linux/drivers/opp/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *      Nishanth Menon
   7 *      Romit Dasgupta
   8 *      Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/export.h>
  19#include <linux/pm_domain.h>
  20#include <linux/regulator/consumer.h>
  21
  22#include "opp.h"
  23
  24/*
  25 * The root of the list of all opp-tables. All opp_table structures branch off
  26 * from here, with each opp_table containing the list of opps it supports in
  27 * various states of availability.
  28 */
  29LIST_HEAD(opp_tables);
  30
  31/* OPP tables with uninitialized required OPPs */
  32LIST_HEAD(lazy_opp_tables);
  33
  34/* Lock to allow exclusive modification to the device and opp lists */
  35DEFINE_MUTEX(opp_table_lock);
  36/* Flag indicating that opp_tables list is being updated at the moment */
  37static bool opp_tables_busy;
  38
  39static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  40{
  41        struct opp_device *opp_dev;
  42        bool found = false;
  43
  44        mutex_lock(&opp_table->lock);
  45        list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  46                if (opp_dev->dev == dev) {
  47                        found = true;
  48                        break;
  49                }
  50
  51        mutex_unlock(&opp_table->lock);
  52        return found;
  53}
  54
  55static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  56{
  57        struct opp_table *opp_table;
  58
  59        list_for_each_entry(opp_table, &opp_tables, node) {
  60                if (_find_opp_dev(dev, opp_table)) {
  61                        _get_opp_table_kref(opp_table);
  62                        return opp_table;
  63                }
  64        }
  65
  66        return ERR_PTR(-ENODEV);
  67}
  68
  69/**
  70 * _find_opp_table() - find opp_table struct using device pointer
  71 * @dev:        device pointer used to lookup OPP table
  72 *
  73 * Search OPP table for one containing matching device.
  74 *
  75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  76 * -EINVAL based on type of error.
  77 *
  78 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  79 */
  80struct opp_table *_find_opp_table(struct device *dev)
  81{
  82        struct opp_table *opp_table;
  83
  84        if (IS_ERR_OR_NULL(dev)) {
  85                pr_err("%s: Invalid parameters\n", __func__);
  86                return ERR_PTR(-EINVAL);
  87        }
  88
  89        mutex_lock(&opp_table_lock);
  90        opp_table = _find_opp_table_unlocked(dev);
  91        mutex_unlock(&opp_table_lock);
  92
  93        return opp_table;
  94}
  95
  96/**
  97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
  98 * @opp:        opp for which voltage has to be returned for
  99 *
 100 * Return: voltage in micro volt corresponding to the opp, else
 101 * return 0
 102 *
 103 * This is useful only for devices with single power supply.
 104 */
 105unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 106{
 107        if (IS_ERR_OR_NULL(opp)) {
 108                pr_err("%s: Invalid parameters\n", __func__);
 109                return 0;
 110        }
 111
 112        return opp->supplies[0].u_volt;
 113}
 114EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 115
 116/**
 117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 118 * @opp:        opp for which frequency has to be returned for
 119 *
 120 * Return: frequency in hertz corresponding to the opp, else
 121 * return 0
 122 */
 123unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 124{
 125        if (IS_ERR_OR_NULL(opp)) {
 126                pr_err("%s: Invalid parameters\n", __func__);
 127                return 0;
 128        }
 129
 130        return opp->rate;
 131}
 132EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 133
 134/**
 135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 136 * @opp:        opp for which level value has to be returned for
 137 *
 138 * Return: level read from device tree corresponding to the opp, else
 139 * return 0.
 140 */
 141unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 142{
 143        if (IS_ERR_OR_NULL(opp) || !opp->available) {
 144                pr_err("%s: Invalid parameters\n", __func__);
 145                return 0;
 146        }
 147
 148        return opp->level;
 149}
 150EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 151
 152/**
 153 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 154 *                                    corresponding to an available opp
 155 * @opp:        opp for which performance state has to be returned for
 156 * @index:      index of the required opp
 157 *
 158 * Return: performance state read from device tree corresponding to the
 159 * required opp, else return 0.
 160 */
 161unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 162                                            unsigned int index)
 163{
 164        if (IS_ERR_OR_NULL(opp) || !opp->available ||
 165            index >= opp->opp_table->required_opp_count) {
 166                pr_err("%s: Invalid parameters\n", __func__);
 167                return 0;
 168        }
 169
 170        /* required-opps not fully initialized yet */
 171        if (lazy_linking_pending(opp->opp_table))
 172                return 0;
 173
 174        return opp->required_opps[index]->pstate;
 175}
 176EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 177
 178/**
 179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 180 * @opp: opp for which turbo mode is being verified
 181 *
 182 * Turbo OPPs are not for normal use, and can be enabled (under certain
 183 * conditions) for short duration of times to finish high throughput work
 184 * quickly. Running on them for longer times may overheat the chip.
