linux/drivers/nvme/target/rdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NVMe over Fabrics RDMA target.
   4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7#include <linux/atomic.h>
   8#include <linux/ctype.h>
   9#include <linux/delay.h>
  10#include <linux/err.h>
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/nvme.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/wait.h>
  17#include <linux/inet.h>
  18#include <asm/unaligned.h>
  19
  20#include <rdma/ib_verbs.h>
  21#include <rdma/rdma_cm.h>
  22#include <rdma/rw.h>
  23#include <rdma/ib_cm.h>
  24
  25#include <linux/nvme-rdma.h>
  26#include "nvmet.h"
  27
  28/*
  29 * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data
  30 */
  31#define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE     PAGE_SIZE
  32#define NVMET_RDMA_MAX_INLINE_SGE               4
  33#define NVMET_RDMA_MAX_INLINE_DATA_SIZE         max_t(int, SZ_16K, PAGE_SIZE)
  34
  35/* Assume mpsmin == device_page_size == 4KB */
  36#define NVMET_RDMA_MAX_MDTS                     8
  37#define NVMET_RDMA_MAX_METADATA_MDTS            5
  38
  39struct nvmet_rdma_srq;
  40
  41struct nvmet_rdma_cmd {
  42        struct ib_sge           sge[NVMET_RDMA_MAX_INLINE_SGE + 1];
  43        struct ib_cqe           cqe;
  44        struct ib_recv_wr       wr;
  45        struct scatterlist      inline_sg[NVMET_RDMA_MAX_INLINE_SGE];
  46        struct nvme_command     *nvme_cmd;
  47        struct nvmet_rdma_queue *queue;
  48        struct nvmet_rdma_srq   *nsrq;
  49};
  50
  51enum {
  52        NVMET_RDMA_REQ_INLINE_DATA      = (1 << 0),
  53        NVMET_RDMA_REQ_INVALIDATE_RKEY  = (1 << 1),
  54};
  55
  56struct nvmet_rdma_rsp {
  57        struct ib_sge           send_sge;
  58        struct ib_cqe           send_cqe;
  59        struct ib_send_wr       send_wr;
  60
  61        struct nvmet_rdma_cmd   *cmd;
  62        struct nvmet_rdma_queue *queue;
  63
  64        struct ib_cqe           read_cqe;
  65        struct ib_cqe           write_cqe;
  66        struct rdma_rw_ctx      rw;
  67
  68        struct nvmet_req        req;
  69
  70        bool                    allocated;
  71        u8                      n_rdma;
  72        u32                     flags;
  73        u32                     invalidate_rkey;
  74
  75        struct list_head        wait_list;
  76        struct list_head        free_list;
  77};
  78
  79enum nvmet_rdma_queue_state {
  80        NVMET_RDMA_Q_CONNECTING,
  81        NVMET_RDMA_Q_LIVE,
  82        NVMET_RDMA_Q_DISCONNECTING,
  83};
  84
  85struct nvmet_rdma_queue {
  86        struct rdma_cm_id       *cm_id;
  87        struct ib_qp            *qp;
  88        struct nvmet_port       *port;
  89        struct ib_cq            *cq;
  90        atomic_t                sq_wr_avail;
  91        struct nvmet_rdma_device *dev;
  92        struct nvmet_rdma_srq   *nsrq;
  93        spinlock_t              state_lock;
  94        enum nvmet_rdma_queue_state state;
  95        struct nvmet_cq         nvme_cq;
  96        struct nvmet_sq         nvme_sq;
  97
  98        struct nvmet_rdma_rsp   *rsps;
  99        struct list_head        free_rsps;
 100        spinlock_t              rsps_lock;
 101        struct nvmet_rdma_cmd   *cmds;
 102
 103        struct work_struct      release_work;
 104        struct list_head        rsp_wait_list;
 105        struct list_head        rsp_wr_wait_list;
 106        spinlock_t              rsp_wr_wait_lock;
 107
 108        int                     idx;
 109        int                     host_qid;
 110        int                     comp_vector;
 111        int                     recv_queue_size;
 112        int                     send_queue_size;
 113
 114        struct list_head        queue_list;
 115};
 116
 117struct nvmet_rdma_port {
 118        struct nvmet_port       *nport;
 119        struct sockaddr_storage addr;
 120        struct rdma_cm_id       *cm_id;
 121        struct delayed_work     repair_work;
 122};
 123
 124struct nvmet_rdma_srq {
 125        struct ib_srq            *srq;
 126        struct nvmet_rdma_cmd    *cmds;
 127        struct nvmet_rdma_device *ndev;
 128};
 129
 130struct nvmet_rdma_device {
 131        struct ib_device        *device;
 132        struct ib_pd            *pd;
 133        struct nvmet_rdma_srq   **srqs;
 134        int                     srq_count;
 135        size_t                  srq_size;
 136        struct kref             ref;
 137        struct list_head        entry;
 138        int                     inline_data_size;
 139        int                     inline_page_count;
 140};
 141
 142static bool nvmet_rdma_use_srq;
 143module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444);
 144MODULE_PARM_DESC(use_srq, "Use shared receive queue.");
 145
 146static int srq_size_set(const char *val, const struct kernel_param *kp);
 147static const struct kernel_param_ops srq_size_ops = {
 148        .set = srq_size_set,
 149        .get = param_get_int,
 150};
 151
 152static int nvmet_rdma_srq_size = 1024;
 153module_param_cb(srq_size, &srq_size_ops, &nvmet_rdma_srq_size, 0644);
 154MODULE_PARM_DESC(srq_size, "set Shared Receive Queue (SRQ) size, should >= 256 (default: 1024)");
 155
 156static DEFINE_IDA(nvmet_rdma_queue_ida);
 157static LIST_HEAD(nvmet_rdma_queue_list);
 158static DEFINE_MUTEX(nvmet_rdma_queue_mutex);
 159
 160static LIST_HEAD(device_list);
 161static DEFINE_MUTEX(device_list_mutex);
 162
 163static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp);
 164static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc);
 165static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 166static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc);
 167static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc);
 168static void nvmet_rdma_qp_event(struct ib_event *event, void *priv);
 169static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue);
 170static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
 171                                struct nvmet_rdma_rsp *r);
 172static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
 173                                struct nvmet_rdma_rsp *r);
 174
 175static const struct nvmet_fabrics_ops nvmet_rdma_ops;
 176
 177static int srq_size_set(const char *val, const struct kernel_param *kp)
 178{
 179        int n = 0, ret;
 180
 181        ret = kstrtoint(val, 10, &n);
 182        if (ret != 0 || n < 256)
 183                return -EINVAL;
 184
 185        return param_set_int(val, kp);
 186}
 187
 188static int num_pages(int len)
 189{
 190        return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT);
 191}
 192
 193static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp)
 194{
 195        return nvme_is_write(rsp->req.cmd) &&
 196                rsp->req.transfer_len &&
 197                !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
 198}
 199
 200static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp)
 201{
 202        return !nvme_is_write(rsp->req.cmd) &&
 203                rsp->req.transfer_len &&
 204                !rsp->req.cqe->status &&
 205                !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA);
 206}
 207
 208static inline struct nvmet_rdma_rsp *
 209nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue)
 210{
 211        struct nvmet_rdma_rsp *rsp;
 212        unsigned long flags;
 213
 214        spin_lock_irqsave(&queue->rsps_lock, flags);
 215        rsp = list_first_entry_or_null(&queue->free_rsps,
 216                                struct nvmet_rdma_rsp, free_list);
 217        if (likely(rsp))
 218                list_del(&rsp->free_list);
 219        spin_unlock_irqrestore(&queue->rsps_lock, flags);
 220
 221        if (unlikely(!rsp)) {
 222                int ret;
 223
 224                rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
 225                if (unlikely(!rsp))
 226                        return NULL;
 227                ret = nvmet_rdma_alloc_rsp(queue->dev, rsp);
 228                if (unlikely(ret)) {
 229                        kfree(rsp);
 230                        return NULL;
 231                }
 232
 233                rsp->allocated = true;
 234        }
 235
 236        return rsp;
 237}
 238
 239static inline void
 240nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp)
 241{
 242        unsigned long flags;
 243
 244        if (unlikely(rsp->allocated)) {
 245                nvmet_rdma_free_rsp(rsp->queue->dev, rsp);
 246                kfree(rsp);
 247                return;
 248        }
 249
 250        spin_lock_irqsave(&rsp->queue->rsps_lock, flags);
 251        list_add_tail(&rsp->free_list, &rsp->queue->free_rsps);
 252        spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags);
 253}
 254
 255static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev,
 256                                struct nvmet_rdma_cmd *c)
 257{
 258        struct scatterlist *sg;
 259        struct ib_sge *sge;
 260        int i;
 261
 262        if (!ndev->inline_data_size)
 263                return;
 264
 265        sg = c->inline_sg;
 266        sge = &c->sge[1];
 267
 268        for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
 269                if (sge->length)
 270                        ib_dma_unmap_page(ndev->device, sge->addr,
 271                                        sge->length, DMA_FROM_DEVICE);
 272                if (sg_page(sg))
 273                        __free_page(sg_page(sg));
 274        }
 275}
 276
 277static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev,
 278                                struct nvmet_rdma_cmd *c)
 279{
 280        struct scatterlist *sg;
