linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVM Express device driver
   4 * Copyright (c) 2011-2014, Intel Corporation.
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/aer.h>
   9#include <linux/async.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/blk-mq-pci.h>
  13#include <linux/dmi.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/mutex.h>
  20#include <linux/once.h>
  21#include <linux/pci.h>
  22#include <linux/suspend.h>
  23#include <linux/t10-pi.h>
  24#include <linux/types.h>
  25#include <linux/io-64-nonatomic-lo-hi.h>
  26#include <linux/io-64-nonatomic-hi-lo.h>
  27#include <linux/sed-opal.h>
  28#include <linux/pci-p2pdma.h>
  29
  30#include "trace.h"
  31#include "nvme.h"
  32
  33#define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
  34#define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
  35
  36#define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  37
  38/*
  39 * These can be higher, but we need to ensure that any command doesn't
  40 * require an sg allocation that needs more than a page of data.
  41 */
  42#define NVME_MAX_KB_SZ  4096
  43#define NVME_MAX_SEGS   127
  44
  45static int use_threaded_interrupts;
  46module_param(use_threaded_interrupts, int, 0);
  47
  48static bool use_cmb_sqes = true;
  49module_param(use_cmb_sqes, bool, 0444);
  50MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  51
  52static unsigned int max_host_mem_size_mb = 128;
  53module_param(max_host_mem_size_mb, uint, 0444);
  54MODULE_PARM_DESC(max_host_mem_size_mb,
  55        "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  56
  57static unsigned int sgl_threshold = SZ_32K;
  58module_param(sgl_threshold, uint, 0644);
  59MODULE_PARM_DESC(sgl_threshold,
  60                "Use SGLs when average request segment size is larger or equal to "
  61                "this size. Use 0 to disable SGLs.");
  62
  63#define NVME_PCI_MIN_QUEUE_SIZE 2
  64#define NVME_PCI_MAX_QUEUE_SIZE 4095
  65static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  66static const struct kernel_param_ops io_queue_depth_ops = {
  67        .set = io_queue_depth_set,
  68        .get = param_get_uint,
  69};
  70
  71static unsigned int io_queue_depth = 1024;
  72module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  73MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
  74
  75static int io_queue_count_set(const char *val, const struct kernel_param *kp)
  76{
  77        unsigned int n;
  78        int ret;
  79
  80        ret = kstrtouint(val, 10, &n);
  81        if (ret != 0 || n > num_possible_cpus())
  82                return -EINVAL;
  83        return param_set_uint(val, kp);
  84}
  85
  86static const struct kernel_param_ops io_queue_count_ops = {
  87        .set = io_queue_count_set,
  88        .get = param_get_uint,
  89};
  90
  91static unsigned int write_queues;
  92module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
  93MODULE_PARM_DESC(write_queues,
  94        "Number of queues to use for writes. If not set, reads and writes "
  95        "will share a queue set.");
  96
  97static unsigned int poll_queues;
  98module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
  99MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
 100
 101static bool noacpi;
 102module_param(noacpi, bool, 0444);
 103MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
 104
 105struct nvme_dev;
 106struct nvme_queue;
 107
 108static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
 109static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
 110
 111/*
 112 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
 113 */
 114struct nvme_dev {
 115        struct nvme_queue *queues;
 116        struct blk_mq_tag_set tagset;
 117        struct blk_mq_tag_set admin_tagset;
 118        u32 __iomem *dbs;
 119        struct device *dev;
 120        struct dma_pool *prp_page_pool;
 121        struct dma_pool *prp_small_pool;
 122        unsigned online_queues;
 123        unsigned max_qid;
 124        unsigned io_queues[HCTX_MAX_TYPES];
 125        unsigned int num_vecs;
 126        u32 q_depth;
 127        int io_sqes;
 128        u32 db_stride;
 129        void __iomem *bar;
 130        unsigned long bar_mapped_size;
 131        struct work_struct remove_work;
 132        struct mutex shutdown_lock;
 133        bool subsystem;
 134        u64 cmb_size;
 135        bool cmb_use_sqes;
 136        u32 cmbsz;
 137        u32 cmbloc;
 138        struct nvme_ctrl ctrl;
 139        u32 last_ps;
 140        bool hmb;
 141
 142        mempool_t *iod_mempool;
 143
 144        /* shadow doorbell buffer support: */
 145        u32 *dbbuf_dbs;
 146        dma_addr_t dbbuf_dbs_dma_addr;
 147        u32 *dbbuf_eis;
 148        dma_addr_t dbbuf_eis_dma_addr;
 149
 150        /* host memory buffer support: */
 151        u64 host_mem_size;
 152        u32 nr_host_mem_descs;
 153        dma_addr_t host_mem_descs_dma;
 154        struct nvme_host_mem_buf_desc *host_mem_descs;
 155        void **host_mem_desc_bufs;
 156        unsigned int nr_allocated_queues;
 157        unsigned int nr_write_queues;
 158        unsigned int nr_poll_queues;
 159
 160        bool attrs_added;
 161};
 162
 163static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 164{
 165        return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
 166                        NVME_PCI_MAX_QUEUE_SIZE);
 167}
 168
 169static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 170{
 171        return qid * 2 * stride;
 172}
 173
 174static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 175{
 176        return (qid * 2 + 1) * stride;
 177}
 178
 179static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 180{
 181        return container_of(ctrl, struct nvme_dev, ctrl);
 182}
 183
 184/*
 185 * An NVM Express queue.  Each device has at least two (one for admin
 186 * commands and one for I/O commands).
 187 */
 188struct nvme_queue {
 189        struct nvme_dev *dev;
 190        spinlock_t sq_lock;
 191        void *sq_cmds;
 192         /* only used for poll queues: */
 193        spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 194        struct nvme_completion *cqes;
 195        dma_addr_t sq_dma_addr;
 196        dma_addr_t cq_dma_addr;
 197        u32 __iomem *q_db;
 198        u32 q_depth;
 199        u16 cq_vector;
 200        u16 sq_tail;
 201        u16 last_sq_tail;
 202        u16 cq_head;
 203        u16 qid;
 204        u8 cq_phase;
 205        u8 sqes;
 206        unsigned long flags;
 207#define NVMEQ_ENABLED           0
 208#define NVMEQ_SQ_CMB            1
 209#define NVMEQ_DELETE_ERROR      2
 210#define NVMEQ_POLLED            3
 211        u32 *dbbuf_sq_db;
 212        u32 *dbbuf_cq_db;
 213        u32 *dbbuf_sq_ei;
 214        u32 *dbbuf_cq_ei;
 215        struct completion delete_done;
 216};
 217
 218/*
 219 * The nvme_iod describes the data in an I/O.
 220 *
 221 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
 222 * to the actual struct scatterlist.
 223 */
 224struct nvme_iod {
 225        struct nvme_request req;
 226        struct nvme_command cmd;
 227        struct nvme_queue *nvmeq;
 228        bool use_sgl;
 229        int aborted;
 230        int npages;             /* In the PRP list. 0 means small pool in use */
 231        int nents;              /* Used in scatterlist */
 232        dma_addr_t first_dma;
 233        unsigned int dma_len;   /* length of single DMA segment mapping */
 234        dma_addr_t meta_dma;
 235        struct scatterlist *sg;
 236};
 237
 238static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
 239{
 240        return dev->nr_allocated_queues * 8 * dev->db_stride;
 241}
 242
 243static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 244{
 245        unsigned int mem_size = nvme_dbbuf_size(dev);
 246
 247        if (dev->dbbuf_dbs)
 248                return 0;
 249
 250        dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 251                                            &dev->dbbuf_dbs_dma_addr,
 252                                            GFP_KERNEL);
 253        if (!dev->dbbuf_dbs)
 254                return -ENOMEM;
 255        dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 256                                            &dev->dbbuf_eis_dma_addr,
 257                                            GFP_KERNEL);
 258        if (!dev->dbbuf_eis) {
 259                dma_free_coherent(dev->dev, mem_size,
 260                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 261                dev->dbbuf_dbs = NULL;
 262                return -ENOMEM;
 263        }
 264
 265        return 0;
 266}
 267
 268static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 269{
 270        unsigned int mem_size = nvme_dbbuf_size(dev);
 271
 272        if (dev->dbbuf_dbs) {
 273                dma_free_coherent(dev->dev, mem_size,
 274                                  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 275                dev->dbbuf_dbs = NULL;
 276        }
 277        if (dev->dbbuf_eis) {
 278                dma_free_coherent(dev->dev, mem_size,
 279                                  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 280                dev->dbbuf_eis = NULL;
 281        }
 282}
 283
 284static void nvme_dbbuf_init(struct nvme_dev *dev,
 285                            struct nvme_queue *nvmeq, int qid)
 286{
 287        if (!dev->dbbuf_dbs || !qid)
 288                return;
 289
 290        nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 291        nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 292        nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 293        nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 294}
 295
 296static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
 297{
 298        if (!nvmeq->qid)
 299                return;
 300
 301        nvmeq->dbbuf_sq_db = NULL;
 302        nvmeq->dbbuf_cq_db = NULL;
 303        nvmeq->dbbuf_sq_ei = NULL;
 304        nvmeq->dbbuf_cq_ei = NULL;
 305}
 306
 307static void nvme_dbbuf_set(struct nvme_dev *dev)
 308{
 309        struct nvme_command c = { };
 310        unsigned int i;
 311
 312        if (!dev->dbbuf_dbs)
 313                return;
 314
 315        c.dbbuf.opcode = nvme_admin_dbbuf;
 316        c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 317        c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 318
 319        if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 320                dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 321                /* Free memory and continue on */
 322                nvme_dbbuf_dma_free(dev);
 323
 324                for (i = 1; i <= dev->online_queues; i++)
 325                        nvme_dbbuf_free(&dev->queues[i]);
 326        }
 327}
 328
 329static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 330{
 331        return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 332}
 333
 334/* Update dbbuf and return true if an MMIO is required */
 335static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 336                                              volatile u32 *dbbuf_ei)
 337{
 338        if (dbbuf_db) {
 339                u16 old_value;
 340
 341                /*
 342                 * Ensure that the queue is written before updating
 343                 * the doorbell in memory
 344                 */
 345                wmb();
 346
 347                old_value = *dbbuf_db;
 348                *dbbuf_db = value;
 349
 350                /*
 351                 * Ensure that the doorbell is updated before reading the event
 352                 * index from memory.  The controller needs to provide similar
 353                 * ordering to ensure the envent index is updated before reading
 354                 * the doorbell.
 355                 */
 356                mb();
 357
 358                if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 359                        return false;
 360        }
 361
 362        return true;
 363}
 364
 365/*
 366 * Will slightly overestimate the number of pages needed.  This is OK
 367 * as it only leads to a small amount of wasted memory for the lifetime of
 368 * the I/O.
 369 */
 370static int nvme_pci_npages_prp(void)
 371{
 372        unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
 373                                      NVME_CTRL_PAGE_SIZE);
 374        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 375}
 376
 377/*
 378 * Calculates the number of pages needed for the SGL segments. For example a 4k
 379 * page can accommodate 256 SGL descriptors.
 380 */
 381static int nvme_pci_npages_sgl(void)
 382{
 383        return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
 384                        PAGE_SIZE);
 385}
 386
 387static size_t nvme_pci_iod_alloc_size(void)
 388{
 389        size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
 390
 391        return sizeof(__le64 *) * npages +
 392                sizeof(struct scatterlist) * NVME_MAX_SEGS;
 393}
 394
 395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 396                                unsigned int hctx_idx)
 397{
 398        struct nvme_dev *dev = data;
 399        struct nvme_queue *nvmeq = &dev->queues[0];
 400
 401        WARN_ON(hctx_idx != 0);
 402        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 403
 404        hctx->driver_data = nvmeq;
 405        return 0;
 406}
 407
 408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 409                          unsigned int hctx_idx)
 410{
 411        struct nvme_dev *dev = data;
 412        struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 413
 414        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 415        hctx->driver_data = nvmeq;
 416        return 0;
 417}
 418
 419static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 420                unsigned int hctx_idx, unsigned int numa_node)
 421{
 422        struct nvme_dev *dev = set->driver_data;
 423        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 424        int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 425        struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 426
 427        BUG_ON(!nvmeq);
 428        iod->nvmeq = nvmeq;
 429
 430        nvme_req(req)->ctrl = &dev->ctrl;
 431        nvme_req(req)->cmd = &iod->cmd;
 432        return 0;
 433}
 434
 435static int queue_irq_offset(struct nvme_dev *dev)
 436{
 437        /* if we have more than 1 vec, admin queue offsets us by 1 */
 438        if (dev->num_vecs > 1)
 439                return 1;
 440
 441        return 0;
 442}
 443
 444static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 445{
 446        struct nvme_dev *dev = set->driver_data;
 447        int i, qoff, offset;
 448
 449        offset = queue_irq_offset(dev);
 450        for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 451                struct blk_mq_queue_map *map = &set->map[i];
 452
 453                map->nr_queues = dev->io_queues[i];
 454                if (!map->nr_queues) {
 455                        BUG_ON(i == HCTX_TYPE_DEFAULT);
 456                        continue;
 457                }
 458
 459                /*
 460                 * The poll queue(s) doesn't have an IRQ (and hence IRQ
 461                 * affinity), so use the regular blk-mq cpu mapping
 462                 */
 463                map->queue_offset = qoff;
 464                if (i != HCTX_TYPE_POLL && offset)
 465                        blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 466                else
 467                        blk_mq_map_queues(map);
 468                qoff += map->nr_queues;
 469                offset += map->nr_queues;
 470        }
 471
 472        return 0;
 473}
 474
 475/*
 476 * Write sq tail if we are asked to, or if the next command would wrap.