 185 *
 186 * Return: true if opp is turbo opp, else false.
 187 */
 188bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 189{
 190        if (IS_ERR_OR_NULL(opp) || !opp->available) {
 191                pr_err("%s: Invalid parameters\n", __func__);
 192                return false;
 193        }
 194
 195        return opp->turbo;
 196}
 197EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 198
 199/**
 200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 201 * @dev:        device for which we do this operation
 202 *
 203 * Return: This function returns the max clock latency in nanoseconds.
 204 */
 205unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 206{
 207        struct opp_table *opp_table;
 208        unsigned long clock_latency_ns;
 209
 210        opp_table = _find_opp_table(dev);
 211        if (IS_ERR(opp_table))
 212                return 0;
 213
 214        clock_latency_ns = opp_table->clock_latency_ns_max;
 215
 216        dev_pm_opp_put_opp_table(opp_table);
 217
 218        return clock_latency_ns;
 219}
 220EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 221
 222/**
 223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 224 * @dev: device for which we do this operation
 225 *
 226 * Return: This function returns the max voltage latency in nanoseconds.
 227 */
 228unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 229{
 230        struct opp_table *opp_table;
 231        struct dev_pm_opp *opp;
 232        struct regulator *reg;
 233        unsigned long latency_ns = 0;
 234        int ret, i, count;
 235        struct {
 236                unsigned long min;
 237                unsigned long max;
 238        } *uV;
 239
 240        opp_table = _find_opp_table(dev);
 241        if (IS_ERR(opp_table))
 242                return 0;
 243
 244        /* Regulator may not be required for the device */
 245        if (!opp_table->regulators)
 246                goto put_opp_table;
 247
 248        count = opp_table->regulator_count;
 249
 250        uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 251        if (!uV)
 252                goto put_opp_table;
 253
 254        mutex_lock(&opp_table->lock);
 255
 256        for (i = 0; i < count; i++) {
 257                uV[i].min = ~0;
 258                uV[i].max = 0;
 259
 260                list_for_each_entry(opp, &opp_table->opp_list, node) {
 261                        if (!opp->available)
 262                                continue;
 263
 264                        if (opp->supplies[i].u_volt_min < uV[i].min)
 265                                uV[i].min = opp->supplies[i].u_volt_min;
 266                        if (opp->supplies[i].u_volt_max > uV[i].max)
 267                                uV[i].max = opp->supplies[i].u_volt_max;
 268                }
 269        }
 270
 271        mutex_unlock(&opp_table->lock);
 272
 273        /*
 274         * The caller needs to ensure that opp_table (and hence the regulator)
 275         * isn't freed, while we are executing this routine.
 276         */
 277        for (i = 0; i < count; i++) {
 278                reg = opp_table->regulators[i];
 279                ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 280                if (ret > 0)
 281                        latency_ns += ret * 1000;
 282        }
 283
 284        kfree(uV);
 285put_opp_table:
 286        dev_pm_opp_put_opp_table(opp_table);
 287
 288        return latency_ns;
 289}
 290EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 291
 292/**
 293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 294 *                                           nanoseconds
 295 * @dev: device for which we do this operation
 296 *
 297 * Return: This function returns the max transition latency, in nanoseconds, to
 298 * switch from one OPP to other.
 299 */
 300unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 301{
 302        return dev_pm_opp_get_max_volt_latency(dev) +
 303                dev_pm_opp_get_max_clock_latency(dev);
 304}
 305EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 306
 307/**
 308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 309 * @dev:        device for which we do this operation
 310 *
 311 * Return: This function returns the frequency of the OPP marked as suspend_opp
 312 * if one is available, else returns 0;
 313 */
 314unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 315{
 316        struct opp_table *opp_table;
 317        unsigned long freq = 0;
 318
 319        opp_table = _find_opp_table(dev);
 320        if (IS_ERR(opp_table))
 321                return 0;
 322
 323        if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 324                freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 325
 326        dev_pm_opp_put_opp_table(opp_table);
 327
 328        return freq;
 329}
 330EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 331
 332int _get_opp_count(struct opp_table *opp_table)
 333{
 334        struct dev_pm_opp *opp;
 335        int count = 0;
 336
 337        mutex_lock(&opp_table->lock);
 338
 339        list_for_each_entry(opp, &opp_table->opp_list, node) {
 340                if (opp->available)
 341                        count++;
 342        }
 343
 344        mutex_unlock(&opp_table->lock);
 345
 346        return count;
 347}
 348
 349/**
 350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 351 * @dev:        device for which we do this operation
 352 *
 353 * Return: This function returns the number of available opps if there are any,
 354 * else returns 0 if none or the corresponding error value.