 281        struct ib_sge *sge;
 282        struct page *pg;
 283        int len;
 284        int i;
 285
 286        if (!ndev->inline_data_size)
 287                return 0;
 288
 289        sg = c->inline_sg;
 290        sg_init_table(sg, ndev->inline_page_count);
 291        sge = &c->sge[1];
 292        len = ndev->inline_data_size;
 293
 294        for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) {
 295                pg = alloc_page(GFP_KERNEL);
 296                if (!pg)
 297                        goto out_err;
 298                sg_assign_page(sg, pg);
 299                sge->addr = ib_dma_map_page(ndev->device,
 300                        pg, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 301                if (ib_dma_mapping_error(ndev->device, sge->addr))
 302                        goto out_err;
 303                sge->length = min_t(int, len, PAGE_SIZE);
 304                sge->lkey = ndev->pd->local_dma_lkey;
 305                len -= sge->length;
 306        }
 307
 308        return 0;
 309out_err:
 310        for (; i >= 0; i--, sg--, sge--) {
 311                if (sge->length)
 312                        ib_dma_unmap_page(ndev->device, sge->addr,
 313                                        sge->length, DMA_FROM_DEVICE);
 314                if (sg_page(sg))
 315                        __free_page(sg_page(sg));
 316        }
 317        return -ENOMEM;
 318}
 319
 320static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev,
 321                        struct nvmet_rdma_cmd *c, bool admin)
 322{
 323        /* NVMe command / RDMA RECV */
 324        c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL);
 325        if (!c->nvme_cmd)
 326                goto out;
 327
 328        c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd,
 329                        sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
 330        if (ib_dma_mapping_error(ndev->device, c->sge[0].addr))
 331                goto out_free_cmd;
 332
 333        c->sge[0].length = sizeof(*c->nvme_cmd);
 334        c->sge[0].lkey = ndev->pd->local_dma_lkey;
 335
 336        if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c))
 337                goto out_unmap_cmd;
 338
 339        c->cqe.done = nvmet_rdma_recv_done;
 340
 341        c->wr.wr_cqe = &c->cqe;
 342        c->wr.sg_list = c->sge;
 343        c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1;
 344
 345        return 0;
 346
 347out_unmap_cmd:
 348        ib_dma_unmap_single(ndev->device, c->sge[0].addr,
 349                        sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
 350out_free_cmd:
 351        kfree(c->nvme_cmd);
 352
 353out:
 354        return -ENOMEM;
 355}
 356
 357static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev,
 358                struct nvmet_rdma_cmd *c, bool admin)
 359{
 360        if (!admin)
 361                nvmet_rdma_free_inline_pages(ndev, c);
 362        ib_dma_unmap_single(ndev->device, c->sge[0].addr,
 363                                sizeof(*c->nvme_cmd), DMA_FROM_DEVICE);
 364        kfree(c->nvme_cmd);
 365}
 366
 367static struct nvmet_rdma_cmd *
 368nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev,
 369                int nr_cmds, bool admin)
 370{
 371        struct nvmet_rdma_cmd *cmds;
 372        int ret = -EINVAL, i;
 373
 374        cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL);
 375        if (!cmds)
 376                goto out;
 377
 378        for (i = 0; i < nr_cmds; i++) {
 379                ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin);
 380                if (ret)
 381                        goto out_free;
 382        }
 383
 384        return cmds;
 385
 386out_free:
 387        while (--i >= 0)
 388                nvmet_rdma_free_cmd(ndev, cmds + i, admin);
 389        kfree(cmds);
 390out:
 391        return ERR_PTR(ret);
 392}
 393
 394static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev,
 395                struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin)
 396{
 397        int i;
 398
 399        for (i = 0; i < nr_cmds; i++)
 400                nvmet_rdma_free_cmd(ndev, cmds + i, admin);
 401        kfree(cmds);
 402}
 403
 404static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev,
 405                struct nvmet_rdma_rsp *r)
 406{
 407        /* NVMe CQE / RDMA SEND */
 408        r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL);
 409        if (!r->req.cqe)
 410                goto out;
 411
 412        r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe,
 413                        sizeof(*r->req.cqe), DMA_TO_DEVICE);
 414        if (ib_dma_mapping_error(ndev->device, r->send_sge.addr))
 415                goto out_free_rsp;
 416
 417        if (!ib_uses_virt_dma(ndev->device))
 418                r->req.p2p_client = &ndev->device->dev;
 419        r->send_sge.length = sizeof(*r->req.cqe);
 420        r->send_sge.lkey = ndev->pd->local_dma_lkey;
 421
 422        r->send_cqe.done = nvmet_rdma_send_done;
 423
 424        r->send_wr.wr_cqe = &r->send_cqe;
 425        r->send_wr.sg_list = &r->send_sge;
 426        r->send_wr.num_sge = 1;
 427        r->send_wr.send_flags = IB_SEND_SIGNALED;
 428
 429        /* Data In / RDMA READ */
 430        r->read_cqe.done = nvmet_rdma_read_data_done;
 431        /* Data Out / RDMA WRITE */
 432        r->write_cqe.done = nvmet_rdma_write_data_done;
 433
 434        return 0;
 435
 436out_free_rsp:
 437        kfree(r->req.cqe);
 438out:
 439        return -ENOMEM;
 440}
 441
 442static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev,
 443                struct nvmet_rdma_rsp *r)
 444{
 445        ib_dma_unmap_single(ndev->device, r->send_sge.addr,
 446                                sizeof(*r->req.cqe), DMA_TO_DEVICE);
 447        kfree(r->req.cqe);
 448}
 449
 450static int
 451nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue)
 452{
 453        struct nvmet_rdma_device *ndev = queue->dev;
 454        int nr_rsps = queue->recv_queue_size * 2;
 455        int ret = -EINVAL, i;
 456
 457        queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp),
 458                        GFP_KERNEL);
 459        if (!queue->rsps)
 460                goto out;
 461
 462        for (i = 0; i < nr_rsps; i++) {
 463                struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
 464
 465                ret = nvmet_rdma_alloc_rsp(ndev, rsp);
 466                if (ret)
 467                        goto out_free;
 468
 469                list_add_tail(&rsp->free_list, &queue->free_rsps);
 470        }
 471
 472        return 0;
 473
 474out_free:
 475        while (--i >= 0) {
 476                struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
 477
 478                list_del(&rsp->free_list);
 479                nvmet_rdma_free_rsp(ndev, rsp);
 480        }
 481        kfree(queue->rsps);
 482out:
 483        return ret;
 484}
 485
 486static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue)
 487{
 488        struct nvmet_rdma_device *ndev = queue->dev;
 489        int i, nr_rsps = queue->recv_queue_size * 2;
 490
 491        for (i = 0; i < nr_rsps; i++) {
 492                struct nvmet_rdma_rsp *rsp = &queue->rsps[i];
 493
 494                list_del(&rsp->free_list);
 495                nvmet_rdma_free_rsp(ndev, rsp);
 496        }
 497        kfree(queue->rsps);
 498}
 499
 500static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev,
 501                struct nvmet_rdma_cmd *cmd)
 502{
 503        int ret;
 504
 505        ib_dma_sync_single_for_device(ndev->device,
 506                cmd->sge[0].addr, cmd->sge[0].length,
 507                DMA_FROM_DEVICE);
 508
 509        if (cmd->nsrq)
 510                ret = ib_post_srq_recv(cmd->nsrq->srq, &cmd->wr, NULL);
 511        else
 512                ret = ib_post_recv(cmd->queue->qp, &cmd->wr, NULL);
 513
 514        if (unlikely(ret))
 515                pr_err("post_recv cmd failed\n");
 516
 517        return ret;
 518}
 519
 520static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue)
 521{
 522        spin_lock(&queue->rsp_wr_wait_lock);
 523        while (!list_empty(&queue->rsp_wr_wait_list)) {
 524                struct nvmet_rdma_rsp *rsp;
 525                bool ret;
 526
 527                rsp = list_entry(queue->rsp_wr_wait_list.next,
 528                                struct nvmet_rdma_rsp, wait_list);
 529                list_del(&rsp->wait_list);
 530
 531                spin_unlock(&queue->rsp_wr_wait_lock);
 532                ret = nvmet_rdma_execute_command(rsp);
 533                spin_lock(&queue->rsp_wr_wait_lock);
 534
 535                if (!ret) {
 536                        list_add(&rsp->wait_list, &queue->rsp_wr_wait_list);
 537                        break;
 538                }
 539        }
 540        spin_unlock(&queue->rsp_wr_wait_lock);
 541}
 542
 543static u16 nvmet_rdma_check_pi_status(struct ib_mr *sig_mr)
 544{
 545        struct ib_mr_status mr_status;
 546        int ret;
 547        u16 status = 0;
 548
 549        ret = ib_check_mr_status(sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
 550        if (ret) {
 551                pr_err("ib_check_mr_status failed, ret %d\n", ret);
 552                return NVME_SC_INVALID_PI;
 553        }
 554
 555        if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
 556                switch (mr_status.sig_err.err_type) {
 557                case IB_SIG_BAD_GUARD:
 558                        status = NVME_SC_GUARD_CHECK;
 559                        break;
 560                case IB_SIG_BAD_REFTAG:
 561                        status = NVME_SC_REFTAG_CHECK;
