * is present and receives the LS, it too can tear down.
1422 */
1423static void
1424nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1425{
1426        struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1427        struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1428        struct nvmefc_ls_req_op *lsop;
1429        struct nvmefc_ls_req *lsreq;
1430        int ret;
1431
1432        lsop = kzalloc((sizeof(*lsop) +
1433                        sizeof(*discon_rqst) + sizeof(*discon_acc) +
1434                        ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1435        if (!lsop) {
1436                dev_info(ctrl->ctrl.device,
1437                        "NVME-FC{%d}: send Disconnect Association "
1438                        "failed: ENOMEM\n",
1439                        ctrl->cnum);
1440                return;
1441        }
1442
1443        discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1444        discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1445        lsreq = &lsop->ls_req;
1446        if (ctrl->lport->ops->lsrqst_priv_sz)
1447                lsreq->private = (void *)&discon_acc[1];
1448        else
1449                lsreq->private = NULL;
1450
1451        nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1452                                ctrl->association_id);
1453
1454        ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1455                                nvme_fc_disconnect_assoc_done);
1456        if (ret)
1457                kfree(lsop);
1458}
1459
1460static void
1461nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1462{
1463        struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1464        struct nvme_fc_rport *rport = lsop->rport;
1465        struct nvme_fc_lport *lport = rport->lport;
1466        unsigned long flags;
1467
1468        spin_lock_irqsave(&rport->lock, flags);
1469        list_del(&lsop->lsrcv_list);
1470        spin_unlock_irqrestore(&rport->lock, flags);
1471
1472        fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1473                                sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1474        fc_dma_unmap_single(lport->dev, lsop->rspdma,
1475                        sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1476
1477        kfree(lsop);
1478
1479        nvme_fc_rport_put(rport);
1480}
1481
1482static void
1483nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1484{
1485        struct nvme_fc_rport *rport = lsop->rport;
1486        struct nvme_fc_lport *lport = rport->lport;
1487        struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1488        int ret;
1489
1490        fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1491                                  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1492
1493        ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1494                                     lsop->lsrsp);
1495        if (ret) {
1496                dev_warn(lport->dev,
1497                        "LLDD rejected LS RSP xmt: LS %d status %d\n",
1498                        w0->ls_cmd, ret);
1499                nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1500                return;
1501        }
1502}
1503
1504static struct nvme_fc_ctrl *
1505nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1506                      struct nvmefc_ls_rcv_op *lsop)
1507{
1508        struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1509                                        &lsop->rqstbuf->rq_dis_assoc;
1510        struct nvme_fc_ctrl *ctrl, *ret = NULL;
1511        struct nvmefc_ls_rcv_op *oldls = NULL;
1512        u64 association_id = be64_to_cpu(rqst->associd.association_id);
1513        unsigned long flags;
1514
1515        spin_lock_irqsave(&rport->lock, flags);
1516
1517        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1518                if (!nvme_fc_ctrl_get(ctrl))
1519                        continue;
1520                spin_lock(&ctrl->lock);
1521                if (association_id == ctrl->association_id) {
1522                        oldls = ctrl->rcv_disconn;
1523                        ctrl->rcv_disconn = lsop;
1524                        ret = ctrl;
1525                }
1526                spin_unlock(&ctrl->lock);
1527                if (ret)
1528                        /* leave the ctrl get reference */
1529                        break;
1530                nvme_fc_ctrl_put(ctrl);
1531        }
1532
1533        spin_unlock_irqrestore(&rport->lock, flags);
1534
1535        /* transmit a response for anything that was pending */
1536        if (oldls) {
1537                dev_info(rport->lport->dev,
1538                        "NVME-FC{%d}: Multiple Disconnect Association "
1539                        "LS's received\n", ctrl->cnum);
1540                /* overwrite good response with bogus failure */
1541                oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1542                                                sizeof(*oldls->rspbuf),
1543                                                rqst->w0.ls_cmd,
1544                                                FCNVME_RJT_RC_UNAB,
1545                                                FCNVME_RJT_EXP_NONE, 0);
1546                nvme_fc_xmt_ls_rsp(oldls);
1547        }
1548
1549        return ret;
1550}
1551
1552/*
1553 * returns true to mean LS handled and ls_rsp can be sent
1554 * returns false to defer ls_rsp xmt (will be done as part of
1555 *     association termination)
1556 */
1557static bool
1558nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1559{
1560        struct nvme_fc_rport *rport = lsop->rport;
1561        struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1562                                        &lsop->rqstbuf->rq_dis_assoc;
1563        struct fcnvme_ls_disconnect_assoc_acc *acc =
1564                                        &lsop->rspbuf->rsp_dis_assoc;
1565        struct nvme_fc_ctrl *ctrl = NULL;
1566        int ret = 0;
1567
1568        memset(acc, 0, sizeof(*acc));
1569
1570        ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1571        if (!ret) {
1572                /* match an active association */
1573                ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1574                if (!ctrl)
1575                        ret = VERR_NO_ASSOC;
1576        }
1577
1578        if (ret) {
1579                dev_info(rport->lport->dev,
1580                        "Disconnect LS failed: %s\n",
1581                        validation_errors[ret]);
1582                lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1583                                        sizeof(*acc), rqst->w0.ls_cmd,
1584                                        (ret == VERR_NO_ASSOC) ?
1585                                                FCNVME_RJT_RC_INV_ASSOC :
1586                                                FCNVME_RJT_RC_LOGIC,
1587                                        FCNVME_RJT_EXP_NONE, 0);
1588                return true;
1589        }
1590
1591        /* format an ACCept response */
1592
1593        lsop->lsrsp->rsplen = sizeof(*acc);
1594
1595        nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1596                        fcnvme_lsdesc_len(
1597                                sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1598                        FCNVME_LS_DISCONNECT_ASSOC);
1599
1600        /*
1601         * the transmit of the response will occur after the exchanges
1602         * for the association have been ABTS'd by
1603         * nvme_fc_delete_association().
1604         */
1605
1606        /* fail the association */
1607        nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1608
1609        /* release the reference taken by nvme_fc_match_disconn_ls() */
1610        nvme_fc_ctrl_put(ctrl);
1611
1612        return false;
1613}
1614
1615/*
1616 * Actual Processing routine for received FC-NVME LS Requests from the LLD
1617 * returns true if a response should be sent afterward, false if rsp will
1618 * be sent asynchronously.
1619 */
1620static bool
1621nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1622{
1623        struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1624        bool ret = true;
1625
1626        lsop->lsrsp->nvme_fc_private = lsop;
1627        lsop->lsrsp->rspbuf = lsop->rspbuf;
1628        lsop->lsrsp->rspdma = lsop->rspdma;
1629        lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1630        /* Be preventative. handlers will later set to valid length */
1631        lsop->lsrsp->rsplen = 0;
1632
1633        /*
1634         * handlers:
1635         *   parse request input, execute the request, and format the
1636         *   LS response
1637         */
1638        switch (w0->ls_cmd) {
1639        case FCNVME_LS_DISCONNECT_ASSOC:
1640                ret = nvme_fc_ls_disconnect_assoc(lsop);
1641                break;
1642        case FCNVME_LS_DISCONNECT_CONN:
1643                lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1644                                sizeof(*lsop->rspbuf), w0->ls_cmd,
1645                                FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1646                break;
1647        case FCNVME_LS_CREATE_ASSOCIATION:
1648        case FCNVME_LS_CREATE_CONNECTION:
1649                lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1650                                sizeof(*lsop->rspbuf), w0->ls_cmd,
1651                                FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1652                break;
1653        default:
1654                lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1655                                sizeof(*lsop->rspbuf), w0->ls_cmd,
1656                                FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1657                break;
1658        }
1659
1660        return(ret);
1661}
1662
1663static void
1664nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1665{
1666        struct nvme_fc_rport *rport =
1667                container_of(work, struct nvme_fc_rport, lsrcv_work);
1668        struct fcnvme_ls_rqst_w0 *w0;
1669        struct nvmefc_ls_rcv_op *lsop;
1670        unsigned long flags;
1671        bool sendrsp;
1672
1673restart:
1674        sendrsp = true;
1675        spin_lock_irqsave(&rport->lock, flags);
1676        list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1677                if (lsop->handled)
1678                        continue;
1679
1680                lsop->handled = true;
1681                if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1682                        spin_unlock_irqrestore(&rport->lock, flags);
1683                        sendrsp = nvme_fc_handle_ls_rqst(lsop);
1684                } else {
1685                        spin_unlock_irqrestore(&rport->lock, flags);
1686                        w0 = &lsop->rqstbuf->w0;
1687                        lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1688                                                lsop->rspbuf,
1689                                                sizeof(*lsop->rspbuf),
1690                                                w0->ls_cmd,
1691                                                FCNVME_RJT_RC_UNAB,
1692                                                FCNVME_RJT_EXP_NONE, 0);
1693                }
1694                if (sendrsp)
1695                        nvme_fc_xmt_ls_rsp(lsop);
1696                goto restart;
1697        }
1698        spin_unlock_irqrestore(&rport->lock, flags);
1699}
1700
1701/**
1702 * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1703 *                       upon the reception of a NVME LS request.
1704 *
1705 * The nvme-fc layer will copy payload to an internal structure for
1706 * processing.  As such, upon completion of the routine, the LLDD may
1707 * immediately free/reuse the LS request buffer passed in the call.
1708 *
1709 * If this routine returns error, the LLDD should abort the exchange.
1710 *
1711 * @portptr:    pointer to the (registered) remote port that the LS
1712 *              was received from. The remoteport is associated with
1713 *              a specific localport.
1714 * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1715 *              used to reference the exchange corresponding to the LS
1716 *              when issuing an ls response.