 355 */
 356int dev_pm_opp_get_opp_count(struct device *dev)
 357{
 358        struct opp_table *opp_table;
 359        int count;
 360
 361        opp_table = _find_opp_table(dev);
 362        if (IS_ERR(opp_table)) {
 363                count = PTR_ERR(opp_table);
 364                dev_dbg(dev, "%s: OPP table not found (%d)\n",
 365                        __func__, count);
 366                return count;
 367        }
 368
 369        count = _get_opp_count(opp_table);
 370        dev_pm_opp_put_opp_table(opp_table);
 371
 372        return count;
 373}
 374EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 375
 376/**
 377 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 378 * @dev:                device for which we do this operation
 379 * @freq:               frequency to search for
 380 * @available:          true/false - match for available opp
 381 *
 382 * Return: Searches for exact match in the opp table and returns pointer to the
 383 * matching opp if found, else returns ERR_PTR in case of error and should
 384 * be handled using IS_ERR. Error return values can be:
 385 * EINVAL:      for bad pointer
 386 * ERANGE:      no match found for search
 387 * ENODEV:      if device not found in list of registered devices
 388 *
 389 * Note: available is a modifier for the search. if available=true, then the
 390 * match is for exact matching frequency and is available in the stored OPP
 391 * table. if false, the match is for exact frequency which is not available.
 392 *
 393 * This provides a mechanism to enable an opp which is not available currently
 394 * or the opposite as well.
 395 *
 396 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 397 * use.
 398 */
 399struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 400                                              unsigned long freq,
 401                                              bool available)
 402{
 403        struct opp_table *opp_table;
 404        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 405
 406        opp_table = _find_opp_table(dev);
 407        if (IS_ERR(opp_table)) {
 408                int r = PTR_ERR(opp_table);
 409
 410                dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 411                return ERR_PTR(r);
 412        }
 413
 414        mutex_lock(&opp_table->lock);
 415
 416        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 417                if (temp_opp->available == available &&
 418                                temp_opp->rate == freq) {
 419                        opp = temp_opp;
 420
 421                        /* Increment the reference count of OPP */
 422                        dev_pm_opp_get(opp);
 423                        break;
 424                }
 425        }
 426
 427        mutex_unlock(&opp_table->lock);
 428        dev_pm_opp_put_opp_table(opp_table);
 429
 430        return opp;
 431}
 432EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 433
 434/**
 435 * dev_pm_opp_find_level_exact() - search for an exact level
 436 * @dev:                device for which we do this operation
 437 * @level:              level to search for
 438 *
 439 * Return: Searches for exact match in the opp table and returns pointer to the
 440 * matching opp if found, else returns ERR_PTR in case of error and should
 441 * be handled using IS_ERR. Error return values can be:
 442 * EINVAL:      for bad pointer
 443 * ERANGE:      no match found for search
 444 * ENODEV:      if device not found in list of registered devices
 445 *
 446 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 447 * use.
 448 */
 449struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 450                                               unsigned int level)
 451{
 452        struct opp_table *opp_table;
 453        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 454
 455        opp_table = _find_opp_table(dev);
 456        if (IS_ERR(opp_table)) {
 457                int r = PTR_ERR(opp_table);
 458
 459                dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 460                return ERR_PTR(r);
 461        }
 462
 463        mutex_lock(&opp_table->lock);
 464
 465        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 466                if (temp_opp->level == level) {
 467                        opp = temp_opp;
 468
 469                        /* Increment the reference count of OPP */
 470                        dev_pm_opp_get(opp);
 471                        break;
 472                }
 473        }
 474
 475        mutex_unlock(&opp_table->lock);
 476        dev_pm_opp_put_opp_table(opp_table);
 477
 478        return opp;
 479}
 480EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 481
 482/**
 483 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 484 * @dev:                device for which we do this operation
 485 * @level:              level to search for
 486 *
 487 * Return: Searches for rounded up match in the opp table and returns pointer
 488 * to the  matching opp if found, else returns ERR_PTR in case of error and
 489 * should be handled using IS_ERR. Error return values can be:
 490 * EINVAL:      for bad pointer
 491 * ERANGE:      no match found for search
 492 * ENODEV:      if device not found in list of registered devices
 493 *
 494 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 495 * use.
