linux/drivers/of/base.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras       August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)     "OF: " fmt
  18
  19#include <linux/bitmap.h>
  20#include <linux/console.h>
  21#include <linux/ctype.h>
  22#include <linux/cpu.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/proc_fs.h>
  31
  32#include "of_private.h"
  33
  34LIST_HEAD(aliases_lookup);
  35
  36struct device_node *of_root;
  37EXPORT_SYMBOL(of_root);
  38struct device_node *of_chosen;
  39EXPORT_SYMBOL(of_chosen);
  40struct device_node *of_aliases;
  41struct device_node *of_stdout;
  42static const char *of_stdout_options;
  43
  44struct kset *of_kset;
  45
  46/*
  47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  48 * This mutex must be held whenever modifications are being made to the
  49 * device tree. The of_{attach,detach}_node() and
  50 * of_{add,remove,update}_property() helpers make sure this happens.
  51 */
  52DEFINE_MUTEX(of_mutex);
  53
  54/* use when traversing tree through the child, sibling,
  55 * or parent members of struct device_node.
  56 */
  57DEFINE_RAW_SPINLOCK(devtree_lock);
  58
  59bool of_node_name_eq(const struct device_node *np, const char *name)
  60{
  61        const char *node_name;
  62        size_t len;
  63
  64        if (!np)
  65                return false;
  66
  67        node_name = kbasename(np->full_name);
  68        len = strchrnul(node_name, '@') - node_name;
  69
  70        return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  71}
  72EXPORT_SYMBOL(of_node_name_eq);
  73
  74bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  75{
  76        if (!np)
  77                return false;
  78
  79        return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  80}
  81EXPORT_SYMBOL(of_node_name_prefix);
  82
  83static bool __of_node_is_type(const struct device_node *np, const char *type)
  84{
  85        const char *match = __of_get_property(np, "device_type", NULL);
  86
  87        return np && match && type && !strcmp(match, type);
  88}
  89
  90int of_bus_n_addr_cells(struct device_node *np)
  91{
  92        u32 cells;
  93
  94        for (; np; np = np->parent)
  95                if (!of_property_read_u32(np, "#address-cells", &cells))
  96                        return cells;
  97
  98        /* No #address-cells property for the root node */
  99        return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 100}
 101
 102int of_n_addr_cells(struct device_node *np)
 103{
 104        if (np->parent)
 105                np = np->parent;
 106
 107        return of_bus_n_addr_cells(np);
 108}
 109EXPORT_SYMBOL(of_n_addr_cells);
 110
 111int of_bus_n_size_cells(struct device_node *np)
 112{
 113        u32 cells;
 114
 115        for (; np; np = np->parent)
 116                if (!of_property_read_u32(np, "#size-cells", &cells))
 117                        return cells;
 118
 119        /* No #size-cells property for the root node */
 120        return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 121}
 122
 123int of_n_size_cells(struct device_node *np)
 124{
 125        if (np->parent)
 126                np = np->parent;
 127
 128        return of_bus_n_size_cells(np);
 129}
 130EXPORT_SYMBOL(of_n_size_cells);
 131
 132#ifdef CONFIG_NUMA
 133int __weak of_node_to_nid(struct device_node *np)
 134{
 135        return NUMA_NO_NODE;
 136}
 137#endif
 138
 139#define OF_PHANDLE_CACHE_BITS   7
 140#define OF_PHANDLE_CACHE_SZ     BIT(OF_PHANDLE_CACHE_BITS)
 141
 142static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
 143
 144static u32 of_phandle_cache_hash(phandle handle)
 145{
 146        return hash_32(handle, OF_PHANDLE_CACHE_BITS);
 147}
 148
 149/*
 150 * Caller must hold devtree_lock.
 151 */
 152void __of_phandle_cache_inv_entry(phandle handle)
 153{
 154        u32 handle_hash;
 155        struct device_node *np;
 156
 157        if (!handle)
 158                return;
 159
 160        handle_hash = of_phandle_cache_hash(handle);
 161
 162        np = phandle_cache[handle_hash];
 163        if (np && handle == np->phandle)
 164                phandle_cache[handle_hash] = NULL;
 165}
 166
 167void __init of_core_init(void)
 168{
 169        struct device_node *np;
 170
 171
 172        /* Create the kset, and register existing nodes */
 173        mutex_lock(&of_mutex);
 174        of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 175        if (!of_kset) {
 176                mutex_unlock(&of_mutex);
 177                pr_err("failed to register existing nodes\n");
 178                return;
 179        }
 180        for_each_of_allnodes(np) {
 181                __of_attach_node_sysfs(np);
 182                if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
 183                        phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
 184        }
 185        mutex_unlock(&of_mutex);
 186
 187        /* Symlink in /proc as required by userspace ABI */
 188        if (of_root)
 189                proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 190}
 191
 192static struct property *__of_find_property(const struct device_node *np,
 193                                           const char *name, int *lenp)
 194{
 195        struct property *pp;
 196
 197        if (!np)
 198                return NULL;
 199
 200        for (pp = np->properties; pp; pp = pp->next) {
 201                if (of_prop_cmp(pp->name, name) == 0) {
 202                        if (lenp)
 203                                *lenp = pp->length;
 204                        break;
 205                }
 206        }
 207
 208        return pp;
 209}
 210
 211struct property *of_find_property(const struct device_node *np,
 212                                  const char *name,
 213                                  int *lenp)
 214{
 215        struct property *pp;
 216        unsigned long flags;
 217
 218        raw_spin_lock_irqsave(&devtree_lock, flags);
 219        pp = __of_find_property(np, name, lenp);
 220        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 221
 222        return pp;
 223}
 224EXPORT_SYMBOL(of_find_property);
 225
 226struct device_node *__of_find_all_nodes(struct device_node *prev)
 227{
 228        struct device_node *np;
 229        if (!prev) {
 230                np = of_root;
 231        } else if (prev->child) {
 232                np = prev->child;
 233        } else {
 234                /* Walk back up looking for a sibling, or the end of the structure */
 235                np = prev;
 236                while (np->parent && !np->sibling)
 237                        np = np->parent;
 238                np = np->sibling; /* Might be null at the end of the tree */
 239        }
 240        return np;
 241}
 242
 243/**
 244 * of_find_all_nodes - Get next node in global list
 245 * @prev:       Previous node or NULL to start iteration
 246 *              of_node_put() will be called on it
 247 *
 248 * Return: A node pointer with refcount incremented, use
 249 * of_node_put() on it when done.
 250 */
 251struct device_node *of_find_all_nodes(struct device_node *prev)
 252{
 253        struct device_node *np;
 254        unsigned long flags;
 255
 256        raw_spin_lock_irqsave(&devtree_lock, flags);
 257        np = __of_find_all_nodes(prev);
 258        of_node_get(np);
 259        of_node_put(prev);
 260        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 261        return np;
 262}
 263EXPORT_SYMBOL(of_find_all_nodes);
 264
 265/*
 266 * Find a property with a given name for a given node
 267 * and return the value.
 268 */
 269const void *__of_get_property(const struct device_node *np,
 270                              const char *name, int *lenp)
 271{
 272        struct property *pp = __of_find_property(np, name, lenp);
 273
 274        return pp ? pp->value : NULL;
 275}
 276
 277/*
 278 * Find a property with a given name for a given node
 279 * and return the value.
 280 */
 281const void *of_get_property(const struct device_node *np, const char *name,
 282                            int *lenp)
 283{
 284        struct property *pp = of_find_property(np, name, lenp);
 285
 286        return pp ? pp->value : NULL;
 287}
 288EXPORT_SYMBOL(of_get_property);
 289
 290/*
 291 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 292 *
 293 * @cpu: logical cpu index of a core/thread
 294 * @phys_id: physical identifier of a core/thread
 295 *
 296 * CPU logical to physical index mapping is architecture specific.
 297 * However this __weak function provides a default match of physical
 298 * id to logical cpu index. phys_id provided here is usually values read
 299 * from the device tree which must match the hardware internal registers.
 300 *
 301 * Returns true if the physical identifier and the logical cpu index
 302 * correspond to the same core/thread, false otherwise.
 303 */
 304bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 305{
 306        return (u32)phys_id == cpu;
 307}
 308
 309/*
 310 * Checks if the given "prop_name" property holds the physical id of the
 311 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 312 * NULL, local thread number within the core is returned in it.
 313 */
 314static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 315                        const char *prop_name, int cpu, unsigned int *thread)
 316{
 317        const __be32 *cell;
 318        int ac, prop_len, tid;
 319        u64 hwid;
 320
 321        ac = of_n_addr_cells(cpun);
 322        cell = of_get_property(cpun, prop_name, &prop_len);
 323        if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 324                return true;
 325        if (!cell || !ac)
 326                return false;
 327        prop_len /= sizeof(*cell) * ac;
 328        for (tid = 0; tid < prop_len; tid++) {
 329                hwid = of_read_number(cell, ac);
 330                if (arch_match_cpu_phys_id(cpu, hwid)) {
 331                        if (thread)
 332                                *thread = tid;
 333                        return true;
 334                }
 335                cell += ac;
 336        }
 337        return false;
 338}
 339
 340/*
 341 * arch_find_n_match_cpu_physical_id - See if the given device node is
 342 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 343 * else false.  If 'thread' is non-NULL, the local thread number within the
 344 * core is returned in it.