1717 * @lsreqbuf:   pointer to the buffer containing the LS Request
1718 * @lsreqbuf_len: length, in bytes, of the received LS request
1719 */
1720int
1721nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1722                        struct nvmefc_ls_rsp *lsrsp,
1723                        void *lsreqbuf, u32 lsreqbuf_len)
1724{
1725        struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1726        struct nvme_fc_lport *lport = rport->lport;
1727        struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1728        struct nvmefc_ls_rcv_op *lsop;
1729        unsigned long flags;
1730        int ret;
1731
1732        nvme_fc_rport_get(rport);
1733
1734        /* validate there's a routine to transmit a response */
1735        if (!lport->ops->xmt_ls_rsp) {
1736                dev_info(lport->dev,
1737                        "RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1738                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1739                                nvmefc_ls_names[w0->ls_cmd] : "");
1740                ret = -EINVAL;
1741                goto out_put;
1742        }
1743
1744        if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1745                dev_info(lport->dev,
1746                        "RCV %s LS failed: payload too large\n",
1747                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1748                                nvmefc_ls_names[w0->ls_cmd] : "");
1749                ret = -E2BIG;
1750                goto out_put;
1751        }
1752
1753        lsop = kzalloc(sizeof(*lsop) +
1754                        sizeof(union nvmefc_ls_requests) +
1755                        sizeof(union nvmefc_ls_responses),
1756                        GFP_KERNEL);
1757        if (!lsop) {
1758                dev_info(lport->dev,
1759                        "RCV %s LS failed: No memory\n",
1760                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1761                                nvmefc_ls_names[w0->ls_cmd] : "");
1762                ret = -ENOMEM;
1763                goto out_put;
1764        }
1765        lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1766        lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1767
1768        lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1769                                        sizeof(*lsop->rspbuf),
1770                                        DMA_TO_DEVICE);
1771        if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1772                dev_info(lport->dev,
1773                        "RCV %s LS failed: DMA mapping failure\n",
1774                        (w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1775                                nvmefc_ls_names[w0->ls_cmd] : "");
1776                ret = -EFAULT;
1777                goto out_free;
1778        }
1779
1780        lsop->rport = rport;
1781        lsop->lsrsp = lsrsp;
1782
1783        memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1784        lsop->rqstdatalen = lsreqbuf_len;
1785
1786        spin_lock_irqsave(&rport->lock, flags);
1787        if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1788                spin_unlock_irqrestore(&rport->lock, flags);
1789                ret = -ENOTCONN;
1790                goto out_unmap;
1791        }
1792        list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1793        spin_unlock_irqrestore(&rport->lock, flags);
1794
1795        schedule_work(&rport->lsrcv_work);
1796
1797        return 0;
1798
1799out_unmap:
1800        fc_dma_unmap_single(lport->dev, lsop->rspdma,
1801                        sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1802out_free:
1803        kfree(lsop);
1804out_put:
1805        nvme_fc_rport_put(rport);
1806        return ret;
1807}
1808EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1809
1810
1811/* *********************** NVME Ctrl Routines **************************** */
1812
1813static void
1814__nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1815                struct nvme_fc_fcp_op *op)
1816{
1817        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1818                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1819        fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1820                                sizeof(op->cmd_iu), DMA_TO_DEVICE);
1821
1822        atomic_set(&op->state, FCPOP_STATE_UNINIT);
1823}
1824
1825static void
1826nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1827                unsigned int hctx_idx)
1828{
1829        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1830
1831        return __nvme_fc_exit_request(set->driver_data, op);
1832}
1833
1834static int
1835__nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1836{
1837        unsigned long flags;
1838        int opstate;
1839
1840        spin_lock_irqsave(&ctrl->lock, flags);
1841        opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1842        if (opstate != FCPOP_STATE_ACTIVE)
1843                atomic_set(&op->state, opstate);
1844        else if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1845                op->flags |= FCOP_FLAGS_TERMIO;
1846                ctrl->iocnt++;
1847        }
1848        spin_unlock_irqrestore(&ctrl->lock, flags);
1849
1850        if (opstate != FCPOP_STATE_ACTIVE)
1851                return -ECANCELED;
1852
1853        ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1854                                        &ctrl->rport->remoteport,
1855                                        op->queue->lldd_handle,
1856                                        &op->fcp_req);
1857
1858        return 0;
1859}
1860
1861static void
1862nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1863{
1864        struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1865        int i;
1866
1867        /* ensure we've initialized the ops once */
1868        if (!(aen_op->flags & FCOP_FLAGS_AEN))
1869                return;
1870
1871        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1872                __nvme_fc_abort_op(ctrl, aen_op);
1873}
1874
1875static inline void
1876__nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1877                struct nvme_fc_fcp_op *op, int opstate)
1878{
1879        unsigned long flags;
1880
1881        if (opstate == FCPOP_STATE_ABORTED) {
1882                spin_lock_irqsave(&ctrl->lock, flags);
1883                if (test_bit(FCCTRL_TERMIO, &ctrl->flags) &&
1884                    op->flags & FCOP_FLAGS_TERMIO) {
1885                        if (!--ctrl->iocnt)
1886                                wake_up(&ctrl->ioabort_wait);
1887                }
1888                spin_unlock_irqrestore(&ctrl->lock, flags);
1889        }
1890}
1891
1892static void
1893nvme_fc_ctrl_ioerr_work(struct work_struct *work)
1894{
1895        struct nvme_fc_ctrl *ctrl =
1896                        container_of(work, struct nvme_fc_ctrl, ioerr_work);
1897
1898        nvme_fc_error_recovery(ctrl, "transport detected io error");
1899}
1900
1901static void
1902nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1903{
1904        struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1905        struct request *rq = op->rq;
1906        struct nvmefc_fcp_req *freq = &op->fcp_req;
1907        struct nvme_fc_ctrl *ctrl = op->ctrl;
1908        struct nvme_fc_queue *queue = op->queue;
1909        struct nvme_completion *cqe = &op->rsp_iu.cqe;
1910        struct nvme_command *sqe = &op->cmd_iu.sqe;
1911        __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1912        union nvme_result result;
1913        bool terminate_assoc = true;
1914        int opstate;
1915
1916        /*
1917         * WARNING:
1918         * The current linux implementation of a nvme controller
1919         * allocates a single tag set for all io queues and sizes
1920         * the io queues to fully hold all possible tags. Thus, the
1921         * implementation does not reference or care about the sqhd
1922         * value as it never needs to use the sqhd/sqtail pointers
1923         * for submission pacing.
1924         *
1925         * This affects the FC-NVME implementation in two ways:
1926         * 1) As the value doesn't matter, we don't need to waste
1927         *    cycles extracting it from ERSPs and stamping it in the
1928         *    cases where the transport fabricates CQEs on successful
1929         *    completions.
1930         * 2) The FC-NVME implementation requires that delivery of
1931         *    ERSP completions are to go back to the nvme layer in order
1932         *    relative to the rsn, such that the sqhd value will always
1933         *    be "in order" for the nvme layer. As the nvme layer in
1934         *    linux doesn't care about sqhd, there's no need to return
1935         *    them in order.
1936         *
1937         * Additionally:
1938         * As the core nvme layer in linux currently does not look at
1939         * every field in the cqe - in cases where the FC transport must
1940         * fabricate a CQE, the following fields will not be set as they
1941         * are not referenced:
1942         *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1943         *
1944         * Failure or error of an individual i/o, in a transport
1945         * detected fashion unrelated to the nvme completion status,
1946         * potentially cause the initiator and target sides to get out
1947         * of sync on SQ head/tail (aka outstanding io count allowed).
1948         * Per FC-NVME spec, failure of an individual command requires
1949         * the connection to be terminated, which in turn requires the
1950         * association to be terminated.
1951         */
1952
1953        opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1954
1955        fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1956                                sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1957
1958        if (opstate == FCPOP_STATE_ABORTED)
1959                status = cpu_to_le16(NVME_SC_HOST_ABORTED_CMD << 1);
1960        else if (freq->status) {
1961                status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1962                dev_info(ctrl->ctrl.device,
1963                        "NVME-FC{%d}: io failed due to lldd error %d\n",
1964                        ctrl->cnum, freq->status);
1965        }
1966
1967        /*
1968         * For the linux implementation, if we have an unsuccesful
1969         * status, they blk-mq layer can typically be called with the
1970         * non-zero status and the content of the cqe isn't important.
1971         */
1972        if (status)
1973                goto done;
1974
1975        /*
1976         * command completed successfully relative to the wire
1977         * protocol. However, validate anything received and
1978         * extract the status and result from the cqe (create it
1979         * where necessary).
1980         */
1981
1982        switch (freq->rcv_rsplen) {
1983
1984        case 0:
1985        case NVME_FC_SIZEOF_ZEROS_RSP:
1986                /*
1987                 * No response payload or 12 bytes of payload (which
1988                 * should all be zeros) are considered successful and
1989                 * no payload in the CQE by the transport.
1990                 */
1991                if (freq->transferred_length !=
1992                    be32_to_cpu(op->cmd_iu.data_len)) {
1993                        status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1994                        dev_info(ctrl->ctrl.device,
1995                                "NVME-FC{%d}: io failed due to bad transfer "
1996                                "length: %d vs expected %d\n",
1997                                ctrl->cnum, freq->transferred_length,
1998                                be32_to_cpu(op->cmd_iu.data_len));
1999                        goto done;
2000                }
2001                result.u64 = 0;
2002                break;
2003
2004        case sizeof(struct nvme_fc_ersp_iu):
2005                /*
2006                 * The ERSP IU contains a full completion with CQE.
2007                 * Validate ERSP IU and look at cqe.