 496 */
 497struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 498                                              unsigned int *level)
 499{
 500        struct opp_table *opp_table;
 501        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 502
 503        opp_table = _find_opp_table(dev);
 504        if (IS_ERR(opp_table)) {
 505                int r = PTR_ERR(opp_table);
 506
 507                dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 508                return ERR_PTR(r);
 509        }
 510
 511        mutex_lock(&opp_table->lock);
 512
 513        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 514                if (temp_opp->available && temp_opp->level >= *level) {
 515                        opp = temp_opp;
 516                        *level = opp->level;
 517
 518                        /* Increment the reference count of OPP */
 519                        dev_pm_opp_get(opp);
 520                        break;
 521                }
 522        }
 523
 524        mutex_unlock(&opp_table->lock);
 525        dev_pm_opp_put_opp_table(opp_table);
 526
 527        return opp;
 528}
 529EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 530
 531static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 532                                                   unsigned long *freq)
 533{
 534        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 535
 536        mutex_lock(&opp_table->lock);
 537
 538        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 539                if (temp_opp->available && temp_opp->rate >= *freq) {
 540                        opp = temp_opp;
 541                        *freq = opp->rate;
 542
 543                        /* Increment the reference count of OPP */
 544                        dev_pm_opp_get(opp);
 545                        break;
 546                }
 547        }
 548
 549        mutex_unlock(&opp_table->lock);
 550
 551        return opp;
 552}
 553
 554/**
 555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 556 * @dev:        device for which we do this operation
 557 * @freq:       Start frequency
 558 *
 559 * Search for the matching ceil *available* OPP from a starting freq
 560 * for a device.
 561 *
 562 * Return: matching *opp and refreshes *freq accordingly, else returns
 563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 564 * values can be:
 565 * EINVAL:      for bad pointer
 566 * ERANGE:      no match found for search
 567 * ENODEV:      if device not found in list of registered devices
 568 *
 569 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 570 * use.
 571 */
 572struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 573                                             unsigned long *freq)
 574{
 575        struct opp_table *opp_table;
 576        struct dev_pm_opp *opp;
 577
 578        if (!dev || !freq) {
 579                dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 580                return ERR_PTR(-EINVAL);
 581        }
 582
 583        opp_table = _find_opp_table(dev);
 584        if (IS_ERR(opp_table))
 585                return ERR_CAST(opp_table);
 586
 587        opp = _find_freq_ceil(opp_table, freq);
 588
 589        dev_pm_opp_put_opp_table(opp_table);
 590
 591        return opp;
 592}
 593EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 594
 595/**
 596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 597 * @dev:        device for which we do this operation
 598 * @freq:       Start frequency
 599 *
 600 * Search for the matching floor *available* OPP from a starting freq
 601 * for a device.
 602 *
 603 * Return: matching *opp and refreshes *freq accordingly, else returns
 604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 605 * values can be:
 606 * EINVAL:      for bad pointer
 607 * ERANGE:      no match found for search
 608 * ENODEV:      if device not found in list of registered devices
 609 *
 610 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 611 * use.
 612 */
 613struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 614                                              unsigned long *freq)
 615{
 616        struct opp_table *opp_table;
 617        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 618
 619        if (!dev || !freq) {
 620                dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 621                return ERR_PTR(-EINVAL);
 622        }
 623
 624        opp_table = _find_opp_table(dev);
 625        if (IS_ERR(opp_table))
 626                return ERR_CAST(opp_table);
 627
 628        mutex_lock(&opp_table->lock);
 629
 630        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 631                if (temp_opp->available) {
 632                        /* go to the next node, before choosing prev */
 633                        if (temp_opp->rate > *freq)
 634                                break;
 635                        else
 636                                opp = temp_opp;
 637                }
 638        }
 639
 640        /* Increment the reference count of OPP */
 641        if (!IS_ERR(opp))
 642                dev_pm_opp_get(opp);
 643        mutex_unlock(&opp_table->lock);
 644        dev_pm_opp_put_opp_table(opp_table);
 645
 646        if (!IS_ERR(opp))
 647                *freq = opp->rate;
 648
 649        return opp;
 650}
 651EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 652
 653/**
 654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
 655 *                                       target voltage.
 656 * @dev:        Device for which we do this operation.
 657 * @u_volt:     Target voltage.
 658 *
 659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
 660 *
 661 * Return: matching *opp, else returns ERR_PTR in case of error which should be
 662 * handled using IS_ERR.
 663 *
 664 * Error return values can be:
 665 * EINVAL:      bad parameters
 666 *
 667 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 668 * use.