 477 */
 478static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 479{
 480        if (!write_sq) {
 481                u16 next_tail = nvmeq->sq_tail + 1;
 482
 483                if (next_tail == nvmeq->q_depth)
 484                        next_tail = 0;
 485                if (next_tail != nvmeq->last_sq_tail)
 486                        return;
 487        }
 488
 489        if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 490                        nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 491                writel(nvmeq->sq_tail, nvmeq->q_db);
 492        nvmeq->last_sq_tail = nvmeq->sq_tail;
 493}
 494
 495/**
 496 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 497 * @nvmeq: The queue to use
 498 * @cmd: The command to send
 499 * @write_sq: whether to write to the SQ doorbell
 500 */
 501static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 502                            bool write_sq)
 503{
 504        spin_lock(&nvmeq->sq_lock);
 505        memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
 506               cmd, sizeof(*cmd));
 507        if (++nvmeq->sq_tail == nvmeq->q_depth)
 508                nvmeq->sq_tail = 0;
 509        nvme_write_sq_db(nvmeq, write_sq);
 510        spin_unlock(&nvmeq->sq_lock);
 511}
 512
 513static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 514{
 515        struct nvme_queue *nvmeq = hctx->driver_data;
 516
 517        spin_lock(&nvmeq->sq_lock);
 518        if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 519                nvme_write_sq_db(nvmeq, true);
 520        spin_unlock(&nvmeq->sq_lock);
 521}
 522
 523static void **nvme_pci_iod_list(struct request *req)
 524{
 525        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 526        return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 527}
 528
 529static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 530{
 531        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 532        int nseg = blk_rq_nr_phys_segments(req);
 533        unsigned int avg_seg_size;
 534
 535        avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 536
 537        if (!nvme_ctrl_sgl_supported(&dev->ctrl))
 538                return false;
 539        if (!iod->nvmeq->qid)
 540                return false;
 541        if (!sgl_threshold || avg_seg_size < sgl_threshold)
 542                return false;
 543        return true;
 544}
 545
 546static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
 547{
 548        const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
 549        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 550        dma_addr_t dma_addr = iod->first_dma;
 551        int i;
 552
 553        for (i = 0; i < iod->npages; i++) {
 554                __le64 *prp_list = nvme_pci_iod_list(req)[i];
 555                dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 556
 557                dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
 558                dma_addr = next_dma_addr;
 559        }
 560}
 561
 562static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
 563{
 564        const int last_sg = SGES_PER_PAGE - 1;
 565        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 566        dma_addr_t dma_addr = iod->first_dma;
 567        int i;
 568
 569        for (i = 0; i < iod->npages; i++) {
 570                struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
 571                dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
 572
 573                dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
 574                dma_addr = next_dma_addr;
 575        }
 576}
 577
 578static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
 579{
 580        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 581
 582        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 583                pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
 584                                    rq_dma_dir(req));
 585        else
 586                dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
 587}
 588
 589static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 590{
 591        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 592
 593        if (iod->dma_len) {
 594                dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
 595                               rq_dma_dir(req));
 596                return;
 597        }
 598
 599        WARN_ON_ONCE(!iod->nents);
 600
 601        nvme_unmap_sg(dev, req);
 602        if (iod->npages == 0)
 603                dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 604                              iod->first_dma);
 605        else if (iod->use_sgl)
 606                nvme_free_sgls(dev, req);
 607        else
 608                nvme_free_prps(dev, req);
 609        mempool_free(iod->sg, dev->iod_mempool);
 610}
 611
 612static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 613{
 614        int i;
 615        struct scatterlist *sg;
 616
 617        for_each_sg(sgl, sg, nents, i) {
 618                dma_addr_t phys = sg_phys(sg);
 619                pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 620                        "dma_address:%pad dma_length:%d\n",
 621                        i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 622                        sg_dma_len(sg));
 623        }
 624}
 625
 626static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 627                struct request *req, struct nvme_rw_command *cmnd)
 628{
 629        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 630        struct dma_pool *pool;
 631        int length = blk_rq_payload_bytes(req);
 632        struct scatterlist *sg = iod->sg;
 633        int dma_len = sg_dma_len(sg);
 634        u64 dma_addr = sg_dma_address(sg);
 635        int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
 636        __le64 *prp_list;
 637        void **list = nvme_pci_iod_list(req);
 638        dma_addr_t prp_dma;
 639        int nprps, i;
 640
 641        length -= (NVME_CTRL_PAGE_SIZE - offset);
 642        if (length <= 0) {
 643                iod->first_dma = 0;
 644                goto done;
 645        }
 646
 647        dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
 648        if (dma_len) {
 649                dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
 650        } else {
 651                sg = sg_next(sg);
 652                dma_addr = sg_dma_address(sg);
 653                dma_len = sg_dma_len(sg);
 654        }
 655
 656        if (length <= NVME_CTRL_PAGE_SIZE) {
 657                iod->first_dma = dma_addr;
 658                goto done;
 659        }
 660
 661        nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
 662        if (nprps <= (256 / 8)) {
 663                pool = dev->prp_small_pool;
 664                iod->npages = 0;
 665        } else {
 666                pool = dev->prp_page_pool;
 667                iod->npages = 1;
 668        }
 669
 670        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 671        if (!prp_list) {
 672                iod->first_dma = dma_addr;
 673                iod->npages = -1;
 674                return BLK_STS_RESOURCE;
 675        }
 676        list[0] = prp_list;
 677        iod->first_dma = prp_dma;
 678        i = 0;
 679        for (;;) {
 680                if (i == NVME_CTRL_PAGE_SIZE >> 3) {
 681                        __le64 *old_prp_list = prp_list;
 682                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 683                        if (!prp_list)
 684                                goto free_prps;
 685                        list[iod->npages++] = prp_list;
 686                        prp_list[0] = old_prp_list[i - 1];
 687                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 688                        i = 1;
 689                }
 690                prp_list[i++] = cpu_to_le64(dma_addr);
 691                dma_len -= NVME_CTRL_PAGE_SIZE;
 692                dma_addr += NVME_CTRL_PAGE_SIZE;
 693                length -= NVME_CTRL_PAGE_SIZE;
 694                if (length <= 0)
 695                        break;
 696                if (dma_len > 0)
 697                        continue;
 698                if (unlikely(dma_len < 0))
 699                        goto bad_sgl;
 700                sg = sg_next(sg);
 701                dma_addr = sg_dma_address(sg);
 702                dma_len = sg_dma_len(sg);
 703        }
 704done:
 705        cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 706        cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 707        return BLK_STS_OK;
 708free_prps:
 709        nvme_free_prps(dev, req);
 710        return BLK_STS_RESOURCE;
 711bad_sgl:
 712        WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 713                        "Invalid SGL for payload:%d nents:%d\n",
 714                        blk_rq_payload_bytes(req), iod->nents);
 715        return BLK_STS_IOERR;
 716}
 717
 718static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 719                struct scatterlist *sg)
 720{
 721        sge->addr = cpu_to_le64(sg_dma_address(sg));
 722        sge->length = cpu_to_le32(sg_dma_len(sg));
 723        sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 724}
 725
 726static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 727                dma_addr_t dma_addr, int entries)
 728{
 729        sge->addr = cpu_to_le64(dma_addr);
 730        if (entries < SGES_PER_PAGE) {
 731                sge->length = cpu_to_le32(entries * sizeof(*sge));
 732                sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 733        } else {
 734                sge->length = cpu_to_le32(PAGE_SIZE);
 735                sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 736        }
 737}
 738
 739static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 740                struct request *req, struct nvme_rw_command *cmd, int entries)
 741{
 742        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 743        struct dma_pool *pool;
 744        struct nvme_sgl_desc *sg_list;
 745        struct scatterlist *sg = iod->sg;
 746        dma_addr_t sgl_dma;
 747        int i = 0;
 748
 749        /* setting the transfer type as SGL */
 750        cmd->flags = NVME_CMD_SGL_METABUF;
 751
 752        if (entries == 1) {
 753                nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 754                return BLK_STS_OK;
 755        }
 756
 757        if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 758                pool = dev->prp_small_pool;
 759                iod->npages = 0;
 760        } else {
 761                pool = dev->prp_page_pool;
 762                iod->npages = 1;
 763        }
 764
 765        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 766        if (!sg_list) {
 767                iod->npages = -1;
 768                return BLK_STS_RESOURCE;
 769        }
 770
 771        nvme_pci_iod_list(req)[0] = sg_list;
 772        iod->first_dma = sgl_dma;
 773
 774        nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 775
 776        do {
 777                if (i == SGES_PER_PAGE) {
 778                        struct nvme_sgl_desc *old_sg_desc = sg_list;
 779                        struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 780
 781                        sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 782                        if (!sg_list)
 783                                goto free_sgls;
 784
 785                        i = 0;
 786                        nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 787                        sg_list[i++] = *link;
 788                        nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 789                }
 790
 791                nvme_pci_sgl_set_data(&sg_list[i++], sg);
 792                sg = sg_next(sg);
 793        } while (--entries > 0);
 794
 795        return BLK_STS_OK;
 796free_sgls:
 797        nvme_free_sgls(dev, req);
 798        return BLK_STS_RESOURCE;
 799}
 800
 801static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
 802                struct request *req, struct nvme_rw_command *cmnd,
 803                struct bio_vec *bv)
 804{
 805        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 806        unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
 807        unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
 808
 809        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 810        if (dma_mapping_error(dev->dev, iod->first_dma))
 811                return BLK_STS_RESOURCE;
 812        iod->dma_len = bv->bv_len;
 813
 814        cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
 815        if (bv->bv_len > first_prp_len)
 816                cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
 817        return BLK_STS_OK;
 818}
 819
 820static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
 821                struct request *req, struct nvme_rw_command *cmnd,
 822                struct bio_vec *bv)
 823{
 824        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 825
 826        iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 827        if (dma_mapping_error(dev->dev, iod->first_dma))
 828                return BLK_STS_RESOURCE;
 829        iod->dma_len = bv->bv_len;
 830
 831        cmnd->flags = NVME_CMD_SGL_METABUF;
 832        cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
 833        cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
 834        cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
 835        return BLK_STS_OK;
 836}
 837
 838static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 839                struct nvme_command *cmnd)
 840{
 841        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 842        blk_status_t ret = BLK_STS_RESOURCE;
 843        int nr_mapped;
 844
 845        if (blk_rq_nr_phys_segments(req) == 1) {
 846                struct bio_vec bv = req_bvec(req);
 847
 848                if (!is_pci_p2pdma_page(bv.bv_page)) {
 849                        if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
 850                                return nvme_setup_prp_simple(dev, req,
 851                                                             &cmnd->rw, &bv);
 852
 853                        if (iod->nvmeq->qid && sgl_threshold &&
 854                            nvme_ctrl_sgl_supported(&dev->ctrl))
 855                                return nvme_setup_sgl_simple(dev, req,
 856                                                             &cmnd->rw, &bv);
 857                }
 858        }
 859
 860        iod->dma_len = 0;
 861        iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 862        if (!iod->sg)
 863                return BLK_STS_RESOURCE;
 864        sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 865        iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 866        if (!iod->nents)
 867                goto out_free_sg;
 868
 869        if (is_pci_p2pdma_page(sg_page(iod->sg)))
 870                nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
 871                                iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
 872        else
 873                nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 874                                             rq_dma_dir(req), DMA_ATTR_NO_WARN);
 875        if (!nr_mapped)
 876                goto out_free_sg;
 877
 878        iod->use_sgl = nvme_pci_use_sgls(dev, req);
 879        if (iod->use_sgl)
 880                ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 881        else
 882                ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 883        if (ret != BLK_STS_OK)
 884                goto out_unmap_sg;
 885        return BLK_STS_OK;
 886
 887out_unmap_sg:
 888        nvme_unmap_sg(dev, req);
 889out_free_sg:
 890        mempool_free(iod->sg, dev->iod_mempool);
 891        return ret;
 892}
 893
 894static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
 895                struct nvme_command *cmnd)
 896{
 897        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 898
 899        iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
 900                        rq_dma_dir(req), 0);
 901        if (dma_mapping_error(dev->dev, iod->meta_dma))
 902                return BLK_STS_IOERR;
 903        cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
 904        return BLK_STS_OK;
 905}
 906
 907/*
 908 * NOTE: ns is NULL when called on the admin queue.
