linux/drivers/nvmem/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * nvmem framework core.
   4 *
   5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
   6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/fs.h>
  12#include <linux/idr.h>
  13#include <linux/init.h>
  14#include <linux/kref.h>
  15#include <linux/module.h>
  16#include <linux/nvmem-consumer.h>
  17#include <linux/nvmem-provider.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21
  22struct nvmem_device {
  23        struct module           *owner;
  24        struct device           dev;
  25        int                     stride;
  26        int                     word_size;
  27        int                     id;
  28        struct kref             refcnt;
  29        size_t                  size;
  30        bool                    read_only;
  31        bool                    root_only;
  32        int                     flags;
  33        enum nvmem_type         type;
  34        struct bin_attribute    eeprom;
  35        struct device           *base_dev;
  36        struct list_head        cells;
  37        const struct nvmem_keepout *keepout;
  38        unsigned int            nkeepout;
  39        nvmem_reg_read_t        reg_read;
  40        nvmem_reg_write_t       reg_write;
  41        struct gpio_desc        *wp_gpio;
  42        void *priv;
  43};
  44
  45#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
  46
  47#define FLAG_COMPAT             BIT(0)
  48
  49struct nvmem_cell {
  50        const char              *name;
  51        int                     offset;
  52        int                     bytes;
  53        int                     bit_offset;
  54        int                     nbits;
  55        struct device_node      *np;
  56        struct nvmem_device     *nvmem;
  57        struct list_head        node;
  58};
  59
  60static DEFINE_MUTEX(nvmem_mutex);
  61static DEFINE_IDA(nvmem_ida);
  62
  63static DEFINE_MUTEX(nvmem_cell_mutex);
  64static LIST_HEAD(nvmem_cell_tables);
  65
  66static DEFINE_MUTEX(nvmem_lookup_mutex);
  67static LIST_HEAD(nvmem_lookup_list);
  68
  69static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
  70
  71static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
  72                            void *val, size_t bytes)
  73{
  74        if (nvmem->reg_read)
  75                return nvmem->reg_read(nvmem->priv, offset, val, bytes);
  76
  77        return -EINVAL;
  78}
  79
  80static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
  81                             void *val, size_t bytes)
  82{
  83        int ret;
  84
  85        if (nvmem->reg_write) {
  86                gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
  87                ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
  88                gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
  89                return ret;
  90        }
  91
  92        return -EINVAL;
  93}
  94
  95static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
  96                                      unsigned int offset, void *val,
  97                                      size_t bytes, int write)
  98{
  99
 100        unsigned int end = offset + bytes;
 101        unsigned int kend, ksize;
 102        const struct nvmem_keepout *keepout = nvmem->keepout;
 103        const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 104        int rc;
 105
 106        /*
 107         * Skip all keepouts before the range being accessed.
 108         * Keepouts are sorted.
 109         */
 110        while ((keepout < keepoutend) && (keepout->end <= offset))
 111                keepout++;
 112
 113        while ((offset < end) && (keepout < keepoutend)) {
 114                /* Access the valid portion before the keepout. */
 115                if (offset < keepout->start) {
 116                        kend = min(end, keepout->start);
 117                        ksize = kend - offset;
 118                        if (write)
 119                                rc = __nvmem_reg_write(nvmem, offset, val, ksize);
 120                        else
 121                                rc = __nvmem_reg_read(nvmem, offset, val, ksize);
 122
 123                        if (rc)
 124                                return rc;
 125
 126                        offset += ksize;
 127                        val += ksize;
 128                }
 129
 130                /*
 131                 * Now we're aligned to the start of this keepout zone. Go
 132                 * through it.
 133                 */
 134                kend = min(end, keepout->end);
 135                ksize = kend - offset;
 136                if (!write)
 137                        memset(val, keepout->value, ksize);
 138
 139                val += ksize;
 140                offset += ksize;
 141                keepout++;
 142        }
 143
 144        /*
 145         * If we ran out of keepouts but there's still stuff to do, send it
 146         * down directly
 147         */
 148        if (offset < end) {
 149                ksize = end - offset;
 150                if (write)
 151                        return __nvmem_reg_write(nvmem, offset, val, ksize);
 152                else
 153                        return __nvmem_reg_read(nvmem, offset, val, ksize);
 154        }
 155
 156        return 0;
 157}
 158
 159static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
 160                          void *val, size_t bytes)
 161{
 162        if (!nvmem->nkeepout)
 163                return __nvmem_reg_read(nvmem, offset, val, bytes);
 164
 165        return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
 166}
 167
 168static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
 169                           void *val, size_t bytes)
 170{
 171        if (!nvmem->nkeepout)
 172                return __nvmem_reg_write(nvmem, offset, val, bytes);
 173
 174        return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
 175}
 176
 177#ifdef CONFIG_NVMEM_SYSFS
 178static const char * const nvmem_type_str[] = {
 179        [NVMEM_TYPE_UNKNOWN] = "Unknown",
 180        [NVMEM_TYPE_EEPROM] = "EEPROM",
 181        [NVMEM_TYPE_OTP] = "OTP",
 182        [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
 183        [NVMEM_TYPE_FRAM] = "FRAM",
 184};
 185
 186#ifdef CONFIG_DEBUG_LOCK_ALLOC
 187static struct lock_class_key eeprom_lock_key;
 188#endif
 189
 190static ssize_t type_show(struct device *dev,
 191                         struct device_attribute *attr, char *buf)
 192{
 193        struct nvmem_device *nvmem = to_nvmem_device(dev);
 194
 195        return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
 196}
 197
 198static DEVICE_ATTR_RO(type);
 199
 200static struct attribute *nvmem_attrs[] = {
 201        &dev_attr_type.attr,
 202        NULL,
 203};
 204
 205static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
 206                                   struct bin_attribute *attr, char *buf,
 207                                   loff_t pos, size_t count)
 208{
 209        struct device *dev;
 210        struct nvmem_device *nvmem;
 211        int rc;
 212
 213        if (attr->private)
 214                dev = attr->private;
 215        else
 216                dev = kobj_to_dev(kobj);
 217        nvmem = to_nvmem_device(dev);
 218
 219        /* Stop the user from reading */
 220        if (pos >= nvmem->size)
 221                return 0;
 222
 223        if (!IS_ALIGNED(pos, nvmem->stride))
 224                return -EINVAL;
 225
 226        if (count < nvmem->word_size)
 227                return -EINVAL;
 228
 229        if (pos + count > nvmem->size)
 230                count = nvmem->size - pos;
 231
 232        count = round_down(count, nvmem->word_size);
 233
 234        if (!nvmem->reg_read)
 235                return -EPERM;
 236
 237        rc = nvmem_reg_read(nvmem, pos, buf, count);
 238
 239        if (rc)
 240                return rc;