 562                        break;
 563                case IB_SIG_BAD_APPTAG:
 564                        status = NVME_SC_APPTAG_CHECK;
 565                        break;
 566                }
 567                pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
 568                       mr_status.sig_err.err_type,
 569                       mr_status.sig_err.expected,
 570                       mr_status.sig_err.actual);
 571        }
 572
 573        return status;
 574}
 575
 576static void nvmet_rdma_set_sig_domain(struct blk_integrity *bi,
 577                struct nvme_command *cmd, struct ib_sig_domain *domain,
 578                u16 control, u8 pi_type)
 579{
 580        domain->sig_type = IB_SIG_TYPE_T10_DIF;
 581        domain->sig.dif.bg_type = IB_T10DIF_CRC;
 582        domain->sig.dif.pi_interval = 1 << bi->interval_exp;
 583        domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
 584        if (control & NVME_RW_PRINFO_PRCHK_REF)
 585                domain->sig.dif.ref_remap = true;
 586
 587        domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
 588        domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
 589        domain->sig.dif.app_escape = true;
 590        if (pi_type == NVME_NS_DPS_PI_TYPE3)
 591                domain->sig.dif.ref_escape = true;
 592}
 593
 594static void nvmet_rdma_set_sig_attrs(struct nvmet_req *req,
 595                                     struct ib_sig_attrs *sig_attrs)
 596{
 597        struct nvme_command *cmd = req->cmd;
 598        u16 control = le16_to_cpu(cmd->rw.control);
 599        u8 pi_type = req->ns->pi_type;
 600        struct blk_integrity *bi;
 601
 602        bi = bdev_get_integrity(req->ns->bdev);
 603
 604        memset(sig_attrs, 0, sizeof(*sig_attrs));
 605
 606        if (control & NVME_RW_PRINFO_PRACT) {
 607                /* for WRITE_INSERT/READ_STRIP no wire domain */
 608                sig_attrs->wire.sig_type = IB_SIG_TYPE_NONE;
 609                nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
 610                                          pi_type);
 611                /* Clear the PRACT bit since HCA will generate/verify the PI */
 612                control &= ~NVME_RW_PRINFO_PRACT;
 613                cmd->rw.control = cpu_to_le16(control);
 614                /* PI is added by the HW */
 615                req->transfer_len += req->metadata_len;
 616        } else {
 617                /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
 618                nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
 619                                          pi_type);
 620                nvmet_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
 621                                          pi_type);
 622        }
 623
 624        if (control & NVME_RW_PRINFO_PRCHK_REF)
 625                sig_attrs->check_mask |= IB_SIG_CHECK_REFTAG;
 626        if (control & NVME_RW_PRINFO_PRCHK_GUARD)
 627                sig_attrs->check_mask |= IB_SIG_CHECK_GUARD;
 628        if (control & NVME_RW_PRINFO_PRCHK_APP)
 629                sig_attrs->check_mask |= IB_SIG_CHECK_APPTAG;
 630}
 631
 632static int nvmet_rdma_rw_ctx_init(struct nvmet_rdma_rsp *rsp, u64 addr, u32 key,
 633                                  struct ib_sig_attrs *sig_attrs)
 634{
 635        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 636        struct nvmet_req *req = &rsp->req;
 637        int ret;
 638
 639        if (req->metadata_len)
 640                ret = rdma_rw_ctx_signature_init(&rsp->rw, cm_id->qp,
 641                        cm_id->port_num, req->sg, req->sg_cnt,
 642                        req->metadata_sg, req->metadata_sg_cnt, sig_attrs,
 643                        addr, key, nvmet_data_dir(req));
 644        else
 645                ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num,
 646                                       req->sg, req->sg_cnt, 0, addr, key,
 647                                       nvmet_data_dir(req));
 648
 649        return ret;
 650}
 651
 652static void nvmet_rdma_rw_ctx_destroy(struct nvmet_rdma_rsp *rsp)
 653{
 654        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 655        struct nvmet_req *req = &rsp->req;
 656
 657        if (req->metadata_len)
 658                rdma_rw_ctx_destroy_signature(&rsp->rw, cm_id->qp,
 659                        cm_id->port_num, req->sg, req->sg_cnt,
 660                        req->metadata_sg, req->metadata_sg_cnt,
 661                        nvmet_data_dir(req));
 662        else
 663                rdma_rw_ctx_destroy(&rsp->rw, cm_id->qp, cm_id->port_num,
 664                                    req->sg, req->sg_cnt, nvmet_data_dir(req));
 665}
 666
 667static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp)
 668{
 669        struct nvmet_rdma_queue *queue = rsp->queue;
 670
 671        atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
 672
 673        if (rsp->n_rdma)
 674                nvmet_rdma_rw_ctx_destroy(rsp);
 675
 676        if (rsp->req.sg != rsp->cmd->inline_sg)
 677                nvmet_req_free_sgls(&rsp->req);
 678
 679        if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list)))
 680                nvmet_rdma_process_wr_wait_list(queue);
 681
 682        nvmet_rdma_put_rsp(rsp);
 683}
 684
 685static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue)
 686{
 687        if (queue->nvme_sq.ctrl) {
 688                nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
 689        } else {
 690                /*
 691                 * we didn't setup the controller yet in case
 692                 * of admin connect error, just disconnect and
 693                 * cleanup the queue
 694                 */
 695                nvmet_rdma_queue_disconnect(queue);
 696        }
 697}
 698
 699static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
 700{
 701        struct nvmet_rdma_rsp *rsp =
 702                container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe);
 703        struct nvmet_rdma_queue *queue = wc->qp->qp_context;
 704
 705        nvmet_rdma_release_rsp(rsp);
 706
 707        if (unlikely(wc->status != IB_WC_SUCCESS &&
 708                     wc->status != IB_WC_WR_FLUSH_ERR)) {
 709                pr_err("SEND for CQE 0x%p failed with status %s (%d).\n",
 710                        wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
 711                nvmet_rdma_error_comp(queue);
 712        }
 713}
 714
 715static void nvmet_rdma_queue_response(struct nvmet_req *req)
 716{
 717        struct nvmet_rdma_rsp *rsp =
 718                container_of(req, struct nvmet_rdma_rsp, req);
 719        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 720        struct ib_send_wr *first_wr;
 721
 722        if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) {
 723                rsp->send_wr.opcode = IB_WR_SEND_WITH_INV;
 724                rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey;
 725        } else {
 726                rsp->send_wr.opcode = IB_WR_SEND;
 727        }
 728
 729        if (nvmet_rdma_need_data_out(rsp)) {
 730                if (rsp->req.metadata_len)
 731                        first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
 732                                        cm_id->port_num, &rsp->write_cqe, NULL);
 733                else
 734                        first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp,
 735                                        cm_id->port_num, NULL, &rsp->send_wr);
 736        } else {
 737                first_wr = &rsp->send_wr;
 738        }
 739
 740        nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd);
 741
 742        ib_dma_sync_single_for_device(rsp->queue->dev->device,
 743                rsp->send_sge.addr, rsp->send_sge.length,
 744                DMA_TO_DEVICE);
 745
 746        if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) {
 747                pr_err("sending cmd response failed\n");
 748                nvmet_rdma_release_rsp(rsp);
 749        }
 750}
 751
 752static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc)
 753{
 754        struct nvmet_rdma_rsp *rsp =
 755                container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe);
 756        struct nvmet_rdma_queue *queue = wc->qp->qp_context;
 757        u16 status = 0;
 758
 759        WARN_ON(rsp->n_rdma <= 0);
 760        atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
 761        rsp->n_rdma = 0;
 762
 763        if (unlikely(wc->status != IB_WC_SUCCESS)) {
 764                nvmet_rdma_rw_ctx_destroy(rsp);
 765                nvmet_req_uninit(&rsp->req);
 766                nvmet_rdma_release_rsp(rsp);
 767                if (wc->status != IB_WC_WR_FLUSH_ERR) {
 768                        pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n",
 769                                wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status);
 770                        nvmet_rdma_error_comp(queue);
 771                }
 772                return;
 773        }
 774
 775        if (rsp->req.metadata_len)
 776                status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
 777        nvmet_rdma_rw_ctx_destroy(rsp);
 778
 779        if (unlikely(status))
 780                nvmet_req_complete(&rsp->req, status);
 781        else
 782                rsp->req.execute(&rsp->req);
 783}
 784
 785static void nvmet_rdma_write_data_done(struct ib_cq *cq, struct ib_wc *wc)
 786{
 787        struct nvmet_rdma_rsp *rsp =
 788                container_of(wc->wr_cqe, struct nvmet_rdma_rsp, write_cqe);
 789        struct nvmet_rdma_queue *queue = wc->qp->qp_context;