 669 */
 670struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
 671                                                     unsigned long u_volt)
 672{
 673        struct opp_table *opp_table;
 674        struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 675
 676        if (!dev || !u_volt) {
 677                dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
 678                        u_volt);
 679                return ERR_PTR(-EINVAL);
 680        }
 681
 682        opp_table = _find_opp_table(dev);
 683        if (IS_ERR(opp_table))
 684                return ERR_CAST(opp_table);
 685
 686        mutex_lock(&opp_table->lock);
 687
 688        list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 689                if (temp_opp->available) {
 690                        if (temp_opp->supplies[0].u_volt > u_volt)
 691                                break;
 692                        opp = temp_opp;
 693                }
 694        }
 695
 696        /* Increment the reference count of OPP */
 697        if (!IS_ERR(opp))
 698                dev_pm_opp_get(opp);
 699
 700        mutex_unlock(&opp_table->lock);
 701        dev_pm_opp_put_opp_table(opp_table);
 702
 703        return opp;
 704}
 705EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
 706
 707static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 708                            struct dev_pm_opp_supply *supply)
 709{
 710        int ret;
 711
 712        /* Regulator not available for device */
 713        if (IS_ERR(reg)) {
 714                dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 715                        PTR_ERR(reg));
 716                return 0;
 717        }
 718
 719        dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 720                supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 721
 722        ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 723                                            supply->u_volt, supply->u_volt_max);
 724        if (ret)
 725                dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 726                        __func__, supply->u_volt_min, supply->u_volt,
 727                        supply->u_volt_max, ret);
 728
 729        return ret;
 730}
 731
 732static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
 733                                            unsigned long freq)
 734{
 735        int ret;
 736
 737        /* We may reach here for devices which don't change frequency */
 738        if (IS_ERR(clk))
 739                return 0;
 740
 741        ret = clk_set_rate(clk, freq);
 742        if (ret) {
 743                dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 744                        ret);
 745        }
 746
 747        return ret;
 748}
 749
 750static int _generic_set_opp_regulator(struct opp_table *opp_table,
 751                                      struct device *dev,
 752                                      struct dev_pm_opp *opp,
 753                                      unsigned long freq,
 754                                      int scaling_down)
 755{
 756        struct regulator *reg = opp_table->regulators[0];
 757        struct dev_pm_opp *old_opp = opp_table->current_opp;
 758        int ret;
 759
 760        /* This function only supports single regulator per device */
 761        if (WARN_ON(opp_table->regulator_count > 1)) {
 762                dev_err(dev, "multiple regulators are not supported\n");
 763                return -EINVAL;
 764        }
 765
 766        /* Scaling up? Scale voltage before frequency */
 767        if (!scaling_down) {
 768                ret = _set_opp_voltage(dev, reg, opp->supplies);
 769                if (ret)
 770                        goto restore_voltage;
 771        }
 772
 773        /* Change frequency */
 774        ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
 775        if (ret)
 776                goto restore_voltage;
 777
 778        /* Scaling down? Scale voltage after frequency */
 779        if (scaling_down) {
 780                ret = _set_opp_voltage(dev, reg, opp->supplies);
 781                if (ret)
 782                        goto restore_freq;
 783        }
 784
 785        /*
 786         * Enable the regulator after setting its voltages, otherwise it breaks
 787         * some boot-enabled regulators.
 788         */
 789        if (unlikely(!opp_table->enabled)) {
 790                ret = regulator_enable(reg);
 791                if (ret < 0)
 792                        dev_warn(dev, "Failed to enable regulator: %d", ret);
 793        }
 794
 795        return 0;
 796
 797restore_freq:
 798        if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
 799                dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 800                        __func__, old_opp->rate);
 801restore_voltage:
 802        /* This shouldn't harm even if the voltages weren't updated earlier */
 803        _set_opp_voltage(dev, reg, old_opp->supplies);
 804
 805        return ret;
 806}
 807
 808static int _set_opp_bw(const struct opp_table *opp_table,
 809                       struct dev_pm_opp *opp, struct device *dev)
 810{
 811        u32 avg, peak;
 812        int i, ret;
 813
 814        if (!opp_table->paths)
 815                return 0;
 816
 817        for (i = 0; i < opp_table->path_count; i++) {
 818                if (!opp) {
 819                        avg = 0;
 820                        peak = 0;
 821                } else {
 822                        avg = opp->bandwidth[i].avg;
 823                        peak = opp->bandwidth[i].peak;
 824                }
 825                ret = icc_set_bw(opp_table->paths[i], avg, peak);
 826                if (ret) {
 827                        dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
 828                                opp ? "set" : "remove", i, ret);
 829                        return ret;
 830                }
 831        }
 832
 833        return 0;
 834}
 835
 836static int _set_opp_custom(const struct opp_table *opp_table,
 837                           struct device *dev, struct dev_pm_opp *opp,
 838                           unsigned long freq)
 839{
 840        struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
 841        struct dev_pm_opp *old_opp = opp_table->current_opp;
 842        int size;
 843
 844        /*
 845         * We support this only if dev_pm_opp_set_regulators() was called
 846         * earlier.
