linux/drivers/of/property.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * drivers/of/property.c - Procedures for accessing and interpreting
   4 *                         Devicetree properties and graphs.
   5 *
   6 * Initially created by copying procedures from drivers/of/base.c. This
   7 * file contains the OF property as well as the OF graph interface
   8 * functions.
   9 *
  10 * Paul Mackerras       August 1996.
  11 * Copyright (C) 1996-2005 Paul Mackerras.
  12 *
  13 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  14 *    {engebret|bergner}@us.ibm.com
  15 *
  16 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  17 *
  18 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  19 *  Grant Likely.
  20 */
  21
  22#define pr_fmt(fmt)     "OF: " fmt
  23
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/of_graph.h>
  27#include <linux/of_irq.h>
  28#include <linux/string.h>
  29#include <linux/moduleparam.h>
  30
  31#include "of_private.h"
  32
  33/**
  34 * of_graph_is_present() - check graph's presence
  35 * @node: pointer to device_node containing graph port
  36 *
  37 * Return: True if @node has a port or ports (with a port) sub-node,
  38 * false otherwise.
  39 */
  40bool of_graph_is_present(const struct device_node *node)
  41{
  42        struct device_node *ports, *port;
  43
  44        ports = of_get_child_by_name(node, "ports");
  45        if (ports)
  46                node = ports;
  47
  48        port = of_get_child_by_name(node, "port");
  49        of_node_put(ports);
  50        of_node_put(port);
  51
  52        return !!port;
  53}
  54EXPORT_SYMBOL(of_graph_is_present);
  55
  56/**
  57 * of_property_count_elems_of_size - Count the number of elements in a property
  58 *
  59 * @np:         device node from which the property value is to be read.
  60 * @propname:   name of the property to be searched.
  61 * @elem_size:  size of the individual element
  62 *
  63 * Search for a property in a device node and count the number of elements of
  64 * size elem_size in it.
  65 *
  66 * Return: The number of elements on sucess, -EINVAL if the property does not
  67 * exist or its length does not match a multiple of elem_size and -ENODATA if
  68 * the property does not have a value.
  69 */
  70int of_property_count_elems_of_size(const struct device_node *np,
  71                                const char *propname, int elem_size)
  72{
  73        struct property *prop = of_find_property(np, propname, NULL);
  74
  75        if (!prop)
  76                return -EINVAL;
  77        if (!prop->value)
  78                return -ENODATA;
  79
  80        if (prop->length % elem_size != 0) {
  81                pr_err("size of %s in node %pOF is not a multiple of %d\n",
  82                       propname, np, elem_size);
  83                return -EINVAL;
  84        }
  85
  86        return prop->length / elem_size;
  87}
  88EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
  89
  90/**
  91 * of_find_property_value_of_size
  92 *
  93 * @np:         device node from which the property value is to be read.
  94 * @propname:   name of the property to be searched.
  95 * @min:        minimum allowed length of property value
  96 * @max:        maximum allowed length of property value (0 means unlimited)
  97 * @len:        if !=NULL, actual length is written to here
  98 *
  99 * Search for a property in a device node and valid the requested size.
 100 *
 101 * Return: The property value on success, -EINVAL if the property does not
 102 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 103 * property data is too small or too large.
 104 *
 105 */
 106static void *of_find_property_value_of_size(const struct device_node *np,
 107                        const char *propname, u32 min, u32 max, size_t *len)
 108{
 109        struct property *prop = of_find_property(np, propname, NULL);
 110
 111        if (!prop)
 112                return ERR_PTR(-EINVAL);
 113        if (!prop->value)
 114                return ERR_PTR(-ENODATA);
 115        if (prop->length < min)
 116                return ERR_PTR(-EOVERFLOW);
 117        if (max && prop->length > max)
 118                return ERR_PTR(-EOVERFLOW);
 119
 120        if (len)
 121                *len = prop->length;
 122
 123        return prop->value;
 124}
 125
 126/**
 127 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 128 *
 129 * @np:         device node from which the property value is to be read.
 130 * @propname:   name of the property to be searched.
 131 * @index:      index of the u32 in the list of values
 132 * @out_value:  pointer to return value, modified only if no error.
 133 *
 134 * Search for a property in a device node and read nth 32-bit value from
 135 * it.
 136 *
 137 * Return: 0 on success, -EINVAL if the property does not exist,
 138 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 139 * property data isn't large enough.
 140 *
 141 * The out_value is modified only if a valid u32 value can be decoded.
 142 */
 143int of_property_read_u32_index(const struct device_node *np,
 144                                       const char *propname,
 145                                       u32 index, u32 *out_value)
 146{
 147        const u32 *val = of_find_property_value_of_size(np, propname,
 148                                        ((index + 1) * sizeof(*out_value)),
 149                                        0,
 150                                        NULL);
 151
 152        if (IS_ERR(val))
 153                return PTR_ERR(val);
 154
 155        *out_value = be32_to_cpup(((__be32 *)val) + index);
 156        return 0;
 157}
 158EXPORT_SYMBOL_GPL(of_property_read_u32_index);
 159
 160/**
 161 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
 162 *
 163 * @np:         device node from which the property value is to be read.
 164 * @propname:   name of the property to be searched.
 165 * @index:      index of the u64 in the list of values
 166 * @out_value:  pointer to return value, modified only if no error.
 167 *
 168 * Search for a property in a device node and read nth 64-bit value from
 169 * it.
 170 *
 171 * Return: 0 on success, -EINVAL if the property does not exist,
 172 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 173 * property data isn't large enough.
 174 *
 175 * The out_value is modified only if a valid u64 value can be decoded.
 176 */
 177int of_property_read_u64_index(const struct device_node *np,
 178                                       const char *propname,
 179                                       u32 index, u64 *out_value)
 180{
 181        const u64 *val = of_find_property_value_of_size(np, propname,
 182                                        ((index + 1) * sizeof(*out_value)),
 183                                        0, NULL);
 184
 185        if (IS_ERR(val))
 186                return PTR_ERR(val);
 187
 188        *out_value = be64_to_cpup(((__be64 *)val) + index);
 189        return 0;
 190}
 191EXPORT_SYMBOL_GPL(of_property_read_u64_index);
 192
 193/**
 194 * of_property_read_variable_u8_array - Find and read an array of u8 from a
 195 * property, with bounds on the minimum and maximum array size.