 345 */
 346bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 347                                              int cpu, unsigned int *thread)
 348{
 349        /* Check for non-standard "ibm,ppc-interrupt-server#s" property
 350         * for thread ids on PowerPC. If it doesn't exist fallback to
 351         * standard "reg" property.
 352         */
 353        if (IS_ENABLED(CONFIG_PPC) &&
 354            __of_find_n_match_cpu_property(cpun,
 355                                           "ibm,ppc-interrupt-server#s",
 356                                           cpu, thread))
 357                return true;
 358
 359        return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 360}
 361
 362/**
 363 * of_get_cpu_node - Get device node associated with the given logical CPU
 364 *
 365 * @cpu: CPU number(logical index) for which device node is required
 366 * @thread: if not NULL, local thread number within the physical core is
 367 *          returned
 368 *
 369 * The main purpose of this function is to retrieve the device node for the
 370 * given logical CPU index. It should be used to initialize the of_node in
 371 * cpu device. Once of_node in cpu device is populated, all the further
 372 * references can use that instead.
 373 *
 374 * CPU logical to physical index mapping is architecture specific and is built
 375 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 376 * which can be overridden by architecture specific implementation.
 377 *
 378 * Return: A node pointer for the logical cpu with refcount incremented, use
 379 * of_node_put() on it when done. Returns NULL if not found.
 380 */
 381struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 382{
 383        struct device_node *cpun;
 384
 385        for_each_of_cpu_node(cpun) {
 386                if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 387                        return cpun;
 388        }
 389        return NULL;
 390}
 391EXPORT_SYMBOL(of_get_cpu_node);
 392
 393/**
 394 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 395 *
 396 * @cpu_node: Pointer to the device_node for CPU.
 397 *
 398 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
 399 * CPU is not found.
 400 */
 401int of_cpu_node_to_id(struct device_node *cpu_node)
 402{
 403        int cpu;
 404        bool found = false;
 405        struct device_node *np;
 406
 407        for_each_possible_cpu(cpu) {
 408                np = of_cpu_device_node_get(cpu);
 409                found = (cpu_node == np);
 410                of_node_put(np);
 411                if (found)
 412                        return cpu;
 413        }
 414
 415        return -ENODEV;
 416}
 417EXPORT_SYMBOL(of_cpu_node_to_id);
 418
 419/**
 420 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 421 *
 422 * @cpu_node: The device node for the CPU
 423 * @index: The index in the list of the idle states
 424 *
 425 * Two generic methods can be used to describe a CPU's idle states, either via
 426 * a flattened description through the "cpu-idle-states" binding or via the
 427 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 428 * bindings. This function check for both and returns the idle state node for
 429 * the requested index.
 430 *
 431 * Return: An idle state node if found at @index. The refcount is incremented
 432 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 433 */
 434struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
 435                                          int index)
 436{
 437        struct of_phandle_args args;
 438        int err;
 439
 440        err = of_parse_phandle_with_args(cpu_node, "power-domains",
 441                                        "#power-domain-cells", 0, &args);
 442        if (!err) {
 443                struct device_node *state_node =
 444                        of_parse_phandle(args.np, "domain-idle-states", index);
 445
 446                of_node_put(args.np);
 447                if (state_node)
 448                        return state_node;
 449        }
 450
 451        return of_parse_phandle(cpu_node, "cpu-idle-states", index);
 452}
 453EXPORT_SYMBOL(of_get_cpu_state_node);
 454
 455/**
 456 * __of_device_is_compatible() - Check if the node matches given constraints
 457 * @device: pointer to node
 458 * @compat: required compatible string, NULL or "" for any match
 459 * @type: required device_type value, NULL or "" for any match
 460 * @name: required node name, NULL or "" for any match
 461 *
 462 * Checks if the given @compat, @type and @name strings match the
 463 * properties of the given @device. A constraints can be skipped by
 464 * passing NULL or an empty string as the constraint.
 465 *
 466 * Returns 0 for no match, and a positive integer on match. The return
 467 * value is a relative score with larger values indicating better
 468 * matches. The score is weighted for the most specific compatible value
 469 * to get the highest score. Matching type is next, followed by matching
 470 * name. Practically speaking, this results in the following priority
 471 * order for matches:
 472 *
 473 * 1. specific compatible && type && name
 474 * 2. specific compatible && type
 475 * 3. specific compatible && name
 476 * 4. specific compatible
 477 * 5. general compatible && type && name
 478 * 6. general compatible && type
 479 * 7. general compatible && name
 480 * 8. general compatible
 481 * 9. type && name
 482 * 10. type
 483 * 11. name
 484 */
 485static int __of_device_is_compatible(const struct device_node *device,
 486                                     const char *compat, const char *type, const char *name)
 487{
 488        struct property *prop;
 489        const char *cp;
 490        int index = 0, score = 0;
 491
 492        /* Compatible match has highest priority */
 493        if (compat && compat[0]) {
 494                prop = __of_find_property(device, "compatible", NULL);
 495                for (cp = of_prop_next_string(prop, NULL); cp;
 496                     cp = of_prop_next_string(prop, cp), index++) {
 497                        if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 498                                score = INT_MAX/2 - (index << 2);
 499                                break;
 500                        }
 501                }
 502                if (!score)
 503                        return 0;
 504        }
 505
 506        /* Matching type is better than matching name */
 507        if (type && type[0]) {
 508                if (!__of_node_is_type(device, type))
 509                        return 0;
 510                score += 2;
 511        }
 512
 513        /* Matching name is a bit better than not */
 514        if (name && name[0]) {
 515                if (!of_node_name_eq(device, name))
 516                        return 0;
 517                score++;
 518        }
 519
 520        return score;
 521}
 522
 523/** Checks if the given "compat" string matches one of the strings in
 524 * the device's "compatible" property
 525 */
 526int of_device_is_compatible(const struct device_node *device,
 527                const char *compat)
 528{
 529        unsigned long flags;
 530        int res;
 531
 532        raw_spin_lock_irqsave(&devtree_lock, flags);
 533        res = __of_device_is_compatible(device, compat, NULL, NULL);
 534        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 535        return res;
 536}
 537EXPORT_SYMBOL(of_device_is_compatible);
 538
 539/** Checks if the device is compatible with any of the entries in
 540 *  a NULL terminated array of strings. Returns the best match
 541 *  score or 0.
 542 */
 543int of_device_compatible_match(struct device_node *device,
 544                               const char *const *compat)
 545{
 546        unsigned int tmp, score = 0;
 547
 548        if (!compat)
 549                return 0;
 550
 551        while (*compat) {
 552                tmp = of_device_is_compatible(device, *compat);
 553                if (tmp > score)
 554                        score = tmp;
 555                compat++;
 556        }
 557
 558        return score;
 559}
 560
 561/**
 562 * of_machine_is_compatible - Test root of device tree for a given compatible value
 563 * @compat: compatible string to look for in root node's compatible property.
 564 *
 565 * Return: A positive integer if the root node has the given value in its
 566 * compatible property.
 567 */
 568int of_machine_is_compatible(const char *compat)
 569{
 570        struct device_node *root;
 571        int rc = 0;
 572
 573        root = of_find_node_by_path("/");
 574        if (root) {
 575                rc = of_device_is_compatible(root, compat);
 576                of_node_put(root);
 577        }
 578        return rc;
 579}
 580EXPORT_SYMBOL(of_machine_is_compatible);
 581
 582/**
 583 *  __of_device_is_available - check if a device is available for use
 584 *
 585 *  @device: Node to check for availability, with locks already held
 586 *
 587 *  Return: True if the status property is absent or set to "okay" or "ok",
 588 *  false otherwise
 589 */
 590static bool __of_device_is_available(const struct device_node *device)
 591{
 592        const char *status;
 593        int statlen;
 594
 595        if (!device)
 596                return false;
 597
 598        status = __of_get_property(device, "status", &statlen);
 599        if (status == NULL)
 600                return true;
 601
 602        if (statlen > 0) {
 603                if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 604                        return true;
 605        }
 606
 607        return false;
 608}
 609
 610/**
 611 *  of_device_is_available - check if a device is available for use
 612 *
 613 *  @device: Node to check for availability
 614 *
 615 *  Return: True if the status property is absent or set to "okay" or "ok",
 616 *  false otherwise
 617 */
 618bool of_device_is_available(const struct device_node *device)
 619{
 620        unsigned long flags;
 621        bool res;
 622
 623        raw_spin_lock_irqsave(&devtree_lock, flags);
 624        res = __of_device_is_available(device);
 625        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 626        return res;
 627
 628}
 629EXPORT_SYMBOL(of_device_is_available);
 630
 631/**
 632 *  of_device_is_big_endian - check if a device has BE registers
 633 *
 634 *  @device: Node to check for endianness
 635 *
 636 *  Return: True if the device has a "big-endian" property, or if the kernel
 637 *  was compiled for BE *and* the device has a "native-endian" property.