2008                 */
2009                if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
2010                                        (freq->rcv_rsplen / 4) ||
2011                             be32_to_cpu(op->rsp_iu.xfrd_len) !=
2012                                        freq->transferred_length ||
2013                             op->rsp_iu.ersp_result ||
2014                             sqe->common.command_id != cqe->command_id)) {
2015                        status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2016                        dev_info(ctrl->ctrl.device,
2017                                "NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2018                                "iu len %d, xfr len %d vs %d, status code "
2019                                "%d, cmdid %d vs %d\n",
2020                                ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2021                                be32_to_cpu(op->rsp_iu.xfrd_len),
2022                                freq->transferred_length,
2023                                op->rsp_iu.ersp_result,
2024                                sqe->common.command_id,
2025                                cqe->command_id);
2026                        goto done;
2027                }
2028                result = cqe->result;
2029                status = cqe->status;
2030                break;
2031
2032        default:
2033                status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2034                dev_info(ctrl->ctrl.device,
2035                        "NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2036                        "len %d\n",
2037                        ctrl->cnum, freq->rcv_rsplen);
2038                goto done;
2039        }
2040
2041        terminate_assoc = false;
2042
2043done:
2044        if (op->flags & FCOP_FLAGS_AEN) {
2045                nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2046                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2047                atomic_set(&op->state, FCPOP_STATE_IDLE);
2048                op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
2049                nvme_fc_ctrl_put(ctrl);
2050                goto check_error;
2051        }
2052
2053        __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2054        if (!nvme_try_complete_req(rq, status, result))
2055                nvme_fc_complete_rq(rq);
2056
2057check_error:
2058        if (terminate_assoc && ctrl->ctrl.state != NVME_CTRL_RESETTING)
2059                queue_work(nvme_reset_wq, &ctrl->ioerr_work);
2060}
2061
2062static int
2063__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2064                struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2065                struct request *rq, u32 rqno)
2066{
2067        struct nvme_fcp_op_w_sgl *op_w_sgl =
2068                container_of(op, typeof(*op_w_sgl), op);
2069        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2070        int ret = 0;
2071
2072        memset(op, 0, sizeof(*op));
2073        op->fcp_req.cmdaddr = &op->cmd_iu;
2074        op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2075        op->fcp_req.rspaddr = &op->rsp_iu;
2076        op->fcp_req.rsplen = sizeof(op->rsp_iu);
2077        op->fcp_req.done = nvme_fc_fcpio_done;
2078        op->ctrl = ctrl;
2079        op->queue = queue;
2080        op->rq = rq;
2081        op->rqno = rqno;
2082
2083        cmdiu->format_id = NVME_CMD_FORMAT_ID;
2084        cmdiu->fc_id = NVME_CMD_FC_ID;
2085        cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2086        if (queue->qnum)
2087                cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2088                                        (NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2089        else
2090                cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2091
2092        op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2093                                &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2094        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2095                dev_err(ctrl->dev,
2096                        "FCP Op failed - cmdiu dma mapping failed.\n");
2097                ret = -EFAULT;
2098                goto out_on_error;
2099        }
2100
2101        op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2102                                &op->rsp_iu, sizeof(op->rsp_iu),
2103                                DMA_FROM_DEVICE);
2104        if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2105                dev_err(ctrl->dev,
2106                        "FCP Op failed - rspiu dma mapping failed.\n");
2107                ret = -EFAULT;
2108        }
2109
2110        atomic_set(&op->state, FCPOP_STATE_IDLE);
2111out_on_error:
2112        return ret;
2113}
2114
2115static int
2116nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2117                unsigned int hctx_idx, unsigned int numa_node)
2118{
2119        struct nvme_fc_ctrl *ctrl = set->driver_data;
2120        struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2121        int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2122        struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2123        int res;
2124
2125        res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2126        if (res)
2127                return res;
2128        op->op.fcp_req.first_sgl = op->sgl;
2129        op->op.fcp_req.private = &op->priv[0];
2130        nvme_req(rq)->ctrl = &ctrl->ctrl;
2131        nvme_req(rq)->cmd = &op->op.cmd_iu.sqe;
2132        return res;
2133}
2134
2135static int
2136nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2137{
2138        struct nvme_fc_fcp_op *aen_op;
2139        struct nvme_fc_cmd_iu *cmdiu;
2140        struct nvme_command *sqe;
2141        void *private = NULL;
2142        int i, ret;
2143
2144        aen_op = ctrl->aen_ops;
2145        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2146                if (ctrl->lport->ops->fcprqst_priv_sz) {
2147                        private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2148                                                GFP_KERNEL);
2149                        if (!private)
2150                                return -ENOMEM;
2151                }
2152
2153                cmdiu = &aen_op->cmd_iu;
2154                sqe = &cmdiu->sqe;
2155                ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2156                                aen_op, (struct request *)NULL,
2157                                (NVME_AQ_BLK_MQ_DEPTH + i));
2158                if (ret) {
2159                        kfree(private);
2160                        return ret;
2161                }
2162
2163                aen_op->flags = FCOP_FLAGS_AEN;
2164                aen_op->fcp_req.private = private;
2165
2166                memset(sqe, 0, sizeof(*sqe));
2167                sqe->common.opcode = nvme_admin_async_event;
2168                /* Note: core layer may overwrite the sqe.command_id value */
2169                sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2170        }
2171        return 0;
2172}
2173
2174static void
2175nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2176{
2177        struct nvme_fc_fcp_op *aen_op;
2178        int i;
2179
2180        cancel_work_sync(&ctrl->ctrl.async_event_work);
2181        aen_op = ctrl->aen_ops;
2182        for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2183                __nvme_fc_exit_request(ctrl, aen_op);
2184
2185                kfree(aen_op->fcp_req.private);
2186                aen_op->fcp_req.private = NULL;
2187        }
2188}
2189
2190static inline void
2191__nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2192                unsigned int qidx)
2193{
2194        struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2195
2196        hctx->driver_data = queue;
2197        queue->hctx = hctx;
2198}
2199
2200static int
2201nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2202                unsigned int hctx_idx)
2203{
2204        struct nvme_fc_ctrl *ctrl = data;
2205
2206        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2207
2208        return 0;
2209}
2210
2211static int
2212nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2213                unsigned int hctx_idx)
2214{
2215        struct nvme_fc_ctrl *ctrl = data;
2216
2217        __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2218
2219        return 0;
2220}
2221
2222static void
2223nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2224{
2225        struct nvme_fc_queue *queue;
2226
2227        queue = &ctrl->queues[idx];
2228        memset(queue, 0, sizeof(*queue));
2229        queue->ctrl = ctrl;
2230        queue->qnum = idx;
2231        atomic_set(&queue->csn, 0);
2232        queue->dev = ctrl->dev;
2233
2234        if (idx > 0)
2235                queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2236        else
2237                queue->cmnd_capsule_len = sizeof(struct nvme_command);
2238
2239        /*
2240         * Considered whether we should allocate buffers for all SQEs
2241         * and CQEs and dma map them - mapping their respective entries
2242         * into the request structures (kernel vm addr and dma address)
2243         * thus the driver could use the buffers/mappings directly.
2244         * It only makes sense if the LLDD would use them for its
2245         * messaging api. It's very unlikely most adapter api's would use
2246         * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2247         * structures were used instead.
2248         */
2249}
2250
2251/*
2252 * This routine terminates a queue at the transport level.
2253 * The transport has already ensured that all outstanding ios on
2254 * the queue have been terminated.
2255 * The transport will send a Disconnect LS request to terminate
2256 * the queue's connection. Termination of the admin queue will also
2257 * terminate the association at the target.
2258 */
2259static void
2260nvme_fc_free_queue(struct nvme_fc_queue *queue)
2261{
2262        if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2263                return;
2264
2265        clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2266        /*
2267         * Current implementation never disconnects a single queue.
2268         * It always terminates a whole association. So there is never
2269         * a disconnect(queue) LS sent to the target.
2270         */
2271
2272        queue->connection_id = 0;
2273        atomic_set(&queue->csn, 0);
2274}
2275
2276static void
2277__nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2278        struct nvme_fc_queue *queue, unsigned int qidx)
2279{
2280        if (ctrl->lport->ops->delete_queue)
2281                ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2282                                queue->lldd_handle);
2283        queue->lldd_handle = NULL;
2284}
2285
2286static void
2287nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2288{
2289        int i;
2290
2291        for (i = 1; i < ctrl->ctrl.queue_count; i++)
2292                nvme_fc_free_queue(&ctrl->queues[i]);
2293}
2294
2295static int
2296__nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2297        struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2298{
2299        int ret = 0;
2300
2301        queue->lldd_handle = NULL;
2302        if (ctrl->lport->ops->create_queue)
2303                ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2304                                qidx, qsize, &queue->lldd_handle);
2305
2306        return ret;
2307}
2308
2309static void
2310nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2311{
2312        struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2313        int i;
2314
2315        for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2316                __nvme_fc_delete_hw_queue(ctrl, queue, i);
2317}
2318
2319static int
2320nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2321{
2322        struct nvme_fc_queue *queue = &ctrl->queues[1];
2323        int i, ret;
2324
2325        for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2326                ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2327                if (ret)
2328                        goto delete_queues;
2329        }
2330
2331        return 0;
2332
2333delete_queues:
2334        for (; i > 0; i--)
2335                __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2336        return ret;
2337}
2338
2339static int
2340nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2341{
2342        int i, ret = 0;
2343
2344        for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2345                ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2346                                        (qsize / 5));
2347                if (ret)
2348                        break;
2349                ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
2350                if (ret)
2351                        break;
2352
2353                set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2354        }
2355
2356        return ret;
2357}
2358
2359static void
2360nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2361{
2362        int i;
2363
2364        for (i = 1; i < ctrl->ctrl.queue_count; i++)
2365                nvme_fc_init_queue(ctrl, i);
2366}
2367
2368static void
2369nvme_fc_ctrl_free(struct kref *ref)
2370{
2371        struct nvme_fc_ctrl *ctrl =
2372                container_of(ref, struct nvme_fc_ctrl, ref);
2373        unsigned long flags;
2374
2375        if (ctrl->ctrl.tagset) {
2376                blk_cleanup_queue(ctrl->ctrl.connect_q);
2377                blk_mq_free_tag_set(&ctrl->tag_set);
2378        }
2379
2380        /* remove from rport list */
2381        spin_lock_irqsave(&ctrl->rport->lock, flags);
2382        list_del(&ctrl->ctrl_list);
2383        spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2384
2385        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2386        blk_cleanup_queue(ctrl->ctrl.admin_q);
2387        blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2388        blk_mq_free_tag_set(&ctrl->admin_tag_set);
2389
2390        kfree(ctrl->queues);
2391
2392        put_device(ctrl->dev);
2393        nvme_fc_rport_put(ctrl->rport);
2394
2395        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2396        if (ctrl->ctrl.opts)
2397                nvmf_free_options(ctrl->ctrl.opts);
2398        kfree(ctrl);
2399}
2400
2401static void
2402nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2403{
2404        kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2405}
2406
2407static int
2408nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2409{
2410        return kref_get_unless_zero(&ctrl->ref);
2411}
2412
2413/*
2414 * All accesses from nvme core layer done - can now free the
2415 * controller. Called after last nvme_put_ctrl() call
2416 */
2417static void
2418nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2419{
2420        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2421
2422        WARN_ON(nctrl != &ctrl->ctrl);
2423
2424        nvme_fc_ctrl_put(ctrl);
2425}
2426
2427/*
2428 * This routine is used by the transport when it needs to find active
2429 * io on a queue that is to be terminated. The transport uses
2430 * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2431 * this routine to kill them on a 1 by 1 basis.
2432 *
2433 * As FC allocates FC exchange for each io, the transport must contact
2434 * the LLDD to terminate the exchange, thus releasing the FC exchange.
2435 * After terminating the exchange the LLDD will call the transport's
2436 * normal io done path for the request, but it will have an aborted
2437 * status. The done path will return the io request back to the block
2438 * layer with an error status.