 241
 242        return count;
 243}
 244
 245static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
 246                                    struct bin_attribute *attr, char *buf,
 247                                    loff_t pos, size_t count)
 248{
 249        struct device *dev;
 250        struct nvmem_device *nvmem;
 251        int rc;
 252
 253        if (attr->private)
 254                dev = attr->private;
 255        else
 256                dev = kobj_to_dev(kobj);
 257        nvmem = to_nvmem_device(dev);
 258
 259        /* Stop the user from writing */
 260        if (pos >= nvmem->size)
 261                return -EFBIG;
 262
 263        if (!IS_ALIGNED(pos, nvmem->stride))
 264                return -EINVAL;
 265
 266        if (count < nvmem->word_size)
 267                return -EINVAL;
 268
 269        if (pos + count > nvmem->size)
 270                count = nvmem->size - pos;
 271
 272        count = round_down(count, nvmem->word_size);
 273
 274        if (!nvmem->reg_write)
 275                return -EPERM;
 276
 277        rc = nvmem_reg_write(nvmem, pos, buf, count);
 278
 279        if (rc)
 280                return rc;
 281
 282        return count;
 283}
 284
 285static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
 286{
 287        umode_t mode = 0400;
 288
 289        if (!nvmem->root_only)
 290                mode |= 0044;
 291
 292        if (!nvmem->read_only)
 293                mode |= 0200;
 294
 295        if (!nvmem->reg_write)
 296                mode &= ~0200;
 297
 298        if (!nvmem->reg_read)
 299                mode &= ~0444;
 300
 301        return mode;
 302}
 303
 304static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
 305                                         struct bin_attribute *attr, int i)
 306{
 307        struct device *dev = kobj_to_dev(kobj);
 308        struct nvmem_device *nvmem = to_nvmem_device(dev);
 309
 310        return nvmem_bin_attr_get_umode(nvmem);
 311}
 312
 313/* default read/write permissions */
 314static struct bin_attribute bin_attr_rw_nvmem = {
 315        .attr   = {
 316                .name   = "nvmem",
 317                .mode   = 0644,
 318        },
 319        .read   = bin_attr_nvmem_read,
 320        .write  = bin_attr_nvmem_write,
 321};
 322
 323static struct bin_attribute *nvmem_bin_attributes[] = {
 324        &bin_attr_rw_nvmem,
 325        NULL,
 326};
 327
 328static const struct attribute_group nvmem_bin_group = {
 329        .bin_attrs      = nvmem_bin_attributes,
 330        .attrs          = nvmem_attrs,
 331        .is_bin_visible = nvmem_bin_attr_is_visible,
 332};
 333
 334static const struct attribute_group *nvmem_dev_groups[] = {
 335        &nvmem_bin_group,
 336        NULL,
 337};
 338
 339static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
 340        .attr   = {
 341                .name   = "eeprom",
 342        },
 343        .read   = bin_attr_nvmem_read,
 344        .write  = bin_attr_nvmem_write,
 345};
 346
 347/*
 348 * nvmem_setup_compat() - Create an additional binary entry in
 349 * drivers sys directory, to be backwards compatible with the older
 350 * drivers/misc/eeprom drivers.
 351 */
 352static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 353                                    const struct nvmem_config *config)
 354{
 355        int rval;
 356
 357        if (!config->compat)
 358                return 0;
 359
 360        if (!config->base_dev)
 361                return -EINVAL;
 362
 363        if (config->type == NVMEM_TYPE_FRAM)
 364                bin_attr_nvmem_eeprom_compat.attr.name = "fram";
 365
 366        nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
 367        nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
 368        nvmem->eeprom.size = nvmem->size;
 369#ifdef CONFIG_DEBUG_LOCK_ALLOC
 370        nvmem->eeprom.attr.key = &eeprom_lock_key;
 371#endif
 372        nvmem->eeprom.private = &nvmem->dev;
 373        nvmem->base_dev = config->base_dev;
 374
 375        rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
 376        if (rval) {
 377                dev_err(&nvmem->dev,
 378                        "Failed to create eeprom binary file %d\n", rval);
 379                return rval;
 380        }
 381
 382        nvmem->flags |= FLAG_COMPAT;
 383
 384        return 0;
 385}
 386
 387static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 388                              const struct nvmem_config *config)
 389{
 390        if (config->compat)
 391                device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 392}
 393
 394#else /* CONFIG_NVMEM_SYSFS */
 395
 396static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
 397                                    const struct nvmem_config *config)
 398{
 399        return -ENOSYS;
 400}
 401static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
 402                                      const struct nvmem_config *config)
 403{
 404}
 405
 406#endif /* CONFIG_NVMEM_SYSFS */
 407
 408static void nvmem_release(struct device *dev)
 409{
 410        struct nvmem_device *nvmem = to_nvmem_device(dev);
 411
 412        ida_free(&nvmem_ida, nvmem->id);
 413        gpiod_put(nvmem->wp_gpio);
 414        kfree(nvmem);
 415}
 416
 417static const struct device_type nvmem_provider_type = {
 418        .release        = nvmem_release,
 419};
 420
 421static struct bus_type nvmem_bus_type = {
 422        .name           = "nvmem",
 423};
 424
 425static void nvmem_cell_drop(struct nvmem_cell *cell)
 426{
 427        blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
 428        mutex_lock(&nvmem_mutex);
 429        list_del(&cell->node);
 430        mutex_unlock(&nvmem_mutex);
 431        of_node_put(cell->np);
 432        kfree_const(cell->name);
 433        kfree(cell);
 434}
 435
 436static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
 437{
 438        struct nvmem_cell *cell, *p;
 439
 440        list_for_each_entry_safe(cell, p, &nvmem->cells, node)
 441                nvmem_cell_drop(cell);
 442}
 443
 444static void nvmem_cell_add(struct nvmem_cell *cell)
 445{
 446        mutex_lock(&nvmem_mutex);
 447        list_add_tail(&cell->node, &cell->nvmem->cells);
 448        mutex_unlock(&nvmem_mutex);
 449        blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
 450}
 451
 452static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
 453                                        const struct nvmem_cell_info *info,
 454                                        struct nvmem_cell *cell)
 455{
 456        cell->nvmem = nvmem;
 457        cell->offset = info->offset;
 458        cell->bytes = info->bytes;
 459        cell->name = info->name;
 460
 461        cell->bit_offset = info->bit_offset;
 462        cell->nbits = info->nbits;
 463
 464        if (cell->nbits)
 465                cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
 466                                           BITS_PER_BYTE);
 467
 468        if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 469                dev_err(&nvmem->dev,
 470                        "cell %s unaligned to nvmem stride %d\n",
 471                        cell->name ?: "<unknown>", nvmem->stride);
 472                return -EINVAL;
 473        }
 474
 475        return 0;
 476}
 477
 478static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
 479                                const struct nvmem_cell_info *info,
 480                                struct nvmem_cell *cell)
 481{
 482        int err;
 483
 484        err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
 485        if (err)
 486                return err;
 487
 488        cell->name = kstrdup_const(info->name, GFP_KERNEL);
 489        if (!cell->name)
 490                return -ENOMEM;
 491
 492        return 0;
 493}
 494
 495/**
 496 * nvmem_add_cells() - Add cell information to an nvmem device
 497 *
 498 * @nvmem: nvmem device to add cells to.