 638 *  Returns false otherwise.
 639 *
 640 *  Callers would nominally use ioread32be/iowrite32be if
 641 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 642 */
 643bool of_device_is_big_endian(const struct device_node *device)
 644{
 645        if (of_property_read_bool(device, "big-endian"))
 646                return true;
 647        if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 648            of_property_read_bool(device, "native-endian"))
 649                return true;
 650        return false;
 651}
 652EXPORT_SYMBOL(of_device_is_big_endian);
 653
 654/**
 655 * of_get_parent - Get a node's parent if any
 656 * @node:       Node to get parent
 657 *
 658 * Return: A node pointer with refcount incremented, use
 659 * of_node_put() on it when done.
 660 */
 661struct device_node *of_get_parent(const struct device_node *node)
 662{
 663        struct device_node *np;
 664        unsigned long flags;
 665
 666        if (!node)
 667                return NULL;
 668
 669        raw_spin_lock_irqsave(&devtree_lock, flags);
 670        np = of_node_get(node->parent);
 671        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 672        return np;
 673}
 674EXPORT_SYMBOL(of_get_parent);
 675
 676/**
 677 * of_get_next_parent - Iterate to a node's parent
 678 * @node:       Node to get parent of
 679 *
 680 * This is like of_get_parent() except that it drops the
 681 * refcount on the passed node, making it suitable for iterating
 682 * through a node's parents.
 683 *
 684 * Return: A node pointer with refcount incremented, use
 685 * of_node_put() on it when done.
 686 */
 687struct device_node *of_get_next_parent(struct device_node *node)
 688{
 689        struct device_node *parent;
 690        unsigned long flags;
 691
 692        if (!node)
 693                return NULL;
 694
 695        raw_spin_lock_irqsave(&devtree_lock, flags);
 696        parent = of_node_get(node->parent);
 697        of_node_put(node);
 698        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 699        return parent;
 700}
 701EXPORT_SYMBOL(of_get_next_parent);
 702
 703static struct device_node *__of_get_next_child(const struct device_node *node,
 704                                                struct device_node *prev)
 705{
 706        struct device_node *next;
 707
 708        if (!node)
 709                return NULL;
 710
 711        next = prev ? prev->sibling : node->child;
 712        of_node_get(next);
 713        of_node_put(prev);
 714        return next;
 715}
 716#define __for_each_child_of_node(parent, child) \
 717        for (child = __of_get_next_child(parent, NULL); child != NULL; \
 718             child = __of_get_next_child(parent, child))
 719
 720/**
 721 * of_get_next_child - Iterate a node childs
 722 * @node:       parent node
 723 * @prev:       previous child of the parent node, or NULL to get first
 724 *
 725 * Return: A node pointer with refcount incremented, use of_node_put() on
 726 * it when done. Returns NULL when prev is the last child. Decrements the
 727 * refcount of prev.
 728 */
 729struct device_node *of_get_next_child(const struct device_node *node,
 730        struct device_node *prev)
 731{
 732        struct device_node *next;
 733        unsigned long flags;
 734
 735        raw_spin_lock_irqsave(&devtree_lock, flags);
 736        next = __of_get_next_child(node, prev);
 737        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 738        return next;
 739}
 740EXPORT_SYMBOL(of_get_next_child);
 741
 742/**
 743 * of_get_next_available_child - Find the next available child node
 744 * @node:       parent node
 745 * @prev:       previous child of the parent node, or NULL to get first
 746 *
 747 * This function is like of_get_next_child(), except that it
 748 * automatically skips any disabled nodes (i.e. status = "disabled").
 749 */
 750struct device_node *of_get_next_available_child(const struct device_node *node,
 751        struct device_node *prev)
 752{
 753        struct device_node *next;
 754        unsigned long flags;
 755
 756        if (!node)
 757                return NULL;
 758
 759        raw_spin_lock_irqsave(&devtree_lock, flags);
 760        next = prev ? prev->sibling : node->child;
 761        for (; next; next = next->sibling) {
 762                if (!__of_device_is_available(next))
 763                        continue;
 764                if (of_node_get(next))
 765                        break;
 766        }
 767        of_node_put(prev);
 768        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 769        return next;
 770}
 771EXPORT_SYMBOL(of_get_next_available_child);
 772
 773/**
 774 * of_get_next_cpu_node - Iterate on cpu nodes
 775 * @prev:       previous child of the /cpus node, or NULL to get first
 776 *
 777 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 778 * on it when done. Returns NULL when prev is the last child. Decrements
 779 * the refcount of prev.
 780 */
 781struct device_node *of_get_next_cpu_node(struct device_node *prev)
 782{
 783        struct device_node *next = NULL;
 784        unsigned long flags;
 785        struct device_node *node;
 786
 787        if (!prev)
 788                node = of_find_node_by_path("/cpus");
 789
 790        raw_spin_lock_irqsave(&devtree_lock, flags);
 791        if (prev)
 792                next = prev->sibling;
 793        else if (node) {
 794                next = node->child;
 795                of_node_put(node);
 796        }
 797        for (; next; next = next->sibling) {
 798                if (!(of_node_name_eq(next, "cpu") ||
 799                      __of_node_is_type(next, "cpu")))
 800                        continue;
 801                if (of_node_get(next))
 802                        break;
 803        }
 804        of_node_put(prev);
 805        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 806        return next;
 807}
 808EXPORT_SYMBOL(of_get_next_cpu_node);
 809
 810/**
 811 * of_get_compatible_child - Find compatible child node
 812 * @parent:     parent node
 813 * @compatible: compatible string
 814 *
 815 * Lookup child node whose compatible property contains the given compatible
 816 * string.
 817 *
 818 * Return: a node pointer with refcount incremented, use of_node_put() on it
 819 * when done; or NULL if not found.
 820 */
 821struct device_node *of_get_compatible_child(const struct device_node *parent,
 822                                const char *compatible)
 823{
 824        struct device_node *child;
 825
 826        for_each_child_of_node(parent, child) {
 827                if (of_device_is_compatible(child, compatible))
 828                        break;
 829        }
 830
 831        return child;
 832}
 833EXPORT_SYMBOL(of_get_compatible_child);
 834
 835/**
 836 * of_get_child_by_name - Find the child node by name for a given parent
 837 * @node:       parent node
 838 * @name:       child name to look for.
 839 *
 840 * This function looks for child node for given matching name
 841 *
 842 * Return: A node pointer if found, with refcount incremented, use
 843 * of_node_put() on it when done.
 844 * Returns NULL if node is not found.
 845 */
 846struct device_node *of_get_child_by_name(const struct device_node *node,
 847                                const char *name)
 848{
 849        struct device_node *child;
 850
 851        for_each_child_of_node(node, child)
 852                if (of_node_name_eq(child, name))
 853                        break;
 854        return child;
 855}
 856EXPORT_SYMBOL(of_get_child_by_name);
 857
 858struct device_node *__of_find_node_by_path(struct device_node *parent,
 859                                                const char *path)
 860{
 861        struct device_node *child;
 862        int len;
 863
 864        len = strcspn(path, "/:");
 865        if (!len)
 866                return NULL;
 867
 868        __for_each_child_of_node(parent, child) {
 869                const char *name = kbasename(child->full_name);
 870                if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 871                        return child;
 872        }
 873        return NULL;
 874}
 875
 876struct device_node *__of_find_node_by_full_path(struct device_node *node,
 877                                                const char *path)
 878{
 879        const char *separator = strchr(path, ':');
 880
 881        while (node && *path == '/') {
 882                struct device_node *tmp = node;
 883
 884                path++; /* Increment past '/' delimiter */
 885                node = __of_find_node_by_path(node, path);
 886                of_node_put(tmp);
 887                path = strchrnul(path, '/');
 888                if (separator && separator < path)
 889                        break;
 890        }
 891        return node;
 892}
 893
 894/**
 895 * of_find_node_opts_by_path - Find a node matching a full OF path
 896 * @path: Either the full path to match, or if the path does not
 897 *       start with '/', the name of a property of the /aliases
 898 *       node (an alias).  In the case of an alias, the node
 899 *       matching the alias' value will be returned.
 900 * @opts: Address of a pointer into which to store the start of
 901 *       an options string appended to the end of the path with
 902 *       a ':' separator.