 790        struct rdma_cm_id *cm_id = rsp->queue->cm_id;
 791        u16 status;
 792
 793        if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
 794                return;
 795
 796        WARN_ON(rsp->n_rdma <= 0);
 797        atomic_add(rsp->n_rdma, &queue->sq_wr_avail);
 798        rsp->n_rdma = 0;
 799
 800        if (unlikely(wc->status != IB_WC_SUCCESS)) {
 801                nvmet_rdma_rw_ctx_destroy(rsp);
 802                nvmet_req_uninit(&rsp->req);
 803                nvmet_rdma_release_rsp(rsp);
 804                if (wc->status != IB_WC_WR_FLUSH_ERR) {
 805                        pr_info("RDMA WRITE for CQE failed with status %s (%d).\n",
 806                                ib_wc_status_msg(wc->status), wc->status);
 807                        nvmet_rdma_error_comp(queue);
 808                }
 809                return;
 810        }
 811
 812        /*
 813         * Upon RDMA completion check the signature status
 814         * - if succeeded send good NVMe response
 815         * - if failed send bad NVMe response with appropriate error
 816         */
 817        status = nvmet_rdma_check_pi_status(rsp->rw.reg->mr);
 818        if (unlikely(status))
 819                rsp->req.cqe->status = cpu_to_le16(status << 1);
 820        nvmet_rdma_rw_ctx_destroy(rsp);
 821
 822        if (unlikely(ib_post_send(cm_id->qp, &rsp->send_wr, NULL))) {
 823                pr_err("sending cmd response failed\n");
 824                nvmet_rdma_release_rsp(rsp);
 825        }
 826}
 827
 828static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len,
 829                u64 off)
 830{
 831        int sg_count = num_pages(len);
 832        struct scatterlist *sg;
 833        int i;
 834
 835        sg = rsp->cmd->inline_sg;
 836        for (i = 0; i < sg_count; i++, sg++) {
 837                if (i < sg_count - 1)
 838                        sg_unmark_end(sg);
 839                else
 840                        sg_mark_end(sg);
 841                sg->offset = off;
 842                sg->length = min_t(int, len, PAGE_SIZE - off);
 843                len -= sg->length;
 844                if (!i)
 845                        off = 0;
 846        }
 847
 848        rsp->req.sg = rsp->cmd->inline_sg;
 849        rsp->req.sg_cnt = sg_count;
 850}
 851
 852static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp)
 853{
 854        struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl;
 855        u64 off = le64_to_cpu(sgl->addr);
 856        u32 len = le32_to_cpu(sgl->length);
 857
 858        if (!nvme_is_write(rsp->req.cmd)) {
 859                rsp->req.error_loc =
 860                        offsetof(struct nvme_common_command, opcode);
 861                return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 862        }
 863
 864        if (off + len > rsp->queue->dev->inline_data_size) {
 865                pr_err("invalid inline data offset!\n");
 866                return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
 867        }
 868
 869        /* no data command? */
 870        if (!len)
 871                return 0;
 872
 873        nvmet_rdma_use_inline_sg(rsp, len, off);
 874        rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA;
 875        rsp->req.transfer_len += len;
 876        return 0;
 877}
 878
 879static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp,
 880                struct nvme_keyed_sgl_desc *sgl, bool invalidate)
 881{
 882        u64 addr = le64_to_cpu(sgl->addr);
 883        u32 key = get_unaligned_le32(sgl->key);
 884        struct ib_sig_attrs sig_attrs;
 885        int ret;
 886
 887        rsp->req.transfer_len = get_unaligned_le24(sgl->length);
 888
 889        /* no data command? */
 890        if (!rsp->req.transfer_len)
 891                return 0;
 892
 893        if (rsp->req.metadata_len)
 894                nvmet_rdma_set_sig_attrs(&rsp->req, &sig_attrs);
 895
 896        ret = nvmet_req_alloc_sgls(&rsp->req);
 897        if (unlikely(ret < 0))
 898                goto error_out;
 899
 900        ret = nvmet_rdma_rw_ctx_init(rsp, addr, key, &sig_attrs);
 901        if (unlikely(ret < 0))
 902                goto error_out;
 903        rsp->n_rdma += ret;
 904
 905        if (invalidate) {
 906                rsp->invalidate_rkey = key;
 907                rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY;
 908        }
 909
 910        return 0;
 911
 912error_out:
 913        rsp->req.transfer_len = 0;
 914        return NVME_SC_INTERNAL;
 915}
 916
 917static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp)
 918{
 919        struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl;
 920
 921        switch (sgl->type >> 4) {
 922        case NVME_SGL_FMT_DATA_DESC:
 923                switch (sgl->type & 0xf) {
 924                case NVME_SGL_FMT_OFFSET:
 925                        return nvmet_rdma_map_sgl_inline(rsp);
 926                default:
 927                        pr_err("invalid SGL subtype: %#x\n", sgl->type);
 928                        rsp->req.error_loc =
 929                                offsetof(struct nvme_common_command, dptr);
 930                        return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 931                }
 932        case NVME_KEY_SGL_FMT_DATA_DESC:
 933                switch (sgl->type & 0xf) {
 934                case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE:
 935                        return nvmet_rdma_map_sgl_keyed(rsp, sgl, true);
 936                case NVME_SGL_FMT_ADDRESS:
 937                        return nvmet_rdma_map_sgl_keyed(rsp, sgl, false);
 938                default:
 939                        pr_err("invalid SGL subtype: %#x\n", sgl->type);
 940                        rsp->req.error_loc =
 941                                offsetof(struct nvme_common_command, dptr);
 942                        return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
 943                }
 944        default:
 945                pr_err("invalid SGL type: %#x\n", sgl->type);
 946                rsp->req.error_loc = offsetof(struct nvme_common_command, dptr);
 947                return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR;
 948        }
 949}
 950
 951static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp)
 952{
 953        struct nvmet_rdma_queue *queue = rsp->queue;
 954
 955        if (unlikely(atomic_sub_return(1 + rsp->n_rdma,
 956                        &queue->sq_wr_avail) < 0)) {
 957                pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n",
 958                                1 + rsp->n_rdma, queue->idx,
 959                                queue->nvme_sq.ctrl->cntlid);
 960                atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail);
 961                return false;
 962        }
 963
 964        if (nvmet_rdma_need_data_in(rsp)) {
 965                if (rdma_rw_ctx_post(&rsp->rw, queue->qp,
 966                                queue->cm_id->port_num, &rsp->read_cqe, NULL))
 967                        nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR);
 968        } else {
 969                rsp->req.execute(&rsp->req);
 970        }
 971
 972        return true;
 973}
 974
 975static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue,
 976                struct nvmet_rdma_rsp *cmd)
 977{
 978        u16 status;
 979
 980        ib_dma_sync_single_for_cpu(queue->dev->device,
 981                cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length,
 982                DMA_FROM_DEVICE);
 983        ib_dma_sync_single_for_cpu(queue->dev->device,
 984                cmd->send_sge.addr, cmd->send_sge.length,
 985                DMA_TO_DEVICE);
 986
 987        if (!nvmet_req_init(&cmd->req, &queue->nvme_cq,
 988                        &queue->nvme_sq, &nvmet_rdma_ops))
 989                return;
 990
 991        status = nvmet_rdma_map_sgl(cmd);
 992        if (status)
 993                goto out_err;
 994
 995        if (unlikely(!nvmet_rdma_execute_command(cmd))) {
 996                spin_lock(&queue->rsp_wr_wait_lock);
 997                list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list);
 998                spin_unlock(&queue->rsp_wr_wait_lock);
 999        }
1000
1001        return;
1002
1003out_err:
1004        nvmet_req_complete(&cmd->req, status);
1005}
1006
1007static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1008{
1009        struct nvmet_rdma_cmd *cmd =
1010                container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe);
1011        struct nvmet_rdma_queue *queue = wc->qp->qp_context;
1012        struct nvmet_rdma_rsp *rsp;
1013
1014        if (unlikely(wc->status != IB_WC_SUCCESS)) {
1015                if (wc->status != IB_WC_WR_FLUSH_ERR) {
1016                        pr_err("RECV for CQE 0x%p failed with status %s (%d)\n",
1017                                wc->wr_cqe, ib_wc_status_msg(wc->status),
1018                                wc->status);
1019                        nvmet_rdma_error_comp(queue);
1020                }
1021                return;
1022        }
1023
1024        if (unlikely(wc->byte_len < sizeof(struct nvme_command))) {
1025                pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n");
1026                nvmet_rdma_error_comp(queue);
1027                return;
1028        }
1029
1030        cmd->queue = queue;
1031        rsp = nvmet_rdma_get_rsp(queue);
1032        if (unlikely(!rsp)) {
1033                /*
1034                 * we get here only under memory pressure,
1035                 * silently drop and have the host retry
1036                 * as we can't even fail it.