 196 *
 197 * @np:         device node from which the property value is to be read.
 198 * @propname:   name of the property to be searched.
 199 * @out_values: pointer to found values.
 200 * @sz_min:     minimum number of array elements to read
 201 * @sz_max:     maximum number of array elements to read, if zero there is no
 202 *              upper limit on the number of elements in the dts entry but only
 203 *              sz_min will be read.
 204 *
 205 * Search for a property in a device node and read 8-bit value(s) from
 206 * it.
 207 *
 208 * dts entry of array should be like:
 209 *  ``property = /bits/ 8 <0x50 0x60 0x70>;``
 210 *
 211 * Return: The number of elements read on success, -EINVAL if the property
 212 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 213 * if the property data is smaller than sz_min or longer than sz_max.
 214 *
 215 * The out_values is modified only if a valid u8 value can be decoded.
 216 */
 217int of_property_read_variable_u8_array(const struct device_node *np,
 218                                        const char *propname, u8 *out_values,
 219                                        size_t sz_min, size_t sz_max)
 220{
 221        size_t sz, count;
 222        const u8 *val = of_find_property_value_of_size(np, propname,
 223                                                (sz_min * sizeof(*out_values)),
 224                                                (sz_max * sizeof(*out_values)),
 225                                                &sz);
 226
 227        if (IS_ERR(val))
 228                return PTR_ERR(val);
 229
 230        if (!sz_max)
 231                sz = sz_min;
 232        else
 233                sz /= sizeof(*out_values);
 234
 235        count = sz;
 236        while (count--)
 237                *out_values++ = *val++;
 238
 239        return sz;
 240}
 241EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
 242
 243/**
 244 * of_property_read_variable_u16_array - Find and read an array of u16 from a
 245 * property, with bounds on the minimum and maximum array size.
 246 *
 247 * @np:         device node from which the property value is to be read.
 248 * @propname:   name of the property to be searched.
 249 * @out_values: pointer to found values.
 250 * @sz_min:     minimum number of array elements to read
 251 * @sz_max:     maximum number of array elements to read, if zero there is no
 252 *              upper limit on the number of elements in the dts entry but only
 253 *              sz_min will be read.
 254 *
 255 * Search for a property in a device node and read 16-bit value(s) from
 256 * it.
 257 *
 258 * dts entry of array should be like:
 259 *  ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
 260 *
 261 * Return: The number of elements read on success, -EINVAL if the property
 262 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 263 * if the property data is smaller than sz_min or longer than sz_max.
 264 *
 265 * The out_values is modified only if a valid u16 value can be decoded.
 266 */
 267int of_property_read_variable_u16_array(const struct device_node *np,
 268                                        const char *propname, u16 *out_values,
 269                                        size_t sz_min, size_t sz_max)
 270{
 271        size_t sz, count;
 272        const __be16 *val = of_find_property_value_of_size(np, propname,
 273                                                (sz_min * sizeof(*out_values)),
 274                                                (sz_max * sizeof(*out_values)),
 275                                                &sz);
 276
 277        if (IS_ERR(val))
 278                return PTR_ERR(val);
 279
 280        if (!sz_max)
 281                sz = sz_min;
 282        else
 283                sz /= sizeof(*out_values);
 284
 285        count = sz;
 286        while (count--)
 287                *out_values++ = be16_to_cpup(val++);
 288
 289        return sz;
 290}
 291EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
 292
 293/**
 294 * of_property_read_variable_u32_array - Find and read an array of 32 bit
 295 * integers from a property, with bounds on the minimum and maximum array size.
 296 *
 297 * @np:         device node from which the property value is to be read.
 298 * @propname:   name of the property to be searched.
 299 * @out_values: pointer to return found values.
 300 * @sz_min:     minimum number of array elements to read
 301 * @sz_max:     maximum number of array elements to read, if zero there is no
 302 *              upper limit on the number of elements in the dts entry but only
 303 *              sz_min will be read.
 304 *
 305 * Search for a property in a device node and read 32-bit value(s) from
 306 * it.
 307 *
 308 * Return: The number of elements read on success, -EINVAL if the property
 309 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 310 * if the property data is smaller than sz_min or longer than sz_max.
 311 *
 312 * The out_values is modified only if a valid u32 value can be decoded.
 313 */
 314int of_property_read_variable_u32_array(const struct device_node *np,
 315                               const char *propname, u32 *out_values,
 316                               size_t sz_min, size_t sz_max)
 317{
 318        size_t sz, count;
 319        const __be32 *val = of_find_property_value_of_size(np, propname,
 320                                                (sz_min * sizeof(*out_values)),
 321                                                (sz_max * sizeof(*out_values)),
 322                                                &sz);
 323
 324        if (IS_ERR(val))
 325                return PTR_ERR(val);
 326
 327        if (!sz_max)
 328                sz = sz_min;
 329        else
 330                sz /= sizeof(*out_values);
 331
 332        count = sz;
 333        while (count--)
 334                *out_values++ = be32_to_cpup(val++);
 335
 336        return sz;
 337}
 338EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
 339
 340/**
 341 * of_property_read_u64 - Find and read a 64 bit integer from a property
 342 * @np:         device node from which the property value is to be read.
 343 * @propname:   name of the property to be searched.
 344 * @out_value:  pointer to return value, modified only if return value is 0.
 345 *
 346 * Search for a property in a device node and read a 64-bit value from
 347 * it.
 348 *
 349 * Return: 0 on success, -EINVAL if the property does not exist,
 350 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 351 * property data isn't large enough.
 352 *
 353 * The out_value is modified only if a valid u64 value can be decoded.