 499 * @info: nvmem cell info to add to the device
 500 * @ncells: number of cells in info
 501 *
 502 * Return: 0 or negative error code on failure.
 503 */
 504static int nvmem_add_cells(struct nvmem_device *nvmem,
 505                    const struct nvmem_cell_info *info,
 506                    int ncells)
 507{
 508        struct nvmem_cell **cells;
 509        int i, rval;
 510
 511        cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
 512        if (!cells)
 513                return -ENOMEM;
 514
 515        for (i = 0; i < ncells; i++) {
 516                cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
 517                if (!cells[i]) {
 518                        rval = -ENOMEM;
 519                        goto err;
 520                }
 521
 522                rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
 523                if (rval) {
 524                        kfree(cells[i]);
 525                        goto err;
 526                }
 527
 528                nvmem_cell_add(cells[i]);
 529        }
 530
 531        /* remove tmp array */
 532        kfree(cells);
 533
 534        return 0;
 535err:
 536        while (i--)
 537                nvmem_cell_drop(cells[i]);
 538
 539        kfree(cells);
 540
 541        return rval;
 542}
 543
 544/**
 545 * nvmem_register_notifier() - Register a notifier block for nvmem events.
 546 *
 547 * @nb: notifier block to be called on nvmem events.
 548 *
 549 * Return: 0 on success, negative error number on failure.
 550 */
 551int nvmem_register_notifier(struct notifier_block *nb)
 552{
 553        return blocking_notifier_chain_register(&nvmem_notifier, nb);
 554}
 555EXPORT_SYMBOL_GPL(nvmem_register_notifier);
 556
 557/**
 558 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
 559 *
 560 * @nb: notifier block to be unregistered.
 561 *
 562 * Return: 0 on success, negative error number on failure.
 563 */
 564int nvmem_unregister_notifier(struct notifier_block *nb)
 565{
 566        return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
 567}
 568EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
 569
 570static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
 571{
 572        const struct nvmem_cell_info *info;
 573        struct nvmem_cell_table *table;
 574        struct nvmem_cell *cell;
 575        int rval = 0, i;
 576
 577        mutex_lock(&nvmem_cell_mutex);
 578        list_for_each_entry(table, &nvmem_cell_tables, node) {
 579                if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
 580                        for (i = 0; i < table->ncells; i++) {
 581                                info = &table->cells[i];
 582
 583                                cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 584                                if (!cell) {
 585                                        rval = -ENOMEM;
 586                                        goto out;
 587                                }
 588
 589                                rval = nvmem_cell_info_to_nvmem_cell(nvmem,
 590                                                                     info,
 591                                                                     cell);
 592                                if (rval) {
 593                                        kfree(cell);
 594                                        goto out;
 595                                }
 596
 597                                nvmem_cell_add(cell);
 598                        }
 599                }
 600        }
 601
 602out:
 603        mutex_unlock(&nvmem_cell_mutex);
 604        return rval;
 605}
 606
 607static struct nvmem_cell *
 608nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
 609{
 610        struct nvmem_cell *iter, *cell = NULL;
 611
 612        mutex_lock(&nvmem_mutex);
 613        list_for_each_entry(iter, &nvmem->cells, node) {
 614                if (strcmp(cell_id, iter->name) == 0) {
 615                        cell = iter;
 616                        break;
 617                }
 618        }
 619        mutex_unlock(&nvmem_mutex);
 620
 621        return cell;
 622}
 623
 624static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
 625{
 626        unsigned int cur = 0;
 627        const struct nvmem_keepout *keepout = nvmem->keepout;
 628        const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
 629
 630        while (keepout < keepoutend) {
 631                /* Ensure keepouts are sorted and don't overlap. */
 632                if (keepout->start < cur) {
 633                        dev_err(&nvmem->dev,
 634                                "Keepout regions aren't sorted or overlap.\n");
 635
 636                        return -ERANGE;
 637                }
 638
 639                if (keepout->end < keepout->start) {
 640                        dev_err(&nvmem->dev,
 641                                "Invalid keepout region.\n");
 642
 643                        return -EINVAL;
 644                }
 645
 646                /*
 647                 * Validate keepouts (and holes between) don't violate
 648                 * word_size constraints.
 649                 */
 650                if ((keepout->end - keepout->start < nvmem->word_size) ||
 651                    ((keepout->start != cur) &&
 652                     (keepout->start - cur < nvmem->word_size))) {
 653
 654                        dev_err(&nvmem->dev,
 655                                "Keepout regions violate word_size constraints.\n");
 656
 657                        return -ERANGE;
 658                }
 659
 660                /* Validate keepouts don't violate stride (alignment). */
 661                if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
 662                    !IS_ALIGNED(keepout->end, nvmem->stride)) {
 663
 664                        dev_err(&nvmem->dev,
 665                                "Keepout regions violate stride.\n");
 666
 667                        return -EINVAL;
 668                }
 669
 670                cur = keepout->end;
 671                keepout++;
 672        }
 673
 674        return 0;
 675}
 676
 677static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
 678{
 679        struct device_node *parent, *child;
 680        struct device *dev = &nvmem->dev;
 681        struct nvmem_cell *cell;
 682        const __be32 *addr;
 683        int len;
 684
 685        parent = dev->of_node;
 686
 687        for_each_child_of_node(parent, child) {
 688                addr = of_get_property(child, "reg", &len);
 689                if (!addr)
 690                        continue;
 691                if (len < 2 * sizeof(u32)) {
 692                        dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
 693                        of_node_put(child);
 694                        return -EINVAL;
 695                }
 696
 697                cell = kzalloc(sizeof(*cell), GFP_KERNEL);
 698                if (!cell) {
 699                        of_node_put(child);
 700                        return -ENOMEM;
 701                }
 702
 703                cell->nvmem = nvmem;
 704                cell->offset = be32_to_cpup(addr++);
 705                cell->bytes = be32_to_cpup(addr);
 706                cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
 707
 708                addr = of_get_property(child, "bits", &len);
 709                if (addr && len == (2 * sizeof(u32))) {
 710                        cell->bit_offset = be32_to_cpup(addr++);
 711                        cell->nbits = be32_to_cpup(addr);
 712                }
 713
 714                if (cell->nbits)
 715                        cell->bytes = DIV_ROUND_UP(
 716                                        cell->nbits + cell->bit_offset,
 717                                        BITS_PER_BYTE);
 718
 719                if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
 720                        dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
 721                                cell->name, nvmem->stride);
 722                        /* Cells already added will be freed later. */
 723                        kfree_const(cell->name);
 724                        kfree(cell);
 725                        of_node_put(child);
 726                        return -EINVAL;
 727                }
 728
 729                cell->np = of_node_get(child);
 730                nvmem_cell_add(cell);
 731        }
 732
 733        return 0;
 734}
 735
 736/**
 737 * nvmem_register() - Register a nvmem device for given nvmem_config.