 909 */
 910static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 911                         const struct blk_mq_queue_data *bd)
 912{
 913        struct nvme_ns *ns = hctx->queue->queuedata;
 914        struct nvme_queue *nvmeq = hctx->driver_data;
 915        struct nvme_dev *dev = nvmeq->dev;
 916        struct request *req = bd->rq;
 917        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 918        struct nvme_command *cmnd = &iod->cmd;
 919        blk_status_t ret;
 920
 921        iod->aborted = 0;
 922        iod->npages = -1;
 923        iod->nents = 0;
 924
 925        /*
 926         * We should not need to do this, but we're still using this to
 927         * ensure we can drain requests on a dying queue.
 928         */
 929        if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 930                return BLK_STS_IOERR;
 931
 932        if (!nvme_check_ready(&dev->ctrl, req, true))
 933                return nvme_fail_nonready_command(&dev->ctrl, req);
 934
 935        ret = nvme_setup_cmd(ns, req);
 936        if (ret)
 937                return ret;
 938
 939        if (blk_rq_nr_phys_segments(req)) {
 940                ret = nvme_map_data(dev, req, cmnd);
 941                if (ret)
 942                        goto out_free_cmd;
 943        }
 944
 945        if (blk_integrity_rq(req)) {
 946                ret = nvme_map_metadata(dev, req, cmnd);
 947                if (ret)
 948                        goto out_unmap_data;
 949        }
 950
 951        blk_mq_start_request(req);
 952        nvme_submit_cmd(nvmeq, cmnd, bd->last);
 953        return BLK_STS_OK;
 954out_unmap_data:
 955        nvme_unmap_data(dev, req);
 956out_free_cmd:
 957        nvme_cleanup_cmd(req);
 958        return ret;
 959}
 960
 961static void nvme_pci_complete_rq(struct request *req)
 962{
 963        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 964        struct nvme_dev *dev = iod->nvmeq->dev;
 965
 966        if (blk_integrity_rq(req))
 967                dma_unmap_page(dev->dev, iod->meta_dma,
 968                               rq_integrity_vec(req)->bv_len, rq_data_dir(req));
 969        if (blk_rq_nr_phys_segments(req))
 970                nvme_unmap_data(dev, req);
 971        nvme_complete_rq(req);
 972}
 973
 974/* We read the CQE phase first to check if the rest of the entry is valid */
 975static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 976{
 977        struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
 978
 979        return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
 980}
 981
 982static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 983{
 984        u16 head = nvmeq->cq_head;
 985
 986        if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 987                                              nvmeq->dbbuf_cq_ei))
 988                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 989}
 990
 991static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
 992{
 993        if (!nvmeq->qid)
 994                return nvmeq->dev->admin_tagset.tags[0];
 995        return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
 996}
 997
 998static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 999{
1000        struct nvme_completion *cqe = &nvmeq->cqes[idx];
1001        __u16 command_id = READ_ONCE(cqe->command_id);
1002        struct request *req;
1003
1004        /*
1005         * AEN requests are special as they don't time out and can
1006         * survive any kind of queue freeze and often don't respond to
1007         * aborts.  We don't even bother to allocate a struct request
1008         * for them but rather special case them here.
1009         */
1010        if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1011                nvme_complete_async_event(&nvmeq->dev->ctrl,
1012                                cqe->status, &cqe->result);
1013                return;
1014        }
1015
1016        req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1017        if (unlikely(!req)) {
1018                dev_warn(nvmeq->dev->ctrl.device,
1019                        "invalid id %d completed on queue %d\n",
1020                        command_id, le16_to_cpu(cqe->sq_id));
1021                return;
1022        }
1023
1024        trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1025        if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1026                nvme_pci_complete_rq(req);
1027}
1028
1029static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1030{
1031        u32 tmp = nvmeq->cq_head + 1;
1032
1033        if (tmp == nvmeq->q_depth) {
1034                nvmeq->cq_head = 0;
1035                nvmeq->cq_phase ^= 1;
1036        } else {
1037                nvmeq->cq_head = tmp;
1038        }
1039}
1040
1041static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1042{
1043        int found = 0;
1044
1045        while (nvme_cqe_pending(nvmeq)) {
1046                found++;
1047                /*
1048                 * load-load control dependency between phase and the rest of
1049                 * the cqe requires a full read memory barrier
1050                 */
1051                dma_rmb();
1052                nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1053                nvme_update_cq_head(nvmeq);
1054        }
1055
1056        if (found)
1057                nvme_ring_cq_doorbell(nvmeq);
1058        return found;
1059}
1060
1061static irqreturn_t nvme_irq(int irq, void *data)
1062{
1063        struct nvme_queue *nvmeq = data;
1064
1065        if (nvme_process_cq(nvmeq))
1066                return IRQ_HANDLED;
1067        return IRQ_NONE;
1068}
1069
1070static irqreturn_t nvme_irq_check(int irq, void *data)
1071{
1072        struct nvme_queue *nvmeq = data;
1073
1074        if (nvme_cqe_pending(nvmeq))
1075                return IRQ_WAKE_THREAD;
1076        return IRQ_NONE;
1077}
1078
1079/*
1080 * Poll for completions for any interrupt driven queue
1081 * Can be called from any context.
1082 */
1083static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1084{
1085        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1086
1087        WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1088
1089        disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1090        nvme_process_cq(nvmeq);
1091        enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1092}
1093
1094static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1095{
1096        struct nvme_queue *nvmeq = hctx->driver_data;
1097        bool found;
1098
1099        if (!nvme_cqe_pending(nvmeq))
1100                return 0;
1101
1102        spin_lock(&nvmeq->cq_poll_lock);
1103        found = nvme_process_cq(nvmeq);
1104        spin_unlock(&nvmeq->cq_poll_lock);
1105
1106        return found;
1107}
1108
1109static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1110{
1111        struct nvme_dev *dev = to_nvme_dev(ctrl);
1112        struct nvme_queue *nvmeq = &dev->queues[0];
1113        struct nvme_command c = { };
1114
1115        c.common.opcode = nvme_admin_async_event;
1116        c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1117        nvme_submit_cmd(nvmeq, &c, true);
1118}
1119
1120static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1121{
1122        struct nvme_command c = { };
1123
1124        c.delete_queue.opcode = opcode;
1125        c.delete_queue.qid = cpu_to_le16(id);
1126
1127        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1128}
1129
1130static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1131                struct nvme_queue *nvmeq, s16 vector)
1132{
1133        struct nvme_command c = { };
1134        int flags = NVME_QUEUE_PHYS_CONTIG;
1135
1136        if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1137                flags |= NVME_CQ_IRQ_ENABLED;
1138
1139        /*
1140         * Note: we (ab)use the fact that the prp fields survive if no data
1141         * is attached to the request.
1142         */
1143        c.create_cq.opcode = nvme_admin_create_cq;
1144        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1145        c.create_cq.cqid = cpu_to_le16(qid);
1146        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1147        c.create_cq.cq_flags = cpu_to_le16(flags);
1148        c.create_cq.irq_vector = cpu_to_le16(vector);
1149
1150        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1151}
1152
1153static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1154                                                struct nvme_queue *nvmeq)
1155{
1156        struct nvme_ctrl *ctrl = &dev->ctrl;
1157        struct nvme_command c = { };
1158        int flags = NVME_QUEUE_PHYS_CONTIG;
1159
1160        /*
1161         * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1162         * set. Since URGENT priority is zeroes, it makes all queues
1163         * URGENT.
1164         */
1165        if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1166                flags |= NVME_SQ_PRIO_MEDIUM;
1167
1168        /*
1169         * Note: we (ab)use the fact that the prp fields survive if no data
1170         * is attached to the request.
1171         */
1172        c.create_sq.opcode = nvme_admin_create_sq;
1173        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1174        c.create_sq.sqid = cpu_to_le16(qid);
1175        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1176        c.create_sq.sq_flags = cpu_to_le16(flags);
1177        c.create_sq.cqid = cpu_to_le16(qid);
1178
1179        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1180}
1181
1182static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1183{
1184        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1185}
1186
1187static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1188{
1189        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1190}
1191
1192static void abort_endio(struct request *req, blk_status_t error)
1193{
1194        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1195        struct nvme_queue *nvmeq = iod->nvmeq;
1196
1197        dev_warn(nvmeq->dev->ctrl.device,
1198                 "Abort status: 0x%x", nvme_req(req)->status);
1199        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1200        blk_mq_free_request(req);
1201}
1202
1203static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1204{
1205        /* If true, indicates loss of adapter communication, possibly by a
1206         * NVMe Subsystem reset.
1207         */
1208        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1209
1210        /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1211        switch (dev->ctrl.state) {
1212        case NVME_CTRL_RESETTING:
1213        case NVME_CTRL_CONNECTING:
1214                return false;
1215        default:
1216                break;
1217        }
1218
1219        /* We shouldn't reset unless the controller is on fatal error state
1220         * _or_ if we lost the communication with it.
1221         */
1222        if (!(csts & NVME_CSTS_CFS) && !nssro)
1223                return false;
1224
1225        return true;
1226}
1227
1228static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1229{
1230        /* Read a config register to help see what died. */
1231        u16 pci_status;
1232        int result;
1233
1234        result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1235                                      &pci_status);
1236        if (result == PCIBIOS_SUCCESSFUL)
1237                dev_warn(dev->ctrl.device,
1238                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1239                         csts, pci_status);
1240        else
1241                dev_warn(dev->ctrl.device,
1242                         "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1243                         csts, result);
1244}
1245
1246static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1247{
1248        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1249        struct nvme_queue *nvmeq = iod->nvmeq;
1250        struct nvme_dev *dev = nvmeq->dev;
1251        struct request *abort_req;
1252        struct nvme_command cmd = { };
1253        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1254
1255        /* If PCI error recovery process is happening, we cannot reset or
1256         * the recovery mechanism will surely fail.
1257         */
1258        mb();
1259        if (pci_channel_offline(to_pci_dev(dev->dev)))
1260                return BLK_EH_RESET_TIMER;
1261
1262        /*
1263         * Reset immediately if the controller is failed
1264         */
1265        if (nvme_should_reset(dev, csts)) {
1266                nvme_warn_reset(dev, csts);
1267                nvme_dev_disable(dev, false);
1268                nvme_reset_ctrl(&dev->ctrl);
1269                return BLK_EH_DONE;
1270        }
1271
1272        /*
1273         * Did we miss an interrupt?
1274         */
1275        if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1276                nvme_poll(req->mq_hctx);
1277        else
1278                nvme_poll_irqdisable(nvmeq);
1279
1280        if (blk_mq_request_completed(req)) {
1281                dev_warn(dev->ctrl.device,
1282                         "I/O %d QID %d timeout, completion polled\n",
1283                         req->tag, nvmeq->qid);
1284                return BLK_EH_DONE;
1285        }
1286
1287        /*
1288         * Shutdown immediately if controller times out while starting. The
1289         * reset work will see the pci device disabled when it gets the forced
1290         * cancellation error. All outstanding requests are completed on
1291         * shutdown, so we return BLK_EH_DONE.