1037                 */
1038                nvmet_rdma_post_recv(queue->dev, cmd);
1039                return;
1040        }
1041        rsp->queue = queue;
1042        rsp->cmd = cmd;
1043        rsp->flags = 0;
1044        rsp->req.cmd = cmd->nvme_cmd;
1045        rsp->req.port = queue->port;
1046        rsp->n_rdma = 0;
1047
1048        if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) {
1049                unsigned long flags;
1050
1051                spin_lock_irqsave(&queue->state_lock, flags);
1052                if (queue->state == NVMET_RDMA_Q_CONNECTING)
1053                        list_add_tail(&rsp->wait_list, &queue->rsp_wait_list);
1054                else
1055                        nvmet_rdma_put_rsp(rsp);
1056                spin_unlock_irqrestore(&queue->state_lock, flags);
1057                return;
1058        }
1059
1060        nvmet_rdma_handle_command(queue, rsp);
1061}
1062
1063static void nvmet_rdma_destroy_srq(struct nvmet_rdma_srq *nsrq)
1064{
1065        nvmet_rdma_free_cmds(nsrq->ndev, nsrq->cmds, nsrq->ndev->srq_size,
1066                             false);
1067        ib_destroy_srq(nsrq->srq);
1068
1069        kfree(nsrq);
1070}
1071
1072static void nvmet_rdma_destroy_srqs(struct nvmet_rdma_device *ndev)
1073{
1074        int i;
1075
1076        if (!ndev->srqs)
1077                return;
1078
1079        for (i = 0; i < ndev->srq_count; i++)
1080                nvmet_rdma_destroy_srq(ndev->srqs[i]);
1081
1082        kfree(ndev->srqs);
1083}
1084
1085static struct nvmet_rdma_srq *
1086nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev)
1087{
1088        struct ib_srq_init_attr srq_attr = { NULL, };
1089        size_t srq_size = ndev->srq_size;
1090        struct nvmet_rdma_srq *nsrq;
1091        struct ib_srq *srq;
1092        int ret, i;
1093
1094        nsrq = kzalloc(sizeof(*nsrq), GFP_KERNEL);
1095        if (!nsrq)
1096                return ERR_PTR(-ENOMEM);
1097
1098        srq_attr.attr.max_wr = srq_size;
1099        srq_attr.attr.max_sge = 1 + ndev->inline_page_count;
1100        srq_attr.attr.srq_limit = 0;
1101        srq_attr.srq_type = IB_SRQT_BASIC;
1102        srq = ib_create_srq(ndev->pd, &srq_attr);
1103        if (IS_ERR(srq)) {
1104                ret = PTR_ERR(srq);
1105                goto out_free;
1106        }
1107
1108        nsrq->cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false);
1109        if (IS_ERR(nsrq->cmds)) {
1110                ret = PTR_ERR(nsrq->cmds);
1111                goto out_destroy_srq;
1112        }
1113
1114        nsrq->srq = srq;
1115        nsrq->ndev = ndev;
1116
1117        for (i = 0; i < srq_size; i++) {
1118                nsrq->cmds[i].nsrq = nsrq;
1119                ret = nvmet_rdma_post_recv(ndev, &nsrq->cmds[i]);
1120                if (ret)
1121                        goto out_free_cmds;
1122        }
1123
1124        return nsrq;
1125
1126out_free_cmds:
1127        nvmet_rdma_free_cmds(ndev, nsrq->cmds, srq_size, false);
1128out_destroy_srq:
1129        ib_destroy_srq(srq);
1130out_free:
1131        kfree(nsrq);
1132        return ERR_PTR(ret);
1133}
1134
1135static int nvmet_rdma_init_srqs(struct nvmet_rdma_device *ndev)
1136{
1137        int i, ret;
1138
1139        if (!ndev->device->attrs.max_srq_wr || !ndev->device->attrs.max_srq) {
1140                /*
1141                 * If SRQs aren't supported we just go ahead and use normal
1142                 * non-shared receive queues.
1143                 */
1144                pr_info("SRQ requested but not supported.\n");
1145                return 0;
1146        }
1147
1148        ndev->srq_size = min(ndev->device->attrs.max_srq_wr,
1149                             nvmet_rdma_srq_size);
1150        ndev->srq_count = min(ndev->device->num_comp_vectors,
1151                              ndev->device->attrs.max_srq);
1152
1153        ndev->srqs = kcalloc(ndev->srq_count, sizeof(*ndev->srqs), GFP_KERNEL);
1154        if (!ndev->srqs)
1155                return -ENOMEM;
1156
1157        for (i = 0; i < ndev->srq_count; i++) {
1158                ndev->srqs[i] = nvmet_rdma_init_srq(ndev);
1159                if (IS_ERR(ndev->srqs[i])) {
1160                        ret = PTR_ERR(ndev->srqs[i]);
1161                        goto err_srq;
1162                }
1163        }
1164
1165        return 0;
1166
1167err_srq:
1168        while (--i >= 0)
1169                nvmet_rdma_destroy_srq(ndev->srqs[i]);
1170        kfree(ndev->srqs);
1171        return ret;
1172}
1173
1174static void nvmet_rdma_free_dev(struct kref *ref)
1175{
1176        struct nvmet_rdma_device *ndev =
1177                container_of(ref, struct nvmet_rdma_device, ref);
1178
1179        mutex_lock(&device_list_mutex);
1180        list_del(&ndev->entry);
1181        mutex_unlock(&device_list_mutex);
1182
1183        nvmet_rdma_destroy_srqs(ndev);
1184        ib_dealloc_pd(ndev->pd);
1185
1186        kfree(ndev);
1187}
1188
1189static struct nvmet_rdma_device *
1190nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id)
1191{
1192        struct nvmet_rdma_port *port = cm_id->context;
1193        struct nvmet_port *nport = port->nport;
1194        struct nvmet_rdma_device *ndev;
1195        int inline_page_count;
1196        int inline_sge_count;
1197        int ret;
1198
1199        mutex_lock(&device_list_mutex);
1200        list_for_each_entry(ndev, &device_list, entry) {
1201                if (ndev->device->node_guid == cm_id->device->node_guid &&
1202                    kref_get_unless_zero(&ndev->ref))
1203                        goto out_unlock;
1204        }
1205
1206        ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
1207        if (!ndev)
1208                goto out_err;
1209
1210        inline_page_count = num_pages(nport->inline_data_size);
1211        inline_sge_count = max(cm_id->device->attrs.max_sge_rd,
1212                                cm_id->device->attrs.max_recv_sge) - 1;
1213        if (inline_page_count > inline_sge_count) {
1214                pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n",
1215                        nport->inline_data_size, cm_id->device->name,
1216                        inline_sge_count * PAGE_SIZE);
1217                nport->inline_data_size = inline_sge_count * PAGE_SIZE;
1218                inline_page_count = inline_sge_count;
1219        }
1220        ndev->inline_data_size = nport->inline_data_size;
1221        ndev->inline_page_count = inline_page_count;
1222
1223        if (nport->pi_enable && !(cm_id->device->attrs.device_cap_flags &
1224                                  IB_DEVICE_INTEGRITY_HANDOVER)) {
1225                pr_warn("T10-PI is not supported by device %s. Disabling it\n",
1226                        cm_id->device->name);
1227                nport->pi_enable = false;
1228        }
1229
1230        ndev->device = cm_id->device;
1231        kref_init(&ndev->ref);
1232
1233        ndev->pd = ib_alloc_pd(ndev->device, 0);
1234        if (IS_ERR(ndev->pd))
1235                goto out_free_dev;
1236
1237        if (nvmet_rdma_use_srq) {
1238                ret = nvmet_rdma_init_srqs(ndev);
1239                if (ret)
1240                        goto out_free_pd;
1241        }
1242
1243        list_add(&ndev->entry, &device_list);
1244out_unlock:
1245        mutex_unlock(&device_list_mutex);
1246        pr_debug("added %s.\n", ndev->device->name);
1247        return ndev;
1248
1249out_free_pd:
1250        ib_dealloc_pd(ndev->pd);
1251out_free_dev:
1252        kfree(ndev);
1253out_err:
1254        mutex_unlock(&device_list_mutex);
1255        return NULL;
1256}
1257
1258static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue)
1259{
1260        struct ib_qp_init_attr qp_attr = { };
1261        struct nvmet_rdma_device *ndev = queue->dev;
1262        int nr_cqe, ret, i, factor;
1263
1264        /*
1265         * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND.