 354 */
 355int of_property_read_u64(const struct device_node *np, const char *propname,
 356                         u64 *out_value)
 357{
 358        const __be32 *val = of_find_property_value_of_size(np, propname,
 359                                                sizeof(*out_value),
 360                                                0,
 361                                                NULL);
 362
 363        if (IS_ERR(val))
 364                return PTR_ERR(val);
 365
 366        *out_value = of_read_number(val, 2);
 367        return 0;
 368}
 369EXPORT_SYMBOL_GPL(of_property_read_u64);
 370
 371/**
 372 * of_property_read_variable_u64_array - Find and read an array of 64 bit
 373 * integers from a property, with bounds on the minimum and maximum array size.
 374 *
 375 * @np:         device node from which the property value is to be read.
 376 * @propname:   name of the property to be searched.
 377 * @out_values: pointer to found values.
 378 * @sz_min:     minimum number of array elements to read
 379 * @sz_max:     maximum number of array elements to read, if zero there is no
 380 *              upper limit on the number of elements in the dts entry but only
 381 *              sz_min will be read.
 382 *
 383 * Search for a property in a device node and read 64-bit value(s) from
 384 * it.
 385 *
 386 * Return: The number of elements read on success, -EINVAL if the property
 387 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
 388 * if the property data is smaller than sz_min or longer than sz_max.
 389 *
 390 * The out_values is modified only if a valid u64 value can be decoded.
 391 */
 392int of_property_read_variable_u64_array(const struct device_node *np,
 393                               const char *propname, u64 *out_values,
 394                               size_t sz_min, size_t sz_max)
 395{
 396        size_t sz, count;
 397        const __be32 *val = of_find_property_value_of_size(np, propname,
 398                                                (sz_min * sizeof(*out_values)),
 399                                                (sz_max * sizeof(*out_values)),
 400                                                &sz);
 401
 402        if (IS_ERR(val))
 403                return PTR_ERR(val);
 404
 405        if (!sz_max)
 406                sz = sz_min;
 407        else
 408                sz /= sizeof(*out_values);
 409
 410        count = sz;
 411        while (count--) {
 412                *out_values++ = of_read_number(val, 2);
 413                val += 2;
 414        }
 415
 416        return sz;
 417}
 418EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
 419
 420/**
 421 * of_property_read_string - Find and read a string from a property
 422 * @np:         device node from which the property value is to be read.
 423 * @propname:   name of the property to be searched.
 424 * @out_string: pointer to null terminated return string, modified only if
 425 *              return value is 0.
 426 *
 427 * Search for a property in a device tree node and retrieve a null
 428 * terminated string value (pointer to data, not a copy).
 429 *
 430 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
 431 * property does not have a value, and -EILSEQ if the string is not
 432 * null-terminated within the length of the property data.
 433 *
 434 * The out_string pointer is modified only if a valid string can be decoded.
 435 */
 436int of_property_read_string(const struct device_node *np, const char *propname,
 437                                const char **out_string)
 438{
 439        const struct property *prop = of_find_property(np, propname, NULL);
 440        if (!prop)
 441                return -EINVAL;
 442        if (!prop->value)
 443                return -ENODATA;
 444        if (strnlen(prop->value, prop->length) >= prop->length)
 445                return -EILSEQ;
 446        *out_string = prop->value;
 447        return 0;
 448}
 449EXPORT_SYMBOL_GPL(of_property_read_string);
 450
 451/**
 452 * of_property_match_string() - Find string in a list and return index
 453 * @np: pointer to node containing string list property
 454 * @propname: string list property name
 455 * @string: pointer to string to search for in string list
 456 *
 457 * This function searches a string list property and returns the index
 458 * of a specific string value.
 459 */
 460int of_property_match_string(const struct device_node *np, const char *propname,
 461                             const char *string)
 462{
 463        const struct property *prop = of_find_property(np, propname, NULL);
 464        size_t l;
 465        int i;
 466        const char *p, *end;
 467
 468        if (!prop)
 469                return -EINVAL;
 470        if (!prop->value)
 471                return -ENODATA;
 472
 473        p = prop->value;
 474        end = p + prop->length;
 475
 476        for (i = 0; p < end; i++, p += l) {
 477                l = strnlen(p, end - p) + 1;
 478                if (p + l > end)
 479                        return -EILSEQ;
 480                pr_debug("comparing %s with %s\n", string, p);
 481                if (strcmp(string, p) == 0)
 482                        return i; /* Found it; return index */
 483        }
 484        return -ENODATA;
 485}
 486EXPORT_SYMBOL_GPL(of_property_match_string);
 487
 488/**
 489 * of_property_read_string_helper() - Utility helper for parsing string properties
 490 * @np:         device node from which the property value is to be read.
 491 * @propname:   name of the property to be searched.
 492 * @out_strs:   output array of string pointers.
 493 * @sz:         number of array elements to read.
 494 * @skip:       Number of strings to skip over at beginning of list.
 495 *
 496 * Don't call this function directly. It is a utility helper for the
 497 * of_property_read_string*() family of functions.
 498 */
 499int of_property_read_string_helper(const struct device_node *np,
 500                                   const char *propname, const char **out_strs,
 501                                   size_t sz, int skip)
 502{
 503        const struct property *prop = of_find_property(np, propname, NULL);
 504        int l = 0, i = 0;
 505        const char *p, *end;
 506
 507        if (!prop)
 508                return -EINVAL;
 509        if (!prop->value)
 510                return -ENODATA;
 511        p = prop->value;
 512        end = p + prop->length;
 513
 514        for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
 515                l = strnlen(p, end - p) + 1;
 516                if (p + l > end)
 517                        return -EILSEQ;
 518                if (out_strs && i >= skip)
 519                        *out_strs++ = p;
 520        }
 521        i -= skip;
 522        return i <= 0 ? -ENODATA : i;
 523}
 524EXPORT_SYMBOL_GPL(of_property_read_string_helper);
 525
 526const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
 527                               u32 *pu)
 528{
 529        const void *curv = cur;
 530
 531        if (!prop)
 532                return NULL;
 533
 534        if (!cur) {
 535                curv = prop->value;
 536                goto out_val;
 537        }
 538
 539        curv += sizeof(*cur);
 540        if (curv >= prop->value + prop->length)
 541                return NULL;
 542
 543out_val:
 544        *pu = be32_to_cpup(curv);
 545        return curv;
 546}
 547EXPORT_SYMBOL_GPL(of_prop_next_u32);
 548
 549const char *of_prop_next_string(struct property *prop, const char *cur)
 550{
 551        const void *curv = cur;
 552
 553        if (!prop)
 554                return NULL;
 555
 556        if (!cur)
 557                return prop->value;
 558
 559        curv += strlen(cur) + 1;
 560        if (curv >= prop->value + prop->length)
 561                return NULL;
 562
 563        return curv;
 564}
 565EXPORT_SYMBOL_GPL(of_prop_next_string);
 566
 567/**
 568 * of_graph_parse_endpoint() - parse common endpoint node properties
 569 * @node: pointer to endpoint device_node
 570 * @endpoint: pointer to the OF endpoint data structure
 571 *
 572 * The caller should hold a reference to @node.