2439 */
2440static bool
2441nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2442{
2443        struct nvme_ctrl *nctrl = data;
2444        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2445        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2446
2447        op->nreq.flags |= NVME_REQ_CANCELLED;
2448        __nvme_fc_abort_op(ctrl, op);
2449        return true;
2450}
2451
2452/*
2453 * This routine runs through all outstanding commands on the association
2454 * and aborts them.  This routine is typically be called by the
2455 * delete_association routine. It is also called due to an error during
2456 * reconnect. In that scenario, it is most likely a command that initializes
2457 * the controller, including fabric Connect commands on io queues, that
2458 * may have timed out or failed thus the io must be killed for the connect
2459 * thread to see the error.
2460 */
2461static void
2462__nvme_fc_abort_outstanding_ios(struct nvme_fc_ctrl *ctrl, bool start_queues)
2463{
2464        int q;
2465
2466        /*
2467         * if aborting io, the queues are no longer good, mark them
2468         * all as not live.
2469         */
2470        if (ctrl->ctrl.queue_count > 1) {
2471                for (q = 1; q < ctrl->ctrl.queue_count; q++)
2472                        clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[q].flags);
2473        }
2474        clear_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2475
2476        /*
2477         * If io queues are present, stop them and terminate all outstanding
2478         * ios on them. As FC allocates FC exchange for each io, the
2479         * transport must contact the LLDD to terminate the exchange,
2480         * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2481         * to tell us what io's are busy and invoke a transport routine
2482         * to kill them with the LLDD.  After terminating the exchange
2483         * the LLDD will call the transport's normal io done path, but it
2484         * will have an aborted status. The done path will return the
2485         * io requests back to the block layer as part of normal completions
2486         * (but with error status).
2487         */
2488        if (ctrl->ctrl.queue_count > 1) {
2489                nvme_stop_queues(&ctrl->ctrl);
2490                nvme_sync_io_queues(&ctrl->ctrl);
2491                blk_mq_tagset_busy_iter(&ctrl->tag_set,
2492                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2493                blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
2494                if (start_queues)
2495                        nvme_start_queues(&ctrl->ctrl);
2496        }
2497
2498        /*
2499         * Other transports, which don't have link-level contexts bound
2500         * to sqe's, would try to gracefully shutdown the controller by
2501         * writing the registers for shutdown and polling (call
2502         * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2503         * just aborted and we will wait on those contexts, and given
2504         * there was no indication of how live the controlelr is on the
2505         * link, don't send more io to create more contexts for the
2506         * shutdown. Let the controller fail via keepalive failure if
2507         * its still present.
2508         */
2509
2510        /*
2511         * clean up the admin queue. Same thing as above.
2512         */
2513        blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
2514        blk_sync_queue(ctrl->ctrl.admin_q);
2515        blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2516                                nvme_fc_terminate_exchange, &ctrl->ctrl);
2517        blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
2518}
2519
2520static void
2521nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2522{
2523        /*
2524         * if an error (io timeout, etc) while (re)connecting, the remote
2525         * port requested terminating of the association (disconnect_ls)
2526         * or an error (timeout or abort) occurred on an io while creating
2527         * the controller.  Abort any ios on the association and let the
2528         * create_association error path resolve things.
2529         */
2530        if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2531                __nvme_fc_abort_outstanding_ios(ctrl, true);
2532                set_bit(ASSOC_FAILED, &ctrl->flags);
2533                return;
2534        }
2535
2536        /* Otherwise, only proceed if in LIVE state - e.g. on first error */
2537        if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2538                return;
2539
2540        dev_warn(ctrl->ctrl.device,
2541                "NVME-FC{%d}: transport association event: %s\n",
2542                ctrl->cnum, errmsg);
2543        dev_warn(ctrl->ctrl.device,
2544                "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2545
2546        nvme_reset_ctrl(&ctrl->ctrl);
2547}
2548
2549static enum blk_eh_timer_return
2550nvme_fc_timeout(struct request *rq, bool reserved)
2551{
2552        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2553        struct nvme_fc_ctrl *ctrl = op->ctrl;
2554        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2555        struct nvme_command *sqe = &cmdiu->sqe;
2556
2557        /*
2558         * Attempt to abort the offending command. Command completion
2559         * will detect the aborted io and will fail the connection.
2560         */
2561        dev_info(ctrl->ctrl.device,
2562                "NVME-FC{%d.%d}: io timeout: opcode %d fctype %d w10/11: "
2563                "x%08x/x%08x\n",
2564                ctrl->cnum, op->queue->qnum, sqe->common.opcode,
2565                sqe->connect.fctype, sqe->common.cdw10, sqe->common.cdw11);
2566        if (__nvme_fc_abort_op(ctrl, op))
2567                nvme_fc_error_recovery(ctrl, "io timeout abort failed");
2568
2569        /*
2570         * the io abort has been initiated. Have the reset timer
2571         * restarted and the abort completion will complete the io
2572         * shortly. Avoids a synchronous wait while the abort finishes.
2573         */
2574        return BLK_EH_RESET_TIMER;
2575}
2576
2577static int
2578nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2579                struct nvme_fc_fcp_op *op)
2580{
2581        struct nvmefc_fcp_req *freq = &op->fcp_req;
2582        int ret;
2583
2584        freq->sg_cnt = 0;
2585
2586        if (!blk_rq_nr_phys_segments(rq))
2587                return 0;
2588
2589        freq->sg_table.sgl = freq->first_sgl;
2590        ret = sg_alloc_table_chained(&freq->sg_table,
2591                        blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2592                        NVME_INLINE_SG_CNT);
2593        if (ret)
2594                return -ENOMEM;
2595
2596        op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2597        WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2598        freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2599                                op->nents, rq_dma_dir(rq));
2600        if (unlikely(freq->sg_cnt <= 0)) {
2601                sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2602                freq->sg_cnt = 0;
2603                return -EFAULT;
2604        }
2605
2606        /*
2607         * TODO: blk_integrity_rq(rq)  for DIF
2608         */
2609        return 0;
2610}
2611
2612static void
2613nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2614                struct nvme_fc_fcp_op *op)
2615{
2616        struct nvmefc_fcp_req *freq = &op->fcp_req;
2617
2618        if (!freq->sg_cnt)
2619                return;
2620
2621        fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2622                        rq_dma_dir(rq));
2623
2624        sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2625
2626        freq->sg_cnt = 0;
2627}
2628
2629/*
2630 * In FC, the queue is a logical thing. At transport connect, the target
2631 * creates its "queue" and returns a handle that is to be given to the
2632 * target whenever it posts something to the corresponding SQ.  When an
2633 * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2634 * command contained within the SQE, an io, and assigns a FC exchange
2635 * to it. The SQE and the associated SQ handle are sent in the initial
2636 * CMD IU sents on the exchange. All transfers relative to the io occur
2637 * as part of the exchange.  The CQE is the last thing for the io,
2638 * which is transferred (explicitly or implicitly) with the RSP IU
2639 * sent on the exchange. After the CQE is received, the FC exchange is
2640 * terminaed and the Exchange may be used on a different io.
2641 *
2642 * The transport to LLDD api has the transport making a request for a
2643 * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2644 * resource and transfers the command. The LLDD will then process all
2645 * steps to complete the io. Upon completion, the transport done routine
2646 * is called.
2647 *
2648 * So - while the operation is outstanding to the LLDD, there is a link
2649 * level FC exchange resource that is also outstanding. This must be
2650 * considered in all cleanup operations.
2651 */
2652static blk_status_t
2653nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2654        struct nvme_fc_fcp_op *op, u32 data_len,
2655        enum nvmefc_fcp_datadir io_dir)
2656{
2657        struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2658        struct nvme_command *sqe = &cmdiu->sqe;
2659        int ret, opstate;
2660
2661        /*
2662         * before attempting to send the io, check to see if we believe
2663         * the target device is present
2664         */
2665        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2666                return BLK_STS_RESOURCE;
2667
2668        if (!nvme_fc_ctrl_get(ctrl))
2669                return BLK_STS_IOERR;
2670
2671        /* format the FC-NVME CMD IU and fcp_req */
2672        cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2673        cmdiu->data_len = cpu_to_be32(data_len);
2674        switch (io_dir) {
2675        case NVMEFC_FCP_WRITE:
2676                cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2677                break;
2678        case NVMEFC_FCP_READ:
2679                cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2680                break;
2681        case NVMEFC_FCP_NODATA:
2682                cmdiu->flags = 0;
2683                break;
2684        }
2685        op->fcp_req.payload_length = data_len;
2686        op->fcp_req.io_dir = io_dir;
2687        op->fcp_req.transferred_length = 0;
2688        op->fcp_req.rcv_rsplen = 0;
2689        op->fcp_req.status = NVME_SC_SUCCESS;
2690        op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2691
2692        /*
2693         * validate per fabric rules, set fields mandated by fabric spec
2694         * as well as those by FC-NVME spec.
2695         */
2696        WARN_ON_ONCE(sqe->common.metadata);
2697        sqe->common.flags |= NVME_CMD_SGL_METABUF;
2698
2699        /*
2700         * format SQE DPTR field per FC-NVME rules:
2701         *    type=0x5     Transport SGL Data Block Descriptor
2702         *    subtype=0xA  Transport-specific value
2703         *    address=0
2704         *    length=length of the data series
2705         */
2706        sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2707                                        NVME_SGL_FMT_TRANSPORT_A;
2708        sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2709        sqe->rw.dptr.sgl.addr = 0;
2710
2711        if (!(op->flags & FCOP_FLAGS_AEN)) {
2712                ret = nvme_fc_map_data(ctrl, op->rq, op);
2713                if (ret < 0) {
2714                        nvme_cleanup_cmd(op->rq);
2715                        nvme_fc_ctrl_put(ctrl);
2716                        if (ret == -ENOMEM || ret == -EAGAIN)
2717                                return BLK_STS_RESOURCE;
2718                        return BLK_STS_IOERR;
2719                }
2720        }
2721
2722        fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2723                                  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2724
2725        atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2726
2727        if (!(op->flags & FCOP_FLAGS_AEN))
2728                blk_mq_start_request(op->rq);
2729
2730        cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2731        ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2732                                        &ctrl->rport->remoteport,
2733                                        queue->lldd_handle, &op->fcp_req);
2734
2735        if (ret) {
2736                /*
2737                 * If the lld fails to send the command is there an issue with
2738                 * the csn value?  If the command that fails is the Connect,
2739                 * no - as the connection won't be live.  If it is a command
2740                 * post-connect, it's possible a gap in csn may be created.