 903 *
 904 * Valid paths:
 905 *  * /foo/bar  Full path
 906 *  * foo       Valid alias
 907 *  * foo/bar   Valid alias + relative path
 908 *
 909 * Return: A node pointer with refcount incremented, use
 910 * of_node_put() on it when done.
 911 */
 912struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 913{
 914        struct device_node *np = NULL;
 915        struct property *pp;
 916        unsigned long flags;
 917        const char *separator = strchr(path, ':');
 918
 919        if (opts)
 920                *opts = separator ? separator + 1 : NULL;
 921
 922        if (strcmp(path, "/") == 0)
 923                return of_node_get(of_root);
 924
 925        /* The path could begin with an alias */
 926        if (*path != '/') {
 927                int len;
 928                const char *p = separator;
 929
 930                if (!p)
 931                        p = strchrnul(path, '/');
 932                len = p - path;
 933
 934                /* of_aliases must not be NULL */
 935                if (!of_aliases)
 936                        return NULL;
 937
 938                for_each_property_of_node(of_aliases, pp) {
 939                        if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 940                                np = of_find_node_by_path(pp->value);
 941                                break;
 942                        }
 943                }
 944                if (!np)
 945                        return NULL;
 946                path = p;
 947        }
 948
 949        /* Step down the tree matching path components */
 950        raw_spin_lock_irqsave(&devtree_lock, flags);
 951        if (!np)
 952                np = of_node_get(of_root);
 953        np = __of_find_node_by_full_path(np, path);
 954        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 955        return np;
 956}
 957EXPORT_SYMBOL(of_find_node_opts_by_path);
 958
 959/**
 960 * of_find_node_by_name - Find a node by its "name" property
 961 * @from:       The node to start searching from or NULL; the node
 962 *              you pass will not be searched, only the next one
 963 *              will. Typically, you pass what the previous call
 964 *              returned. of_node_put() will be called on @from.
 965 * @name:       The name string to match against
 966 *
 967 * Return: A node pointer with refcount incremented, use
 968 * of_node_put() on it when done.
 969 */
 970struct device_node *of_find_node_by_name(struct device_node *from,
 971        const char *name)
 972{
 973        struct device_node *np;
 974        unsigned long flags;
 975
 976        raw_spin_lock_irqsave(&devtree_lock, flags);
 977        for_each_of_allnodes_from(from, np)
 978                if (of_node_name_eq(np, name) && of_node_get(np))
 979                        break;
 980        of_node_put(from);
 981        raw_spin_unlock_irqrestore(&devtree_lock, flags);
 982        return np;
 983}
 984EXPORT_SYMBOL(of_find_node_by_name);
 985
 986/**
 987 * of_find_node_by_type - Find a node by its "device_type" property
 988 * @from:       The node to start searching from, or NULL to start searching
 989 *              the entire device tree. The node you pass will not be
 990 *              searched, only the next one will; typically, you pass
 991 *              what the previous call returned. of_node_put() will be
 992 *              called on from for you.
 993 * @type:       The type string to match against
 994 *
 995 * Return: A node pointer with refcount incremented, use
 996 * of_node_put() on it when done.
 997 */
 998struct device_node *of_find_node_by_type(struct device_node *from,
 999        const char *type)
1000{
1001        struct device_node *np;
1002        unsigned long flags;
1003
1004        raw_spin_lock_irqsave(&devtree_lock, flags);
1005        for_each_of_allnodes_from(from, np)
1006                if (__of_node_is_type(np, type) && of_node_get(np))
1007                        break;
1008        of_node_put(from);
1009        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1010        return np;
1011}
1012EXPORT_SYMBOL(of_find_node_by_type);
1013
1014/**
1015 * of_find_compatible_node - Find a node based on type and one of the
1016 *                                tokens in its "compatible" property
1017 * @from:       The node to start searching from or NULL, the node
1018 *              you pass will not be searched, only the next one
1019 *              will; typically, you pass what the previous call
1020 *              returned. of_node_put() will be called on it
1021 * @type:       The type string to match "device_type" or NULL to ignore
1022 * @compatible: The string to match to one of the tokens in the device
1023 *              "compatible" list.
1024 *
1025 * Return: A node pointer with refcount incremented, use
1026 * of_node_put() on it when done.
1027 */
1028struct device_node *of_find_compatible_node(struct device_node *from,
1029        const char *type, const char *compatible)
1030{
1031        struct device_node *np;
1032        unsigned long flags;
1033
1034        raw_spin_lock_irqsave(&devtree_lock, flags);
1035        for_each_of_allnodes_from(from, np)
1036                if (__of_device_is_compatible(np, compatible, type, NULL) &&
1037                    of_node_get(np))
1038                        break;
1039        of_node_put(from);
1040        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1041        return np;
1042}
1043EXPORT_SYMBOL(of_find_compatible_node);
1044
1045/**
1046 * of_find_node_with_property - Find a node which has a property with
1047 *                              the given name.
1048 * @from:       The node to start searching from or NULL, the node
1049 *              you pass will not be searched, only the next one
1050 *              will; typically, you pass what the previous call
1051 *              returned. of_node_put() will be called on it
1052 * @prop_name:  The name of the property to look for.
1053 *
1054 * Return: A node pointer with refcount incremented, use
1055 * of_node_put() on it when done.
1056 */
1057struct device_node *of_find_node_with_property(struct device_node *from,
1058        const char *prop_name)
1059{
1060        struct device_node *np;
1061        struct property *pp;
1062        unsigned long flags;
1063
1064        raw_spin_lock_irqsave(&devtree_lock, flags);
1065        for_each_of_allnodes_from(from, np) {
1066                for (pp = np->properties; pp; pp = pp->next) {
1067                        if (of_prop_cmp(pp->name, prop_name) == 0) {
1068                                of_node_get(np);
1069                                goto out;
1070                        }
1071                }
1072        }
1073out:
1074        of_node_put(from);
1075        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076        return np;
1077}
1078EXPORT_SYMBOL(of_find_node_with_property);
1079
1080static
1081const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1082                                           const struct device_node *node)
1083{
1084        const struct of_device_id *best_match = NULL;
1085        int score, best_score = 0;
1086
1087        if (!matches)
1088                return NULL;
1089
1090        for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1091                score = __of_device_is_compatible(node, matches->compatible,
1092                                                  matches->type, matches->name);
1093                if (score > best_score) {
1094                        best_match = matches;
1095                        best_score = score;
1096                }
1097        }
1098
1099        return best_match;
1100}
1101
1102/**
1103 * of_match_node - Tell if a device_node has a matching of_match structure
1104 * @matches:    array of of device match structures to search in
1105 * @node:       the of device structure to match against
1106 *
1107 * Low level utility function used by device matching.
1108 */
1109const struct of_device_id *of_match_node(const struct of_device_id *matches,
1110                                         const struct device_node *node)
1111{
1112        const struct of_device_id *match;
1113        unsigned long flags;
1114
1115        raw_spin_lock_irqsave(&devtree_lock, flags);
1116        match = __of_match_node(matches, node);
1117        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1118        return match;
1119}
1120EXPORT_SYMBOL(of_match_node);
1121
1122/**
1123 * of_find_matching_node_and_match - Find a node based on an of_device_id
1124 *                                   match table.
1125 * @from:       The node to start searching from or NULL, the node
1126 *              you pass will not be searched, only the next one
1127 *              will; typically, you pass what the previous call
1128 *              returned. of_node_put() will be called on it
1129 * @matches:    array of of device match structures to search in
1130 * @match:      Updated to point at the matches entry which matched
1131 *
1132 * Return: A node pointer with refcount incremented, use
1133 * of_node_put() on it when done.
1134 */
1135struct device_node *of_find_matching_node_and_match(struct device_node *from,
1136                                        const struct of_device_id *matches,
1137                                        const struct of_device_id **match)
1138{
1139        struct device_node *np;
1140        const struct of_device_id *m;
1141        unsigned long flags;
1142
1143        if (match)
1144                *match = NULL;
1145
1146        raw_spin_lock_irqsave(&devtree_lock, flags);
1147        for_each_of_allnodes_from(from, np) {
1148                m = __of_match_node(matches, np);
1149                if (m && of_node_get(np)) {
1150                        if (match)
1151                                *match = m;
1152                        break;
1153                }
1154        }
1155        of_node_put(from);
1156        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1157        return np;
1158}
1159EXPORT_SYMBOL(of_find_matching_node_and_match);
1160
1161/**
1162 * of_modalias_node - Lookup appropriate modalias for a device node
1163 * @node:       pointer to a device tree node
1164 * @modalias:   Pointer to buffer that modalias value will be copied into
1165 * @len:        Length of modalias value
1166 *
1167 * Based on the value of the compatible property, this routine will attempt
1168 * to choose an appropriate modalias value for a particular device tree node.
1169 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1170 * from the first entry in the compatible list property.
1171 *
1172 * Return: This routine returns 0 on success, <0 on failure.