 738 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 739 *
 740 * @config: nvmem device configuration with which nvmem device is created.
 741 *
 742 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 743 * on success.
 744 */
 745
 746struct nvmem_device *nvmem_register(const struct nvmem_config *config)
 747{
 748        struct nvmem_device *nvmem;
 749        int rval;
 750
 751        if (!config->dev)
 752                return ERR_PTR(-EINVAL);
 753
 754        if (!config->reg_read && !config->reg_write)
 755                return ERR_PTR(-EINVAL);
 756
 757        nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
 758        if (!nvmem)
 759                return ERR_PTR(-ENOMEM);
 760
 761        rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
 762        if (rval < 0) {
 763                kfree(nvmem);
 764                return ERR_PTR(rval);
 765        }
 766
 767        if (config->wp_gpio)
 768                nvmem->wp_gpio = config->wp_gpio;
 769        else
 770                nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
 771                                                    GPIOD_OUT_HIGH);
 772        if (IS_ERR(nvmem->wp_gpio)) {
 773                ida_free(&nvmem_ida, nvmem->id);
 774                rval = PTR_ERR(nvmem->wp_gpio);
 775                kfree(nvmem);
 776                return ERR_PTR(rval);
 777        }
 778
 779        kref_init(&nvmem->refcnt);
 780        INIT_LIST_HEAD(&nvmem->cells);
 781
 782        nvmem->id = rval;
 783        nvmem->owner = config->owner;
 784        if (!nvmem->owner && config->dev->driver)
 785                nvmem->owner = config->dev->driver->owner;
 786        nvmem->stride = config->stride ?: 1;
 787        nvmem->word_size = config->word_size ?: 1;
 788        nvmem->size = config->size;
 789        nvmem->dev.type = &nvmem_provider_type;
 790        nvmem->dev.bus = &nvmem_bus_type;
 791        nvmem->dev.parent = config->dev;
 792        nvmem->root_only = config->root_only;
 793        nvmem->priv = config->priv;
 794        nvmem->type = config->type;
 795        nvmem->reg_read = config->reg_read;
 796        nvmem->reg_write = config->reg_write;
 797        nvmem->keepout = config->keepout;
 798        nvmem->nkeepout = config->nkeepout;
 799        if (config->of_node)
 800                nvmem->dev.of_node = config->of_node;
 801        else if (!config->no_of_node)
 802                nvmem->dev.of_node = config->dev->of_node;
 803
 804        switch (config->id) {
 805        case NVMEM_DEVID_NONE:
 806                dev_set_name(&nvmem->dev, "%s", config->name);
 807                break;
 808        case NVMEM_DEVID_AUTO:
 809                dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
 810                break;
 811        default:
 812                dev_set_name(&nvmem->dev, "%s%d",
 813                             config->name ? : "nvmem",
 814                             config->name ? config->id : nvmem->id);
 815                break;
 816        }
 817
 818        nvmem->read_only = device_property_present(config->dev, "read-only") ||
 819                           config->read_only || !nvmem->reg_write;
 820
 821#ifdef CONFIG_NVMEM_SYSFS
 822        nvmem->dev.groups = nvmem_dev_groups;
 823#endif
 824
 825        if (nvmem->nkeepout) {
 826                rval = nvmem_validate_keepouts(nvmem);
 827                if (rval) {
 828                        ida_free(&nvmem_ida, nvmem->id);
 829                        kfree(nvmem);
 830                        return ERR_PTR(rval);
 831                }
 832        }
 833
 834        dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
 835
 836        rval = device_register(&nvmem->dev);
 837        if (rval)
 838                goto err_put_device;
 839
 840        if (config->compat) {
 841                rval = nvmem_sysfs_setup_compat(nvmem, config);
 842                if (rval)
 843                        goto err_device_del;
 844        }
 845
 846        if (config->cells) {
 847                rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
 848                if (rval)
 849                        goto err_teardown_compat;
 850        }
 851
 852        rval = nvmem_add_cells_from_table(nvmem);
 853        if (rval)
 854                goto err_remove_cells;
 855
 856        rval = nvmem_add_cells_from_of(nvmem);
 857        if (rval)
 858                goto err_remove_cells;
 859
 860        blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
 861
 862        return nvmem;
 863
 864err_remove_cells:
 865        nvmem_device_remove_all_cells(nvmem);
 866err_teardown_compat:
 867        if (config->compat)
 868                nvmem_sysfs_remove_compat(nvmem, config);
 869err_device_del:
 870        device_del(&nvmem->dev);
 871err_put_device:
 872        put_device(&nvmem->dev);
 873
 874        return ERR_PTR(rval);
 875}
 876EXPORT_SYMBOL_GPL(nvmem_register);
 877
 878static void nvmem_device_release(struct kref *kref)
 879{
 880        struct nvmem_device *nvmem;
 881
 882        nvmem = container_of(kref, struct nvmem_device, refcnt);
 883
 884        blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
 885
 886        if (nvmem->flags & FLAG_COMPAT)
 887                device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
 888
 889        nvmem_device_remove_all_cells(nvmem);
 890        device_unregister(&nvmem->dev);
 891}
 892
 893/**
 894 * nvmem_unregister() - Unregister previously registered nvmem device
 895 *
 896 * @nvmem: Pointer to previously registered nvmem device.
 897 */
 898void nvmem_unregister(struct nvmem_device *nvmem)
 899{
 900        kref_put(&nvmem->refcnt, nvmem_device_release);
 901}
 902EXPORT_SYMBOL_GPL(nvmem_unregister);
 903
 904static void devm_nvmem_release(struct device *dev, void *res)
 905{
 906        nvmem_unregister(*(struct nvmem_device **)res);
 907}
 908
 909/**
 910 * devm_nvmem_register() - Register a managed nvmem device for given
 911 * nvmem_config.
 912 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
 913 *
 914 * @dev: Device that uses the nvmem device.
 915 * @config: nvmem device configuration with which nvmem device is created.
 916 *
 917 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
 918 * on success.
 919 */
 920struct nvmem_device *devm_nvmem_register(struct device *dev,
 921                                         const struct nvmem_config *config)
 922{
 923        struct nvmem_device **ptr, *nvmem;
 924
 925        ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
 926        if (!ptr)
 927                return ERR_PTR(-ENOMEM);
 928
 929        nvmem = nvmem_register(config);
 930
 931        if (!IS_ERR(nvmem)) {
 932                *ptr = nvmem;
 933                devres_add(dev, ptr);
 934        } else {
 935                devres_free(ptr);
 936        }
 937
 938        return nvmem;
 939}
 940EXPORT_SYMBOL_GPL(devm_nvmem_register);
 941
 942static int devm_nvmem_match(struct device *dev, void *res, void *data)
 943{
 944        struct nvmem_device **r = res;
 945
 946        return *r == data;
 947}
 948
 949/**
 950 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
 951 * device.