2741                 * Does this matter?  As Linux initiators don't send fused
2742                 * commands, no.  The gap would exist, but as there's nothing
2743                 * that depends on csn order to be delivered on the target
2744                 * side, it shouldn't hurt.  It would be difficult for a
2745                 * target to even detect the csn gap as it has no idea when the
2746                 * cmd with the csn was supposed to arrive.
2747                 */
2748                opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2749                __nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2750
2751                if (!(op->flags & FCOP_FLAGS_AEN)) {
2752                        nvme_fc_unmap_data(ctrl, op->rq, op);
2753                        nvme_cleanup_cmd(op->rq);
2754                }
2755
2756                nvme_fc_ctrl_put(ctrl);
2757
2758                if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2759                                ret != -EBUSY)
2760                        return BLK_STS_IOERR;
2761
2762                return BLK_STS_RESOURCE;
2763        }
2764
2765        return BLK_STS_OK;
2766}
2767
2768static blk_status_t
2769nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2770                        const struct blk_mq_queue_data *bd)
2771{
2772        struct nvme_ns *ns = hctx->queue->queuedata;
2773        struct nvme_fc_queue *queue = hctx->driver_data;
2774        struct nvme_fc_ctrl *ctrl = queue->ctrl;
2775        struct request *rq = bd->rq;
2776        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2777        enum nvmefc_fcp_datadir io_dir;
2778        bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2779        u32 data_len;
2780        blk_status_t ret;
2781
2782        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2783            !nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2784                return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2785
2786        ret = nvme_setup_cmd(ns, rq);
2787        if (ret)
2788                return ret;
2789
2790        /*
2791         * nvme core doesn't quite treat the rq opaquely. Commands such
2792         * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2793         * there is no actual payload to be transferred.
2794         * To get it right, key data transmission on there being 1 or
2795         * more physical segments in the sg list. If there is no
2796         * physical segments, there is no payload.
2797         */
2798        if (blk_rq_nr_phys_segments(rq)) {
2799                data_len = blk_rq_payload_bytes(rq);
2800                io_dir = ((rq_data_dir(rq) == WRITE) ?
2801                                        NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2802        } else {
2803                data_len = 0;
2804                io_dir = NVMEFC_FCP_NODATA;
2805        }
2806
2807
2808        return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2809}
2810
2811static void
2812nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2813{
2814        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2815        struct nvme_fc_fcp_op *aen_op;
2816        blk_status_t ret;
2817
2818        if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2819                return;
2820
2821        aen_op = &ctrl->aen_ops[0];
2822
2823        ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2824                                        NVMEFC_FCP_NODATA);
2825        if (ret)
2826                dev_err(ctrl->ctrl.device,
2827                        "failed async event work\n");
2828}
2829
2830static void
2831nvme_fc_complete_rq(struct request *rq)
2832{
2833        struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2834        struct nvme_fc_ctrl *ctrl = op->ctrl;
2835
2836        atomic_set(&op->state, FCPOP_STATE_IDLE);
2837        op->flags &= ~FCOP_FLAGS_TERMIO;
2838
2839        nvme_fc_unmap_data(ctrl, rq, op);
2840        nvme_complete_rq(rq);
2841        nvme_fc_ctrl_put(ctrl);
2842}
2843
2844
2845static const struct blk_mq_ops nvme_fc_mq_ops = {
2846        .queue_rq       = nvme_fc_queue_rq,
2847        .complete       = nvme_fc_complete_rq,
2848        .init_request   = nvme_fc_init_request,
2849        .exit_request   = nvme_fc_exit_request,
2850        .init_hctx      = nvme_fc_init_hctx,
2851        .timeout        = nvme_fc_timeout,
2852};
2853
2854static int
2855nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2856{
2857        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2858        unsigned int nr_io_queues;
2859        int ret;
2860
2861        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2862                                ctrl->lport->ops->max_hw_queues);
2863        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2864        if (ret) {
2865                dev_info(ctrl->ctrl.device,
2866                        "set_queue_count failed: %d\n", ret);
2867                return ret;
2868        }
2869
2870        ctrl->ctrl.queue_count = nr_io_queues + 1;
2871        if (!nr_io_queues)
2872                return 0;
2873
2874        nvme_fc_init_io_queues(ctrl);
2875
2876        memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2877        ctrl->tag_set.ops = &nvme_fc_mq_ops;
2878        ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2879        ctrl->tag_set.reserved_tags = NVMF_RESERVED_TAGS;
2880        ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2881        ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2882        ctrl->tag_set.cmd_size =
2883                struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2884                            ctrl->lport->ops->fcprqst_priv_sz);
2885        ctrl->tag_set.driver_data = ctrl;
2886        ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2887        ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2888
2889        ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2890        if (ret)
2891                return ret;
2892
2893        ctrl->ctrl.tagset = &ctrl->tag_set;
2894
2895        ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2896        if (IS_ERR(ctrl->ctrl.connect_q)) {
2897                ret = PTR_ERR(ctrl->ctrl.connect_q);
2898                goto out_free_tag_set;
2899        }
2900
2901        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2902        if (ret)
2903                goto out_cleanup_blk_queue;
2904
2905        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2906        if (ret)
2907                goto out_delete_hw_queues;
2908
2909        ctrl->ioq_live = true;
2910
2911        return 0;
2912
2913out_delete_hw_queues:
2914        nvme_fc_delete_hw_io_queues(ctrl);
2915out_cleanup_blk_queue:
2916        blk_cleanup_queue(ctrl->ctrl.connect_q);
2917out_free_tag_set:
2918        blk_mq_free_tag_set(&ctrl->tag_set);
2919        nvme_fc_free_io_queues(ctrl);
2920
2921        /* force put free routine to ignore io queues */
2922        ctrl->ctrl.tagset = NULL;
2923
2924        return ret;
2925}
2926
2927static int
2928nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2929{
2930        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2931        u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2932        unsigned int nr_io_queues;
2933        int ret;
2934
2935        nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2936                                ctrl->lport->ops->max_hw_queues);
2937        ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2938        if (ret) {
2939                dev_info(ctrl->ctrl.device,
2940                        "set_queue_count failed: %d\n", ret);
2941                return ret;
2942        }
2943
2944        if (!nr_io_queues && prior_ioq_cnt) {
2945                dev_info(ctrl->ctrl.device,
2946                        "Fail Reconnect: At least 1 io queue "
2947                        "required (was %d)\n", prior_ioq_cnt);
2948                return -ENOSPC;
2949        }
2950
2951        ctrl->ctrl.queue_count = nr_io_queues + 1;
2952        /* check for io queues existing */
2953        if (ctrl->ctrl.queue_count == 1)
2954                return 0;
2955
2956        if (prior_ioq_cnt != nr_io_queues) {
2957                dev_info(ctrl->ctrl.device,
2958                        "reconnect: revising io queue count from %d to %d\n",
2959                        prior_ioq_cnt, nr_io_queues);
2960                blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2961        }
2962
2963        ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2964        if (ret)
2965                goto out_free_io_queues;
2966
2967        ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2968        if (ret)
2969                goto out_delete_hw_queues;
2970
2971        return 0;
2972
2973out_delete_hw_queues:
2974        nvme_fc_delete_hw_io_queues(ctrl);
2975out_free_io_queues:
2976        nvme_fc_free_io_queues(ctrl);
2977        return ret;
2978}
2979
2980static void
2981nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2982{
2983        struct nvme_fc_lport *lport = rport->lport;
2984
2985        atomic_inc(&lport->act_rport_cnt);
2986}
2987
2988static void
2989nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2990{
2991        struct nvme_fc_lport *lport = rport->lport;
2992        u32 cnt;
2993
2994        cnt = atomic_dec_return(&lport->act_rport_cnt);
2995        if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2996                lport->ops->localport_delete(&lport->localport);
2997}
2998
2999static int
3000nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
3001{
3002        struct nvme_fc_rport *rport = ctrl->rport;
3003        u32 cnt;
3004
3005        if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
3006                return 1;
3007
3008        cnt = atomic_inc_return(&rport->act_ctrl_cnt);
3009        if (cnt == 1)
3010                nvme_fc_rport_active_on_lport(rport);
3011
3012        return 0;
3013}
3014
3015static int
3016nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
3017{
3018        struct nvme_fc_rport *rport = ctrl->rport;
3019        struct nvme_fc_lport *lport = rport->lport;
3020        u32 cnt;
3021
3022        /* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
3023
3024        cnt = atomic_dec_return(&rport->act_ctrl_cnt);
3025        if (cnt == 0) {
3026                if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
3027                        lport->ops->remoteport_delete(&rport->remoteport);
3028                nvme_fc_rport_inactive_on_lport(rport);
3029        }
3030
3031        return 0;
3032}
3033
3034/*
3035 * This routine restarts the controller on the host side, and
3036 * on the link side, recreates the controller association.