1266         */
1267        nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size;
1268
1269        queue->cq = ib_cq_pool_get(ndev->device, nr_cqe + 1,
1270                                   queue->comp_vector, IB_POLL_WORKQUEUE);
1271        if (IS_ERR(queue->cq)) {
1272                ret = PTR_ERR(queue->cq);
1273                pr_err("failed to create CQ cqe= %d ret= %d\n",
1274                       nr_cqe + 1, ret);
1275                goto out;
1276        }
1277
1278        qp_attr.qp_context = queue;
1279        qp_attr.event_handler = nvmet_rdma_qp_event;
1280        qp_attr.send_cq = queue->cq;
1281        qp_attr.recv_cq = queue->cq;
1282        qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1283        qp_attr.qp_type = IB_QPT_RC;
1284        /* +1 for drain */
1285        qp_attr.cap.max_send_wr = queue->send_queue_size + 1;
1286        factor = rdma_rw_mr_factor(ndev->device, queue->cm_id->port_num,
1287                                   1 << NVMET_RDMA_MAX_MDTS);
1288        qp_attr.cap.max_rdma_ctxs = queue->send_queue_size * factor;
1289        qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd,
1290                                        ndev->device->attrs.max_send_sge);
1291
1292        if (queue->nsrq) {
1293                qp_attr.srq = queue->nsrq->srq;
1294        } else {
1295                /* +1 for drain */
1296                qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size;
1297                qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count;
1298        }
1299
1300        if (queue->port->pi_enable && queue->host_qid)
1301                qp_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
1302
1303        ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr);
1304        if (ret) {
1305                pr_err("failed to create_qp ret= %d\n", ret);
1306                goto err_destroy_cq;
1307        }
1308        queue->qp = queue->cm_id->qp;
1309
1310        atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr);
1311
1312        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
1313                 __func__, queue->cq->cqe, qp_attr.cap.max_send_sge,
1314                 qp_attr.cap.max_send_wr, queue->cm_id);
1315
1316        if (!queue->nsrq) {
1317                for (i = 0; i < queue->recv_queue_size; i++) {
1318                        queue->cmds[i].queue = queue;
1319                        ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]);
1320                        if (ret)
1321                                goto err_destroy_qp;
1322                }
1323        }
1324
1325out:
1326        return ret;
1327
1328err_destroy_qp:
1329        rdma_destroy_qp(queue->cm_id);
1330err_destroy_cq:
1331        ib_cq_pool_put(queue->cq, nr_cqe + 1);
1332        goto out;
1333}
1334
1335static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue)
1336{
1337        ib_drain_qp(queue->qp);
1338        if (queue->cm_id)
1339                rdma_destroy_id(queue->cm_id);
1340        ib_destroy_qp(queue->qp);
1341        ib_cq_pool_put(queue->cq, queue->recv_queue_size + 2 *
1342                       queue->send_queue_size + 1);
1343}
1344
1345static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue)
1346{
1347        pr_debug("freeing queue %d\n", queue->idx);
1348
1349        nvmet_sq_destroy(&queue->nvme_sq);
1350
1351        nvmet_rdma_destroy_queue_ib(queue);
1352        if (!queue->nsrq) {
1353                nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1354                                queue->recv_queue_size,
1355                                !queue->host_qid);
1356        }
1357        nvmet_rdma_free_rsps(queue);
1358        ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1359        kfree(queue);
1360}
1361
1362static void nvmet_rdma_release_queue_work(struct work_struct *w)
1363{
1364        struct nvmet_rdma_queue *queue =
1365                container_of(w, struct nvmet_rdma_queue, release_work);
1366        struct nvmet_rdma_device *dev = queue->dev;
1367
1368        nvmet_rdma_free_queue(queue);
1369
1370        kref_put(&dev->ref, nvmet_rdma_free_dev);
1371}
1372
1373static int
1374nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn,
1375                                struct nvmet_rdma_queue *queue)
1376{
1377        struct nvme_rdma_cm_req *req;
1378
1379        req = (struct nvme_rdma_cm_req *)conn->private_data;
1380        if (!req || conn->private_data_len == 0)
1381                return NVME_RDMA_CM_INVALID_LEN;
1382
1383        if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0)
1384                return NVME_RDMA_CM_INVALID_RECFMT;
1385
1386        queue->host_qid = le16_to_cpu(req->qid);
1387
1388        /*
1389         * req->hsqsize corresponds to our recv queue size plus 1
1390         * req->hrqsize corresponds to our send queue size
1391         */
1392        queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1;
1393        queue->send_queue_size = le16_to_cpu(req->hrqsize);
1394
1395        if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH)
1396                return NVME_RDMA_CM_INVALID_HSQSIZE;
1397
1398        /* XXX: Should we enforce some kind of max for IO queues? */
1399
1400        return 0;
1401}
1402
1403static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id,
1404                                enum nvme_rdma_cm_status status)
1405{
1406        struct nvme_rdma_cm_rej rej;
1407
1408        pr_debug("rejecting connect request: status %d (%s)\n",
1409                 status, nvme_rdma_cm_msg(status));
1410
1411        rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1412        rej.sts = cpu_to_le16(status);
1413
1414        return rdma_reject(cm_id, (void *)&rej, sizeof(rej),
1415                           IB_CM_REJ_CONSUMER_DEFINED);
1416}
1417
1418static struct nvmet_rdma_queue *
1419nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev,
1420                struct rdma_cm_id *cm_id,
1421                struct rdma_cm_event *event)
1422{
1423        struct nvmet_rdma_port *port = cm_id->context;
1424        struct nvmet_rdma_queue *queue;
1425        int ret;
1426
1427        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1428        if (!queue) {
1429                ret = NVME_RDMA_CM_NO_RSC;
1430                goto out_reject;
1431        }
1432
1433        ret = nvmet_sq_init(&queue->nvme_sq);
1434        if (ret) {
1435                ret = NVME_RDMA_CM_NO_RSC;
1436                goto out_free_queue;
1437        }
1438
1439        ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue);
1440        if (ret)
1441                goto out_destroy_sq;
1442
1443        /*
1444         * Schedules the actual release because calling rdma_destroy_id from
1445         * inside a CM callback would trigger a deadlock. (great API design..)
1446         */
1447        INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work);
1448        queue->dev = ndev;
1449        queue->cm_id = cm_id;
1450        queue->port = port->nport;
1451
1452        spin_lock_init(&queue->state_lock);
1453        queue->state = NVMET_RDMA_Q_CONNECTING;
1454        INIT_LIST_HEAD(&queue->rsp_wait_list);
1455        INIT_LIST_HEAD(&queue->rsp_wr_wait_list);
1456        spin_lock_init(&queue->rsp_wr_wait_lock);
1457        INIT_LIST_HEAD(&queue->free_rsps);
1458        spin_lock_init(&queue->rsps_lock);
1459        INIT_LIST_HEAD(&queue->queue_list);
1460
1461        queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL);
1462        if (queue->idx < 0) {
1463                ret = NVME_RDMA_CM_NO_RSC;
1464                goto out_destroy_sq;
1465        }
1466
1467        /*
1468         * Spread the io queues across completion vectors,
1469         * but still keep all admin queues on vector 0.
1470         */
1471        queue->comp_vector = !queue->host_qid ? 0 :
1472                queue->idx % ndev->device->num_comp_vectors;
1473
1474
1475        ret = nvmet_rdma_alloc_rsps(queue);
1476        if (ret) {
1477                ret = NVME_RDMA_CM_NO_RSC;
1478                goto out_ida_remove;
1479        }
1480
1481        if (ndev->srqs) {
1482                queue->nsrq = ndev->srqs[queue->comp_vector % ndev->srq_count];
1483        } else {
1484                queue->cmds = nvmet_rdma_alloc_cmds(ndev,
1485                                queue->recv_queue_size,
1486                                !queue->host_qid);
1487                if (IS_ERR(queue->cmds)) {
1488                        ret = NVME_RDMA_CM_NO_RSC;
1489                        goto out_free_responses;
1490                }
1491        }
1492
1493        ret = nvmet_rdma_create_queue_ib(queue);
1494        if (ret) {
1495                pr_err("%s: creating RDMA queue failed (%d).\n",
1496                        __func__, ret);
1497                ret = NVME_RDMA_CM_NO_RSC;
1498                goto out_free_cmds;
1499        }
1500
1501        return queue;
1502
1503out_free_cmds:
1504        if (!queue->nsrq) {
1505                nvmet_rdma_free_cmds(queue->dev, queue->cmds,
1506                                queue->recv_queue_size,
1507                                !queue->host_qid);
1508        }
1509out_free_responses:
1510        nvmet_rdma_free_rsps(queue);
1511out_ida_remove:
1512        ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx);
1513out_destroy_sq:
1514        nvmet_sq_destroy(&queue->nvme_sq);
1515out_free_queue:
1516        kfree(queue);
1517out_reject:
1518        nvmet_rdma_cm_reject(cm_id, ret);
1519        return NULL;
1520}
1521
1522static void nvmet_rdma_qp_event(struct ib_event *event, void *priv)
1523{
1524        struct nvmet_rdma_queue *queue = priv;
1525
1526        switch (event->event) {
1527        case IB_EVENT_COMM_EST:
1528                rdma_notify(queue->cm_id, event->event);
1529                break;
1530        case IB_EVENT_QP_LAST_WQE_REACHED:
1531                pr_debug("received last WQE reached event for queue=0x%p\n",
1532                         queue);
1533                break;
1534        default:
1535                pr_err("received IB QP event: %s (%d)\n",
1536                       ib_event_msg(event->event), event->event);
1537                break;
1538        }
1539}
1540
1541static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id,
1542                struct nvmet_rdma_queue *queue,
1543                struct rdma_conn_param *p)
1544{
1545        struct rdma_conn_param  param = { };
1546        struct nvme_rdma_cm_rep priv = { };
1547        int ret = -ENOMEM;
1548
1549        param.rnr_retry_count = 7;
1550        param.flow_control = 1;
1551        param.initiator_depth = min_t(u8, p->initiator_depth,
1552                queue->dev->device->attrs.max_qp_init_rd_atom);
1553        param.private_data = &priv;
1554        param.private_data_len = sizeof(priv);
1555        priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1556        priv.crqsize = cpu_to_le16(queue->recv_queue_size);
1557
1558        ret = rdma_accept(cm_id, &param);
1559        if (ret)
1560                pr_err("rdma_accept failed (error code = %d)\n", ret);
1561
1562        return ret;
1563}
1564
1565static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id,
1566                struct rdma_cm_event *event)
1567{
1568        struct nvmet_rdma_device *ndev;
1569        struct nvmet_rdma_queue *queue;
1570        int ret = -EINVAL;
1571
1572        ndev = nvmet_rdma_find_get_device(cm_id);
1573        if (!ndev) {
1574                nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC);
1575                return -ECONNREFUSED;
1576        }
1577
1578        queue = nvmet_rdma_alloc_queue(ndev, cm_id, event);
1579        if (!queue) {
1580                ret = -ENOMEM;
1581                goto put_device;
1582        }
1583
1584        if (queue->host_qid == 0) {
1585                /* Let inflight controller teardown complete */
1586                flush_scheduled_work();
1587        }
1588
1589        ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn);
1590        if (ret) {
1591                /*
1592                 * Don't destroy the cm_id in free path, as we implicitly
1593                 * destroy the cm_id here with non-zero ret code.