1292         */
1293        switch (dev->ctrl.state) {
1294        case NVME_CTRL_CONNECTING:
1295                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1296                fallthrough;
1297        case NVME_CTRL_DELETING:
1298                dev_warn_ratelimited(dev->ctrl.device,
1299                         "I/O %d QID %d timeout, disable controller\n",
1300                         req->tag, nvmeq->qid);
1301                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1302                nvme_dev_disable(dev, true);
1303                return BLK_EH_DONE;
1304        case NVME_CTRL_RESETTING:
1305                return BLK_EH_RESET_TIMER;
1306        default:
1307                break;
1308        }
1309
1310        /*
1311         * Shutdown the controller immediately and schedule a reset if the
1312         * command was already aborted once before and still hasn't been
1313         * returned to the driver, or if this is the admin queue.
1314         */
1315        if (!nvmeq->qid || iod->aborted) {
1316                dev_warn(dev->ctrl.device,
1317                         "I/O %d QID %d timeout, reset controller\n",
1318                         req->tag, nvmeq->qid);
1319                nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1320                nvme_dev_disable(dev, false);
1321                nvme_reset_ctrl(&dev->ctrl);
1322
1323                return BLK_EH_DONE;
1324        }
1325
1326        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1327                atomic_inc(&dev->ctrl.abort_limit);
1328                return BLK_EH_RESET_TIMER;
1329        }
1330        iod->aborted = 1;
1331
1332        cmd.abort.opcode = nvme_admin_abort_cmd;
1333        cmd.abort.cid = nvme_cid(req);
1334        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1335
1336        dev_warn(nvmeq->dev->ctrl.device,
1337                "I/O %d QID %d timeout, aborting\n",
1338                 req->tag, nvmeq->qid);
1339
1340        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1341                        BLK_MQ_REQ_NOWAIT);
1342        if (IS_ERR(abort_req)) {
1343                atomic_inc(&dev->ctrl.abort_limit);
1344                return BLK_EH_RESET_TIMER;
1345        }
1346
1347        abort_req->end_io_data = NULL;
1348        blk_execute_rq_nowait(NULL, abort_req, 0, abort_endio);
1349
1350        /*
1351         * The aborted req will be completed on receiving the abort req.
1352         * We enable the timer again. If hit twice, it'll cause a device reset,
1353         * as the device then is in a faulty state.
1354         */
1355        return BLK_EH_RESET_TIMER;
1356}
1357
1358static void nvme_free_queue(struct nvme_queue *nvmeq)
1359{
1360        dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1361                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1362        if (!nvmeq->sq_cmds)
1363                return;
1364
1365        if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1366                pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1367                                nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1368        } else {
1369                dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1370                                nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1371        }
1372}
1373
1374static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1375{
1376        int i;
1377
1378        for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1379                dev->ctrl.queue_count--;
1380                nvme_free_queue(&dev->queues[i]);
1381        }
1382}
1383
1384/**
1385 * nvme_suspend_queue - put queue into suspended state
1386 * @nvmeq: queue to suspend
1387 */
1388static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1389{
1390        if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1391                return 1;
1392
1393        /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1394        mb();
1395
1396        nvmeq->dev->online_queues--;
1397        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1398                blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1399        if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1400                pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1401        return 0;
1402}
1403
1404static void nvme_suspend_io_queues(struct nvme_dev *dev)
1405{
1406        int i;
1407
1408        for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1409                nvme_suspend_queue(&dev->queues[i]);
1410}
1411
1412static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1413{
1414        struct nvme_queue *nvmeq = &dev->queues[0];
1415
1416        if (shutdown)
1417                nvme_shutdown_ctrl(&dev->ctrl);
1418        else
1419                nvme_disable_ctrl(&dev->ctrl);
1420
1421        nvme_poll_irqdisable(nvmeq);
1422}
1423
1424/*
1425 * Called only on a device that has been disabled and after all other threads
1426 * that can check this device's completion queues have synced, except
1427 * nvme_poll(). This is the last chance for the driver to see a natural
1428 * completion before nvme_cancel_request() terminates all incomplete requests.
1429 */
1430static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1431{
1432        int i;
1433
1434        for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1435                spin_lock(&dev->queues[i].cq_poll_lock);
1436                nvme_process_cq(&dev->queues[i]);
1437                spin_unlock(&dev->queues[i].cq_poll_lock);
1438        }
1439}
1440
1441static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1442                                int entry_size)
1443{
1444        int q_depth = dev->q_depth;
1445        unsigned q_size_aligned = roundup(q_depth * entry_size,
1446                                          NVME_CTRL_PAGE_SIZE);
1447
1448        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1449                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1450
1451                mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1452                q_depth = div_u64(mem_per_q, entry_size);
1453
1454                /*
1455                 * Ensure the reduced q_depth is above some threshold where it
1456                 * would be better to map queues in system memory with the
1457                 * original depth
1458                 */
1459                if (q_depth < 64)
1460                        return -ENOMEM;
1461        }
1462
1463        return q_depth;
1464}
1465
1466static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1467                                int qid)
1468{
1469        struct pci_dev *pdev = to_pci_dev(dev->dev);
1470
1471        if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1472                nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1473                if (nvmeq->sq_cmds) {
1474                        nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1475                                                        nvmeq->sq_cmds);
1476                        if (nvmeq->sq_dma_addr) {
1477                                set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1478                                return 0;
1479                        }
1480
1481                        pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1482                }
1483        }
1484
1485        nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1486                                &nvmeq->sq_dma_addr, GFP_KERNEL);
1487        if (!nvmeq->sq_cmds)
1488                return -ENOMEM;
1489        return 0;
1490}
1491
1492static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1493{
1494        struct nvme_queue *nvmeq = &dev->queues[qid];
1495
1496        if (dev->ctrl.queue_count > qid)
1497                return 0;
1498
1499        nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1500        nvmeq->q_depth = depth;
1501        nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1502                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1503        if (!nvmeq->cqes)
1504                goto free_nvmeq;
1505
1506        if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1507                goto free_cqdma;
1508
1509        nvmeq->dev = dev;
1510        spin_lock_init(&nvmeq->sq_lock);
1511        spin_lock_init(&nvmeq->cq_poll_lock);
1512        nvmeq->cq_head = 0;
1513        nvmeq->cq_phase = 1;
1514        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1515        nvmeq->qid = qid;
1516        dev->ctrl.queue_count++;
1517
1518        return 0;
1519
1520 free_cqdma:
1521        dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1522                          nvmeq->cq_dma_addr);
1523 free_nvmeq:
1524        return -ENOMEM;
1525}
1526
1527static int queue_request_irq(struct nvme_queue *nvmeq)
1528{
1529        struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1530        int nr = nvmeq->dev->ctrl.instance;
1531
1532        if (use_threaded_interrupts) {
1533                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1534                                nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1535        } else {
1536                return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1537                                NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1538        }
1539}
1540
1541static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1542{
1543        struct nvme_dev *dev = nvmeq->dev;
1544
1545        nvmeq->sq_tail = 0;
1546        nvmeq->last_sq_tail = 0;
1547        nvmeq->cq_head = 0;
1548        nvmeq->cq_phase = 1;
1549        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1550        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1551        nvme_dbbuf_init(dev, nvmeq, qid);
1552        dev->online_queues++;
1553        wmb(); /* ensure the first interrupt sees the initialization */
1554}
1555
1556/*
1557 * Try getting shutdown_lock while setting up IO queues.
1558 */
1559static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1560{
1561        /*
1562         * Give up if the lock is being held by nvme_dev_disable.
1563         */
1564        if (!mutex_trylock(&dev->shutdown_lock))
1565                return -ENODEV;
1566
1567        /*
1568         * Controller is in wrong state, fail early.
1569         */
1570        if (dev->ctrl.state != NVME_CTRL_CONNECTING) {
1571                mutex_unlock(&dev->shutdown_lock);
1572                return -ENODEV;
1573        }
1574
1575        return 0;
1576}
1577
1578static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1579{
1580        struct nvme_dev *dev = nvmeq->dev;
1581        int result;
1582        u16 vector = 0;
1583
1584        clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1585
1586        /*
1587         * A queue's vector matches the queue identifier unless the controller
1588         * has only one vector available.
1589         */
1590        if (!polled)
1591                vector = dev->num_vecs == 1 ? 0 : qid;
1592        else
1593                set_bit(NVMEQ_POLLED, &nvmeq->flags);
1594
1595        result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1596        if (result)
1597                return result;
1598
1599        result = adapter_alloc_sq(dev, qid, nvmeq);
1600        if (result < 0)
1601                return result;
1602        if (result)
1603                goto release_cq;
1604
1605        nvmeq->cq_vector = vector;
1606
1607        result = nvme_setup_io_queues_trylock(dev);
1608        if (result)
1609                return result;
1610        nvme_init_queue(nvmeq, qid);
1611        if (!polled) {
1612                result = queue_request_irq(nvmeq);
1613                if (result < 0)
1614                        goto release_sq;
1615        }
1616
1617        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1618        mutex_unlock(&dev->shutdown_lock);
1619        return result;
1620
1621release_sq:
1622        dev->online_queues--;
1623        mutex_unlock(&dev->shutdown_lock);
1624        adapter_delete_sq(dev, qid);
1625release_cq:
1626        adapter_delete_cq(dev, qid);
1627        return result;
1628}
1629
1630static const struct blk_mq_ops nvme_mq_admin_ops = {
1631        .queue_rq       = nvme_queue_rq,
1632        .complete       = nvme_pci_complete_rq,
1633        .init_hctx      = nvme_admin_init_hctx,
1634        .init_request   = nvme_init_request,
1635        .timeout        = nvme_timeout,
1636};
1637
1638static const struct blk_mq_ops nvme_mq_ops = {
1639        .queue_rq       = nvme_queue_rq,
1640        .complete       = nvme_pci_complete_rq,
1641        .commit_rqs     = nvme_commit_rqs,
1642        .init_hctx      = nvme_init_hctx,
1643        .init_request   = nvme_init_request,
1644        .map_queues     = nvme_pci_map_queues,
1645        .timeout        = nvme_timeout,
1646        .poll           = nvme_poll,
1647};
1648
1649static void nvme_dev_remove_admin(struct nvme_dev *dev)
1650{
1651        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1652                /*
1653                 * If the controller was reset during removal, it's possible
1654                 * user requests may be waiting on a stopped queue. Start the
1655                 * queue to flush these to completion.
1656                 */
1657                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1658                blk_cleanup_queue(dev->ctrl.admin_q);
1659                blk_mq_free_tag_set(&dev->admin_tagset);
1660        }
1661}
1662
1663static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1664{
1665        if (!dev->ctrl.admin_q) {
1666                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1667                dev->admin_tagset.nr_hw_queues = 1;
1668
1669                dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1670                dev->admin_tagset.timeout = NVME_ADMIN_TIMEOUT;
1671                dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1672                dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1673                dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1674                dev->admin_tagset.driver_data = dev;
1675
1676                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1677                        return -ENOMEM;
1678                dev->ctrl.admin_tagset = &dev->admin_tagset;
1679
1680                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1681                if (IS_ERR(dev->ctrl.admin_q)) {
1682                        blk_mq_free_tag_set(&dev->admin_tagset);
1683                        return -ENOMEM;
1684                }
1685                if (!blk_get_queue(dev->ctrl.admin_q)) {
1686                        nvme_dev_remove_admin(dev);
1687                        dev->ctrl.admin_q = NULL;
1688                        return -ENODEV;
1689                }
1690        } else
1691                blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1692
1693        return 0;
1694}
1695
1696static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1697{
1698        return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1699}
1700
1701static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1702{
1703        struct pci_dev *pdev = to_pci_dev(dev->dev);
1704
1705        if (size <= dev->bar_mapped_size)
1706                return 0;
1707        if (size > pci_resource_len(pdev, 0))
1708                return -ENOMEM;
1709        if (dev->bar)
1710                iounmap(dev->bar);
1711        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1712        if (!dev->bar) {
1713                dev->bar_mapped_size = 0;
1714                return -ENOMEM;
1715        }
1716        dev->bar_mapped_size = size;
1717        dev->dbs = dev->bar + NVME_REG_DBS;
1718
1719        return 0;
1720}
1721
1722static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1723{
1724        int result;
1725        u32 aqa;
1726        struct nvme_queue *nvmeq;
1727
1728        result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1729        if (result < 0)
1730                return result;
1731
1732        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1733                                NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1734
1735        if (dev->subsystem &&
1736            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1737                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1738
1739        result = nvme_disable_ctrl(&dev->ctrl);
1740        if (result < 0)
1741                return result;
1742
1743        result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1744        if (result)
1745                return result;
1746
1747        dev->ctrl.numa_node = dev_to_node(dev->dev);
1748
1749        nvmeq = &dev->queues[0];
1750        aqa = nvmeq->q_depth - 1;
1751        aqa |= aqa << 16;
1752
1753        writel(aqa, dev->bar + NVME_REG_AQA);
1754        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1755        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1756
1757        result = nvme_enable_ctrl(&dev->ctrl);
1758        if (result)
1759                return result;
1760
1761        nvmeq->cq_vector = 0;
1762        nvme_init_queue(nvmeq, 0);
1763        result = queue_request_irq(nvmeq);
1764        if (result) {
1765                dev->online_queues--;
1766                return result;
1767        }
1768
1769        set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1770        return result;
1771}
1772
1773static int nvme_create_io_queues(struct nvme_dev *dev)
1774{
1775        unsigned i, max, rw_queues;
1776        int ret = 0;
1777
1778        for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1779                if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1780                        ret = -ENOMEM;
1781                        break;
1782                }
1783        }
1784
1785        max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1786        if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1787                rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1788                                dev->io_queues[HCTX_TYPE_READ];
1789        } else {
1790                rw_queues = max;
1791        }
1792
1793        for (i = dev->online_queues; i <= max; i++) {
1794                bool polled = i > rw_queues;
1795
1796                ret = nvme_create_queue(&dev->queues[i], i, polled);
1797                if (ret)
1798                        break;
1799        }
1800
1801        /*
1802         * Ignore failing Create SQ/CQ commands, we can continue with less
1803         * than the desired amount of queues, and even a controller without
1804         * I/O queues can still be used to issue admin commands.  This might
1805         * be useful to upgrade a buggy firmware for example.