3037 */
3038static int
3039nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
3040{
3041        struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
3042        struct nvmefc_ls_rcv_op *disls = NULL;
3043        unsigned long flags;
3044        int ret;
3045        bool changed;
3046
3047        ++ctrl->ctrl.nr_reconnects;
3048
3049        if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3050                return -ENODEV;
3051
3052        if (nvme_fc_ctlr_active_on_rport(ctrl))
3053                return -ENOTUNIQ;
3054
3055        dev_info(ctrl->ctrl.device,
3056                "NVME-FC{%d}: create association : host wwpn 0x%016llx "
3057                " rport wwpn 0x%016llx: NQN \"%s\"\n",
3058                ctrl->cnum, ctrl->lport->localport.port_name,
3059                ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
3060
3061        clear_bit(ASSOC_FAILED, &ctrl->flags);
3062
3063        /*
3064         * Create the admin queue
3065         */
3066
3067        ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
3068                                NVME_AQ_DEPTH);
3069        if (ret)
3070                goto out_free_queue;
3071
3072        ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
3073                                NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
3074        if (ret)
3075                goto out_delete_hw_queue;
3076
3077        ret = nvmf_connect_admin_queue(&ctrl->ctrl);
3078        if (ret)
3079                goto out_disconnect_admin_queue;
3080
3081        set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
3082
3083        /*
3084         * Check controller capabilities
3085         *
3086         * todo:- add code to check if ctrl attributes changed from
3087         * prior connection values
3088         */
3089
3090        ret = nvme_enable_ctrl(&ctrl->ctrl);
3091        if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3092                goto out_disconnect_admin_queue;
3093
3094        ctrl->ctrl.max_segments = ctrl->lport->ops->max_sgl_segments;
3095        ctrl->ctrl.max_hw_sectors = ctrl->ctrl.max_segments <<
3096                                                (ilog2(SZ_4K) - 9);
3097
3098        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
3099
3100        ret = nvme_init_ctrl_finish(&ctrl->ctrl);
3101        if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3102                goto out_disconnect_admin_queue;
3103
3104        /* sanity checks */
3105
3106        /* FC-NVME does not have other data in the capsule */
3107        if (ctrl->ctrl.icdoff) {
3108                dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3109                                ctrl->ctrl.icdoff);
3110                ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3111                goto out_disconnect_admin_queue;
3112        }
3113
3114        /* FC-NVME supports normal SGL Data Block Descriptors */
3115        if (!nvme_ctrl_sgl_supported(&ctrl->ctrl)) {
3116                dev_err(ctrl->ctrl.device,
3117                        "Mandatory sgls are not supported!\n");
3118                ret = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
3119                goto out_disconnect_admin_queue;
3120        }
3121
3122        if (opts->queue_size > ctrl->ctrl.maxcmd) {
3123                /* warn if maxcmd is lower than queue_size */
3124                dev_warn(ctrl->ctrl.device,
3125                        "queue_size %zu > ctrl maxcmd %u, reducing "
3126                        "to maxcmd\n",
3127                        opts->queue_size, ctrl->ctrl.maxcmd);
3128                opts->queue_size = ctrl->ctrl.maxcmd;
3129        }
3130
3131        if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3132                /* warn if sqsize is lower than queue_size */
3133                dev_warn(ctrl->ctrl.device,
3134                        "queue_size %zu > ctrl sqsize %u, reducing "
3135                        "to sqsize\n",
3136                        opts->queue_size, ctrl->ctrl.sqsize + 1);
3137                opts->queue_size = ctrl->ctrl.sqsize + 1;
3138        }
3139
3140        ret = nvme_fc_init_aen_ops(ctrl);
3141        if (ret)
3142                goto out_term_aen_ops;
3143
3144        /*
3145         * Create the io queues
3146         */
3147
3148        if (ctrl->ctrl.queue_count > 1) {
3149                if (!ctrl->ioq_live)
3150                        ret = nvme_fc_create_io_queues(ctrl);
3151                else
3152                        ret = nvme_fc_recreate_io_queues(ctrl);
3153        }
3154        if (ret || test_bit(ASSOC_FAILED, &ctrl->flags))
3155                goto out_term_aen_ops;
3156
3157        changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3158
3159        ctrl->ctrl.nr_reconnects = 0;
3160
3161        if (changed)
3162                nvme_start_ctrl(&ctrl->ctrl);
3163
3164        return 0;       /* Success */
3165
3166out_term_aen_ops:
3167        nvme_fc_term_aen_ops(ctrl);
3168out_disconnect_admin_queue:
3169        /* send a Disconnect(association) LS to fc-nvme target */
3170        nvme_fc_xmt_disconnect_assoc(ctrl);
3171        spin_lock_irqsave(&ctrl->lock, flags);
3172        ctrl->association_id = 0;
3173        disls = ctrl->rcv_disconn;
3174        ctrl->rcv_disconn = NULL;
3175        spin_unlock_irqrestore(&ctrl->lock, flags);
3176        if (disls)
3177                nvme_fc_xmt_ls_rsp(disls);
3178out_delete_hw_queue:
3179        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3180out_free_queue:
3181        nvme_fc_free_queue(&ctrl->queues[0]);
3182        clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3183        nvme_fc_ctlr_inactive_on_rport(ctrl);
3184
3185        return ret;
3186}
3187
3188
3189/*
3190 * This routine stops operation of the controller on the host side.
3191 * On the host os stack side: Admin and IO queues are stopped,
3192 *   outstanding ios on them terminated via FC ABTS.
3193 * On the link side: the association is terminated.
3194 */
3195static void
3196nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3197{
3198        struct nvmefc_ls_rcv_op *disls = NULL;
3199        unsigned long flags;
3200
3201        if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3202                return;
3203
3204        spin_lock_irqsave(&ctrl->lock, flags);
3205        set_bit(FCCTRL_TERMIO, &ctrl->flags);
3206        ctrl->iocnt = 0;
3207        spin_unlock_irqrestore(&ctrl->lock, flags);
3208
3209        __nvme_fc_abort_outstanding_ios(ctrl, false);
3210
3211        /* kill the aens as they are a separate path */
3212        nvme_fc_abort_aen_ops(ctrl);
3213
3214        /* wait for all io that had to be aborted */
3215        spin_lock_irq(&ctrl->lock);
3216        wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3217        clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3218        spin_unlock_irq(&ctrl->lock);
3219
3220        nvme_fc_term_aen_ops(ctrl);
3221
3222        /*
3223         * send a Disconnect(association) LS to fc-nvme target
3224         * Note: could have been sent at top of process, but
3225         * cleaner on link traffic if after the aborts complete.
3226         * Note: if association doesn't exist, association_id will be 0
3227         */
3228        if (ctrl->association_id)
3229                nvme_fc_xmt_disconnect_assoc(ctrl);
3230
3231        spin_lock_irqsave(&ctrl->lock, flags);
3232        ctrl->association_id = 0;
3233        disls = ctrl->rcv_disconn;
3234        ctrl->rcv_disconn = NULL;
3235        spin_unlock_irqrestore(&ctrl->lock, flags);
3236        if (disls)
3237                /*
3238                 * if a Disconnect Request was waiting for a response, send
3239                 * now that all ABTS's have been issued (and are complete).
3240                 */
3241                nvme_fc_xmt_ls_rsp(disls);
3242
3243        if (ctrl->ctrl.tagset) {
3244                nvme_fc_delete_hw_io_queues(ctrl);
3245                nvme_fc_free_io_queues(ctrl);
3246        }
3247
3248        __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3249        nvme_fc_free_queue(&ctrl->queues[0]);
3250
3251        /* re-enable the admin_q so anything new can fast fail */
3252        blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
3253
3254        /* resume the io queues so that things will fast fail */
3255        nvme_start_queues(&ctrl->ctrl);
3256
3257        nvme_fc_ctlr_inactive_on_rport(ctrl);
3258}
3259
3260static void
3261nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3262{
3263        struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3264
3265        cancel_work_sync(&ctrl->ioerr_work);
3266        cancel_delayed_work_sync(&ctrl->connect_work);
3267        /*
3268         * kill the association on the link side.  this will block
3269         * waiting for io to terminate
3270         */
3271        nvme_fc_delete_association(ctrl);
3272}
3273
3274static void
3275nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3276{
3277        struct nvme_fc_rport *rport = ctrl->rport;
3278        struct nvme_fc_remote_port *portptr = &rport->remoteport;
3279        unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3280        bool recon = true;
3281
3282        if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3283                return;
3284
3285        if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3286                dev_info(ctrl->ctrl.device,
3287                        "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3288                        ctrl->cnum, status);
3289                if (status > 0 && (status & NVME_SC_DNR))
3290                        recon = false;
3291        } else if (time_after_eq(jiffies, rport->dev_loss_end))
3292                recon = false;
3293
3294        if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3295                if (portptr->port_state == FC_OBJSTATE_ONLINE)
3296                        dev_info(ctrl->ctrl.device,
3297                                "NVME-FC{%d}: Reconnect attempt in %ld "
3298                                "seconds\n",
3299                                ctrl->cnum, recon_delay / HZ);
3300                else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3301                        recon_delay = rport->dev_loss_end - jiffies;
3302
3303                queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3304        } else {
3305                if (portptr->port_state == FC_OBJSTATE_ONLINE) {
3306                        if (status > 0 && (status & NVME_SC_DNR))
3307                                dev_warn(ctrl->ctrl.device,
3308                                         "NVME-FC{%d}: reconnect failure\n",
3309                                         ctrl->cnum);
3310                        else
3311                                dev_warn(ctrl->ctrl.device,
3312                                         "NVME-FC{%d}: Max reconnect attempts "
3313                                         "(%d) reached.\n",
3314                                         ctrl->cnum, ctrl->ctrl.nr_reconnects);
3315                } else
3316                        dev_warn(ctrl->ctrl.device,
3317                                "NVME-FC{%d}: dev_loss_tmo (%d) expired "
3318                                "while waiting for remoteport connectivity.\n",
3319                                ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3320                                        (ctrl->ctrl.opts->max_reconnects *
3321                                         ctrl->ctrl.opts->reconnect_delay)));
3322                WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3323        }
3324}
3325
3326static void
3327nvme_fc_reset_ctrl_work(struct work_struct *work)
3328{
3329        struct nvme_fc_ctrl *ctrl =
3330                container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3331
3332        nvme_stop_ctrl(&ctrl->ctrl);
3333
3334        /* will block will waiting for io to terminate */
3335        nvme_fc_delete_association(ctrl);
3336
3337        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3338                dev_err(ctrl->ctrl.device,
3339                        "NVME-FC{%d}: error_recovery: Couldn't change state "
3340                        "to CONNECTING\n", ctrl->cnum);
3341
3342        if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
3343                if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3344                        dev_err(ctrl->ctrl.device,
3345                                "NVME-FC{%d}: failed to schedule connect "
3346                                "after reset\n", ctrl->cnum);
3347                } else {
3348                        flush_delayed_work(&ctrl->connect_work);
3349                }
3350        } else {
3351                nvme_fc_reconnect_or_delete(ctrl, -ENOTCONN);
3352        }
3353}
3354
3355
3356static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3357        .name                   = "fc",
3358        .module                 = THIS_MODULE,
3359        .flags                  = NVME_F_FABRICS,
3360        .reg_read32             = nvmf_reg_read32,
3361        .reg_read64             = nvmf_reg_read64,
3362        .reg_write32            = nvmf_reg_write32,
3363        .free_ctrl              = nvme_fc_nvme_ctrl_freed,
3364        .submit_async_event     = nvme_fc_submit_async_event,
3365        .delete_ctrl            = nvme_fc_delete_ctrl,
3366        .get_address            = nvmf_get_address,
3367};
3368
3369static void
3370nvme_fc_connect_ctrl_work(struct work_struct *work)
3371{
3372        int ret;
3373
3374        struct nvme_fc_ctrl *ctrl =
3375                        container_of(to_delayed_work(work),
3376                                struct nvme_fc_ctrl, connect_work);
3377
3378        ret = nvme_fc_create_association(ctrl);
3379        if (ret)
3380                nvme_fc_reconnect_or_delete(ctrl, ret);
3381        else
3382                dev_info(ctrl->ctrl.device,
3383                        "NVME-FC{%d}: controller connect complete\n",
3384                        ctrl->cnum);
3385}
3386
3387
3388static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3389        .queue_rq       = nvme_fc_queue_rq,
3390        .complete       = nvme_fc_complete_rq,
3391        .init_request   = nvme_fc_init_request,
3392        .exit_request   = nvme_fc_exit_request,
3393        .init_hctx      = nvme_fc_init_admin_hctx,
3394        .timeout        = nvme_fc_timeout,
3395};
3396
3397
3398/*
3399 * Fails a controller request if it matches an existing controller
3400 * (association) with the same tuple:
3401 * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3402 *
3403 * The ports don't need to be compared as they are intrinsically
3404 * already matched by the port pointers supplied.