1173 */
1174int of_modalias_node(struct device_node *node, char *modalias, int len)
1175{
1176        const char *compatible, *p;
1177        int cplen;
1178
1179        compatible = of_get_property(node, "compatible", &cplen);
1180        if (!compatible || strlen(compatible) > cplen)
1181                return -ENODEV;
1182        p = strchr(compatible, ',');
1183        strlcpy(modalias, p ? p + 1 : compatible, len);
1184        return 0;
1185}
1186EXPORT_SYMBOL_GPL(of_modalias_node);
1187
1188/**
1189 * of_find_node_by_phandle - Find a node given a phandle
1190 * @handle:     phandle of the node to find
1191 *
1192 * Return: A node pointer with refcount incremented, use
1193 * of_node_put() on it when done.
1194 */
1195struct device_node *of_find_node_by_phandle(phandle handle)
1196{
1197        struct device_node *np = NULL;
1198        unsigned long flags;
1199        u32 handle_hash;
1200
1201        if (!handle)
1202                return NULL;
1203
1204        handle_hash = of_phandle_cache_hash(handle);
1205
1206        raw_spin_lock_irqsave(&devtree_lock, flags);
1207
1208        if (phandle_cache[handle_hash] &&
1209            handle == phandle_cache[handle_hash]->phandle)
1210                np = phandle_cache[handle_hash];
1211
1212        if (!np) {
1213                for_each_of_allnodes(np)
1214                        if (np->phandle == handle &&
1215                            !of_node_check_flag(np, OF_DETACHED)) {
1216                                phandle_cache[handle_hash] = np;
1217                                break;
1218                        }
1219        }
1220
1221        of_node_get(np);
1222        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1223        return np;
1224}
1225EXPORT_SYMBOL(of_find_node_by_phandle);
1226
1227void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1228{
1229        int i;
1230        printk("%s %pOF", msg, args->np);
1231        for (i = 0; i < args->args_count; i++) {
1232                const char delim = i ? ',' : ':';
1233
1234                pr_cont("%c%08x", delim, args->args[i]);
1235        }
1236        pr_cont("\n");
1237}
1238
1239int of_phandle_iterator_init(struct of_phandle_iterator *it,
1240                const struct device_node *np,
1241                const char *list_name,
1242                const char *cells_name,
1243                int cell_count)
1244{
1245        const __be32 *list;
1246        int size;
1247
1248        memset(it, 0, sizeof(*it));
1249
1250        /*
1251         * one of cell_count or cells_name must be provided to determine the
1252         * argument length.
1253         */
1254        if (cell_count < 0 && !cells_name)
1255                return -EINVAL;
1256
1257        list = of_get_property(np, list_name, &size);
1258        if (!list)
1259                return -ENOENT;
1260
1261        it->cells_name = cells_name;
1262        it->cell_count = cell_count;
1263        it->parent = np;
1264        it->list_end = list + size / sizeof(*list);
1265        it->phandle_end = list;
1266        it->cur = list;
1267
1268        return 0;
1269}
1270EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1271
1272int of_phandle_iterator_next(struct of_phandle_iterator *it)
1273{
1274        uint32_t count = 0;
1275
1276        if (it->node) {
1277                of_node_put(it->node);
1278                it->node = NULL;
1279        }
1280
1281        if (!it->cur || it->phandle_end >= it->list_end)
1282                return -ENOENT;
1283
1284        it->cur = it->phandle_end;
1285
1286        /* If phandle is 0, then it is an empty entry with no arguments. */
1287        it->phandle = be32_to_cpup(it->cur++);
1288
1289        if (it->phandle) {
1290
1291                /*
1292                 * Find the provider node and parse the #*-cells property to
1293                 * determine the argument length.
1294                 */
1295                it->node = of_find_node_by_phandle(it->phandle);
1296
1297                if (it->cells_name) {
1298                        if (!it->node) {
1299                                pr_err("%pOF: could not find phandle %d\n",
1300                                       it->parent, it->phandle);
1301                                goto err;
1302                        }
1303
1304                        if (of_property_read_u32(it->node, it->cells_name,
1305                                                 &count)) {
1306                                /*
1307                                 * If both cell_count and cells_name is given,
1308                                 * fall back to cell_count in absence
1309                                 * of the cells_name property
1310                                 */
1311                                if (it->cell_count >= 0) {
1312                                        count = it->cell_count;
1313                                } else {
1314                                        pr_err("%pOF: could not get %s for %pOF\n",
1315                                               it->parent,
1316                                               it->cells_name,
1317                                               it->node);
1318                                        goto err;
1319                                }
1320                        }
1321                } else {
1322                        count = it->cell_count;
1323                }
1324
1325                /*
1326                 * Make sure that the arguments actually fit in the remaining
1327                 * property data length
1328                 */
1329                if (it->cur + count > it->list_end) {
1330                        pr_err("%pOF: %s = %d found %d\n",
1331                               it->parent, it->cells_name,
1332                               count, it->cell_count);
1333                        goto err;
1334                }
1335        }
1336
1337        it->phandle_end = it->cur + count;
1338        it->cur_count = count;
1339
1340        return 0;
1341
1342err:
1343        if (it->node) {
1344                of_node_put(it->node);
1345                it->node = NULL;
1346        }
1347
1348        return -EINVAL;
1349}
1350EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1351
1352int of_phandle_iterator_args(struct of_phandle_iterator *it,
1353                             uint32_t *args,
1354                             int size)
1355{
1356        int i, count;
1357
1358        count = it->cur_count;
1359
1360        if (WARN_ON(size < count))
1361                count = size;
1362
1363        for (i = 0; i < count; i++)
1364                args[i] = be32_to_cpup(it->cur++);
1365
1366        return count;
1367}
1368
1369static int __of_parse_phandle_with_args(const struct device_node *np,
1370                                        const char *list_name,
1371                                        const char *cells_name,
1372                                        int cell_count, int index,
1373                                        struct of_phandle_args *out_args)
1374{
1375        struct of_phandle_iterator it;
1376        int rc, cur_index = 0;
1377
1378        /* Loop over the phandles until all the requested entry is found */
1379        of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1380                /*
1381                 * All of the error cases bail out of the loop, so at
1382                 * this point, the parsing is successful. If the requested
1383                 * index matches, then fill the out_args structure and return,
1384                 * or return -ENOENT for an empty entry.
1385                 */
1386                rc = -ENOENT;
1387                if (cur_index == index) {
1388                        if (!it.phandle)
1389                                goto err;
1390
1391                        if (out_args) {
1392                                int c;
1393
1394                                c = of_phandle_iterator_args(&it,
1395                                                             out_args->args,
1396                                                             MAX_PHANDLE_ARGS);
1397                                out_args->np = it.node;
1398                                out_args->args_count = c;
1399                        } else {
1400                                of_node_put(it.node);
1401                        }
1402
1403                        /* Found it! return success */
1404                        return 0;
1405                }
1406
1407                cur_index++;
1408        }
1409
1410        /*
1411         * Unlock node before returning result; will be one of:
1412         * -ENOENT : index is for empty phandle
1413         * -EINVAL : parsing error on data
1414         */
1415
1416 err:
1417        of_node_put(it.node);
1418        return rc;
1419}
1420
1421/**
1422 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1423 * @np: Pointer to device node holding phandle property
1424 * @phandle_name: Name of property holding a phandle value
1425 * @index: For properties holding a table of phandles, this is the index into
1426 *         the table
1427 *
1428 * Return: The device_node pointer with refcount incremented.  Use
1429 * of_node_put() on it when done.
1430 */
1431struct device_node *of_parse_phandle(const struct device_node *np,
1432                                     const char *phandle_name, int index)
1433{
1434        struct of_phandle_args args;
1435
1436        if (index < 0)
1437                return NULL;
1438
1439        if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1440                                         index, &args))
1441                return NULL;
1442
1443        return args.np;
1444}
1445EXPORT_SYMBOL(of_parse_phandle);
1446
1447/**
1448 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1449 * @np:         pointer to a device tree node containing a list
1450 * @list_name:  property name that contains a list
1451 * @cells_name: property name that specifies phandles' arguments count
1452 * @index:      index of a phandle to parse out
1453 * @out_args:   optional pointer to output arguments structure (will be filled)
1454 *
1455 * This function is useful to parse lists of phandles and their arguments.
1456 * Returns 0 on success and fills out_args, on error returns appropriate
1457 * errno value.
1458 *
1459 * Caller is responsible to call of_node_put() on the returned out_args->np
1460 * pointer.