 952 *
 953 * @dev: Device that uses the nvmem device.
 954 * @nvmem: Pointer to previously registered nvmem device.
 955 *
 956 * Return: Will be negative on error or zero on success.
 957 */
 958int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
 959{
 960        return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
 961}
 962EXPORT_SYMBOL(devm_nvmem_unregister);
 963
 964static struct nvmem_device *__nvmem_device_get(void *data,
 965                        int (*match)(struct device *dev, const void *data))
 966{
 967        struct nvmem_device *nvmem = NULL;
 968        struct device *dev;
 969
 970        mutex_lock(&nvmem_mutex);
 971        dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
 972        if (dev)
 973                nvmem = to_nvmem_device(dev);
 974        mutex_unlock(&nvmem_mutex);
 975        if (!nvmem)
 976                return ERR_PTR(-EPROBE_DEFER);
 977
 978        if (!try_module_get(nvmem->owner)) {
 979                dev_err(&nvmem->dev,
 980                        "could not increase module refcount for cell %s\n",
 981                        nvmem_dev_name(nvmem));
 982
 983                put_device(&nvmem->dev);
 984                return ERR_PTR(-EINVAL);
 985        }
 986
 987        kref_get(&nvmem->refcnt);
 988
 989        return nvmem;
 990}
 991
 992static void __nvmem_device_put(struct nvmem_device *nvmem)
 993{
 994        put_device(&nvmem->dev);
 995        module_put(nvmem->owner);
 996        kref_put(&nvmem->refcnt, nvmem_device_release);
 997}
 998
 999#if IS_ENABLED(CONFIG_OF)
1000/**
1001 * of_nvmem_device_get() - Get nvmem device from a given id
1002 *
1003 * @np: Device tree node that uses the nvmem device.
1004 * @id: nvmem name from nvmem-names property.
1005 *
1006 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1007 * on success.
1008 */
1009struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1010{
1011
1012        struct device_node *nvmem_np;
1013        struct nvmem_device *nvmem;
1014        int index = 0;
1015
1016        if (id)
1017                index = of_property_match_string(np, "nvmem-names", id);
1018
1019        nvmem_np = of_parse_phandle(np, "nvmem", index);
1020        if (!nvmem_np)
1021                return ERR_PTR(-ENOENT);
1022
1023        nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1024        of_node_put(nvmem_np);
1025        return nvmem;
1026}
1027EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1028#endif
1029
1030/**
1031 * nvmem_device_get() - Get nvmem device from a given id
1032 *
1033 * @dev: Device that uses the nvmem device.
1034 * @dev_name: name of the requested nvmem device.
1035 *
1036 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1037 * on success.
1038 */
1039struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1040{
1041        if (dev->of_node) { /* try dt first */
1042                struct nvmem_device *nvmem;
1043
1044                nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1045
1046                if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1047                        return nvmem;
1048
1049        }
1050
1051        return __nvmem_device_get((void *)dev_name, device_match_name);
1052}
1053EXPORT_SYMBOL_GPL(nvmem_device_get);
1054
1055/**
1056 * nvmem_device_find() - Find nvmem device with matching function
1057 *
1058 * @data: Data to pass to match function
1059 * @match: Callback function to check device
1060 *
1061 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1062 * on success.
1063 */
1064struct nvmem_device *nvmem_device_find(void *data,
1065                        int (*match)(struct device *dev, const void *data))
1066{
1067        return __nvmem_device_get(data, match);
1068}
1069EXPORT_SYMBOL_GPL(nvmem_device_find);
1070
1071static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1072{
1073        struct nvmem_device **nvmem = res;
1074
1075        if (WARN_ON(!nvmem || !*nvmem))
1076                return 0;
1077
1078        return *nvmem == data;
1079}
1080
1081static void devm_nvmem_device_release(struct device *dev, void *res)
1082{
1083        nvmem_device_put(*(struct nvmem_device **)res);
1084}
1085
1086/**
1087 * devm_nvmem_device_put() - put alredy got nvmem device
1088 *
1089 * @dev: Device that uses the nvmem device.
1090 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1091 * that needs to be released.
1092 */
1093void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1094{
1095        int ret;
1096
1097        ret = devres_release(dev, devm_nvmem_device_release,
1098                             devm_nvmem_device_match, nvmem);
1099
1100        WARN_ON(ret);
1101}
1102EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1103
1104/**
1105 * nvmem_device_put() - put alredy got nvmem device
1106 *
1107 * @nvmem: pointer to nvmem device that needs to be released.
1108 */
1109void nvmem_device_put(struct nvmem_device *nvmem)
1110{
1111        __nvmem_device_put(nvmem);
1112}
1113EXPORT_SYMBOL_GPL(nvmem_device_put);
1114
1115/**
1116 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1117 *
1118 * @dev: Device that requests the nvmem device.
1119 * @id: name id for the requested nvmem device.
1120 *
1121 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1122 * on success.  The nvmem_cell will be freed by the automatically once the
1123 * device is freed.
1124 */
1125struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1126{
1127        struct nvmem_device **ptr, *nvmem;
1128
1129        ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1130        if (!ptr)
1131                return ERR_PTR(-ENOMEM);
1132
1133        nvmem = nvmem_device_get(dev, id);
1134        if (!IS_ERR(nvmem)) {
1135                *ptr = nvmem;
1136                devres_add(dev, ptr);
1137        } else {
1138                devres_free(ptr);
1139        }
1140
1141        return nvmem;
1142}
1143EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1144
1145static struct nvmem_cell *
1146nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1147{
1148        struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1149        struct nvmem_cell_lookup *lookup;
1150        struct nvmem_device *nvmem;
1151        const char *dev_id;
1152
1153        if (!dev)
1154                return ERR_PTR(-EINVAL);
1155
1156        dev_id = dev_name(dev);
1157
1158        mutex_lock(&nvmem_lookup_mutex);
1159
1160        list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1161                if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1162                    (strcmp(lookup->con_id, con_id) == 0)) {
1163                        /* This is the right entry. */
1164                        nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1165                                                   device_match_name);
1166                        if (IS_ERR(nvmem)) {
1167                                /* Provider may not be registered yet. */
1168                                cell = ERR_CAST(nvmem);
1169                                break;
1170                        }
1171
1172                        cell = nvmem_find_cell_by_name(nvmem,
1173                                                       lookup->cell_name);
1174                        if (!cell) {
1175                                __nvmem_device_put(nvmem);
1176                                cell = ERR_PTR(-ENOENT);
1177                        }
1178                        break;
1179                }
1180        }
1181
1182        mutex_unlock(&nvmem_lookup_mutex);
1183        return cell;
1184}
1185
1186#if IS_ENABLED(CONFIG_OF)
1187static struct nvmem_cell *
1188nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1189{
1190        struct nvmem_cell *iter, *cell = NULL;
1191
1192        mutex_lock(&nvmem_mutex);
1193        list_for_each_entry(iter, &nvmem->cells, node) {
1194                if (np == iter->np) {
1195                        cell = iter;
1196                        break;
1197                }
1198        }
1199        mutex_unlock(&nvmem_mutex);
1200
1201        return cell;
1202}
1203
1204/**
1205 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1206 *
1207 * @np: Device tree node that uses the nvmem cell.