1806         */
1807        return ret >= 0 ? 0 : ret;
1808}
1809
1810static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1811{
1812        u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1813
1814        return 1ULL << (12 + 4 * szu);
1815}
1816
1817static u32 nvme_cmb_size(struct nvme_dev *dev)
1818{
1819        return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1820}
1821
1822static void nvme_map_cmb(struct nvme_dev *dev)
1823{
1824        u64 size, offset;
1825        resource_size_t bar_size;
1826        struct pci_dev *pdev = to_pci_dev(dev->dev);
1827        int bar;
1828
1829        if (dev->cmb_size)
1830                return;
1831
1832        if (NVME_CAP_CMBS(dev->ctrl.cap))
1833                writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1834
1835        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1836        if (!dev->cmbsz)
1837                return;
1838        dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1839
1840        size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1841        offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1842        bar = NVME_CMB_BIR(dev->cmbloc);
1843        bar_size = pci_resource_len(pdev, bar);
1844
1845        if (offset > bar_size)
1846                return;
1847
1848        /*
1849         * Tell the controller about the host side address mapping the CMB,
1850         * and enable CMB decoding for the NVMe 1.4+ scheme:
1851         */
1852        if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1853                hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1854                             (pci_bus_address(pdev, bar) + offset),
1855                             dev->bar + NVME_REG_CMBMSC);
1856        }
1857
1858        /*
1859         * Controllers may support a CMB size larger than their BAR,
1860         * for example, due to being behind a bridge. Reduce the CMB to
1861         * the reported size of the BAR
1862         */
1863        if (size > bar_size - offset)
1864                size = bar_size - offset;
1865
1866        if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1867                dev_warn(dev->ctrl.device,
1868                         "failed to register the CMB\n");
1869                return;
1870        }
1871
1872        dev->cmb_size = size;
1873        dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1874
1875        if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1876                        (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1877                pci_p2pmem_publish(pdev, true);
1878}
1879
1880static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1881{
1882        u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1883        u64 dma_addr = dev->host_mem_descs_dma;
1884        struct nvme_command c = { };
1885        int ret;
1886
1887        c.features.opcode       = nvme_admin_set_features;
1888        c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1889        c.features.dword11      = cpu_to_le32(bits);
1890        c.features.dword12      = cpu_to_le32(host_mem_size);
1891        c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1892        c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1893        c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1894
1895        ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1896        if (ret) {
1897                dev_warn(dev->ctrl.device,
1898                         "failed to set host mem (err %d, flags %#x).\n",
1899                         ret, bits);
1900        } else
1901                dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1902
1903        return ret;
1904}
1905
1906static void nvme_free_host_mem(struct nvme_dev *dev)
1907{
1908        int i;
1909
1910        for (i = 0; i < dev->nr_host_mem_descs; i++) {
1911                struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1912                size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1913
1914                dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1915                               le64_to_cpu(desc->addr),
1916                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1917        }
1918
1919        kfree(dev->host_mem_desc_bufs);
1920        dev->host_mem_desc_bufs = NULL;
1921        dma_free_coherent(dev->dev,
1922                        dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1923                        dev->host_mem_descs, dev->host_mem_descs_dma);
1924        dev->host_mem_descs = NULL;
1925        dev->nr_host_mem_descs = 0;
1926}
1927
1928static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1929                u32 chunk_size)
1930{
1931        struct nvme_host_mem_buf_desc *descs;
1932        u32 max_entries, len;
1933        dma_addr_t descs_dma;
1934        int i = 0;
1935        void **bufs;
1936        u64 size, tmp;
1937
1938        tmp = (preferred + chunk_size - 1);
1939        do_div(tmp, chunk_size);
1940        max_entries = tmp;
1941
1942        if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1943                max_entries = dev->ctrl.hmmaxd;
1944
1945        descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1946                                   &descs_dma, GFP_KERNEL);
1947        if (!descs)
1948                goto out;
1949
1950        bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1951        if (!bufs)
1952                goto out_free_descs;
1953
1954        for (size = 0; size < preferred && i < max_entries; size += len) {
1955                dma_addr_t dma_addr;
1956
1957                len = min_t(u64, chunk_size, preferred - size);
1958                bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1959                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1960                if (!bufs[i])
1961                        break;
1962
1963                descs[i].addr = cpu_to_le64(dma_addr);
1964                descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1965                i++;
1966        }
1967
1968        if (!size)
1969                goto out_free_bufs;
1970
1971        dev->nr_host_mem_descs = i;
1972        dev->host_mem_size = size;
1973        dev->host_mem_descs = descs;
1974        dev->host_mem_descs_dma = descs_dma;
1975        dev->host_mem_desc_bufs = bufs;
1976        return 0;
1977
1978out_free_bufs:
1979        while (--i >= 0) {
1980                size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1981
1982                dma_free_attrs(dev->dev, size, bufs[i],
1983                               le64_to_cpu(descs[i].addr),
1984                               DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1985        }
1986
1987        kfree(bufs);
1988out_free_descs:
1989        dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1990                        descs_dma);
1991out:
1992        dev->host_mem_descs = NULL;
1993        return -ENOMEM;
1994}
1995
1996static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1997{
1998        u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1999        u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2000        u64 chunk_size;
2001
2002        /* start big and work our way down */
2003        for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2004                if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2005                        if (!min || dev->host_mem_size >= min)
2006                                return 0;
2007                        nvme_free_host_mem(dev);
2008                }
2009        }
2010
2011        return -ENOMEM;
2012}
2013
2014static int nvme_setup_host_mem(struct nvme_dev *dev)
2015{
2016        u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2017        u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2018        u64 min = (u64)dev->ctrl.hmmin * 4096;
2019        u32 enable_bits = NVME_HOST_MEM_ENABLE;
2020        int ret;
2021
2022        preferred = min(preferred, max);
2023        if (min > max) {
2024                dev_warn(dev->ctrl.device,
2025                        "min host memory (%lld MiB) above limit (%d MiB).\n",
2026                        min >> ilog2(SZ_1M), max_host_mem_size_mb);
2027                nvme_free_host_mem(dev);
2028                return 0;
2029        }
2030
2031        /*
2032         * If we already have a buffer allocated check if we can reuse it.
2033         */
2034        if (dev->host_mem_descs) {
2035                if (dev->host_mem_size >= min)
2036                        enable_bits |= NVME_HOST_MEM_RETURN;
2037                else
2038                        nvme_free_host_mem(dev);
2039        }
2040
2041        if (!dev->host_mem_descs) {
2042                if (nvme_alloc_host_mem(dev, min, preferred)) {
2043                        dev_warn(dev->ctrl.device,
2044                                "failed to allocate host memory buffer.\n");
2045                        return 0; /* controller must work without HMB */
2046                }
2047
2048                dev_info(dev->ctrl.device,
2049                        "allocated %lld MiB host memory buffer.\n",
2050                        dev->host_mem_size >> ilog2(SZ_1M));
2051        }
2052
2053        ret = nvme_set_host_mem(dev, enable_bits);
2054        if (ret)
2055                nvme_free_host_mem(dev);
2056        return ret;
2057}
2058
2059static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2060                char *buf)
2061{
2062        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2063
2064        return sysfs_emit(buf, "cmbloc : x%08x\ncmbsz  : x%08x\n",
2065                       ndev->cmbloc, ndev->cmbsz);
2066}
2067static DEVICE_ATTR_RO(cmb);
2068
2069static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2070                char *buf)
2071{
2072        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2073
2074        return sysfs_emit(buf, "%u\n", ndev->cmbloc);
2075}
2076static DEVICE_ATTR_RO(cmbloc);
2077
2078static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2079                char *buf)
2080{
2081        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2082
2083        return sysfs_emit(buf, "%u\n", ndev->cmbsz);
2084}
2085static DEVICE_ATTR_RO(cmbsz);
2086
2087static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2088                        char *buf)
2089{
2090        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2091
2092        return sysfs_emit(buf, "%d\n", ndev->hmb);
2093}
2094
2095static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2096                         const char *buf, size_t count)
2097{
2098        struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
2099        bool new;
2100        int ret;
2101
2102        if (strtobool(buf, &new) < 0)
2103                return -EINVAL;
2104
2105        if (new == ndev->hmb)
2106                return count;
2107
2108        if (new) {
2109                ret = nvme_setup_host_mem(ndev);
2110        } else {
2111                ret = nvme_set_host_mem(ndev, 0);
2112                if (!ret)
2113                        nvme_free_host_mem(ndev);
2114        }
2115
2116        if (ret < 0)
2117                return ret;
2118
2119        return count;
2120}
2121static DEVICE_ATTR_RW(hmb);
2122
2123static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2124                struct attribute *a, int n)
2125{
2126        struct nvme_ctrl *ctrl =
2127                dev_get_drvdata(container_of(kobj, struct device, kobj));
2128        struct nvme_dev *dev = to_nvme_dev(ctrl);
2129
2130        if (a == &dev_attr_cmb.attr ||
2131            a == &dev_attr_cmbloc.attr ||
2132            a == &dev_attr_cmbsz.attr) {
2133                if (!dev->cmbsz)
2134                        return 0;
2135        }
2136        if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2137                return 0;
2138
2139        return a->mode;
2140}
2141
2142static struct attribute *nvme_pci_attrs[] = {
2143        &dev_attr_cmb.attr,
2144        &dev_attr_cmbloc.attr,
2145        &dev_attr_cmbsz.attr,
2146        &dev_attr_hmb.attr,
2147        NULL,
2148};
2149
2150static const struct attribute_group nvme_pci_attr_group = {
2151        .attrs          = nvme_pci_attrs,
2152        .is_visible     = nvme_pci_attrs_are_visible,
2153};
2154
2155/*
2156 * nirqs is the number of interrupts available for write and read
2157 * queues. The core already reserved an interrupt for the admin queue.
2158 */
2159static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2160{
2161        struct nvme_dev *dev = affd->priv;
2162        unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2163
2164        /*
2165         * If there is no interrupt available for queues, ensure that
2166         * the default queue is set to 1. The affinity set size is
2167         * also set to one, but the irq core ignores it for this case.
2168         *
2169         * If only one interrupt is available or 'write_queue' == 0, combine
2170         * write and read queues.
2171         *
2172         * If 'write_queues' > 0, ensure it leaves room for at least one read
2173         * queue.
2174         */
2175        if (!nrirqs) {
2176                nrirqs = 1;
2177                nr_read_queues = 0;
2178        } else if (nrirqs == 1 || !nr_write_queues) {
2179                nr_read_queues = 0;
2180        } else if (nr_write_queues >= nrirqs) {
2181                nr_read_queues = 1;
2182        } else {
2183                nr_read_queues = nrirqs - nr_write_queues;
2184        }
2185
2186        dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2187        affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2188        dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2189        affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2190        affd->nr_sets = nr_read_queues ? 2 : 1;
2191}
2192
2193static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2194{
2195        struct pci_dev *pdev = to_pci_dev(dev->dev);
2196        struct irq_affinity affd = {
2197                .pre_vectors    = 1,
2198                .calc_sets      = nvme_calc_irq_sets,
2199                .priv           = dev,
2200        };
2201        unsigned int irq_queues, poll_queues;
2202
2203        /*
2204         * Poll queues don't need interrupts, but we need at least one I/O queue
2205         * left over for non-polled I/O.