 573 */
 574int of_graph_parse_endpoint(const struct device_node *node,
 575                            struct of_endpoint *endpoint)
 576{
 577        struct device_node *port_node = of_get_parent(node);
 578
 579        WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
 580                  __func__, node);
 581
 582        memset(endpoint, 0, sizeof(*endpoint));
 583
 584        endpoint->local_node = node;
 585        /*
 586         * It doesn't matter whether the two calls below succeed.
 587         * If they don't then the default value 0 is used.
 588         */
 589        of_property_read_u32(port_node, "reg", &endpoint->port);
 590        of_property_read_u32(node, "reg", &endpoint->id);
 591
 592        of_node_put(port_node);
 593
 594        return 0;
 595}
 596EXPORT_SYMBOL(of_graph_parse_endpoint);
 597
 598/**
 599 * of_graph_get_port_by_id() - get the port matching a given id
 600 * @parent: pointer to the parent device node
 601 * @id: id of the port
 602 *
 603 * Return: A 'port' node pointer with refcount incremented. The caller
 604 * has to use of_node_put() on it when done.
 605 */
 606struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
 607{
 608        struct device_node *node, *port;
 609
 610        node = of_get_child_by_name(parent, "ports");
 611        if (node)
 612                parent = node;
 613
 614        for_each_child_of_node(parent, port) {
 615                u32 port_id = 0;
 616
 617                if (!of_node_name_eq(port, "port"))
 618                        continue;
 619                of_property_read_u32(port, "reg", &port_id);
 620                if (id == port_id)
 621                        break;
 622        }
 623
 624        of_node_put(node);
 625
 626        return port;
 627}
 628EXPORT_SYMBOL(of_graph_get_port_by_id);
 629
 630/**
 631 * of_graph_get_next_endpoint() - get next endpoint node
 632 * @parent: pointer to the parent device node
 633 * @prev: previous endpoint node, or NULL to get first
 634 *
 635 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 636 * of the passed @prev node is decremented.
 637 */
 638struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
 639                                        struct device_node *prev)
 640{
 641        struct device_node *endpoint;
 642        struct device_node *port;
 643
 644        if (!parent)
 645                return NULL;
 646
 647        /*
 648         * Start by locating the port node. If no previous endpoint is specified
 649         * search for the first port node, otherwise get the previous endpoint
 650         * parent port node.
 651         */
 652        if (!prev) {
 653                struct device_node *node;
 654
 655                node = of_get_child_by_name(parent, "ports");
 656                if (node)
 657                        parent = node;
 658
 659                port = of_get_child_by_name(parent, "port");
 660                of_node_put(node);
 661
 662                if (!port) {
 663                        pr_err("graph: no port node found in %pOF\n", parent);
 664                        return NULL;
 665                }
 666        } else {
 667                port = of_get_parent(prev);
 668                if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
 669                              __func__, prev))
 670                        return NULL;
 671        }
 672
 673        while (1) {
 674                /*
 675                 * Now that we have a port node, get the next endpoint by
 676                 * getting the next child. If the previous endpoint is NULL this
 677                 * will return the first child.
 678                 */
 679                endpoint = of_get_next_child(port, prev);
 680                if (endpoint) {
 681                        of_node_put(port);
 682                        return endpoint;
 683                }
 684
 685                /* No more endpoints under this port, try the next one. */
 686                prev = NULL;
 687
 688                do {
 689                        port = of_get_next_child(parent, port);
 690                        if (!port)
 691                                return NULL;
 692                } while (!of_node_name_eq(port, "port"));
 693        }
 694}
 695EXPORT_SYMBOL(of_graph_get_next_endpoint);
 696
 697/**
 698 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
 699 * @parent: pointer to the parent device node
 700 * @port_reg: identifier (value of reg property) of the parent port node
 701 * @reg: identifier (value of reg property) of the endpoint node
 702 *
 703 * Return: An 'endpoint' node pointer which is identified by reg and at the same
 704 * is the child of a port node identified by port_reg. reg and port_reg are
 705 * ignored when they are -1. Use of_node_put() on the pointer when done.
 706 */
 707struct device_node *of_graph_get_endpoint_by_regs(
 708        const struct device_node *parent, int port_reg, int reg)
 709{
 710        struct of_endpoint endpoint;
 711        struct device_node *node = NULL;
 712
 713        for_each_endpoint_of_node(parent, node) {
 714                of_graph_parse_endpoint(node, &endpoint);
 715                if (((port_reg == -1) || (endpoint.port == port_reg)) &&
 716                        ((reg == -1) || (endpoint.id == reg)))
 717                        return node;
 718        }
 719
 720        return NULL;
 721}
 722EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
 723
 724/**
 725 * of_graph_get_remote_endpoint() - get remote endpoint node
 726 * @node: pointer to a local endpoint device_node
 727 *
 728 * Return: Remote endpoint node associated with remote endpoint node linked
 729 *         to @node. Use of_node_put() on it when done.