 847         */
 848        if (opp_table->sod_supplies) {
 849                size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
 850                memcpy(data->old_opp.supplies, old_opp->supplies, size);
 851                memcpy(data->new_opp.supplies, opp->supplies, size);
 852                data->regulator_count = opp_table->regulator_count;
 853        } else {
 854                data->regulator_count = 0;
 855        }
 856
 857        data->regulators = opp_table->regulators;
 858        data->clk = opp_table->clk;
 859        data->dev = dev;
 860        data->old_opp.rate = old_opp->rate;
 861        data->new_opp.rate = freq;
 862
 863        return opp_table->set_opp(data);
 864}
 865
 866static int _set_required_opp(struct device *dev, struct device *pd_dev,
 867                             struct dev_pm_opp *opp, int i)
 868{
 869        unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 870        int ret;
 871
 872        if (!pd_dev)
 873                return 0;
 874
 875        ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
 876        if (ret) {
 877                dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
 878                        dev_name(pd_dev), pstate, ret);
 879        }
 880
 881        return ret;
 882}
 883
 884/* This is only called for PM domain for now */
 885static int _set_required_opps(struct device *dev,
 886                              struct opp_table *opp_table,
 887                              struct dev_pm_opp *opp, bool up)
 888{
 889        struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 890        struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 891        int i, ret = 0;
 892
 893        if (!required_opp_tables)
 894                return 0;
 895
 896        /* required-opps not fully initialized yet */
 897        if (lazy_linking_pending(opp_table))
 898                return -EBUSY;
 899
 900        /*
 901         * We only support genpd's OPPs in the "required-opps" for now, as we
 902         * don't know much about other use cases. Error out if the required OPP
 903         * doesn't belong to a genpd.
 904         */
 905        if (unlikely(!required_opp_tables[0]->is_genpd)) {
 906                dev_err(dev, "required-opps don't belong to a genpd\n");
 907                return -ENOENT;
 908        }
 909
 910        /* Single genpd case */
 911        if (!genpd_virt_devs)
 912                return _set_required_opp(dev, dev, opp, 0);
 913
 914        /* Multiple genpd case */
 915
 916        /*
 917         * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 918         * after it is freed from another thread.
 919         */
 920        mutex_lock(&opp_table->genpd_virt_dev_lock);
 921
 922        /* Scaling up? Set required OPPs in normal order, else reverse */
 923        if (up) {
 924                for (i = 0; i < opp_table->required_opp_count; i++) {
 925                        ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
 926                        if (ret)
 927                                break;
 928                }
 929        } else {
 930                for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
 931                        ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
 932                        if (ret)
 933                                break;
 934                }
 935        }
 936
 937        mutex_unlock(&opp_table->genpd_virt_dev_lock);
 938
 939        return ret;
 940}
 941
 942static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
 943{
 944        struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
 945        unsigned long freq;
 946
 947        if (!IS_ERR(opp_table->clk)) {
 948                freq = clk_get_rate(opp_table->clk);
 949                opp = _find_freq_ceil(opp_table, &freq);
 950        }
 951
 952        /*
 953         * Unable to find the current OPP ? Pick the first from the list since
 954         * it is in ascending order, otherwise rest of the code will need to
 955         * make special checks to validate current_opp.
 956         */
 957        if (IS_ERR(opp)) {
 958                mutex_lock(&opp_table->lock);
 959                opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
 960                dev_pm_opp_get(opp);
 961                mutex_unlock(&opp_table->lock);
 962        }
 963
 964        opp_table->current_opp = opp;
 965}
 966
 967static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
 968{
 969        int ret;
 970
 971        if (!opp_table->enabled)
 972                return 0;
 973
 974        /*
 975         * Some drivers need to support cases where some platforms may
 976         * have OPP table for the device, while others don't and
 977         * opp_set_rate() just needs to behave like clk_set_rate().