2206         */
2207        poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2208        dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2209
2210        /*
2211         * Initialize for the single interrupt case, will be updated in
2212         * nvme_calc_irq_sets().
2213         */
2214        dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2215        dev->io_queues[HCTX_TYPE_READ] = 0;
2216
2217        /*
2218         * We need interrupts for the admin queue and each non-polled I/O queue,
2219         * but some Apple controllers require all queues to use the first
2220         * vector.
2221         */
2222        irq_queues = 1;
2223        if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2224                irq_queues += (nr_io_queues - poll_queues);
2225        return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2226                              PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2227}
2228
2229static void nvme_disable_io_queues(struct nvme_dev *dev)
2230{
2231        if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2232                __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2233}
2234
2235static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2236{
2237        /*
2238         * If tags are shared with admin queue (Apple bug), then
2239         * make sure we only use one IO queue.
2240         */
2241        if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2242                return 1;
2243        return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2244}
2245
2246static int nvme_setup_io_queues(struct nvme_dev *dev)
2247{
2248        struct nvme_queue *adminq = &dev->queues[0];
2249        struct pci_dev *pdev = to_pci_dev(dev->dev);
2250        unsigned int nr_io_queues;
2251        unsigned long size;
2252        int result;
2253
2254        /*
2255         * Sample the module parameters once at reset time so that we have
2256         * stable values to work with.
2257         */
2258        dev->nr_write_queues = write_queues;
2259        dev->nr_poll_queues = poll_queues;
2260
2261        nr_io_queues = dev->nr_allocated_queues - 1;
2262        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2263        if (result < 0)
2264                return result;
2265
2266        if (nr_io_queues == 0)
2267                return 0;
2268
2269        /*
2270         * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2271         * from set to unset. If there is a window to it is truely freed,
2272         * pci_free_irq_vectors() jumping into this window will crash.
2273         * And take lock to avoid racing with pci_free_irq_vectors() in
2274         * nvme_dev_disable() path.
2275         */
2276        result = nvme_setup_io_queues_trylock(dev);
2277        if (result)
2278                return result;
2279        if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2280                pci_free_irq(pdev, 0, adminq);
2281
2282        if (dev->cmb_use_sqes) {
2283                result = nvme_cmb_qdepth(dev, nr_io_queues,
2284                                sizeof(struct nvme_command));
2285                if (result > 0)
2286                        dev->q_depth = result;
2287                else
2288                        dev->cmb_use_sqes = false;
2289        }
2290
2291        do {
2292                size = db_bar_size(dev, nr_io_queues);
2293                result = nvme_remap_bar(dev, size);
2294                if (!result)
2295                        break;
2296                if (!--nr_io_queues) {
2297                        result = -ENOMEM;
2298                        goto out_unlock;
2299                }
2300        } while (1);
2301        adminq->q_db = dev->dbs;
2302
2303 retry:
2304        /* Deregister the admin queue's interrupt */
2305        if (test_and_clear_bit(NVMEQ_ENABLED, &adminq->flags))
2306                pci_free_irq(pdev, 0, adminq);
2307
2308        /*
2309         * If we enable msix early due to not intx, disable it again before
2310         * setting up the full range we need.
2311         */
2312        pci_free_irq_vectors(pdev);
2313
2314        result = nvme_setup_irqs(dev, nr_io_queues);
2315        if (result <= 0) {
2316                result = -EIO;
2317                goto out_unlock;
2318        }
2319
2320        dev->num_vecs = result;
2321        result = max(result - 1, 1);
2322        dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2323
2324        /*
2325         * Should investigate if there's a performance win from allocating
2326         * more queues than interrupt vectors; it might allow the submission
2327         * path to scale better, even if the receive path is limited by the
2328         * number of interrupts.
2329         */
2330        result = queue_request_irq(adminq);
2331        if (result)
2332                goto out_unlock;
2333        set_bit(NVMEQ_ENABLED, &adminq->flags);
2334        mutex_unlock(&dev->shutdown_lock);
2335
2336        result = nvme_create_io_queues(dev);
2337        if (result || dev->online_queues < 2)
2338                return result;
2339
2340        if (dev->online_queues - 1 < dev->max_qid) {
2341                nr_io_queues = dev->online_queues - 1;
2342                nvme_disable_io_queues(dev);
2343                result = nvme_setup_io_queues_trylock(dev);
2344                if (result)
2345                        return result;
2346                nvme_suspend_io_queues(dev);
2347                goto retry;
2348        }
2349        dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2350                                        dev->io_queues[HCTX_TYPE_DEFAULT],
2351                                        dev->io_queues[HCTX_TYPE_READ],
2352                                        dev->io_queues[HCTX_TYPE_POLL]);
2353        return 0;
2354out_unlock:
2355        mutex_unlock(&dev->shutdown_lock);
2356        return result;
2357}
2358
2359static void nvme_del_queue_end(struct request *req, blk_status_t error)
2360{
2361        struct nvme_queue *nvmeq = req->end_io_data;
2362
2363        blk_mq_free_request(req);
2364        complete(&nvmeq->delete_done);
2365}
2366
2367static void nvme_del_cq_end(struct request *req, blk_status_t error)
2368{
2369        struct nvme_queue *nvmeq = req->end_io_data;
2370
2371        if (error)
2372                set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2373
2374        nvme_del_queue_end(req, error);
2375}
2376
2377static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2378{
2379        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2380        struct request *req;
2381        struct nvme_command cmd = { };
2382
2383        cmd.delete_queue.opcode = opcode;
2384        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2385
2386        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2387        if (IS_ERR(req))
2388                return PTR_ERR(req);
2389
2390        req->end_io_data = nvmeq;
2391
2392        init_completion(&nvmeq->delete_done);
2393        blk_execute_rq_nowait(NULL, req, false,
2394                        opcode == nvme_admin_delete_cq ?
2395                                nvme_del_cq_end : nvme_del_queue_end);
2396        return 0;
2397}
2398
2399static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2400{
2401        int nr_queues = dev->online_queues - 1, sent = 0;
2402        unsigned long timeout;
2403
2404 retry:
2405        timeout = NVME_ADMIN_TIMEOUT;
2406        while (nr_queues > 0) {
2407                if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2408                        break;
2409                nr_queues--;
2410                sent++;
2411        }
2412        while (sent) {
2413                struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2414
2415                timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2416                                timeout);
2417                if (timeout == 0)
2418                        return false;
2419
2420                sent--;
2421                if (nr_queues)
2422                        goto retry;
2423        }
2424        return true;
2425}
2426
2427static void nvme_dev_add(struct nvme_dev *dev)
2428{
2429        int ret;
2430
2431        if (!dev->ctrl.tagset) {
2432                dev->tagset.ops = &nvme_mq_ops;
2433                dev->tagset.nr_hw_queues = dev->online_queues - 1;
2434                dev->tagset.nr_maps = 2; /* default + read */
2435                if (dev->io_queues[HCTX_TYPE_POLL])
2436                        dev->tagset.nr_maps++;
2437                dev->tagset.timeout = NVME_IO_TIMEOUT;
2438                dev->tagset.numa_node = dev->ctrl.numa_node;
2439                dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2440                                                BLK_MQ_MAX_DEPTH) - 1;
2441                dev->tagset.cmd_size = sizeof(struct nvme_iod);
2442                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2443                dev->tagset.driver_data = dev;
2444
2445                /*
2446                 * Some Apple controllers requires tags to be unique
2447                 * across admin and IO queue, so reserve the first 32
2448                 * tags of the IO queue.
2449                 */
2450                if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2451                        dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2452
2453                ret = blk_mq_alloc_tag_set(&dev->tagset);
2454                if (ret) {
2455                        dev_warn(dev->ctrl.device,
2456                                "IO queues tagset allocation failed %d\n", ret);
2457                        return;
2458                }
2459                dev->ctrl.tagset = &dev->tagset;
2460        } else {
2461                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2462
2463                /* Free previously allocated queues that are no longer usable */
2464                nvme_free_queues(dev, dev->online_queues);
2465        }
2466
2467        nvme_dbbuf_set(dev);
2468}
2469
2470static int nvme_pci_enable(struct nvme_dev *dev)
2471{
2472        int result = -ENOMEM;
2473        struct pci_dev *pdev = to_pci_dev(dev->dev);
2474        int dma_address_bits = 64;
2475
2476        if (pci_enable_device_mem(pdev))
2477                return result;
2478
2479        pci_set_master(pdev);
2480
2481        if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2482                dma_address_bits = 48;
2483        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(dma_address_bits)))
2484                goto disable;
2485
2486        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2487                result = -ENODEV;
2488                goto disable;
2489        }
2490
2491        /*
2492         * Some devices and/or platforms don't advertise or work with INTx
2493         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2494         * adjust this later.
2495         */
2496        result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2497        if (result < 0)
2498                return result;
2499
2500        dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2501
2502        dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2503                                io_queue_depth);
2504        dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2505        dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2506        dev->dbs = dev->bar + 4096;
2507
2508        /*
2509         * Some Apple controllers require a non-standard SQE size.
2510         * Interestingly they also seem to ignore the CC:IOSQES register
2511         * so we don't bother updating it here.
2512         */
2513        if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2514                dev->io_sqes = 7;
2515        else
2516                dev->io_sqes = NVME_NVM_IOSQES;
2517
2518        /*
2519         * Temporary fix for the Apple controller found in the MacBook8,1 and
2520         * some MacBook7,1 to avoid controller resets and data loss.
2521         */
2522        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2523                dev->q_depth = 2;
2524                dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2525                        "set queue depth=%u to work around controller resets\n",
2526                        dev->q_depth);
2527        } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2528                   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2529                   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2530                dev->q_depth = 64;
2531                dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2532                        "set queue depth=%u\n", dev->q_depth);
2533        }
2534
2535        /*
2536         * Controllers with the shared tags quirk need the IO queue to be
2537         * big enough so that we get 32 tags for the admin queue
2538         */
2539        if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2540            (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2541                dev->q_depth = NVME_AQ_DEPTH + 2;
2542                dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2543                         dev->q_depth);
2544        }
2545
2546
2547        nvme_map_cmb(dev);
2548
2549        pci_enable_pcie_error_reporting(pdev);
2550        pci_save_state(pdev);
2551        return 0;
2552
2553 disable:
2554        pci_disable_device(pdev);
2555        return result;
2556}
2557
2558static void nvme_dev_unmap(struct nvme_dev *dev)
2559{
2560        if (dev->bar)
2561                iounmap(dev->bar);
2562        pci_release_mem_regions(to_pci_dev(dev->dev));
2563}
2564
2565static void nvme_pci_disable(struct nvme_dev *dev)
2566{
2567        struct pci_dev *pdev = to_pci_dev(dev->dev);
2568
2569        pci_free_irq_vectors(pdev);
2570
2571        if (pci_is_enabled(pdev)) {
2572                pci_disable_pcie_error_reporting(pdev);
2573                pci_disable_device(pdev);
2574        }
2575}
2576
2577static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2578{
2579        bool dead = true, freeze = false;
2580        struct pci_dev *pdev = to_pci_dev(dev->dev);
2581
2582        mutex_lock(&dev->shutdown_lock);
2583        if (pci_is_enabled(pdev)) {
2584                u32 csts = readl(dev->bar + NVME_REG_CSTS);
2585
2586                if (dev->ctrl.state == NVME_CTRL_LIVE ||
2587                    dev->ctrl.state == NVME_CTRL_RESETTING) {
2588                        freeze = true;
2589                        nvme_start_freeze(&dev->ctrl);
2590                }
2591                dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2592                        pdev->error_state  != pci_channel_io_normal);
2593        }
2594
2595        /*
2596         * Give the controller a chance to complete all entered requests if
2597         * doing a safe shutdown.
2598         */
2599        if (!dead && shutdown && freeze)
2600                nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2601
2602        nvme_stop_queues(&dev->ctrl);
2603
2604        if (!dead && dev->ctrl.queue_count > 0) {
2605                nvme_disable_io_queues(dev);
2606                nvme_disable_admin_queue(dev, shutdown);
2607        }
2608        nvme_suspend_io_queues(dev);
2609        nvme_suspend_queue(&dev->queues[0]);
2610        nvme_pci_disable(dev);
2611        nvme_reap_pending_cqes(dev);
2612
2613        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2614        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2615        blk_mq_tagset_wait_completed_request(&dev->tagset);
2616        blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2617
2618        /*
2619         * The driver will not be starting up queues again if shutting down so
2620         * must flush all entered requests to their failed completion to avoid
2621         * deadlocking blk-mq hot-cpu notifier.