 730 */
 731struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
 732{
 733        /* Get remote endpoint node. */
 734        return of_parse_phandle(node, "remote-endpoint", 0);
 735}
 736EXPORT_SYMBOL(of_graph_get_remote_endpoint);
 737
 738/**
 739 * of_graph_get_port_parent() - get port's parent node
 740 * @node: pointer to a local endpoint device_node
 741 *
 742 * Return: device node associated with endpoint node linked
 743 *         to @node. Use of_node_put() on it when done.
 744 */
 745struct device_node *of_graph_get_port_parent(struct device_node *node)
 746{
 747        unsigned int depth;
 748
 749        if (!node)
 750                return NULL;
 751
 752        /*
 753         * Preserve usecount for passed in node as of_get_next_parent()
 754         * will do of_node_put() on it.
 755         */
 756        of_node_get(node);
 757
 758        /* Walk 3 levels up only if there is 'ports' node. */
 759        for (depth = 3; depth && node; depth--) {
 760                node = of_get_next_parent(node);
 761                if (depth == 2 && !of_node_name_eq(node, "ports"))
 762                        break;
 763        }
 764        return node;
 765}
 766EXPORT_SYMBOL(of_graph_get_port_parent);
 767
 768/**
 769 * of_graph_get_remote_port_parent() - get remote port's parent node
 770 * @node: pointer to a local endpoint device_node
 771 *
 772 * Return: Remote device node associated with remote endpoint node linked
 773 *         to @node. Use of_node_put() on it when done.
 774 */
 775struct device_node *of_graph_get_remote_port_parent(
 776                               const struct device_node *node)
 777{
 778        struct device_node *np, *pp;
 779
 780        /* Get remote endpoint node. */
 781        np = of_graph_get_remote_endpoint(node);
 782
 783        pp = of_graph_get_port_parent(np);
 784
 785        of_node_put(np);
 786
 787        return pp;
 788}
 789EXPORT_SYMBOL(of_graph_get_remote_port_parent);
 790
 791/**
 792 * of_graph_get_remote_port() - get remote port node
 793 * @node: pointer to a local endpoint device_node
 794 *
 795 * Return: Remote port node associated with remote endpoint node linked
 796 * to @node. Use of_node_put() on it when done.
 797 */
 798struct device_node *of_graph_get_remote_port(const struct device_node *node)
 799{
 800        struct device_node *np;
 801
 802        /* Get remote endpoint node. */
 803        np = of_graph_get_remote_endpoint(node);
 804        if (!np)
 805                return NULL;
 806        return of_get_next_parent(np);
 807}
 808EXPORT_SYMBOL(of_graph_get_remote_port);
 809
 810int of_graph_get_endpoint_count(const struct device_node *np)
 811{
 812        struct device_node *endpoint;
 813        int num = 0;
 814
 815        for_each_endpoint_of_node(np, endpoint)
 816                num++;
 817
 818        return num;
 819}
 820EXPORT_SYMBOL(of_graph_get_endpoint_count);
 821
 822/**
 823 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
 824 * @node: pointer to parent device_node containing graph port/endpoint
 825 * @port: identifier (value of reg property) of the parent port node
 826 * @endpoint: identifier (value of reg property) of the endpoint node
 827 *
 828 * Return: Remote device node associated with remote endpoint node linked
 829 * to @node. Use of_node_put() on it when done.
 830 */
 831struct device_node *of_graph_get_remote_node(const struct device_node *node,
 832                                             u32 port, u32 endpoint)
 833{
 834        struct device_node *endpoint_node, *remote;
 835
 836        endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
 837        if (!endpoint_node) {
 838                pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
 839                         port, endpoint, node);
 840                return NULL;
 841        }
 842
 843        remote = of_graph_get_remote_port_parent(endpoint_node);
 844        of_node_put(endpoint_node);
 845        if (!remote) {
 846                pr_debug("no valid remote node\n");
 847                return NULL;
 848        }
 849
 850        if (!of_device_is_available(remote)) {
 851                pr_debug("not available for remote node\n");
 852                of_node_put(remote);
 853                return NULL;
 854        }
 855
 856        return remote;
 857}
 858EXPORT_SYMBOL(of_graph_get_remote_node);
 859
 860static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
 861{
 862        return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
 863}
 864
 865static void of_fwnode_put(struct fwnode_handle *fwnode)
 866{
 867        of_node_put(to_of_node(fwnode));
 868}
 869
 870static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
 871{
 872        return of_device_is_available(to_of_node(fwnode));
 873}
 874
 875static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
 876                                       const char *propname)
 877{
 878        return of_property_read_bool(to_of_node(fwnode), propname);
 879}
 880
 881static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 882                                             const char *propname,
 883                                             unsigned int elem_size, void *val,
 884                                             size_t nval)
 885{
 886        const struct device_node *node = to_of_node(fwnode);
 887
 888        if (!val)
 889                return of_property_count_elems_of_size(node, propname,
 890                                                       elem_size);
 891
 892        switch (elem_size) {
 893        case sizeof(u8):
 894                return of_property_read_u8_array(node, propname, val, nval);
 895        case sizeof(u16):
 896                return of_property_read_u16_array(node, propname, val, nval);
 897        case sizeof(u32):
 898                return of_property_read_u32_array(node, propname, val, nval);
 899        case sizeof(u64):
 900                return of_property_read_u64_array(node, propname, val, nval);
 901        }
 902
 903        return -ENXIO;
 904}
 905
 906static int
 907of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 908                                     const char *propname, const char **val,
 909                                     size_t nval)
 910{
 911        const struct device_node *node = to_of_node(fwnode);
 912
 913        return val ?