1461 *
1462 * Example::
1463 *
1464 *  phandle1: node1 {
1465 *      #list-cells = <2>;
1466 *  };
1467 *
1468 *  phandle2: node2 {
1469 *      #list-cells = <1>;
1470 *  };
1471 *
1472 *  node3 {
1473 *      list = <&phandle1 1 2 &phandle2 3>;
1474 *  };
1475 *
1476 * To get a device_node of the ``node2`` node you may call this:
1477 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1478 */
1479int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1480                                const char *cells_name, int index,
1481                                struct of_phandle_args *out_args)
1482{
1483        int cell_count = -1;
1484
1485        if (index < 0)
1486                return -EINVAL;
1487
1488        /* If cells_name is NULL we assume a cell count of 0 */
1489        if (!cells_name)
1490                cell_count = 0;
1491
1492        return __of_parse_phandle_with_args(np, list_name, cells_name,
1493                                            cell_count, index, out_args);
1494}
1495EXPORT_SYMBOL(of_parse_phandle_with_args);
1496
1497/**
1498 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1499 * @np:         pointer to a device tree node containing a list
1500 * @list_name:  property name that contains a list
1501 * @stem_name:  stem of property names that specify phandles' arguments count
1502 * @index:      index of a phandle to parse out
1503 * @out_args:   optional pointer to output arguments structure (will be filled)
1504 *
1505 * This function is useful to parse lists of phandles and their arguments.
1506 * Returns 0 on success and fills out_args, on error returns appropriate errno
1507 * value. The difference between this function and of_parse_phandle_with_args()
1508 * is that this API remaps a phandle if the node the phandle points to has
1509 * a <@stem_name>-map property.
1510 *
1511 * Caller is responsible to call of_node_put() on the returned out_args->np
1512 * pointer.
1513 *
1514 * Example::
1515 *
1516 *  phandle1: node1 {
1517 *      #list-cells = <2>;
1518 *  };
1519 *
1520 *  phandle2: node2 {
1521 *      #list-cells = <1>;
1522 *  };
1523 *
1524 *  phandle3: node3 {
1525 *      #list-cells = <1>;
1526 *      list-map = <0 &phandle2 3>,
1527 *                 <1 &phandle2 2>,
1528 *                 <2 &phandle1 5 1>;
1529 *      list-map-mask = <0x3>;
1530 *  };
1531 *
1532 *  node4 {
1533 *      list = <&phandle1 1 2 &phandle3 0>;
1534 *  };
1535 *
1536 * To get a device_node of the ``node2`` node you may call this:
1537 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1538 */
1539int of_parse_phandle_with_args_map(const struct device_node *np,
1540                                   const char *list_name,
1541                                   const char *stem_name,
1542                                   int index, struct of_phandle_args *out_args)
1543{
1544        char *cells_name, *map_name = NULL, *mask_name = NULL;
1545        char *pass_name = NULL;
1546        struct device_node *cur, *new = NULL;
1547        const __be32 *map, *mask, *pass;
1548        static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1549        static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1550        __be32 initial_match_array[MAX_PHANDLE_ARGS];
1551        const __be32 *match_array = initial_match_array;
1552        int i, ret, map_len, match;
1553        u32 list_size, new_size;
1554
1555        if (index < 0)
1556                return -EINVAL;
1557
1558        cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1559        if (!cells_name)
1560                return -ENOMEM;
1561
1562        ret = -ENOMEM;
1563        map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1564        if (!map_name)
1565                goto free;
1566
1567        mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1568        if (!mask_name)
1569                goto free;
1570
1571        pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1572        if (!pass_name)
1573                goto free;
1574
1575        ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1576                                           out_args);
1577        if (ret)
1578                goto free;
1579
1580        /* Get the #<list>-cells property */
1581        cur = out_args->np;
1582        ret = of_property_read_u32(cur, cells_name, &list_size);
1583        if (ret < 0)
1584                goto put;
1585
1586        /* Precalculate the match array - this simplifies match loop */
1587        for (i = 0; i < list_size; i++)
1588                initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1589
1590        ret = -EINVAL;
1591        while (cur) {
1592                /* Get the <list>-map property */
1593                map = of_get_property(cur, map_name, &map_len);
1594                if (!map) {
1595                        ret = 0;
1596                        goto free;
1597                }
1598                map_len /= sizeof(u32);
1599
1600                /* Get the <list>-map-mask property (optional) */
1601                mask = of_get_property(cur, mask_name, NULL);
1602                if (!mask)
1603                        mask = dummy_mask;
1604                /* Iterate through <list>-map property */
1605                match = 0;
1606                while (map_len > (list_size + 1) && !match) {
1607                        /* Compare specifiers */
1608                        match = 1;
1609                        for (i = 0; i < list_size; i++, map_len--)
1610                                match &= !((match_array[i] ^ *map++) & mask[i]);
1611
1612                        of_node_put(new);
1613                        new = of_find_node_by_phandle(be32_to_cpup(map));
1614                        map++;
1615                        map_len--;
1616
1617                        /* Check if not found */
1618                        if (!new)
1619                                goto put;
1620
1621                        if (!of_device_is_available(new))
1622                                match = 0;
1623
1624                        ret = of_property_read_u32(new, cells_name, &new_size);
1625                        if (ret)
1626                                goto put;
1627
1628                        /* Check for malformed properties */
1629                        if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1630                                goto put;
1631                        if (map_len < new_size)
1632                                goto put;
1633
1634                        /* Move forward by new node's #<list>-cells amount */
1635                        map += new_size;
1636                        map_len -= new_size;
1637                }
1638                if (!match)
1639                        goto put;
1640
1641                /* Get the <list>-map-pass-thru property (optional) */
1642                pass = of_get_property(cur, pass_name, NULL);
1643                if (!pass)
1644                        pass = dummy_pass;
1645
1646                /*
1647                 * Successfully parsed a <list>-map translation; copy new
1648                 * specifier into the out_args structure, keeping the
1649                 * bits specified in <list>-map-pass-thru.
1650                 */
1651                match_array = map - new_size;
1652                for (i = 0; i < new_size; i++) {
1653                        __be32 val = *(map - new_size + i);
1654
1655                        if (i < list_size) {
1656                                val &= ~pass[i];
1657                                val |= cpu_to_be32(out_args->args[i]) & pass[i];
1658                        }
1659
1660                        out_args->args[i] = be32_to_cpu(val);
1661                }
1662                out_args->args_count = list_size = new_size;
1663                /* Iterate again with new provider */
1664                out_args->np = new;
1665                of_node_put(cur);
1666                cur = new;
1667        }
1668put:
1669        of_node_put(cur);
1670        of_node_put(new);
1671free:
1672        kfree(mask_name);
1673        kfree(map_name);
1674        kfree(cells_name);
1675        kfree(pass_name);
1676
1677        return ret;
1678}
1679EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1680
1681/**
1682 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1683 * @np:         pointer to a device tree node containing a list
1684 * @list_name:  property name that contains a list
1685 * @cell_count: number of argument cells following the phandle
1686 * @index:      index of a phandle to parse out
1687 * @out_args:   optional pointer to output arguments structure (will be filled)
1688 *
1689 * This function is useful to parse lists of phandles and their arguments.
1690 * Returns 0 on success and fills out_args, on error returns appropriate
1691 * errno value.
1692 *
1693 * Caller is responsible to call of_node_put() on the returned out_args->np
1694 * pointer.
1695 *
1696 * Example::
1697 *
1698 *  phandle1: node1 {
1699 *  };
1700 *
1701 *  phandle2: node2 {
1702 *  };
1703 *
1704 *  node3 {
1705 *      list = <&phandle1 0 2 &phandle2 2 3>;
1706 *  };
1707 *
1708 * To get a device_node of the ``node2`` node you may call this:
1709 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1710 */
1711int of_parse_phandle_with_fixed_args(const struct device_node *np,
1712                                const char *list_name, int cell_count,
1713                                int index, struct of_phandle_args *out_args)
1714{
1715        if (index < 0)
1716                return -EINVAL;
1717        return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1718                                           index, out_args);
1719}
1720EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1721
1722/**
1723 * of_count_phandle_with_args() - Find the number of phandles references in a property
1724 * @np:         pointer to a device tree node containing a list
1725 * @list_name:  property name that contains a list
1726 * @cells_name: property name that specifies phandles' arguments count
1727 *
1728 * Return: The number of phandle + argument tuples within a property. It
1729 * is a typical pattern to encode a list of phandle and variable
1730 * arguments into a single property. The number of arguments is encoded
1731 * by a property in the phandle-target node. For example, a gpios
1732 * property would contain a list of GPIO specifies consisting of a
1733 * phandle and 1 or more arguments. The number of arguments are
1734 * determined by the #gpio-cells property in the node pointed to by the
1735 * phandle.
1736 */
1737int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1738                                const char *cells_name)
1739{
1740        struct of_phandle_iterator it;
1741        int rc, cur_index = 0;
1742
1743        /*
1744         * If cells_name is NULL we assume a cell count of 0. This makes
1745         * counting the phandles trivial as each 32bit word in the list is a
1746         * phandle and no arguments are to consider. So we don't iterate through
1747         * the list but just use the length to determine the phandle count.