1594                 */
1595                queue->cm_id = NULL;
1596                goto free_queue;
1597        }
1598
1599        mutex_lock(&nvmet_rdma_queue_mutex);
1600        list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list);
1601        mutex_unlock(&nvmet_rdma_queue_mutex);
1602
1603        return 0;
1604
1605free_queue:
1606        nvmet_rdma_free_queue(queue);
1607put_device:
1608        kref_put(&ndev->ref, nvmet_rdma_free_dev);
1609
1610        return ret;
1611}
1612
1613static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue)
1614{
1615        unsigned long flags;
1616
1617        spin_lock_irqsave(&queue->state_lock, flags);
1618        if (queue->state != NVMET_RDMA_Q_CONNECTING) {
1619                pr_warn("trying to establish a connected queue\n");
1620                goto out_unlock;
1621        }
1622        queue->state = NVMET_RDMA_Q_LIVE;
1623
1624        while (!list_empty(&queue->rsp_wait_list)) {
1625                struct nvmet_rdma_rsp *cmd;
1626
1627                cmd = list_first_entry(&queue->rsp_wait_list,
1628                                        struct nvmet_rdma_rsp, wait_list);
1629                list_del(&cmd->wait_list);
1630
1631                spin_unlock_irqrestore(&queue->state_lock, flags);
1632                nvmet_rdma_handle_command(queue, cmd);
1633                spin_lock_irqsave(&queue->state_lock, flags);
1634        }
1635
1636out_unlock:
1637        spin_unlock_irqrestore(&queue->state_lock, flags);
1638}
1639
1640static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1641{
1642        bool disconnect = false;
1643        unsigned long flags;
1644
1645        pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state);
1646
1647        spin_lock_irqsave(&queue->state_lock, flags);
1648        switch (queue->state) {
1649        case NVMET_RDMA_Q_CONNECTING:
1650                while (!list_empty(&queue->rsp_wait_list)) {
1651                        struct nvmet_rdma_rsp *rsp;
1652
1653                        rsp = list_first_entry(&queue->rsp_wait_list,
1654                                               struct nvmet_rdma_rsp,
1655                                               wait_list);
1656                        list_del(&rsp->wait_list);
1657                        nvmet_rdma_put_rsp(rsp);
1658                }
1659                fallthrough;
1660        case NVMET_RDMA_Q_LIVE:
1661                queue->state = NVMET_RDMA_Q_DISCONNECTING;
1662                disconnect = true;
1663                break;
1664        case NVMET_RDMA_Q_DISCONNECTING:
1665                break;
1666        }
1667        spin_unlock_irqrestore(&queue->state_lock, flags);
1668
1669        if (disconnect) {
1670                rdma_disconnect(queue->cm_id);
1671                schedule_work(&queue->release_work);
1672        }
1673}
1674
1675static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue)
1676{
1677        bool disconnect = false;
1678
1679        mutex_lock(&nvmet_rdma_queue_mutex);
1680        if (!list_empty(&queue->queue_list)) {
1681                list_del_init(&queue->queue_list);
1682                disconnect = true;
1683        }
1684        mutex_unlock(&nvmet_rdma_queue_mutex);
1685
1686        if (disconnect)
1687                __nvmet_rdma_queue_disconnect(queue);
1688}
1689
1690static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id,
1691                struct nvmet_rdma_queue *queue)
1692{
1693        WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING);
1694
1695        mutex_lock(&nvmet_rdma_queue_mutex);
1696        if (!list_empty(&queue->queue_list))
1697                list_del_init(&queue->queue_list);
1698        mutex_unlock(&nvmet_rdma_queue_mutex);
1699
1700        pr_err("failed to connect queue %d\n", queue->idx);
1701        schedule_work(&queue->release_work);
1702}
1703
1704/**
1705 * nvme_rdma_device_removal() - Handle RDMA device removal
1706 * @cm_id:      rdma_cm id, used for nvmet port
1707 * @queue:      nvmet rdma queue (cm id qp_context)
1708 *
1709 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1710 * to unplug. Note that this event can be generated on a normal
1711 * queue cm_id and/or a device bound listener cm_id (where in this
1712 * case queue will be null).
1713 *
1714 * We registered an ib_client to handle device removal for queues,
1715 * so we only need to handle the listening port cm_ids. In this case
1716 * we nullify the priv to prevent double cm_id destruction and destroying
1717 * the cm_id implicitely by returning a non-zero rc to the callout.
1718 */
1719static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id,
1720                struct nvmet_rdma_queue *queue)
1721{
1722        struct nvmet_rdma_port *port;
1723
1724        if (queue) {
1725                /*
1726                 * This is a queue cm_id. we have registered
1727                 * an ib_client to handle queues removal
1728                 * so don't interfear and just return.
1729                 */
1730                return 0;
1731        }
1732
1733        port = cm_id->context;
1734
1735        /*
1736         * This is a listener cm_id. Make sure that
1737         * future remove_port won't invoke a double
1738         * cm_id destroy. use atomic xchg to make sure
1739         * we don't compete with remove_port.
1740         */
1741        if (xchg(&port->cm_id, NULL) != cm_id)
1742                return 0;
1743
1744        /*
1745         * We need to return 1 so that the core will destroy
1746         * it's own ID.  What a great API design..
1747         */
1748        return 1;
1749}
1750
1751static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id,
1752                struct rdma_cm_event *event)
1753{
1754        struct nvmet_rdma_queue *queue = NULL;
1755        int ret = 0;
1756
1757        if (cm_id->qp)
1758                queue = cm_id->qp->qp_context;
1759
1760        pr_debug("%s (%d): status %d id %p\n",
1761                rdma_event_msg(event->event), event->event,
1762                event->status, cm_id);
1763
1764        switch (event->event) {
1765        case RDMA_CM_EVENT_CONNECT_REQUEST:
1766                ret = nvmet_rdma_queue_connect(cm_id, event);
1767                break;
1768        case RDMA_CM_EVENT_ESTABLISHED:
1769                nvmet_rdma_queue_established(queue);
1770                break;
1771        case RDMA_CM_EVENT_ADDR_CHANGE:
1772                if (!queue) {
1773                        struct nvmet_rdma_port *port = cm_id->context;
1774
1775                        schedule_delayed_work(&port->repair_work, 0);
1776                        break;
1777                }
1778                fallthrough;
1779        case RDMA_CM_EVENT_DISCONNECTED:
1780        case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1781                nvmet_rdma_queue_disconnect(queue);
1782                break;
1783        case RDMA_CM_EVENT_DEVICE_REMOVAL:
1784                ret = nvmet_rdma_device_removal(cm_id, queue);
1785                break;
1786        case RDMA_CM_EVENT_REJECTED:
1787                pr_debug("Connection rejected: %s\n",
1788                         rdma_reject_msg(cm_id, event->status));
1789                fallthrough;
1790        case RDMA_CM_EVENT_UNREACHABLE:
1791        case RDMA_CM_EVENT_CONNECT_ERROR:
1792                nvmet_rdma_queue_connect_fail(cm_id, queue);
1793                break;
1794        default:
1795                pr_err("received unrecognized RDMA CM event %d\n",
1796                        event->event);
1797                break;
1798        }
1799
1800        return ret;
1801}
1802
1803static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl)
1804{
1805        struct nvmet_rdma_queue *queue;
1806
1807restart:
1808        mutex_lock(&nvmet_rdma_queue_mutex);
1809        list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) {
1810                if (queue->nvme_sq.ctrl == ctrl) {
1811                        list_del_init(&queue->queue_list);
1812                        mutex_unlock(&nvmet_rdma_queue_mutex);
1813
1814                        __nvmet_rdma_queue_disconnect(queue);
1815                        goto restart;
1816                }
1817        }
1818        mutex_unlock(&nvmet_rdma_queue_mutex);
1819}
1820
1821static void nvmet_rdma_disable_port(struct nvmet_rdma_port *port)
1822{
1823        struct rdma_cm_id *cm_id = xchg(&port->cm_id, NULL);
1824
1825        if (cm_id)
1826                rdma_destroy_id(cm_id);
1827}
1828
1829static int nvmet_rdma_enable_port(struct nvmet_rdma_port *port)
1830{
1831        struct sockaddr *addr = (struct sockaddr *)&port->addr;
1832        struct rdma_cm_id *cm_id;
1833        int ret;
1834
1835        cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port,
1836                        RDMA_PS_TCP, IB_QPT_RC);
1837        if (IS_ERR(cm_id)) {
1838                pr_err("CM ID creation failed\n");
1839                return PTR_ERR(cm_id);
1840        }
1841
1842        /*
1843         * Allow both IPv4 and IPv6 sockets to bind a single port
1844         * at the same time.