 914                of_property_read_string_array(node, propname, val, nval) :
 915                of_property_count_strings(node, propname);
 916}
 917
 918static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
 919{
 920        return kbasename(to_of_node(fwnode)->full_name);
 921}
 922
 923static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 924{
 925        /* Root needs no prefix here (its name is "/"). */
 926        if (!to_of_node(fwnode)->parent)
 927                return "";
 928
 929        return "/";
 930}
 931
 932static struct fwnode_handle *
 933of_fwnode_get_parent(const struct fwnode_handle *fwnode)
 934{
 935        return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
 936}
 937
 938static struct fwnode_handle *
 939of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 940                              struct fwnode_handle *child)
 941{
 942        return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
 943                                                            to_of_node(child)));
 944}
 945
 946static struct fwnode_handle *
 947of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 948                               const char *childname)
 949{
 950        const struct device_node *node = to_of_node(fwnode);
 951        struct device_node *child;
 952
 953        for_each_available_child_of_node(node, child)
 954                if (of_node_name_eq(child, childname))
 955                        return of_fwnode_handle(child);
 956
 957        return NULL;
 958}
 959
 960static int
 961of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
 962                             const char *prop, const char *nargs_prop,
 963                             unsigned int nargs, unsigned int index,
 964                             struct fwnode_reference_args *args)
 965{
 966        struct of_phandle_args of_args;
 967        unsigned int i;
 968        int ret;
 969
 970        if (nargs_prop)
 971                ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
 972                                                 nargs_prop, index, &of_args);
 973        else
 974                ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
 975                                                       nargs, index, &of_args);
 976        if (ret < 0)
 977                return ret;
 978        if (!args)
 979                return 0;
 980
 981        args->nargs = of_args.args_count;
 982        args->fwnode = of_fwnode_handle(of_args.np);
 983
 984        for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
 985                args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
 986
 987        return 0;
 988}
 989
 990static struct fwnode_handle *
 991of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
 992                                  struct fwnode_handle *prev)
 993{
 994        return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
 995                                                           to_of_node(prev)));
 996}
 997
 998static struct fwnode_handle *
 999of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1000{
1001        return of_fwnode_handle(
1002                of_graph_get_remote_endpoint(to_of_node(fwnode)));
1003}
1004
1005static struct fwnode_handle *
1006of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1007{
1008        struct device_node *np;
1009
1010        /* Get the parent of the port */
1011        np = of_get_parent(to_of_node(fwnode));
1012        if (!np)
1013                return NULL;
1014
1015        /* Is this the "ports" node? If not, it's the port parent. */
1016        if (!of_node_name_eq(np, "ports"))
1017                return of_fwnode_handle(np);
1018
1019        return of_fwnode_handle(of_get_next_parent(np));
1020}
1021
1022static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1023                                          struct fwnode_endpoint *endpoint)
1024{
1025        const struct device_node *node = to_of_node(fwnode);
1026        struct device_node *port_node = of_get_parent(node);
1027
1028        endpoint->local_fwnode = fwnode;
1029
1030        of_property_read_u32(port_node, "reg", &endpoint->port);
1031        of_property_read_u32(node, "reg", &endpoint->id);
1032
1033        of_node_put(port_node);
1034
1035        return 0;
1036}
1037
1038static const void *
1039of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1040                                const struct device *dev)
1041{
1042        return of_device_get_match_data(dev);
1043}
1044
1045static bool of_is_ancestor_of(struct device_node *test_ancestor,
1046                              struct device_node *child)
1047{
1048        of_node_get(child);
1049        while (child) {
1050                if (child == test_ancestor) {
1051                        of_node_put(child);
1052                        return true;
1053                }
1054                child = of_get_next_parent(child);
1055        }
1056        return false;
1057}
1058
1059static struct device_node *of_get_compat_node(struct device_node *np)
1060{
1061        of_node_get(np);
1062
1063        while (np) {
1064                if (!of_device_is_available(np)) {
1065                        of_node_put(np);
1066                        np = NULL;
1067                }
1068
1069                if (of_find_property(np, "compatible", NULL))
1070                        break;
1071
1072                np = of_get_next_parent(np);
1073        }
1074
1075        return np;
1076}
1077
1078/**
1079 * of_link_to_phandle - Add fwnode link to supplier from supplier phandle
1080 * @con_np: consumer device tree node
1081 * @sup_np: supplier device tree node
1082 *
1083 * Given a phandle to a supplier device tree node (@sup_np), this function
1084 * finds the device that owns the supplier device tree node and creates a
1085 * device link from @dev consumer device to the supplier device. This function
1086 * doesn't create device links for invalid scenarios such as trying to create a
1087 * link with a parent device as the consumer of its child device. In such
1088 * cases, it returns an error.
1089 *
1090 * Returns:
1091 * - 0 if fwnode link successfully created to supplier
1092 * - -EINVAL if the supplier link is invalid and should not be created
1093 * - -ENODEV if struct device will never be create for supplier
1094 */
1095static int of_link_to_phandle(struct device_node *con_np,
1096                              struct device_node *sup_np)
1097{
1098        struct device *sup_dev;
1099        struct device_node *tmp_np = sup_np;
1100
1101        /*
1102         * Find the device node that contains the supplier phandle.  It may be
1103         * @sup_np or it may be an ancestor of @sup_np.
1104         */
1105        sup_np = of_get_compat_node(sup_np);
1106        if (!sup_np) {
1107                pr_debug("Not linking %pOFP to %pOFP - No device\n",
1108                         con_np, tmp_np);
1109                return -ENODEV;
1110        }
1111
1112        /*
1113         * Don't allow linking a device node as a consumer of one of its
1114         * descendant nodes. By definition, a child node can't be a functional
1115         * dependency for the parent node.
1116         */
1117        if (of_is_ancestor_of(con_np, sup_np)) {
1118                pr_debug("Not linking %pOFP to %pOFP - is descendant\n",
1119                         con_np, sup_np);
1120                of_node_put(sup_np);
1121                return -EINVAL;
1122        }
1123
1124        /*
1125         * Don't create links to "early devices" that won't have struct devices
1126         * created for them.
1127         */
1128        sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1129        if (!sup_dev &&
1130            (of_node_check_flag(sup_np, OF_POPULATED) ||
1131             sup_np->fwnode.flags & FWNODE_FLAG_NOT_DEVICE)) {
1132                pr_debug("Not linking %pOFP to %pOFP - No struct device\n",
1133                         con_np, sup_np);
1134                of_node_put(sup_np);
1135                return -ENODEV;
1136        }
1137        put_device(sup_dev);
1138
1139        fwnode_link_add(of_fwnode_handle(con_np), of_fwnode_handle(sup_np));
1140        of_node_put(sup_np);
1141
1142        return 0;
1143}
1144
1145/**
1146 * parse_prop_cells - Property parsing function for suppliers
1147 *
1148 * @np:         Pointer to device tree node containing a list
1149 * @prop_name:  Name of property to be parsed. Expected to hold phandle values
1150 * @index:      For properties holding a list of phandles, this is the index
1151 *              into the list.