2622         */
2623        if (shutdown) {
2624                nvme_start_queues(&dev->ctrl);
2625                if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2626                        blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2627        }
2628        mutex_unlock(&dev->shutdown_lock);
2629}
2630
2631static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2632{
2633        if (!nvme_wait_reset(&dev->ctrl))
2634                return -EBUSY;
2635        nvme_dev_disable(dev, shutdown);
2636        return 0;
2637}
2638
2639static int nvme_setup_prp_pools(struct nvme_dev *dev)
2640{
2641        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2642                                                NVME_CTRL_PAGE_SIZE,
2643                                                NVME_CTRL_PAGE_SIZE, 0);
2644        if (!dev->prp_page_pool)
2645                return -ENOMEM;
2646
2647        /* Optimisation for I/Os between 4k and 128k */
2648        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2649                                                256, 256, 0);
2650        if (!dev->prp_small_pool) {
2651                dma_pool_destroy(dev->prp_page_pool);
2652                return -ENOMEM;
2653        }
2654        return 0;
2655}
2656
2657static void nvme_release_prp_pools(struct nvme_dev *dev)
2658{
2659        dma_pool_destroy(dev->prp_page_pool);
2660        dma_pool_destroy(dev->prp_small_pool);
2661}
2662
2663static void nvme_free_tagset(struct nvme_dev *dev)
2664{
2665        if (dev->tagset.tags)
2666                blk_mq_free_tag_set(&dev->tagset);
2667        dev->ctrl.tagset = NULL;
2668}
2669
2670static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2671{
2672        struct nvme_dev *dev = to_nvme_dev(ctrl);
2673
2674        nvme_dbbuf_dma_free(dev);
2675        nvme_free_tagset(dev);
2676        if (dev->ctrl.admin_q)
2677                blk_put_queue(dev->ctrl.admin_q);
2678        free_opal_dev(dev->ctrl.opal_dev);
2679        mempool_destroy(dev->iod_mempool);
2680        put_device(dev->dev);
2681        kfree(dev->queues);
2682        kfree(dev);
2683}
2684
2685static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2686{
2687        /*
2688         * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2689         * may be holding this pci_dev's device lock.
2690         */
2691        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2692        nvme_get_ctrl(&dev->ctrl);
2693        nvme_dev_disable(dev, false);
2694        nvme_kill_queues(&dev->ctrl);
2695        if (!queue_work(nvme_wq, &dev->remove_work))
2696                nvme_put_ctrl(&dev->ctrl);
2697}
2698
2699static void nvme_reset_work(struct work_struct *work)
2700{
2701        struct nvme_dev *dev =
2702                container_of(work, struct nvme_dev, ctrl.reset_work);
2703        bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2704        int result;
2705
2706        if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2707                dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2708                         dev->ctrl.state);
2709                result = -ENODEV;
2710                goto out;
2711        }
2712
2713        /*
2714         * If we're called to reset a live controller first shut it down before
2715         * moving on.
2716         */
2717        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2718                nvme_dev_disable(dev, false);
2719        nvme_sync_queues(&dev->ctrl);
2720
2721        mutex_lock(&dev->shutdown_lock);
2722        result = nvme_pci_enable(dev);
2723        if (result)
2724                goto out_unlock;
2725
2726        result = nvme_pci_configure_admin_queue(dev);
2727        if (result)
2728                goto out_unlock;
2729
2730        result = nvme_alloc_admin_tags(dev);
2731        if (result)
2732                goto out_unlock;
2733
2734        /*
2735         * Limit the max command size to prevent iod->sg allocations going
2736         * over a single page.
2737         */
2738        dev->ctrl.max_hw_sectors = min_t(u32,
2739                NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2740        dev->ctrl.max_segments = NVME_MAX_SEGS;
2741
2742        /*
2743         * Don't limit the IOMMU merged segment size.
2744         */
2745        dma_set_max_seg_size(dev->dev, 0xffffffff);
2746        dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2747
2748        mutex_unlock(&dev->shutdown_lock);
2749
2750        /*
2751         * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2752         * initializing procedure here.
2753         */
2754        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2755                dev_warn(dev->ctrl.device,
2756                        "failed to mark controller CONNECTING\n");
2757                result = -EBUSY;
2758                goto out;
2759        }
2760
2761        /*
2762         * We do not support an SGL for metadata (yet), so we are limited to a
2763         * single integrity segment for the separate metadata pointer.
2764         */
2765        dev->ctrl.max_integrity_segments = 1;
2766
2767        result = nvme_init_ctrl_finish(&dev->ctrl);
2768        if (result)
2769                goto out;
2770
2771        if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2772                if (!dev->ctrl.opal_dev)
2773                        dev->ctrl.opal_dev =
2774                                init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2775                else if (was_suspend)
2776                        opal_unlock_from_suspend(dev->ctrl.opal_dev);
2777        } else {
2778                free_opal_dev(dev->ctrl.opal_dev);
2779                dev->ctrl.opal_dev = NULL;
2780        }
2781
2782        if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2783                result = nvme_dbbuf_dma_alloc(dev);
2784                if (result)
2785                        dev_warn(dev->dev,
2786                                 "unable to allocate dma for dbbuf\n");
2787        }
2788
2789        if (dev->ctrl.hmpre) {
2790                result = nvme_setup_host_mem(dev);
2791                if (result < 0)
2792                        goto out;
2793        }
2794
2795        result = nvme_setup_io_queues(dev);
2796        if (result)
2797                goto out;
2798
2799        /*
2800         * Keep the controller around but remove all namespaces if we don't have
2801         * any working I/O queue.
2802         */
2803        if (dev->online_queues < 2) {
2804                dev_warn(dev->ctrl.device, "IO queues not created\n");
2805                nvme_kill_queues(&dev->ctrl);
2806                nvme_remove_namespaces(&dev->ctrl);
2807                nvme_free_tagset(dev);
2808        } else {
2809                nvme_start_queues(&dev->ctrl);
2810                nvme_wait_freeze(&dev->ctrl);
2811                nvme_dev_add(dev);
2812                nvme_unfreeze(&dev->ctrl);
2813        }
2814
2815        /*
2816         * If only admin queue live, keep it to do further investigation or
2817         * recovery.
2818         */
2819        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2820                dev_warn(dev->ctrl.device,
2821                        "failed to mark controller live state\n");
2822                result = -ENODEV;
2823                goto out;
2824        }
2825
2826        if (!dev->attrs_added && !sysfs_create_group(&dev->ctrl.device->kobj,
2827                        &nvme_pci_attr_group))
2828                dev->attrs_added = true;
2829
2830        nvme_start_ctrl(&dev->ctrl);
2831        return;
2832
2833 out_unlock:
2834        mutex_unlock(&dev->shutdown_lock);
2835 out:
2836        if (result)
2837                dev_warn(dev->ctrl.device,
2838                         "Removing after probe failure status: %d\n", result);
2839        nvme_remove_dead_ctrl(dev);
2840}
2841
2842static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2843{
2844        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2845        struct pci_dev *pdev = to_pci_dev(dev->dev);
2846
2847        if (pci_get_drvdata(pdev))
2848                device_release_driver(&pdev->dev);
2849        nvme_put_ctrl(&dev->ctrl);
2850}
2851
2852static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2853{
2854        *val = readl(to_nvme_dev(ctrl)->bar + off);
2855        return 0;
2856}
2857
2858static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2859{
2860        writel(val, to_nvme_dev(ctrl)->bar + off);
2861        return 0;
2862}
2863
2864static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2865{
2866        *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2867        return 0;
2868}
2869
2870static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2871{
2872        struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2873
2874        return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2875}
2876
2877static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2878        .name                   = "pcie",
2879        .module                 = THIS_MODULE,
2880        .flags                  = NVME_F_METADATA_SUPPORTED |
2881                                  NVME_F_PCI_P2PDMA,
2882        .reg_read32             = nvme_pci_reg_read32,
2883        .reg_write32            = nvme_pci_reg_write32,
2884        .reg_read64             = nvme_pci_reg_read64,
2885        .free_ctrl              = nvme_pci_free_ctrl,
2886        .submit_async_event     = nvme_pci_submit_async_event,
2887        .get_address            = nvme_pci_get_address,
2888};
2889
2890static int nvme_dev_map(struct nvme_dev *dev)
2891{
2892        struct pci_dev *pdev = to_pci_dev(dev->dev);
2893
2894        if (pci_request_mem_regions(pdev, "nvme"))
2895                return -ENODEV;
2896
2897        if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2898                goto release;
2899
2900        return 0;
2901  release:
2902        pci_release_mem_regions(pdev);
2903        return -ENODEV;
2904}
2905
2906static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2907{
2908        if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2909                /*
2910                 * Several Samsung devices seem to drop off the PCIe bus
2911                 * randomly when APST is on and uses the deepest sleep state.
2912                 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2913                 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2914                 * 950 PRO 256GB", but it seems to be restricted to two Dell
2915                 * laptops.
2916                 */
2917                if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2918                    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2919                     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2920                        return NVME_QUIRK_NO_DEEPEST_PS;
2921        } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2922                /*
2923                 * Samsung SSD 960 EVO drops off the PCIe bus after system
2924                 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2925                 * within few minutes after bootup on a Coffee Lake board -
2926                 * ASUS PRIME Z370-A
2927                 */
2928                if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2929                    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2930                     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2931                        return NVME_QUIRK_NO_APST;
2932        } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2933                    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2934                   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2935                /*
2936                 * Forcing to use host managed nvme power settings for
2937                 * lowest idle power with quick resume latency on
2938                 * Samsung and Toshiba SSDs based on suspend behavior
2939                 * on Coffee Lake board for LENOVO C640
2940                 */
2941                if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2942                     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2943                        return NVME_QUIRK_SIMPLE_SUSPEND;
2944        }
2945
2946        return 0;
2947}
2948
2949static void nvme_async_probe(void *data, async_cookie_t cookie)
2950{
2951        struct nvme_dev *dev = data;
2952
2953        flush_work(&dev->ctrl.reset_work);
2954        flush_work(&dev->ctrl.scan_work);
2955        nvme_put_ctrl(&dev->ctrl);
2956}
2957
2958static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2959{
2960        int node, result = -ENOMEM;
2961        struct nvme_dev *dev;
2962        unsigned long quirks = id->driver_data;
2963        size_t alloc_size;
2964
2965        node = dev_to_node(&pdev->dev);
2966        if (node == NUMA_NO_NODE)
2967                set_dev_node(&pdev->dev, first_memory_node);
2968
2969        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2970        if (!dev)
2971                return -ENOMEM;
2972
2973        dev->nr_write_queues = write_queues;
2974        dev->nr_poll_queues = poll_queues;
2975        dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2976        dev->queues = kcalloc_node(dev->nr_allocated_queues,
2977                        sizeof(struct nvme_queue), GFP_KERNEL, node);
2978        if (!dev->queues)
2979                goto free;
2980
2981        dev->dev = get_device(&pdev->dev);
2982        pci_set_drvdata(pdev, dev);
2983
2984        result = nvme_dev_map(dev);
2985        if (result)
2986                goto put_pci;
2987
2988        INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2989        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2990        mutex_init(&dev->shutdown_lock);
2991
2992        result = nvme_setup_prp_pools(dev);
2993        if (result)
2994                goto unmap;
2995
2996        quirks |= check_vendor_combination_bug(pdev);
2997
2998        if (!noacpi && acpi_storage_d3(&pdev->dev)) {
2999                /*
3000                 * Some systems use a bios work around to ask for D3 on
3001                 * platforms that support kernel managed suspend.
3002                 */
3003                dev_info(&pdev->dev,
3004                         "platform quirk: setting simple suspend\n");
3005                quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
3006        }
3007
3008        /*
3009         * Double check that our mempool alloc size will cover the biggest
3010         * command we support.