1748         */
1749        if (!cells_name) {
1750                const __be32 *list;
1751                int size;
1752
1753                list = of_get_property(np, list_name, &size);
1754                if (!list)
1755                        return -ENOENT;
1756
1757                return size / sizeof(*list);
1758        }
1759
1760        rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1761        if (rc)
1762                return rc;
1763
1764        while ((rc = of_phandle_iterator_next(&it)) == 0)
1765                cur_index += 1;
1766
1767        if (rc != -ENOENT)
1768                return rc;
1769
1770        return cur_index;
1771}
1772EXPORT_SYMBOL(of_count_phandle_with_args);
1773
1774/**
1775 * __of_add_property - Add a property to a node without lock operations
1776 * @np:         Caller's Device Node
1777 * @prop:       Property to add
1778 */
1779int __of_add_property(struct device_node *np, struct property *prop)
1780{
1781        struct property **next;
1782
1783        prop->next = NULL;
1784        next = &np->properties;
1785        while (*next) {
1786                if (strcmp(prop->name, (*next)->name) == 0)
1787                        /* duplicate ! don't insert it */
1788                        return -EEXIST;
1789
1790                next = &(*next)->next;
1791        }
1792        *next = prop;
1793
1794        return 0;
1795}
1796
1797/**
1798 * of_add_property - Add a property to a node
1799 * @np:         Caller's Device Node
1800 * @prop:       Property to add
1801 */
1802int of_add_property(struct device_node *np, struct property *prop)
1803{
1804        unsigned long flags;
1805        int rc;
1806
1807        mutex_lock(&of_mutex);
1808
1809        raw_spin_lock_irqsave(&devtree_lock, flags);
1810        rc = __of_add_property(np, prop);
1811        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1812
1813        if (!rc)
1814                __of_add_property_sysfs(np, prop);
1815
1816        mutex_unlock(&of_mutex);
1817
1818        if (!rc)
1819                of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1820
1821        return rc;
1822}
1823EXPORT_SYMBOL_GPL(of_add_property);
1824
1825int __of_remove_property(struct device_node *np, struct property *prop)
1826{
1827        struct property **next;
1828
1829        for (next = &np->properties; *next; next = &(*next)->next) {
1830                if (*next == prop)
1831                        break;
1832        }
1833        if (*next == NULL)
1834                return -ENODEV;
1835
1836        /* found the node */
1837        *next = prop->next;
1838        prop->next = np->deadprops;
1839        np->deadprops = prop;
1840
1841        return 0;
1842}
1843
1844/**
1845 * of_remove_property - Remove a property from a node.
1846 * @np:         Caller's Device Node
1847 * @prop:       Property to remove
1848 *
1849 * Note that we don't actually remove it, since we have given out
1850 * who-knows-how-many pointers to the data using get-property.
1851 * Instead we just move the property to the "dead properties"
1852 * list, so it won't be found any more.
1853 */
1854int of_remove_property(struct device_node *np, struct property *prop)
1855{
1856        unsigned long flags;
1857        int rc;
1858
1859        if (!prop)
1860                return -ENODEV;
1861
1862        mutex_lock(&of_mutex);
1863
1864        raw_spin_lock_irqsave(&devtree_lock, flags);
1865        rc = __of_remove_property(np, prop);
1866        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1867
1868        if (!rc)
1869                __of_remove_property_sysfs(np, prop);
1870
1871        mutex_unlock(&of_mutex);
1872
1873        if (!rc)
1874                of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1875
1876        return rc;
1877}
1878EXPORT_SYMBOL_GPL(of_remove_property);
1879
1880int __of_update_property(struct device_node *np, struct property *newprop,
1881                struct property **oldpropp)
1882{
1883        struct property **next, *oldprop;
1884
1885        for (next = &np->properties; *next; next = &(*next)->next) {
1886                if (of_prop_cmp((*next)->name, newprop->name) == 0)
1887                        break;
1888        }
1889        *oldpropp = oldprop = *next;
1890
1891        if (oldprop) {
1892                /* replace the node */
1893                newprop->next = oldprop->next;
1894                *next = newprop;
1895                oldprop->next = np->deadprops;
1896                np->deadprops = oldprop;
1897        } else {
1898                /* new node */
1899                newprop->next = NULL;
1900                *next = newprop;
1901        }
1902
1903        return 0;
1904}
1905
1906/*
1907 * of_update_property - Update a property in a node, if the property does
1908 * not exist, add it.
1909 *
1910 * Note that we don't actually remove it, since we have given out
1911 * who-knows-how-many pointers to the data using get-property.
1912 * Instead we just move the property to the "dead properties" list,
1913 * and add the new property to the property list
1914 */
1915int of_update_property(struct device_node *np, struct property *newprop)
1916{
1917        struct property *oldprop;
1918        unsigned long flags;
1919        int rc;
1920
1921        if (!newprop->name)
1922                return -EINVAL;
1923
1924        mutex_lock(&of_mutex);
1925
1926        raw_spin_lock_irqsave(&devtree_lock, flags);
1927        rc = __of_update_property(np, newprop, &oldprop);
1928        raw_spin_unlock_irqrestore(&devtree_lock, flags);
1929
1930        if (!rc)
1931                __of_update_property_sysfs(np, newprop, oldprop);
1932
1933        mutex_unlock(&of_mutex);
1934
1935        if (!rc)
1936                of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1937
1938        return rc;
1939}
1940
1941static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1942                         int id, const char *stem, int stem_len)
1943{
1944        ap->np = np;
1945        ap->id = id;
1946        strncpy(ap->stem, stem, stem_len);
1947        ap->stem[stem_len] = 0;
1948        list_add_tail(&ap->link, &aliases_lookup);
1949        pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1950                 ap->alias, ap->stem, ap->id, np);
1951}
1952
1953/**
1954 * of_alias_scan - Scan all properties of the 'aliases' node
1955 * @dt_alloc:   An allocator that provides a virtual address to memory
1956 *              for storing the resulting tree
1957 *
1958 * The function scans all the properties of the 'aliases' node and populates
1959 * the global lookup table with the properties.  It returns the
1960 * number of alias properties found, or an error code in case of failure.
1961 */
1962void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1963{
1964        struct property *pp;
1965
1966        of_aliases = of_find_node_by_path("/aliases");
1967        of_chosen = of_find_node_by_path("/chosen");
1968        if (of_chosen == NULL)
1969                of_chosen = of_find_node_by_path("/chosen@0");
1970
1971        if (of_chosen) {
1972                /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1973                const char *name = NULL;
1974
1975                if (of_property_read_string(of_chosen, "stdout-path", &name))
1976                        of_property_read_string(of_chosen, "linux,stdout-path",
1977                                                &name);
1978                if (IS_ENABLED(CONFIG_PPC) && !name)
1979                        of_property_read_string(of_aliases, "stdout", &name);
1980                if (name)
1981                        of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1982        }
1983
1984        if (!of_aliases)
1985                return;
1986
1987        for_each_property_of_node(of_aliases, pp) {
1988                const char *start = pp->name;
1989                const char *end = start + strlen(start);
1990                struct device_node *np;
1991                struct alias_prop *ap;
1992                int id, len;
1993
1994                /* Skip those we do not want to proceed */
1995                if (!strcmp(pp->name, "name") ||
1996                    !strcmp(pp->name, "phandle") ||
1997                    !strcmp(pp->name, "linux,phandle"))
1998                        continue;
1999
2000                np = of_find_node_by_path(pp->value);
2001                if (!np)
2002                        continue;
2003
2004                /* walk the alias backwards to extract the id and work out
2005                 * the 'stem' string */
2006                while (isdigit(*(end-1)) && end > start)
2007                        end--;
2008                len = end - start;
2009
2010                if (kstrtoint(end, 10, &id) < 0)
2011                        continue;
2012
2013                /* Allocate an alias_prop with enough space for the stem */
2014                ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2015                if (!ap)
2016                        continue;
2017                memset(ap, 0, sizeof(*ap) + len + 1);
2018                ap->alias = start;
2019                of_alias_add(ap, np, id, start, len);
2020        }
2021}
2022
2023/**
2024 * of_alias_get_id - Get alias id for the given device_node
2025 * @np:         Pointer to the given device_node
2026 * @stem:       Alias stem of the given device_node
2027 *
2028 * The function travels the lookup table to get the alias id for the given
2029 * device_node and alias stem.
2030 *
2031 * Return: The alias id if found.
2032 */
2033int of_alias_get_id(struct device_node *np, const char *stem)
2034{
2035        struct alias_prop *app;
2036        int id = -ENODEV;
2037
2038        mutex_lock(&of_mutex);
2039        list_for_each_entry(app, &aliases_lookup, link) {
2040                if (strcmp(app->stem, stem) != 0)
2041                        continue;
2042
2043                if (np == app->np) {
2044                        id = app->id;
2045                        break;
2046                }
2047        }
2048        mutex_unlock(&of_mutex);
2049
2050        return id;
2051}
2052EXPORT_SYMBOL_GPL(of_alias_get_id);
2053
2054/**
2055 * of_alias_get_alias_list - Get alias list for the given device driver
2056 * @matches:    Array of OF device match structures to search in
2057 * @stem:       Alias stem of the given device_node
2058 * @bitmap:     Bitmap field pointer
2059 * @nbits:      Maximum number of alias IDs which can be recorded in bitmap
2060 *
2061 * The function travels the lookup table to record alias ids for the given
2062 * device match structures and alias stem.