1152 * @list_name:  Property name that is known to contain list of phandle(s) to
1153 *              supplier(s)
1154 * @cells_name: property name that specifies phandles' arguments count
1155 *
1156 * This is a helper function to parse properties that have a known fixed name
1157 * and are a list of phandles and phandle arguments.
1158 *
1159 * Returns:
1160 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1161 *   on it when done.
1162 * - NULL if no phandle found at index
1163 */
1164static struct device_node *parse_prop_cells(struct device_node *np,
1165                                            const char *prop_name, int index,
1166                                            const char *list_name,
1167                                            const char *cells_name)
1168{
1169        struct of_phandle_args sup_args;
1170
1171        if (strcmp(prop_name, list_name))
1172                return NULL;
1173
1174        if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1175                                       &sup_args))
1176                return NULL;
1177
1178        return sup_args.np;
1179}
1180
1181#define DEFINE_SIMPLE_PROP(fname, name, cells)                            \
1182static struct device_node *parse_##fname(struct device_node *np,          \
1183                                        const char *prop_name, int index) \
1184{                                                                         \
1185        return parse_prop_cells(np, prop_name, index, name, cells);       \
1186}
1187
1188static int strcmp_suffix(const char *str, const char *suffix)
1189{
1190        unsigned int len, suffix_len;
1191
1192        len = strlen(str);
1193        suffix_len = strlen(suffix);
1194        if (len <= suffix_len)
1195                return -1;
1196        return strcmp(str + len - suffix_len, suffix);
1197}
1198
1199/**
1200 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1201 *
1202 * @np:         Pointer to device tree node containing a list
1203 * @prop_name:  Name of property to be parsed. Expected to hold phandle values
1204 * @index:      For properties holding a list of phandles, this is the index
1205 *              into the list.
1206 * @suffix:     Property suffix that is known to contain list of phandle(s) to
1207 *              supplier(s)
1208 * @cells_name: property name that specifies phandles' arguments count
1209 *
1210 * This is a helper function to parse properties that have a known fixed suffix
1211 * and are a list of phandles and phandle arguments.
1212 *
1213 * Returns:
1214 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1215 *   on it when done.
1216 * - NULL if no phandle found at index
1217 */
1218static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1219                                            const char *prop_name, int index,
1220                                            const char *suffix,
1221                                            const char *cells_name)
1222{
1223        struct of_phandle_args sup_args;
1224
1225        if (strcmp_suffix(prop_name, suffix))
1226                return NULL;
1227
1228        if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1229                                       &sup_args))
1230                return NULL;
1231
1232        return sup_args.np;
1233}
1234
1235#define DEFINE_SUFFIX_PROP(fname, suffix, cells)                             \
1236static struct device_node *parse_##fname(struct device_node *np,             \
1237                                        const char *prop_name, int index)    \
1238{                                                                            \
1239        return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1240}
1241
1242/**
1243 * struct supplier_bindings - Property parsing functions for suppliers
1244 *
1245 * @parse_prop: function name
1246 *      parse_prop() finds the node corresponding to a supplier phandle
1247 * @parse_prop.np: Pointer to device node holding supplier phandle property
1248 * @parse_prop.prop_name: Name of property holding a phandle value
1249 * @parse_prop.index: For properties holding a list of phandles, this is the
1250 *                    index into the list
1251 * @optional: Describes whether a supplier is mandatory or not
1252 * @node_not_dev: The consumer node containing the property is never a device.
1253 *
1254 * Returns:
1255 * parse_prop() return values are
1256 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1257 *   on it when done.
1258 * - NULL if no phandle found at index
1259 */
1260struct supplier_bindings {
1261        struct device_node *(*parse_prop)(struct device_node *np,
1262                                          const char *prop_name, int index);
1263        bool optional;
1264        bool node_not_dev;
1265};
1266
1267DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1268DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1269DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1270DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1271DEFINE_SIMPLE_PROP(io_channels, "io-channel", "#io-channel-cells")
1272DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1273DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1274DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1275DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1276DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1277DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1278DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1279DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1280DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1281DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1282DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1283DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1284DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1285DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1286DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1287DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1288DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1289DEFINE_SIMPLE_PROP(remote_endpoint, "remote-endpoint", NULL)
1290DEFINE_SIMPLE_PROP(pwms, "pwms", "#pwm-cells")
1291DEFINE_SIMPLE_PROP(resets, "resets", "#reset-cells")
1292DEFINE_SIMPLE_PROP(leds, "leds", NULL)
1293DEFINE_SIMPLE_PROP(backlight, "backlight", NULL)
1294DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1295DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1296
1297static struct device_node *parse_gpios(struct device_node *np,
1298                                       const char *prop_name, int index)
1299{
1300        if (!strcmp_suffix(prop_name, ",nr-gpios"))
1301                return NULL;
1302
1303        return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1304                                       "#gpio-cells");
1305}
1306
1307static struct device_node *parse_iommu_maps(struct device_node *np,
1308                                            const char *prop_name, int index)
1309{
1310        if (strcmp(prop_name, "iommu-map"))
1311                return NULL;
1312
1313        return of_parse_phandle(np, prop_name, (index * 4) + 1);
1314}
1315
1316static struct device_node *parse_gpio_compat(struct device_node *np,
1317                                             const char *prop_name, int index)
1318{
1319        struct of_phandle_args sup_args;
1320
1321        if (strcmp(prop_name, "gpio") && strcmp(prop_name, "gpios"))
1322                return NULL;
1323
1324        /*
1325         * Ignore node with gpio-hog property since its gpios are all provided
1326         * by its parent.