1845         */
1846        ret = rdma_set_afonly(cm_id, 1);
1847        if (ret) {
1848                pr_err("rdma_set_afonly failed (%d)\n", ret);
1849                goto out_destroy_id;
1850        }
1851
1852        ret = rdma_bind_addr(cm_id, addr);
1853        if (ret) {
1854                pr_err("binding CM ID to %pISpcs failed (%d)\n", addr, ret);
1855                goto out_destroy_id;
1856        }
1857
1858        ret = rdma_listen(cm_id, 128);
1859        if (ret) {
1860                pr_err("listening to %pISpcs failed (%d)\n", addr, ret);
1861                goto out_destroy_id;
1862        }
1863
1864        port->cm_id = cm_id;
1865        return 0;
1866
1867out_destroy_id:
1868        rdma_destroy_id(cm_id);
1869        return ret;
1870}
1871
1872static void nvmet_rdma_repair_port_work(struct work_struct *w)
1873{
1874        struct nvmet_rdma_port *port = container_of(to_delayed_work(w),
1875                        struct nvmet_rdma_port, repair_work);
1876        int ret;
1877
1878        nvmet_rdma_disable_port(port);
1879        ret = nvmet_rdma_enable_port(port);
1880        if (ret)
1881                schedule_delayed_work(&port->repair_work, 5 * HZ);
1882}
1883
1884static int nvmet_rdma_add_port(struct nvmet_port *nport)
1885{
1886        struct nvmet_rdma_port *port;
1887        __kernel_sa_family_t af;
1888        int ret;
1889
1890        port = kzalloc(sizeof(*port), GFP_KERNEL);
1891        if (!port)
1892                return -ENOMEM;
1893
1894        nport->priv = port;
1895        port->nport = nport;
1896        INIT_DELAYED_WORK(&port->repair_work, nvmet_rdma_repair_port_work);
1897
1898        switch (nport->disc_addr.adrfam) {
1899        case NVMF_ADDR_FAMILY_IP4:
1900                af = AF_INET;
1901                break;
1902        case NVMF_ADDR_FAMILY_IP6:
1903                af = AF_INET6;
1904                break;
1905        default:
1906                pr_err("address family %d not supported\n",
1907                        nport->disc_addr.adrfam);
1908                ret = -EINVAL;
1909                goto out_free_port;
1910        }
1911
1912        if (nport->inline_data_size < 0) {
1913                nport->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE;
1914        } else if (nport->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) {
1915                pr_warn("inline_data_size %u is too large, reducing to %u\n",
1916                        nport->inline_data_size,
1917                        NVMET_RDMA_MAX_INLINE_DATA_SIZE);
1918                nport->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE;
1919        }
1920
1921        ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1922                        nport->disc_addr.trsvcid, &port->addr);
1923        if (ret) {
1924                pr_err("malformed ip/port passed: %s:%s\n",
1925                        nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1926                goto out_free_port;
1927        }
1928
1929        ret = nvmet_rdma_enable_port(port);
1930        if (ret)
1931                goto out_free_port;
1932
1933        pr_info("enabling port %d (%pISpcs)\n",
1934                le16_to_cpu(nport->disc_addr.portid),
1935                (struct sockaddr *)&port->addr);
1936
1937        return 0;
1938
1939out_free_port:
1940        kfree(port);
1941        return ret;
1942}
1943
1944static void nvmet_rdma_remove_port(struct nvmet_port *nport)
1945{
1946        struct nvmet_rdma_port *port = nport->priv;
1947
1948        cancel_delayed_work_sync(&port->repair_work);
1949        nvmet_rdma_disable_port(port);
1950        kfree(port);
1951}
1952
1953static void nvmet_rdma_disc_port_addr(struct nvmet_req *req,
1954                struct nvmet_port *nport, char *traddr)
1955{
1956        struct nvmet_rdma_port *port = nport->priv;
1957        struct rdma_cm_id *cm_id = port->cm_id;
1958
1959        if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) {
1960                struct nvmet_rdma_rsp *rsp =
1961                        container_of(req, struct nvmet_rdma_rsp, req);
1962                struct rdma_cm_id *req_cm_id = rsp->queue->cm_id;
1963                struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr;
1964
1965                sprintf(traddr, "%pISc", addr);
1966        } else {
1967                memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1968        }
1969}
1970
1971static u8 nvmet_rdma_get_mdts(const struct nvmet_ctrl *ctrl)
1972{
1973        if (ctrl->pi_support)
1974                return NVMET_RDMA_MAX_METADATA_MDTS;
1975        return NVMET_RDMA_MAX_MDTS;
1976}
1977
1978static const struct nvmet_fabrics_ops nvmet_rdma_ops = {
1979        .owner                  = THIS_MODULE,
1980        .type                   = NVMF_TRTYPE_RDMA,
1981        .msdbd                  = 1,
1982        .flags                  = NVMF_KEYED_SGLS | NVMF_METADATA_SUPPORTED,
1983        .add_port               = nvmet_rdma_add_port,
1984        .remove_port            = nvmet_rdma_remove_port,
1985        .queue_response         = nvmet_rdma_queue_response,
1986        .delete_ctrl            = nvmet_rdma_delete_ctrl,
1987        .disc_traddr            = nvmet_rdma_disc_port_addr,
1988        .get_mdts               = nvmet_rdma_get_mdts,
1989};
1990
1991static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1992{
1993        struct nvmet_rdma_queue *queue, *tmp;
1994        struct nvmet_rdma_device *ndev;
1995        bool found = false;
1996
1997        mutex_lock(&device_list_mutex);
1998        list_for_each_entry(ndev, &device_list, entry) {
1999                if (ndev->device == ib_device) {
2000                        found = true;
2001                        break;
2002                }
2003        }
2004        mutex_unlock(&device_list_mutex);
2005
2006        if (!found)
2007                return;
2008
2009        /*
2010         * IB Device that is used by nvmet controllers is being removed,
2011         * delete all queues using this device.
2012         */
2013        mutex_lock(&nvmet_rdma_queue_mutex);
2014        list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list,
2015                                 queue_list) {
2016                if (queue->dev->device != ib_device)
2017                        continue;
2018
2019                pr_info("Removing queue %d\n", queue->idx);
2020                list_del_init(&queue->queue_list);
2021                __nvmet_rdma_queue_disconnect(queue);
2022        }
2023        mutex_unlock(&nvmet_rdma_queue_mutex);
2024
2025        flush_scheduled_work();
2026}
2027
2028static struct ib_client nvmet_rdma_ib_client = {
2029        .name   = "nvmet_rdma",
2030        .remove = nvmet_rdma_remove_one
2031};
2032
2033static int __init nvmet_rdma_init(void)
2034{
2035        int ret;
2036
2037        ret = ib_register_client(&nvmet_rdma_ib_client);
2038        if (ret)
2039                return ret;
2040
2041        ret = nvmet_register_transport(&nvmet_rdma_ops);
2042        if (ret)
2043                goto err_ib_client;
2044
2045        return 0;
2046
2047err_ib_client:
2048        ib_unregister_client(&nvmet_rdma_ib_client);
2049        return ret;
2050}
2051
2052static void __exit nvmet_rdma_exit(void)
2053{
2054        nvmet_unregister_transport(&nvmet_rdma_ops);
2055        ib_unregister_client(&nvmet_rdma_ib_client);
2056        WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list));
2057        ida_destroy(&nvmet_rdma_queue_ida);
2058}
2059
2060module_init(nvmet_rdma_init);
2061module_exit(nvmet_rdma_exit);
2062
2063MODULE_LICENSE("GPL v2");
2064MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
2065