3405 */
3406static bool
3407nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3408                struct nvmf_ctrl_options *opts)
3409{
3410        struct nvme_fc_ctrl *ctrl;
3411        unsigned long flags;
3412        bool found = false;
3413
3414        spin_lock_irqsave(&rport->lock, flags);
3415        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3416                found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3417                if (found)
3418                        break;
3419        }
3420        spin_unlock_irqrestore(&rport->lock, flags);
3421
3422        return found;
3423}
3424
3425static struct nvme_ctrl *
3426nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3427        struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3428{
3429        struct nvme_fc_ctrl *ctrl;
3430        unsigned long flags;
3431        int ret, idx, ctrl_loss_tmo;
3432
3433        if (!(rport->remoteport.port_role &
3434            (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3435                ret = -EBADR;
3436                goto out_fail;
3437        }
3438
3439        if (!opts->duplicate_connect &&
3440            nvme_fc_existing_controller(rport, opts)) {
3441                ret = -EALREADY;
3442                goto out_fail;
3443        }
3444
3445        ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3446        if (!ctrl) {
3447                ret = -ENOMEM;
3448                goto out_fail;
3449        }
3450
3451        idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3452        if (idx < 0) {
3453                ret = -ENOSPC;
3454                goto out_free_ctrl;
3455        }
3456
3457        /*
3458         * if ctrl_loss_tmo is being enforced and the default reconnect delay
3459         * is being used, change to a shorter reconnect delay for FC.
3460         */
3461        if (opts->max_reconnects != -1 &&
3462            opts->reconnect_delay == NVMF_DEF_RECONNECT_DELAY &&
3463            opts->reconnect_delay > NVME_FC_DEFAULT_RECONNECT_TMO) {
3464                ctrl_loss_tmo = opts->max_reconnects * opts->reconnect_delay;
3465                opts->reconnect_delay = NVME_FC_DEFAULT_RECONNECT_TMO;
3466                opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3467                                                opts->reconnect_delay);
3468        }
3469
3470        ctrl->ctrl.opts = opts;
3471        ctrl->ctrl.nr_reconnects = 0;
3472        if (lport->dev)
3473                ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3474        else
3475                ctrl->ctrl.numa_node = NUMA_NO_NODE;
3476        INIT_LIST_HEAD(&ctrl->ctrl_list);
3477        ctrl->lport = lport;
3478        ctrl->rport = rport;
3479        ctrl->dev = lport->dev;
3480        ctrl->cnum = idx;
3481        ctrl->ioq_live = false;
3482        init_waitqueue_head(&ctrl->ioabort_wait);
3483
3484        get_device(ctrl->dev);
3485        kref_init(&ctrl->ref);
3486
3487        INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3488        INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3489        INIT_WORK(&ctrl->ioerr_work, nvme_fc_ctrl_ioerr_work);
3490        spin_lock_init(&ctrl->lock);
3491
3492        /* io queue count */
3493        ctrl->ctrl.queue_count = min_t(unsigned int,
3494                                opts->nr_io_queues,
3495                                lport->ops->max_hw_queues);
3496        ctrl->ctrl.queue_count++;       /* +1 for admin queue */
3497
3498        ctrl->ctrl.sqsize = opts->queue_size - 1;
3499        ctrl->ctrl.kato = opts->kato;
3500        ctrl->ctrl.cntlid = 0xffff;
3501
3502        ret = -ENOMEM;
3503        ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3504                                sizeof(struct nvme_fc_queue), GFP_KERNEL);
3505        if (!ctrl->queues)
3506                goto out_free_ida;
3507
3508        nvme_fc_init_queue(ctrl, 0);
3509
3510        memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3511        ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3512        ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3513        ctrl->admin_tag_set.reserved_tags = NVMF_RESERVED_TAGS;
3514        ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3515        ctrl->admin_tag_set.cmd_size =
3516                struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3517                            ctrl->lport->ops->fcprqst_priv_sz);
3518        ctrl->admin_tag_set.driver_data = ctrl;
3519        ctrl->admin_tag_set.nr_hw_queues = 1;
3520        ctrl->admin_tag_set.timeout = NVME_ADMIN_TIMEOUT;
3521        ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3522
3523        ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3524        if (ret)
3525                goto out_free_queues;
3526        ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3527
3528        ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3529        if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3530                ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3531                goto out_free_admin_tag_set;
3532        }
3533
3534        ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3535        if (IS_ERR(ctrl->ctrl.admin_q)) {
3536                ret = PTR_ERR(ctrl->ctrl.admin_q);
3537                goto out_cleanup_fabrics_q;
3538        }
3539
3540        /*
3541         * Would have been nice to init io queues tag set as well.
3542         * However, we require interaction from the controller
3543         * for max io queue count before we can do so.
3544         * Defer this to the connect path.
3545         */
3546
3547        ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3548        if (ret)
3549                goto out_cleanup_admin_q;
3550
3551        /* at this point, teardown path changes to ref counting on nvme ctrl */
3552
3553        spin_lock_irqsave(&rport->lock, flags);
3554        list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3555        spin_unlock_irqrestore(&rport->lock, flags);
3556
3557        if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3558            !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3559                dev_err(ctrl->ctrl.device,
3560                        "NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3561                goto fail_ctrl;
3562        }
3563
3564        if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3565                dev_err(ctrl->ctrl.device,
3566                        "NVME-FC{%d}: failed to schedule initial connect\n",
3567                        ctrl->cnum);
3568                goto fail_ctrl;
3569        }
3570
3571        flush_delayed_work(&ctrl->connect_work);
3572
3573        dev_info(ctrl->ctrl.device,
3574                "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3575                ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3576
3577        return &ctrl->ctrl;
3578
3579fail_ctrl:
3580        nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3581        cancel_work_sync(&ctrl->ioerr_work);
3582        cancel_work_sync(&ctrl->ctrl.reset_work);
3583        cancel_delayed_work_sync(&ctrl->connect_work);
3584
3585        ctrl->ctrl.opts = NULL;
3586
3587        /* initiate nvme ctrl ref counting teardown */
3588        nvme_uninit_ctrl(&ctrl->ctrl);
3589
3590        /* Remove core ctrl ref. */
3591        nvme_put_ctrl(&ctrl->ctrl);
3592
3593        /* as we're past the point where we transition to the ref
3594         * counting teardown path, if we return a bad pointer here,
3595         * the calling routine, thinking it's prior to the
3596         * transition, will do an rport put. Since the teardown
3597         * path also does a rport put, we do an extra get here to
3598         * so proper order/teardown happens.
3599         */
3600        nvme_fc_rport_get(rport);
3601
3602        return ERR_PTR(-EIO);
3603
3604out_cleanup_admin_q:
3605        blk_cleanup_queue(ctrl->ctrl.admin_q);
3606out_cleanup_fabrics_q:
3607        blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3608out_free_admin_tag_set:
3609        blk_mq_free_tag_set(&ctrl->admin_tag_set);
3610out_free_queues:
3611        kfree(ctrl->queues);
3612out_free_ida:
3613        put_device(ctrl->dev);
3614        ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3615out_free_ctrl:
3616        kfree(ctrl);
3617out_fail:
3618        /* exit via here doesn't follow ctlr ref points */
3619        return ERR_PTR(ret);
3620}
3621
3622
3623struct nvmet_fc_traddr {
3624        u64     nn;
3625        u64     pn;
3626};
3627
3628static int
3629__nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3630{
3631        u64 token64;
3632
3633        if (match_u64(sstr, &token64))
3634                return -EINVAL;
3635        *val = token64;
3636
3637        return 0;
3638}
3639
3640/*
3641 * This routine validates and extracts the WWN's from the TRADDR string.
3642 * As kernel parsers need the 0x to determine number base, universally
3643 * build string to parse with 0x prefix before parsing name strings.