1327         */
1328        if (of_find_property(np, "gpio-hog", NULL))
1329                return NULL;
1330
1331        if (of_parse_phandle_with_args(np, prop_name, "#gpio-cells", index,
1332                                       &sup_args))
1333                return NULL;
1334
1335        return sup_args.np;
1336}
1337
1338static struct device_node *parse_interrupts(struct device_node *np,
1339                                            const char *prop_name, int index)
1340{
1341        struct of_phandle_args sup_args;
1342
1343        if (!IS_ENABLED(CONFIG_OF_IRQ) || IS_ENABLED(CONFIG_PPC))
1344                return NULL;
1345
1346        if (strcmp(prop_name, "interrupts") &&
1347            strcmp(prop_name, "interrupts-extended"))
1348                return NULL;
1349
1350        return of_irq_parse_one(np, index, &sup_args) ? NULL : sup_args.np;
1351}
1352
1353static const struct supplier_bindings of_supplier_bindings[] = {
1354        { .parse_prop = parse_clocks, },
1355        { .parse_prop = parse_interconnects, },
1356        { .parse_prop = parse_iommus, .optional = true, },
1357        { .parse_prop = parse_iommu_maps, .optional = true, },
1358        { .parse_prop = parse_mboxes, },
1359        { .parse_prop = parse_io_channels, },
1360        { .parse_prop = parse_interrupt_parent, },
1361        { .parse_prop = parse_dmas, .optional = true, },
1362        { .parse_prop = parse_power_domains, },
1363        { .parse_prop = parse_hwlocks, },
1364        { .parse_prop = parse_extcon, },
1365        { .parse_prop = parse_nvmem_cells, },
1366        { .parse_prop = parse_phys, },
1367        { .parse_prop = parse_wakeup_parent, },
1368        { .parse_prop = parse_pinctrl0, },
1369        { .parse_prop = parse_pinctrl1, },
1370        { .parse_prop = parse_pinctrl2, },
1371        { .parse_prop = parse_pinctrl3, },
1372        { .parse_prop = parse_pinctrl4, },
1373        { .parse_prop = parse_pinctrl5, },
1374        { .parse_prop = parse_pinctrl6, },
1375        { .parse_prop = parse_pinctrl7, },
1376        { .parse_prop = parse_pinctrl8, },
1377        { .parse_prop = parse_remote_endpoint, .node_not_dev = true, },
1378        { .parse_prop = parse_pwms, },
1379        { .parse_prop = parse_resets, },
1380        { .parse_prop = parse_leds, },
1381        { .parse_prop = parse_backlight, },
1382        { .parse_prop = parse_gpio_compat, },
1383        { .parse_prop = parse_interrupts, },
1384        { .parse_prop = parse_regulators, },
1385        { .parse_prop = parse_gpio, },
1386        { .parse_prop = parse_gpios, },
1387        {}
1388};
1389
1390/**
1391 * of_link_property - Create device links to suppliers listed in a property
1392 * @con_np: The consumer device tree node which contains the property
1393 * @prop_name: Name of property to be parsed
1394 *
1395 * This function checks if the property @prop_name that is present in the
1396 * @con_np device tree node is one of the known common device tree bindings
1397 * that list phandles to suppliers. If @prop_name isn't one, this function
1398 * doesn't do anything.
1399 *
1400 * If @prop_name is one, this function attempts to create fwnode links from the
1401 * consumer device tree node @con_np to all the suppliers device tree nodes
1402 * listed in @prop_name.
1403 *
1404 * Any failed attempt to create a fwnode link will NOT result in an immediate
1405 * return.  of_link_property() must create links to all the available supplier
1406 * device tree nodes even when attempts to create a link to one or more
1407 * suppliers fail.
1408 */
1409static int of_link_property(struct device_node *con_np, const char *prop_name)
1410{
1411        struct device_node *phandle;
1412        const struct supplier_bindings *s = of_supplier_bindings;
1413        unsigned int i = 0;
1414        bool matched = false;
1415
1416        /* Do not stop at first failed link, link all available suppliers. */
1417        while (!matched && s->parse_prop) {
1418                if (s->optional && !fw_devlink_is_strict()) {
1419                        s++;
1420                        continue;
1421                }
1422
1423                while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1424                        struct device_node *con_dev_np;
1425
1426                        con_dev_np = s->node_not_dev
1427                                        ? of_get_compat_node(con_np)
1428                                        : of_node_get(con_np);
1429                        matched = true;
1430                        i++;
1431                        of_link_to_phandle(con_dev_np, phandle);
1432                        of_node_put(phandle);
1433                        of_node_put(con_dev_np);
1434                }
1435                s++;
1436        }
1437        return 0;
1438}
1439
1440static int of_fwnode_add_links(struct fwnode_handle *fwnode)
1441{
1442        struct property *p;
1443        struct device_node *con_np = to_of_node(fwnode);
1444
1445        if (IS_ENABLED(CONFIG_X86))
1446                return 0;
1447
1448        if (!con_np)
1449                return -EINVAL;
1450
1451        for_each_property_of_node(con_np, p)
1452                of_link_property(con_np, p->name);
1453
1454        return 0;
1455}
1456
1457const struct fwnode_operations of_fwnode_ops = {
1458        .get = of_fwnode_get,
1459        .put = of_fwnode_put,
1460        .device_is_available = of_fwnode_device_is_available,
1461        .device_get_match_data = of_fwnode_device_get_match_data,
1462        .property_present = of_fwnode_property_present,
1463        .property_read_int_array = of_fwnode_property_read_int_array,
1464        .property_read_string_array = of_fwnode_property_read_string_array,
1465        .get_name = of_fwnode_get_name,
1466        .get_name_prefix = of_fwnode_get_name_prefix,
1467        .get_parent = of_fwnode_get_parent,
1468        .get_next_child_node = of_fwnode_get_next_child_node,
1469        .get_named_child_node = of_fwnode_get_named_child_node,
1470        .get_reference_args = of_fwnode_get_reference_args,
1471        .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1472        .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1473        .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1474        .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1475        .add_links = of_fwnode_add_links,
1476};
1477EXPORT_SYMBOL_GPL(of_fwnode_ops);
1478