 978         */
 979        if (!_get_opp_count(opp_table))
 980                return 0;
 981
 982        ret = _set_opp_bw(opp_table, NULL, dev);
 983        if (ret)
 984                return ret;
 985
 986        if (opp_table->regulators)
 987                regulator_disable(opp_table->regulators[0]);
 988
 989        ret = _set_required_opps(dev, opp_table, NULL, false);
 990
 991        opp_table->enabled = false;
 992        return ret;
 993}
 994
 995static int _set_opp(struct device *dev, struct opp_table *opp_table,
 996                    struct dev_pm_opp *opp, unsigned long freq)
 997{
 998        struct dev_pm_opp *old_opp;
 999        int scaling_down, ret;
1000
1001        if (unlikely(!opp))
1002                return _disable_opp_table(dev, opp_table);
1003
1004        /* Find the currently set OPP if we don't know already */
1005        if (unlikely(!opp_table->current_opp))
1006                _find_current_opp(dev, opp_table);
1007
1008        old_opp = opp_table->current_opp;
1009
1010        /* Return early if nothing to do */
1011        if (old_opp == opp && opp_table->current_rate == freq &&
1012            opp_table->enabled) {
1013                dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1014                return 0;
1015        }
1016
1017        dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1018                __func__, opp_table->current_rate, freq, old_opp->level,
1019                opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1020                opp->bandwidth ? opp->bandwidth[0].peak : 0);
1021
1022        scaling_down = _opp_compare_key(old_opp, opp);
1023        if (scaling_down == -1)
1024                scaling_down = 0;
1025
1026        /* Scaling up? Configure required OPPs before frequency */
1027        if (!scaling_down) {
1028                ret = _set_required_opps(dev, opp_table, opp, true);
1029                if (ret) {
1030                        dev_err(dev, "Failed to set required opps: %d\n", ret);
1031                        return ret;
1032                }
1033
1034                ret = _set_opp_bw(opp_table, opp, dev);
1035                if (ret) {
1036                        dev_err(dev, "Failed to set bw: %d\n", ret);
1037                        return ret;
1038                }
1039        }
1040
1041        if (opp_table->set_opp) {
1042                ret = _set_opp_custom(opp_table, dev, opp, freq);
1043        } else if (opp_table->regulators) {
1044                ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1045                                                 scaling_down);
1046        } else {
1047                /* Only frequency scaling */
1048                ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1049        }
1050
1051        if (ret)
1052                return ret;
1053
1054        /* Scaling down? Configure required OPPs after frequency */
1055        if (scaling_down) {
1056                ret = _set_opp_bw(opp_table, opp, dev);
1057                if (ret) {
1058                        dev_err(dev, "Failed to set bw: %d\n", ret);
1059                        return ret;
1060                }
1061
1062                ret = _set_required_opps(dev, opp_table, opp, false);
1063                if (ret) {
1064                        dev_err(dev, "Failed to set required opps: %d\n", ret);
1065                        return ret;
1066                }
1067        }
1068
1069        opp_table->enabled = true;
1070        dev_pm_opp_put(old_opp);
1071
1072        /* Make sure current_opp doesn't get freed */
1073        dev_pm_opp_get(opp);
1074        opp_table->current_opp = opp;
1075        opp_table->current_rate = freq;
1076
1077        return ret;
1078}
1079
1080/**
1081 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1082 * @dev:         device for which we do this operation
1083 * @target_freq: frequency to achieve
1084 *
1085 * This configures the power-supplies to the levels specified by the OPP
1086 * corresponding to the target_freq, and programs the clock to a value <=
1087 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1088 * provided by the opp, should have already rounded to the target OPP's
1089 * frequency.
1090 */
1091int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1092{
1093        struct opp_table *opp_table;
1094        unsigned long freq = 0, temp_freq;
1095        struct dev_pm_opp *opp = NULL;
1096        int ret;
1097
1098        opp_table = _find_opp_table(dev);
1099        if (IS_ERR(opp_table)) {
1100                dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1101                return PTR_ERR(opp_table);
1102        }
1103
1104        if (target_freq) {
1105                /*
1106                 * For IO devices which require an OPP on some platforms/SoCs
1107                 * while just needing to scale the clock on some others
1108                 * we look for empty OPP tables with just a clock handle and
1109                 * scale only the clk. This makes dev_pm_opp_set_rate()
1110                 * equivalent to a clk_set_rate()
1111                 */
1112                if (!_get_opp_count(opp_table)) {
1113                        ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1114                        goto put_opp_table;
1115                }
1116
1117                freq = clk_round_rate(opp_table->clk, target_freq);
1118                if ((long)freq <= 0)
1119                        freq = target_freq;
1120
1121                /*
1122                 * The clock driver may support finer resolution of the
1123                 * frequencies than the OPP table, don't update the frequency we
1124                 * pass to clk_set_rate() here.
1125                 */
1126                temp_freq = freq;
1127                opp = _find_freq_ceil(opp_table, &temp_freq);
1128                if (IS_ERR(opp)) {
1129                        ret = PTR_ERR(opp);
1130                        dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1131                                __func__, freq, ret);
1132                        goto put_opp_table;
1133                }
1134        }
1135
1136        ret = _set_opp(dev, opp_table, opp, freq);
1137
1138        if (target_freq)
1139                dev_pm_opp_put(opp);
1140put_opp_table:
1141        dev_pm_opp_put_opp_table(opp_table);
1142        return ret;
1143}
1144EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1145
1146/**
1147 * dev_pm_opp_set_opp() - Configure device for OPP
1148 * @dev: device for which we do this operation
1149 * @opp: OPP to set to
1150 *
1151 * This configures the device based on the properties of the OPP passed to this
1152 * routine.