3644 */
3645static int
3646nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3647{
3648        char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3649        substring_t wwn = { name, &name[sizeof(name)-1] };
3650        int nnoffset, pnoffset;
3651
3652        /* validate if string is one of the 2 allowed formats */
3653        if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3654                        !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3655                        !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3656                                "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3657                nnoffset = NVME_FC_TRADDR_OXNNLEN;
3658                pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3659                                                NVME_FC_TRADDR_OXNNLEN;
3660        } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3661                        !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3662                        !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3663                                "pn-", NVME_FC_TRADDR_NNLEN))) {
3664                nnoffset = NVME_FC_TRADDR_NNLEN;
3665                pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3666        } else
3667                goto out_einval;
3668
3669        name[0] = '0';
3670        name[1] = 'x';
3671        name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3672
3673        memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3674        if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3675                goto out_einval;
3676
3677        memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3678        if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3679                goto out_einval;
3680
3681        return 0;
3682
3683out_einval:
3684        pr_warn("%s: bad traddr string\n", __func__);
3685        return -EINVAL;
3686}
3687
3688static struct nvme_ctrl *
3689nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3690{
3691        struct nvme_fc_lport *lport;
3692        struct nvme_fc_rport *rport;
3693        struct nvme_ctrl *ctrl;
3694        struct nvmet_fc_traddr laddr = { 0L, 0L };
3695        struct nvmet_fc_traddr raddr = { 0L, 0L };
3696        unsigned long flags;
3697        int ret;
3698
3699        ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3700        if (ret || !raddr.nn || !raddr.pn)
3701                return ERR_PTR(-EINVAL);
3702
3703        ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3704        if (ret || !laddr.nn || !laddr.pn)
3705                return ERR_PTR(-EINVAL);
3706
3707        /* find the host and remote ports to connect together */
3708        spin_lock_irqsave(&nvme_fc_lock, flags);
3709        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3710                if (lport->localport.node_name != laddr.nn ||
3711                    lport->localport.port_name != laddr.pn ||
3712                    lport->localport.port_state != FC_OBJSTATE_ONLINE)
3713                        continue;
3714
3715                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3716                        if (rport->remoteport.node_name != raddr.nn ||
3717                            rport->remoteport.port_name != raddr.pn ||
3718                            rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
3719                                continue;
3720
3721                        /* if fail to get reference fall through. Will error */
3722                        if (!nvme_fc_rport_get(rport))
3723                                break;
3724
3725                        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3726
3727                        ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3728                        if (IS_ERR(ctrl))
3729                                nvme_fc_rport_put(rport);
3730                        return ctrl;
3731                }
3732        }
3733        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3734
3735        pr_warn("%s: %s - %s combination not found\n",
3736                __func__, opts->traddr, opts->host_traddr);
3737        return ERR_PTR(-ENOENT);
3738}
3739
3740
3741static struct nvmf_transport_ops nvme_fc_transport = {
3742        .name           = "fc",
3743        .module         = THIS_MODULE,
3744        .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3745        .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3746        .create_ctrl    = nvme_fc_create_ctrl,
3747};
3748
3749/* Arbitrary successive failures max. With lots of subsystems could be high */
3750#define DISCOVERY_MAX_FAIL      20
3751
3752static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3753                struct device_attribute *attr, const char *buf, size_t count)
3754{
3755        unsigned long flags;
3756        LIST_HEAD(local_disc_list);
3757        struct nvme_fc_lport *lport;
3758        struct nvme_fc_rport *rport;
3759        int failcnt = 0;
3760
3761        spin_lock_irqsave(&nvme_fc_lock, flags);
3762restart:
3763        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3764                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3765                        if (!nvme_fc_lport_get(lport))
3766                                continue;
3767                        if (!nvme_fc_rport_get(rport)) {
3768                                /*
3769                                 * This is a temporary condition. Upon restart
3770                                 * this rport will be gone from the list.
3771                                 *
3772                                 * Revert the lport put and retry.  Anything
3773                                 * added to the list already will be skipped (as
3774                                 * they are no longer list_empty).  Loops should
3775                                 * resume at rports that were not yet seen.
3776                                 */
3777                                nvme_fc_lport_put(lport);
3778
3779                                if (failcnt++ < DISCOVERY_MAX_FAIL)
3780                                        goto restart;
3781
3782                                pr_err("nvme_discovery: too many reference "
3783                                       "failures\n");
3784                                goto process_local_list;
3785                        }
3786                        if (list_empty(&rport->disc_list))
3787                                list_add_tail(&rport->disc_list,
3788                                              &local_disc_list);
3789                }
3790        }
3791
3792process_local_list:
3793        while (!list_empty(&local_disc_list)) {
3794                rport = list_first_entry(&local_disc_list,
3795                                         struct nvme_fc_rport, disc_list);
3796                list_del_init(&rport->disc_list);
3797                spin_unlock_irqrestore(&nvme_fc_lock, flags);
3798
3799                lport = rport->lport;
3800                /* signal discovery. Won't hurt if it repeats */
3801                nvme_fc_signal_discovery_scan(lport, rport);
3802                nvme_fc_rport_put(rport);
3803                nvme_fc_lport_put(lport);
3804
3805                spin_lock_irqsave(&nvme_fc_lock, flags);
3806        }
3807        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3808
3809        return count;
3810}
3811
3812/* Parse the cgroup id from a buf and return the length of cgrpid */
3813static int fc_parse_cgrpid(const char *buf, u64 *id)
3814{
3815        char cgrp_id[16+1];
3816        int cgrpid_len, j;
3817
3818        memset(cgrp_id, 0x0, sizeof(cgrp_id));
3819        for (cgrpid_len = 0, j = 0; cgrpid_len < 17; cgrpid_len++) {
3820                if (buf[cgrpid_len] != ':')
3821                        cgrp_id[cgrpid_len] = buf[cgrpid_len];
3822                else {
3823                        j = 1;
3824                        break;
3825                }
3826        }
3827        if (!j)
3828                return -EINVAL;
3829        if (kstrtou64(cgrp_id, 16, id) < 0)
3830                return -EINVAL;
3831        return cgrpid_len;
3832}
3833
3834/*
3835 * fc_update_appid: Parse and update the appid in the blkcg associated with
3836 * cgroupid.
3837 * @buf: buf contains both cgrpid and appid info
3838 * @count: size of the buffer
3839 */
3840static int fc_update_appid(const char *buf, size_t count)
3841{
3842        u64 cgrp_id;
3843        int appid_len = 0;
3844        int cgrpid_len = 0;
3845        char app_id[FC_APPID_LEN];
3846        int ret = 0;
3847
3848        if (buf[count-1] == '\n')
3849                count--;
3850
3851        if ((count > (16+1+FC_APPID_LEN)) || (!strchr(buf, ':')))
3852                return -EINVAL;
3853
3854        cgrpid_len = fc_parse_cgrpid(buf, &cgrp_id);
3855        if (cgrpid_len < 0)
3856                return -EINVAL;
3857        appid_len = count - cgrpid_len - 1;
3858        if (appid_len > FC_APPID_LEN)
3859                return -EINVAL;
3860
3861        memset(app_id, 0x0, sizeof(app_id));
3862        memcpy(app_id, &buf[cgrpid_len+1], appid_len);
3863        ret = blkcg_set_fc_appid(app_id, cgrp_id, sizeof(app_id));
3864        if (ret < 0)
3865                return ret;
3866        return count;
3867}
3868
3869static ssize_t fc_appid_store(struct device *dev,
3870                struct device_attribute *attr, const char *buf, size_t count)
3871{
3872        int ret  = 0;
3873
3874        ret = fc_update_appid(buf, count);
3875        if (ret < 0)
3876                return -EINVAL;
3877        return count;
3878}
3879static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3880static DEVICE_ATTR(appid_store, 0200, NULL, fc_appid_store);
3881
3882static struct attribute *nvme_fc_attrs[] = {
3883        &dev_attr_nvme_discovery.attr,
3884        &dev_attr_appid_store.attr,
3885        NULL
3886};
3887
3888static const struct attribute_group nvme_fc_attr_group = {
3889        .attrs = nvme_fc_attrs,
3890};
3891
3892static const struct attribute_group *nvme_fc_attr_groups[] = {
3893        &nvme_fc_attr_group,
3894        NULL
3895};
3896
3897static struct class fc_class = {
3898        .name = "fc",
3899        .dev_groups = nvme_fc_attr_groups,
3900        .owner = THIS_MODULE,
3901};
3902
3903static int __init nvme_fc_init_module(void)
3904{
3905        int ret;
3906
3907        nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3908        if (!nvme_fc_wq)
3909                return -ENOMEM;
3910
3911        /*
3912         * NOTE:
3913         * It is expected that in the future the kernel will combine
3914         * the FC-isms that are currently under scsi and now being
3915         * added to by NVME into a new standalone FC class. The SCSI
3916         * and NVME protocols and their devices would be under this
3917         * new FC class.
3918         *
3919         * As we need something to post FC-specific udev events to,
3920         * specifically for nvme probe events, start by creating the
3921         * new device class.  When the new standalone FC class is
3922         * put in place, this code will move to a more generic
3923         * location for the class.
3924         */
3925        ret = class_register(&fc_class);
3926        if (ret) {
3927                pr_err("couldn't register class fc\n");
3928                goto out_destroy_wq;
3929        }
3930
3931        /*
3932         * Create a device for the FC-centric udev events
3933         */
3934        fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3935                                "fc_udev_device");
3936        if (IS_ERR(fc_udev_device)) {
3937                pr_err("couldn't create fc_udev device!\n");
3938                ret = PTR_ERR(fc_udev_device);
3939                goto out_destroy_class;
3940        }
3941
3942        ret = nvmf_register_transport(&nvme_fc_transport);
3943        if (ret)
3944                goto out_destroy_device;
3945
3946        return 0;
3947
3948out_destroy_device:
3949        device_destroy(&fc_class, MKDEV(0, 0));
3950out_destroy_class:
3951        class_unregister(&fc_class);
3952out_destroy_wq:
3953        destroy_workqueue(nvme_fc_wq);
3954
3955        return ret;
3956}
3957
3958static void
3959nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3960{
3961        struct nvme_fc_ctrl *ctrl;
3962
3963        spin_lock(&rport->lock);
3964        list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3965                dev_warn(ctrl->ctrl.device,
3966                        "NVME-FC{%d}: transport unloading: deleting ctrl\n",
3967                        ctrl->cnum);
3968                nvme_delete_ctrl(&ctrl->ctrl);
3969        }
3970        spin_unlock(&rport->lock);
3971}
3972
3973static void
3974nvme_fc_cleanup_for_unload(void)
3975{
3976        struct nvme_fc_lport *lport;
3977        struct nvme_fc_rport *rport;
3978
3979        list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3980                list_for_each_entry(rport, &lport->endp_list, endp_list) {
3981                        nvme_fc_delete_controllers(rport);
3982                }
3983        }
3984}
3985
3986static void __exit nvme_fc_exit_module(void)
3987{
3988        unsigned long flags;
3989        bool need_cleanup = false;
3990
3991        spin_lock_irqsave(&nvme_fc_lock, flags);
3992        nvme_fc_waiting_to_unload = true;
3993        if (!list_empty(&nvme_fc_lport_list)) {
3994                need_cleanup = true;
3995                nvme_fc_cleanup_for_unload();
3996        }
3997        spin_unlock_irqrestore(&nvme_fc_lock, flags);
3998        if (need_cleanup) {
3999                pr_info("%s: waiting for ctlr deletes\n", __func__);
4000                wait_for_completion(&nvme_fc_unload_proceed);
4001                pr_info("%s: ctrl deletes complete\n", __func__);
4002        }
4003
4004        nvmf_unregister_transport(&nvme_fc_transport);
4005
4006        ida_destroy(&nvme_fc_local_port_cnt);
4007        ida_destroy(&nvme_fc_ctrl_cnt);
4008
4009        device_destroy(&fc_class, MKDEV(0, 0));
4010        class_unregister(&fc_class);
4011        destroy_workqueue(nvme_fc_wq);
4012}
4013
4014module_init(nvme_fc_init_module);
4015module_exit(nvme_fc_exit_module);
4016
4017MODULE_LICENSE("GPL v2");
4018