3011         */
3012        alloc_size = nvme_pci_iod_alloc_size();
3013        WARN_ON_ONCE(alloc_size > PAGE_SIZE);
3014
3015        dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
3016                                                mempool_kfree,
3017                                                (void *) alloc_size,
3018                                                GFP_KERNEL, node);
3019        if (!dev->iod_mempool) {
3020                result = -ENOMEM;
3021                goto release_pools;
3022        }
3023
3024        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
3025                        quirks);
3026        if (result)
3027                goto release_mempool;
3028
3029        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3030
3031        nvme_reset_ctrl(&dev->ctrl);
3032        async_schedule(nvme_async_probe, dev);
3033
3034        return 0;
3035
3036 release_mempool:
3037        mempool_destroy(dev->iod_mempool);
3038 release_pools:
3039        nvme_release_prp_pools(dev);
3040 unmap:
3041        nvme_dev_unmap(dev);
3042 put_pci:
3043        put_device(dev->dev);
3044 free:
3045        kfree(dev->queues);
3046        kfree(dev);
3047        return result;
3048}
3049
3050static void nvme_reset_prepare(struct pci_dev *pdev)
3051{
3052        struct nvme_dev *dev = pci_get_drvdata(pdev);
3053
3054        /*
3055         * We don't need to check the return value from waiting for the reset
3056         * state as pci_dev device lock is held, making it impossible to race
3057         * with ->remove().
3058         */
3059        nvme_disable_prepare_reset(dev, false);
3060        nvme_sync_queues(&dev->ctrl);
3061}
3062
3063static void nvme_reset_done(struct pci_dev *pdev)
3064{
3065        struct nvme_dev *dev = pci_get_drvdata(pdev);
3066
3067        if (!nvme_try_sched_reset(&dev->ctrl))
3068                flush_work(&dev->ctrl.reset_work);
3069}
3070
3071static void nvme_shutdown(struct pci_dev *pdev)
3072{
3073        struct nvme_dev *dev = pci_get_drvdata(pdev);
3074
3075        nvme_disable_prepare_reset(dev, true);
3076}
3077
3078static void nvme_remove_attrs(struct nvme_dev *dev)
3079{
3080        if (dev->attrs_added)
3081                sysfs_remove_group(&dev->ctrl.device->kobj,
3082                                   &nvme_pci_attr_group);
3083}
3084
3085/*
3086 * The driver's remove may be called on a device in a partially initialized
3087 * state. This function must not have any dependencies on the device state in
3088 * order to proceed.
3089 */
3090static void nvme_remove(struct pci_dev *pdev)
3091{
3092        struct nvme_dev *dev = pci_get_drvdata(pdev);
3093
3094        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3095        pci_set_drvdata(pdev, NULL);
3096
3097        if (!pci_device_is_present(pdev)) {
3098                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3099                nvme_dev_disable(dev, true);
3100        }
3101
3102        flush_work(&dev->ctrl.reset_work);
3103        nvme_stop_ctrl(&dev->ctrl);
3104        nvme_remove_namespaces(&dev->ctrl);
3105        nvme_dev_disable(dev, true);
3106        nvme_remove_attrs(dev);
3107        nvme_free_host_mem(dev);
3108        nvme_dev_remove_admin(dev);
3109        nvme_free_queues(dev, 0);
3110        nvme_release_prp_pools(dev);
3111        nvme_dev_unmap(dev);
3112        nvme_uninit_ctrl(&dev->ctrl);
3113}
3114
3115#ifdef CONFIG_PM_SLEEP
3116static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3117{
3118        return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3119}
3120
3121static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3122{
3123        return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3124}
3125
3126static int nvme_resume(struct device *dev)
3127{
3128        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3129        struct nvme_ctrl *ctrl = &ndev->ctrl;
3130
3131        if (ndev->last_ps == U32_MAX ||
3132            nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3133                goto reset;
3134        if (ctrl->hmpre && nvme_setup_host_mem(ndev))
3135                goto reset;
3136
3137        return 0;
3138reset:
3139        return nvme_try_sched_reset(ctrl);
3140}
3141
3142static int nvme_suspend(struct device *dev)
3143{
3144        struct pci_dev *pdev = to_pci_dev(dev);
3145        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3146        struct nvme_ctrl *ctrl = &ndev->ctrl;
3147        int ret = -EBUSY;
3148
3149        ndev->last_ps = U32_MAX;
3150
3151        /*
3152         * The platform does not remove power for a kernel managed suspend so
3153         * use host managed nvme power settings for lowest idle power if
3154         * possible. This should have quicker resume latency than a full device
3155         * shutdown.  But if the firmware is involved after the suspend or the
3156         * device does not support any non-default power states, shut down the
3157         * device fully.
3158         *
3159         * If ASPM is not enabled for the device, shut down the device and allow
3160         * the PCI bus layer to put it into D3 in order to take the PCIe link
3161         * down, so as to allow the platform to achieve its minimum low-power
3162         * state (which may not be possible if the link is up).
3163         */
3164        if (pm_suspend_via_firmware() || !ctrl->npss ||
3165            !pcie_aspm_enabled(pdev) ||
3166            (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3167                return nvme_disable_prepare_reset(ndev, true);
3168
3169        nvme_start_freeze(ctrl);
3170        nvme_wait_freeze(ctrl);
3171        nvme_sync_queues(ctrl);
3172
3173        if (ctrl->state != NVME_CTRL_LIVE)
3174                goto unfreeze;
3175
3176        /*
3177         * Host memory access may not be successful in a system suspend state,
3178         * but the specification allows the controller to access memory in a
3179         * non-operational power state.
3180         */
3181        if (ndev->hmb) {
3182                ret = nvme_set_host_mem(ndev, 0);
3183                if (ret < 0)
3184                        goto unfreeze;
3185        }
3186
3187        ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3188        if (ret < 0)
3189                goto unfreeze;
3190
3191        /*
3192         * A saved state prevents pci pm from generically controlling the
3193         * device's power. If we're using protocol specific settings, we don't
3194         * want pci interfering.
3195         */
3196        pci_save_state(pdev);
3197
3198        ret = nvme_set_power_state(ctrl, ctrl->npss);
3199        if (ret < 0)
3200                goto unfreeze;
3201
3202        if (ret) {
3203                /* discard the saved state */
3204                pci_load_saved_state(pdev, NULL);
3205
3206                /*
3207                 * Clearing npss forces a controller reset on resume. The
3208                 * correct value will be rediscovered then.
3209                 */
3210                ret = nvme_disable_prepare_reset(ndev, true);
3211                ctrl->npss = 0;
3212        }
3213unfreeze:
3214        nvme_unfreeze(ctrl);
3215        return ret;
3216}
3217
3218static int nvme_simple_suspend(struct device *dev)
3219{
3220        struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3221
3222        return nvme_disable_prepare_reset(ndev, true);
3223}
3224
3225static int nvme_simple_resume(struct device *dev)
3226{
3227        struct pci_dev *pdev = to_pci_dev(dev);
3228        struct nvme_dev *ndev = pci_get_drvdata(pdev);
3229
3230        return nvme_try_sched_reset(&ndev->ctrl);
3231}
3232
3233static const struct dev_pm_ops nvme_dev_pm_ops = {
3234        .suspend        = nvme_suspend,
3235        .resume         = nvme_resume,
3236        .freeze         = nvme_simple_suspend,
3237        .thaw           = nvme_simple_resume,
3238        .poweroff       = nvme_simple_suspend,
3239        .restore        = nvme_simple_resume,
3240};
3241#endif /* CONFIG_PM_SLEEP */
3242
3243static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3244                                                pci_channel_state_t state)
3245{
3246        struct nvme_dev *dev = pci_get_drvdata(pdev);
3247
3248        /*
3249         * A frozen channel requires a reset. When detected, this method will
3250         * shutdown the controller to quiesce. The controller will be restarted
3251         * after the slot reset through driver's slot_reset callback.
3252         */
3253        switch (state) {
3254        case pci_channel_io_normal:
3255                return PCI_ERS_RESULT_CAN_RECOVER;
3256        case pci_channel_io_frozen:
3257                dev_warn(dev->ctrl.device,
3258                        "frozen state error detected, reset controller\n");
3259                nvme_dev_disable(dev, false);
3260                return PCI_ERS_RESULT_NEED_RESET;
3261        case pci_channel_io_perm_failure:
3262                dev_warn(dev->ctrl.device,
3263                        "failure state error detected, request disconnect\n");
3264                return PCI_ERS_RESULT_DISCONNECT;
3265        }
3266        return PCI_ERS_RESULT_NEED_RESET;
3267}
3268
3269static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3270{
3271        struct nvme_dev *dev = pci_get_drvdata(pdev);
3272
3273        dev_info(dev->ctrl.device, "restart after slot reset\n");
3274        pci_restore_state(pdev);
3275        nvme_reset_ctrl(&dev->ctrl);
3276        return PCI_ERS_RESULT_RECOVERED;
3277}
3278
3279static void nvme_error_resume(struct pci_dev *pdev)
3280{
3281        struct nvme_dev *dev = pci_get_drvdata(pdev);
3282
3283        flush_work(&dev->ctrl.reset_work);
3284}
3285
3286static const struct pci_error_handlers nvme_err_handler = {
3287        .error_detected = nvme_error_detected,
3288        .slot_reset     = nvme_slot_reset,
3289        .resume         = nvme_error_resume,
3290        .reset_prepare  = nvme_reset_prepare,
3291        .reset_done     = nvme_reset_done,
3292};
3293
3294static const struct pci_device_id nvme_id_table[] = {
3295        { PCI_VDEVICE(INTEL, 0x0953),   /* Intel 750/P3500/P3600/P3700 */
3296                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3297                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3298        { PCI_VDEVICE(INTEL, 0x0a53),   /* Intel P3520 */
3299                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3300                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3301        { PCI_VDEVICE(INTEL, 0x0a54),   /* Intel P4500/P4600 */
3302                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3303                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3304        { PCI_VDEVICE(INTEL, 0x0a55),   /* Dell Express Flash P4600 */
3305                .driver_data = NVME_QUIRK_STRIPE_SIZE |
3306                                NVME_QUIRK_DEALLOCATE_ZEROES, },
3307        { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3308                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3309                                NVME_QUIRK_MEDIUM_PRIO_SQ |
3310                                NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3311                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3312        { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3313                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3314        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3315                .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3316                                NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3317        { PCI_DEVICE(0x126f, 0x2263),   /* Silicon Motion unidentified */
3318                .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3319        { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3320                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3321                                NVME_QUIRK_NO_NS_DESC_LIST, },
3322        { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3323                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3324        { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3325                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3326        { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3327                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3328        { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3329                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3330        { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3331                .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3332                                NVME_QUIRK_DISABLE_WRITE_ZEROES|
3333                                NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3334        { PCI_DEVICE(0x1987, 0x5016),   /* Phison E16 */
3335                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3336        { PCI_DEVICE(0x1b4b, 0x1092),   /* Lexar 256 GB SSD */
3337                .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3338                                NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3339        { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3340                .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3341        { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3342                .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3343                                NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3344        { PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3345                .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3346        { PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3347                .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3348        { PCI_DEVICE(0x1d97, 0x2263),   /* SPCC */
3349                .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3350        { PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3351                .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3352        { PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3353                .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3354        { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3355                .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3356        { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3357                .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3358        { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3359                .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3360        { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3361                .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3362        { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3363                .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3364        { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3365                .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3366        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3367                .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3368        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3369        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3370                .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3371                                NVME_QUIRK_128_BYTES_SQES |
3372                                NVME_QUIRK_SHARED_TAGS |
3373                                NVME_QUIRK_SKIP_CID_GEN },
3374
3375        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3376        { 0, }
3377};
3378MODULE_DEVICE_TABLE(pci, nvme_id_table);
3379
3380static struct pci_driver nvme_driver = {
3381        .name           = "nvme",
3382        .id_table       = nvme_id_table,
3383        .probe          = nvme_probe,
3384        .remove         = nvme_remove,
3385        .shutdown       = nvme_shutdown,
3386#ifdef CONFIG_PM_SLEEP
3387        .driver         = {
3388                .pm     = &nvme_dev_pm_ops,
3389        },
3390#endif
3391        .sriov_configure = pci_sriov_configure_simple,
3392        .err_handler    = &nvme_err_handler,
3393};
3394
3395static int __init nvme_init(void)
3396{
3397        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3398        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3399        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3400        BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3401
3402        return pci_register_driver(&nvme_driver);
3403}
3404
3405static void __exit nvme_exit(void)
3406{
3407        pci_unregister_driver(&nvme_driver);
3408        flush_workqueue(nvme_wq);
3409}
3410
3411MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3412MODULE_LICENSE("GPL");
3413MODULE_VERSION("1.0");
3414module_init(nvme_init);
3415module_exit(nvme_exit);
3416