1208 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1209 *      for the cell at index 0 (the lone cell with no accompanying
1210 *      nvmem-cell-names property).
1211 *
1212 * Return: Will be an ERR_PTR() on error or a valid pointer
1213 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1214 * nvmem_cell_put().
1215 */
1216struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1217{
1218        struct device_node *cell_np, *nvmem_np;
1219        struct nvmem_device *nvmem;
1220        struct nvmem_cell *cell;
1221        int index = 0;
1222
1223        /* if cell name exists, find index to the name */
1224        if (id)
1225                index = of_property_match_string(np, "nvmem-cell-names", id);
1226
1227        cell_np = of_parse_phandle(np, "nvmem-cells", index);
1228        if (!cell_np)
1229                return ERR_PTR(-ENOENT);
1230
1231        nvmem_np = of_get_next_parent(cell_np);
1232        if (!nvmem_np)
1233                return ERR_PTR(-EINVAL);
1234
1235        nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1236        of_node_put(nvmem_np);
1237        if (IS_ERR(nvmem))
1238                return ERR_CAST(nvmem);
1239
1240        cell = nvmem_find_cell_by_node(nvmem, cell_np);
1241        if (!cell) {
1242                __nvmem_device_put(nvmem);
1243                return ERR_PTR(-ENOENT);
1244        }
1245
1246        return cell;
1247}
1248EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1249#endif
1250
1251/**
1252 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1253 *
1254 * @dev: Device that requests the nvmem cell.
1255 * @id: nvmem cell name to get (this corresponds with the name from the
1256 *      nvmem-cell-names property for DT systems and with the con_id from
1257 *      the lookup entry for non-DT systems).
1258 *
1259 * Return: Will be an ERR_PTR() on error or a valid pointer
1260 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1261 * nvmem_cell_put().
1262 */
1263struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1264{
1265        struct nvmem_cell *cell;
1266
1267        if (dev->of_node) { /* try dt first */
1268                cell = of_nvmem_cell_get(dev->of_node, id);
1269                if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1270                        return cell;
1271        }
1272
1273        /* NULL cell id only allowed for device tree; invalid otherwise */
1274        if (!id)
1275                return ERR_PTR(-EINVAL);
1276
1277        return nvmem_cell_get_from_lookup(dev, id);
1278}
1279EXPORT_SYMBOL_GPL(nvmem_cell_get);
1280
1281static void devm_nvmem_cell_release(struct device *dev, void *res)
1282{
1283        nvmem_cell_put(*(struct nvmem_cell **)res);
1284}
1285
1286/**
1287 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1288 *
1289 * @dev: Device that requests the nvmem cell.
1290 * @id: nvmem cell name id to get.
1291 *
1292 * Return: Will be an ERR_PTR() on error or a valid pointer
1293 * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1294 * automatically once the device is freed.
1295 */
1296struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1297{
1298        struct nvmem_cell **ptr, *cell;
1299
1300        ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1301        if (!ptr)
1302                return ERR_PTR(-ENOMEM);
1303
1304        cell = nvmem_cell_get(dev, id);
1305        if (!IS_ERR(cell)) {
1306                *ptr = cell;
1307                devres_add(dev, ptr);
1308        } else {
1309                devres_free(ptr);
1310        }
1311
1312        return cell;
1313}
1314EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1315
1316static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1317{
1318        struct nvmem_cell **c = res;
1319
1320        if (WARN_ON(!c || !*c))
1321                return 0;
1322
1323        return *c == data;
1324}
1325
1326/**
1327 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1328 * from devm_nvmem_cell_get.
1329 *
1330 * @dev: Device that requests the nvmem cell.
1331 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1332 */
1333void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1334{
1335        int ret;
1336
1337        ret = devres_release(dev, devm_nvmem_cell_release,
1338                                devm_nvmem_cell_match, cell);
1339
1340        WARN_ON(ret);
1341}
1342EXPORT_SYMBOL(devm_nvmem_cell_put);
1343
1344/**
1345 * nvmem_cell_put() - Release previously allocated nvmem cell.
1346 *
1347 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1348 */
1349void nvmem_cell_put(struct nvmem_cell *cell)
1350{
1351        struct nvmem_device *nvmem = cell->nvmem;
1352
1353        __nvmem_device_put(nvmem);
1354}
1355EXPORT_SYMBOL_GPL(nvmem_cell_put);
1356
1357static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1358{
1359        u8 *p, *b;
1360        int i, extra, bit_offset = cell->bit_offset;
1361
1362        p = b = buf;
1363        if (bit_offset) {
1364                /* First shift */
1365                *b++ >>= bit_offset;
1366
1367                /* setup rest of the bytes if any */
1368                for (i = 1; i < cell->bytes; i++) {
1369                        /* Get bits from next byte and shift them towards msb */
1370                        *p |= *b << (BITS_PER_BYTE - bit_offset);
1371
1372                        p = b;
1373                        *b++ >>= bit_offset;
1374                }
1375        } else {
1376                /* point to the msb */
1377                p += cell->bytes - 1;
1378        }
1379
1380        /* result fits in less bytes */
1381        extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1382        while (--extra >= 0)
1383                *p-- = 0;
1384
1385        /* clear msb bits if any leftover in the last byte */
1386        if (cell->nbits % BITS_PER_BYTE)
1387                *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1388}
1389
1390static int __nvmem_cell_read(struct nvmem_device *nvmem,
1391                      struct nvmem_cell *cell,
1392                      void *buf, size_t *len)
1393{
1394        int rc;
1395
1396        rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1397
1398        if (rc)
1399                return rc;
1400
1401        /* shift bits in-place */
1402        if (cell->bit_offset || cell->nbits)
1403                nvmem_shift_read_buffer_in_place(cell, buf);
1404
1405        if (len)
1406                *len = cell->bytes;
1407
1408        return 0;
1409}
1410
1411/**
1412 * nvmem_cell_read() - Read a given nvmem cell
1413 *
1414 * @cell: nvmem cell to be read.
1415 * @len: pointer to length of cell which will be populated on successful read;
1416 *       can be NULL.
1417 *
1418 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1419 * buffer should be freed by the consumer with a kfree().