2063 *
2064 * Return:      0 or -ENOSYS when !CONFIG_OF or
2065 *              -EOVERFLOW if alias ID is greater then allocated nbits
2066 */
2067int of_alias_get_alias_list(const struct of_device_id *matches,
2068                             const char *stem, unsigned long *bitmap,
2069                             unsigned int nbits)
2070{
2071        struct alias_prop *app;
2072        int ret = 0;
2073
2074        /* Zero bitmap field to make sure that all the time it is clean */
2075        bitmap_zero(bitmap, nbits);
2076
2077        mutex_lock(&of_mutex);
2078        pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2079        list_for_each_entry(app, &aliases_lookup, link) {
2080                pr_debug("%s: stem: %s, id: %d\n",
2081                         __func__, app->stem, app->id);
2082
2083                if (strcmp(app->stem, stem) != 0) {
2084                        pr_debug("%s: stem comparison didn't pass %s\n",
2085                                 __func__, app->stem);
2086                        continue;
2087                }
2088
2089                if (of_match_node(matches, app->np)) {
2090                        pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2091
2092                        if (app->id >= nbits) {
2093                                pr_warn("%s: ID %d >= than bitmap field %d\n",
2094                                        __func__, app->id, nbits);
2095                                ret = -EOVERFLOW;
2096                        } else {
2097                                set_bit(app->id, bitmap);
2098                        }
2099                }
2100        }
2101        mutex_unlock(&of_mutex);
2102
2103        return ret;
2104}
2105EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2106
2107/**
2108 * of_alias_get_highest_id - Get highest alias id for the given stem
2109 * @stem:       Alias stem to be examined
2110 *
2111 * The function travels the lookup table to get the highest alias id for the
2112 * given alias stem.  It returns the alias id if found.
2113 */
2114int of_alias_get_highest_id(const char *stem)
2115{
2116        struct alias_prop *app;
2117        int id = -ENODEV;
2118
2119        mutex_lock(&of_mutex);
2120        list_for_each_entry(app, &aliases_lookup, link) {
2121                if (strcmp(app->stem, stem) != 0)
2122                        continue;
2123
2124                if (app->id > id)
2125                        id = app->id;
2126        }
2127        mutex_unlock(&of_mutex);
2128
2129        return id;
2130}
2131EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2132
2133/**
2134 * of_console_check() - Test and setup console for DT setup
2135 * @dn: Pointer to device node
2136 * @name: Name to use for preferred console without index. ex. "ttyS"
2137 * @index: Index to use for preferred console.
2138 *
2139 * Check if the given device node matches the stdout-path property in the
2140 * /chosen node. If it does then register it as the preferred console.
2141 *
2142 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2143 */
2144bool of_console_check(struct device_node *dn, char *name, int index)
2145{
2146        if (!dn || dn != of_stdout || console_set_on_cmdline)
2147                return false;
2148
2149        /*
2150         * XXX: cast `options' to char pointer to suppress complication
2151         * warnings: printk, UART and console drivers expect char pointer.
2152         */
2153        return !add_preferred_console(name, index, (char *)of_stdout_options);
2154}
2155EXPORT_SYMBOL_GPL(of_console_check);
2156
2157/**
2158 * of_find_next_cache_node - Find a node's subsidiary cache
2159 * @np: node of type "cpu" or "cache"
2160 *
2161 * Return: A node pointer with refcount incremented, use
2162 * of_node_put() on it when done.  Caller should hold a reference
2163 * to np.
2164 */
2165struct device_node *of_find_next_cache_node(const struct device_node *np)
2166{
2167        struct device_node *child, *cache_node;
2168
2169        cache_node = of_parse_phandle(np, "l2-cache", 0);
2170        if (!cache_node)
2171                cache_node = of_parse_phandle(np, "next-level-cache", 0);
2172
2173        if (cache_node)
2174                return cache_node;
2175
2176        /* OF on pmac has nodes instead of properties named "l2-cache"
2177         * beneath CPU nodes.
2178         */
2179        if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2180                for_each_child_of_node(np, child)
2181                        if (of_node_is_type(child, "cache"))
2182                                return child;
2183
2184        return NULL;
2185}
2186
2187/**
2188 * of_find_last_cache_level - Find the level at which the last cache is
2189 *              present for the given logical cpu
2190 *
2191 * @cpu: cpu number(logical index) for which the last cache level is needed
2192 *
2193 * Return: The the level at which the last cache is present. It is exactly
2194 * same as  the total number of cache levels for the given logical cpu.
2195 */
2196int of_find_last_cache_level(unsigned int cpu)
2197{
2198        u32 cache_level = 0;
2199        struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2200
2201        while (np) {
2202                prev = np;
2203                of_node_put(np);
2204                np = of_find_next_cache_node(np);
2205        }
2206
2207        of_property_read_u32(prev, "cache-level", &cache_level);
2208
2209        return cache_level;
2210}
2211
2212/**
2213 * of_map_id - Translate an ID through a downstream mapping.
2214 * @np: root complex device node.
2215 * @id: device ID to map.
2216 * @map_name: property name of the map to use.
2217 * @map_mask_name: optional property name of the mask to use.
2218 * @target: optional pointer to a target device node.
2219 * @id_out: optional pointer to receive the translated ID.
2220 *
2221 * Given a device ID, look up the appropriate implementation-defined
2222 * platform ID and/or the target device which receives transactions on that
2223 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2224 * @id_out may be NULL if only the other is required. If @target points to
2225 * a non-NULL device node pointer, only entries targeting that node will be
2226 * matched; if it points to a NULL value, it will receive the device node of
2227 * the first matching target phandle, with a reference held.
2228 *
2229 * Return: 0 on success or a standard error code on failure.
2230 */
2231int of_map_id(struct device_node *np, u32 id,
2232               const char *map_name, const char *map_mask_name,
2233               struct device_node **target, u32 *id_out)
2234{
2235        u32 map_mask, masked_id;
2236        int map_len;
2237        const __be32 *map = NULL;
2238
2239        if (!np || !map_name || (!target && !id_out))
2240                return -EINVAL;
2241
2242        map = of_get_property(np, map_name, &map_len);
2243        if (!map) {
2244                if (target)
2245                        return -ENODEV;
2246                /* Otherwise, no map implies no translation */
2247                *id_out = id;
2248                return 0;
2249        }
2250
2251        if (!map_len || map_len % (4 * sizeof(*map))) {
2252                pr_err("%pOF: Error: Bad %s length: %d\n", np,
2253                        map_name, map_len);
2254                return -EINVAL;
2255        }
2256
2257        /* The default is to select all bits. */
2258        map_mask = 0xffffffff;
2259
2260        /*
2261         * Can be overridden by "{iommu,msi}-map-mask" property.
2262         * If of_property_read_u32() fails, the default is used.
2263         */
2264        if (map_mask_name)
2265                of_property_read_u32(np, map_mask_name, &map_mask);
2266
2267        masked_id = map_mask & id;
2268        for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2269                struct device_node *phandle_node;
2270                u32 id_base = be32_to_cpup(map + 0);
2271                u32 phandle = be32_to_cpup(map + 1);
2272                u32 out_base = be32_to_cpup(map + 2);
2273                u32 id_len = be32_to_cpup(map + 3);
2274
2275                if (id_base & ~map_mask) {
2276                        pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2277                                np, map_name, map_name,
2278                                map_mask, id_base);
2279                        return -EFAULT;
2280                }
2281
2282                if (masked_id < id_base || masked_id >= id_base + id_len)
2283                        continue;
2284
2285                phandle_node = of_find_node_by_phandle(phandle);
2286                if (!phandle_node)
2287                        return -ENODEV;
2288
2289                if (target) {
2290                        if (*target)
2291                                of_node_put(phandle_node);
2292                        else
2293                                *target = phandle_node;
2294
2295                        if (*target != phandle_node)
2296                                continue;
2297                }
2298
2299                if (id_out)
2300                        *id_out = masked_id - id_base + out_base;
2301
2302                pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2303                        np, map_name, map_mask, id_base, out_base,
2304                        id_len, id, masked_id - id_base + out_base);
2305                return 0;
2306        }
2307
2308        pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2309                id, target && *target ? *target : NULL);
2310
2311        /* Bypasses translation */
2312        if (id_out)
2313                *id_out = id;
2314        return 0;
2315}
2316EXPORT_SYMBOL_GPL(of_map_id);
2317