1420 */
1421void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1422{
1423        struct nvmem_device *nvmem = cell->nvmem;
1424        u8 *buf;
1425        int rc;
1426
1427        if (!nvmem)
1428                return ERR_PTR(-EINVAL);
1429
1430        buf = kzalloc(cell->bytes, GFP_KERNEL);
1431        if (!buf)
1432                return ERR_PTR(-ENOMEM);
1433
1434        rc = __nvmem_cell_read(nvmem, cell, buf, len);
1435        if (rc) {
1436                kfree(buf);
1437                return ERR_PTR(rc);
1438        }
1439
1440        return buf;
1441}
1442EXPORT_SYMBOL_GPL(nvmem_cell_read);
1443
1444static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1445                                             u8 *_buf, int len)
1446{
1447        struct nvmem_device *nvmem = cell->nvmem;
1448        int i, rc, nbits, bit_offset = cell->bit_offset;
1449        u8 v, *p, *buf, *b, pbyte, pbits;
1450
1451        nbits = cell->nbits;
1452        buf = kzalloc(cell->bytes, GFP_KERNEL);
1453        if (!buf)
1454                return ERR_PTR(-ENOMEM);
1455
1456        memcpy(buf, _buf, len);
1457        p = b = buf;
1458
1459        if (bit_offset) {
1460                pbyte = *b;
1461                *b <<= bit_offset;
1462
1463                /* setup the first byte with lsb bits from nvmem */
1464                rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1465                if (rc)
1466                        goto err;
1467                *b++ |= GENMASK(bit_offset - 1, 0) & v;
1468
1469                /* setup rest of the byte if any */
1470                for (i = 1; i < cell->bytes; i++) {
1471                        /* Get last byte bits and shift them towards lsb */
1472                        pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1473                        pbyte = *b;
1474                        p = b;
1475                        *b <<= bit_offset;
1476                        *b++ |= pbits;
1477                }
1478        }
1479
1480        /* if it's not end on byte boundary */
1481        if ((nbits + bit_offset) % BITS_PER_BYTE) {
1482                /* setup the last byte with msb bits from nvmem */
1483                rc = nvmem_reg_read(nvmem,
1484                                    cell->offset + cell->bytes - 1, &v, 1);
1485                if (rc)
1486                        goto err;
1487                *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1488
1489        }
1490
1491        return buf;
1492err:
1493        kfree(buf);
1494        return ERR_PTR(rc);
1495}
1496
1497/**
1498 * nvmem_cell_write() - Write to a given nvmem cell
1499 *
1500 * @cell: nvmem cell to be written.
1501 * @buf: Buffer to be written.
1502 * @len: length of buffer to be written to nvmem cell.
1503 *
1504 * Return: length of bytes written or negative on failure.
1505 */
1506int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1507{
1508        struct nvmem_device *nvmem = cell->nvmem;
1509        int rc;
1510
1511        if (!nvmem || nvmem->read_only ||
1512            (cell->bit_offset == 0 && len != cell->bytes))
1513                return -EINVAL;
1514
1515        if (cell->bit_offset || cell->nbits) {
1516                buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1517                if (IS_ERR(buf))
1518                        return PTR_ERR(buf);
1519        }
1520
1521        rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1522
1523        /* free the tmp buffer */
1524        if (cell->bit_offset || cell->nbits)
1525                kfree(buf);
1526
1527        if (rc)
1528                return rc;
1529
1530        return len;
1531}
1532EXPORT_SYMBOL_GPL(nvmem_cell_write);
1533
1534static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1535                                  void *val, size_t count)
1536{
1537        struct nvmem_cell *cell;
1538        void *buf;
1539        size_t len;
1540
1541        cell = nvmem_cell_get(dev, cell_id);
1542        if (IS_ERR(cell))
1543                return PTR_ERR(cell);
1544
1545        buf = nvmem_cell_read(cell, &len);
1546        if (IS_ERR(buf)) {
1547                nvmem_cell_put(cell);
1548                return PTR_ERR(buf);
1549        }
1550        if (len != count) {
1551                kfree(buf);
1552                nvmem_cell_put(cell);
1553                return -EINVAL;
1554        }
1555        memcpy(val, buf, count);
1556        kfree(buf);
1557        nvmem_cell_put(cell);
1558
1559        return 0;
1560}
1561
1562/**
1563 * nvmem_cell_read_u8() - Read a cell value as a u8
1564 *
1565 * @dev: Device that requests the nvmem cell.
1566 * @cell_id: Name of nvmem cell to read.
1567 * @val: pointer to output value.
1568 *
1569 * Return: 0 on success or negative errno.
1570 */
1571int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1572{
1573        return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1574}
1575EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1576
1577/**
1578 * nvmem_cell_read_u16() - Read a cell value as a u16
1579 *
1580 * @dev: Device that requests the nvmem cell.
1581 * @cell_id: Name of nvmem cell to read.
1582 * @val: pointer to output value.
1583 *
1584 * Return: 0 on success or negative errno.
1585 */
1586int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1587{
1588        return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1589}
1590EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1591
1592/**
1593 * nvmem_cell_read_u32() - Read a cell value as a u32
1594 *
1595 * @dev: Device that requests the nvmem cell.
1596 * @cell_id: Name of nvmem cell to read.
1597 * @val: pointer to output value.
1598 *
1599 * Return: 0 on success or negative errno.
1600 */
1601int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1602{
1603        return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1604}
1605EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1606
1607/**
1608 * nvmem_cell_read_u64() - Read a cell value as a u64
1609 *
1610 * @dev: Device that requests the nvmem cell.
1611 * @cell_id: Name of nvmem cell to read.
1612 * @val: pointer to output value.
1613 *
1614 * Return: 0 on success or negative errno.
1615 */
1616int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1617{
1618        return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1619}
1620EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1621
1622static const void *nvmem_cell_read_variable_common(struct device *dev,
1623                                                   const char *cell_id,
1624                                                   size_t max_len, size_t *len)
1625{
1626        struct nvmem_cell *cell;
1627        int nbits;
1628        void *buf;
1629
1630        cell = nvmem_cell_get(dev, cell_id);
1631        if (IS_ERR(cell))
1632                return cell;
1633
1634        nbits = cell->nbits;
1635        buf = nvmem_cell_read(cell, len);
1636        nvmem_cell_put(cell);
1637        if (IS_ERR(buf))
1638                return buf;
1639
1640        /*
1641         * If nbits is set then nvmem_cell_read() can significantly exaggerate
1642         * the length of the real data. Throw away the extra junk.
1643         */
1644        if (nbits)
1645                *len = DIV_ROUND_UP(nbits, 8);
1646
1647        if (*len > max_len) {
1648                kfree(buf);
1649                return ERR_PTR(-ERANGE);
1650        }
1651
1652        return buf;
1653}
1654
1655/**
1656 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1657 *
1658 * @dev: Device that requests the nvmem cell.
1659 * @cell_id: Name of nvmem cell to read.
1660 * @val: pointer to output value.
1661 *
1662 * Return: 0 on success or negative errno.
1663 */
1664int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1665                                    u32 *val)
1666{
1667        size_t len;
1668        const u8 *buf;
1669        int i;
1670
1671        buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1672        if (IS_ERR(buf))
1673                return PTR_ERR(buf);
1674
1675        /* Copy w/ implicit endian conversion */
1676        *val = 0;
1677        for (i = 0; i < len; i++)
1678                *val |= buf[i] << (8 * i);
1679
1680        kfree(buf);
1681
1682        return 0;
1683}
1684EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1685
1686/**
1687 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1688 *
1689 * @dev: Device that requests the nvmem cell.
1690 * @cell_id: Name of nvmem cell to read.
1691 * @val: pointer to output value.
1692 *
1693 * Return: 0 on success or negative errno.
1694 */
1695int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1696                                    u64 *val)
1697{
1698        size_t len;
1699        const u8 *buf;
1700        int i;
1701
1702        buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1703        if (IS_ERR(buf))
1704                return PTR_ERR(buf);
1705
1706        /* Copy w/ implicit endian conversion */
1707        *val = 0;
1708        for (i = 0; i < len; i++)
1709                *val |= (uint64_t)buf[i] << (8 * i);
1710
1711        kfree(buf);
1712
1713        return 0;
1714}
1715EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1716
1717/**
1718 * nvmem_device_cell_read() - Read a given nvmem device and cell
1719 *
1720 * @nvmem: nvmem device to read from.
1721 * @info: nvmem cell info to be read.
1722 * @buf: buffer pointer which will be populated on successful read.
1723 *
1724 * Return: length of successful bytes read on success and negative
1725 * error code on error.
1726 */
1727ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1728                           struct nvmem_cell_info *info, void *buf)
1729{
1730        struct nvmem_cell cell;
1731        int rc;
1732        ssize_t len;
1733
1734        if (!nvmem)
1735                return -EINVAL;
1736
1737        rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1738        if (rc)
1739                return rc;
1740
1741        rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1742        if (rc)
1743                return rc;
1744
1745        return len;
1746}
1747EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1748
1749/**
1750 * nvmem_device_cell_write() - Write cell to a given nvmem device
1751 *
1752 * @nvmem: nvmem device to be written to.
1753 * @info: nvmem cell info to be written.
1754 * @buf: buffer to be written to cell.
1755 *
1756 * Return: length of bytes written or negative error code on failure.
1757 */
1758int nvmem_device_cell_write(struct nvmem_device *nvmem,
1759                            struct nvmem_cell_info *info, void *buf)
1760{
1761        struct nvmem_cell cell;
1762        int rc;
1763
1764        if (!nvmem)
1765                return -EINVAL;
1766
1767        rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1768        if (rc)
1769                return rc;
1770
1771        return nvmem_cell_write(&cell, buf, cell.bytes);
1772}
1773EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1774
1775/**
1776 * nvmem_device_read() - Read from a given nvmem device
1777 *
1778 * @nvmem: nvmem device to read from.
1779 * @offset: offset in nvmem device.
1780 * @bytes: number of bytes to read.
1781 * @buf: buffer pointer which will be populated on successful read.
1782 *
1783 * Return: length of successful bytes read on success and negative
1784 * error code on error.
1785 */
1786int nvmem_device_read(struct nvmem_device *nvmem,
1787                      unsigned int offset,
1788                      size_t bytes, void *buf)
1789{
1790        int rc;
1791
1792        if (!nvmem)
1793                return -EINVAL;
1794
1795        rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1796
1797        if (rc)
1798                return rc;
1799
1800        return bytes;
1801}
1802EXPORT_SYMBOL_GPL(nvmem_device_read);
1803
1804/**
1805 * nvmem_device_write() - Write cell to a given nvmem device
1806 *
1807 * @nvmem: nvmem device to be written to.
1808 * @offset: offset in nvmem device.
1809 * @bytes: number of bytes to write.
1810 * @buf: buffer to be written.
1811 *
1812 * Return: length of bytes written or negative error code on failure.
1813 */
1814int nvmem_device_write(struct nvmem_device *nvmem,
1815                       unsigned int offset,
1816                       size_t bytes, void *buf)
1817{
1818        int rc;
1819
1820        if (!nvmem)
1821                return -EINVAL;
1822
1823        rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1824
1825        if (rc)
1826                return rc;
1827
1828
1829        return bytes;
1830}
1831EXPORT_SYMBOL_GPL(nvmem_device_write);
1832
1833/**
1834 * nvmem_add_cell_table() - register a table of cell info entries
1835 *
1836 * @table: table of cell info entries
1837 */
1838void nvmem_add_cell_table(struct nvmem_cell_table *table)
1839{
1840        mutex_lock(&nvmem_cell_mutex);
1841        list_add_tail(&table->node, &nvmem_cell_tables);
1842        mutex_unlock(&nvmem_cell_mutex);
1843}
1844EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1845
1846/**
1847 * nvmem_del_cell_table() - remove a previously registered cell info table
1848 *
1849 * @table: table of cell info entries
1850 */
1851void nvmem_del_cell_table(struct nvmem_cell_table *table)
1852{
1853        mutex_lock(&nvmem_cell_mutex);
1854        list_del(&table->node);
1855        mutex_unlock(&nvmem_cell_mutex);
1856}
1857EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1858
1859/**
1860 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1861 *
1862 * @entries: array of cell lookup entries
1863 * @nentries: number of cell lookup entries in the array
1864 */
1865void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1866{
1867        int i;
1868
1869        mutex_lock(&nvmem_lookup_mutex);
1870        for (i = 0; i < nentries; i++)
1871                list_add_tail(&entries[i].node, &nvmem_lookup_list);
1872        mutex_unlock(&nvmem_lookup_mutex);
1873}
1874EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1875
1876/**
1877 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1878 *                            entries
1879 *
1880 * @entries: array of cell lookup entries
1881 * @nentries: number of cell lookup entries in the array
1882 */
1883void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1884{
1885        int i;
1886
1887        mutex_lock(&nvmem_lookup_mutex);
1888        for (i = 0; i < nentries; i++)
1889                list_del(&entries[i].node);
1890        mutex_unlock(&nvmem_lookup_mutex);
1891}
1892EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1893
1894/**
1895 * nvmem_dev_name() - Get the name of a given nvmem device.
1896 *
1897 * @nvmem: nvmem device.
1898 *
1899 * Return: name of the nvmem device.
1900 */
1901const char *nvmem_dev_name(struct nvmem_device *nvmem)
1902{
1903        return dev_name(&nvmem->dev);
1904}
1905EXPORT_SYMBOL_GPL(nvmem_dev_name);
1906
1907static int __init nvmem_init(void)
1908{
1909        return bus_register(&nvmem_bus_type);
1910}
1911
1912static void __exit nvmem_exit(void)
1913{
1914        bus_unregister(&nvmem_bus_type);
1915}
1916
1917subsys_initcall(nvmem_init);
1918module_exit(nvmem_exit);
1919
1920MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1921MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1922MODULE_DESCRIPTION("nvmem Driver Core");
1923MODULE_LICENSE("GPL v2");
1924