1153 *
1154 * Return: 0 on success, a negative error number otherwise.
1155 */
1156int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1157{
1158        struct opp_table *opp_table;
1159        int ret;
1160
1161        opp_table = _find_opp_table(dev);
1162        if (IS_ERR(opp_table)) {
1163                dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1164                return PTR_ERR(opp_table);
1165        }
1166
1167        ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1168        dev_pm_opp_put_opp_table(opp_table);
1169
1170        return ret;
1171}
1172EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1173
1174/* OPP-dev Helpers */
1175static void _remove_opp_dev(struct opp_device *opp_dev,
1176                            struct opp_table *opp_table)
1177{
1178        opp_debug_unregister(opp_dev, opp_table);
1179        list_del(&opp_dev->node);
1180        kfree(opp_dev);
1181}
1182
1183struct opp_device *_add_opp_dev(const struct device *dev,
1184                                struct opp_table *opp_table)
1185{
1186        struct opp_device *opp_dev;
1187
1188        opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1189        if (!opp_dev)
1190                return NULL;
1191
1192        /* Initialize opp-dev */
1193        opp_dev->dev = dev;
1194
1195        mutex_lock(&opp_table->lock);
1196        list_add(&opp_dev->node, &opp_table->dev_list);
1197        mutex_unlock(&opp_table->lock);
1198
1199        /* Create debugfs entries for the opp_table */
1200        opp_debug_register(opp_dev, opp_table);
1201
1202        return opp_dev;
1203}
1204
1205static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1206{
1207        struct opp_table *opp_table;
1208        struct opp_device *opp_dev;
1209        int ret;
1210
1211        /*
1212         * Allocate a new OPP table. In the infrequent case where a new
1213         * device is needed to be added, we pay this penalty.
1214         */
1215        opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1216        if (!opp_table)
1217                return ERR_PTR(-ENOMEM);
1218
1219        mutex_init(&opp_table->lock);
1220        mutex_init(&opp_table->genpd_virt_dev_lock);
1221        INIT_LIST_HEAD(&opp_table->dev_list);
1222        INIT_LIST_HEAD(&opp_table->lazy);
1223
1224        /* Mark regulator count uninitialized */
1225        opp_table->regulator_count = -1;
1226
1227        opp_dev = _add_opp_dev(dev, opp_table);
1228        if (!opp_dev) {
1229                ret = -ENOMEM;
1230                goto err;
1231        }
1232
1233        _of_init_opp_table(opp_table, dev, index);
1234
1235        /* Find interconnect path(s) for the device */
1236        ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1237        if (ret) {
1238                if (ret == -EPROBE_DEFER)
1239                        goto remove_opp_dev;
1240
1241                dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1242                         __func__, ret);
1243        }
1244
1245        BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1246        INIT_LIST_HEAD(&opp_table->opp_list);
1247        kref_init(&opp_table->kref);
1248
1249        return opp_table;
1250
1251remove_opp_dev:
1252        _remove_opp_dev(opp_dev, opp_table);
1253err:
1254        kfree(opp_table);
1255        return ERR_PTR(ret);
1256}
1257
1258void _get_opp_table_kref(struct opp_table *opp_table)
1259{
1260        kref_get(&opp_table->kref);
1261}
1262
1263static struct opp_table *_update_opp_table_clk(struct device *dev,
1264                                               struct opp_table *opp_table,
1265                                               bool getclk)
1266{
1267        int ret;
1268
1269        /*
1270         * Return early if we don't need to get clk or we have already tried it
1271         * earlier.
1272         */
1273        if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1274                return opp_table;
1275
1276        /* Find clk for the device */
1277        opp_table->clk = clk_get(dev, NULL);
1278
1279        ret = PTR_ERR_OR_ZERO(opp_table->clk);
1280        if (!ret)
1281                return opp_table;
1282
1283        if (ret == -ENOENT) {
1284                dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1285                return opp_table;
1286        }
1287
1288        dev_pm_opp_put_opp_table(opp_table);
1289        dev_err_probe(dev, ret, "Couldn't find clock\n");
1290
1291        return ERR_PTR(ret);
1292}
1293
1294/*
1295 * We need to make sure that the OPP table for a device doesn't get added twice,
1296 * if this routine gets called in parallel with the same device pointer.
1297 *
1298 * The simplest way to enforce that is to perform everything (find existing
1299 * table and if not found, create a new one) under the opp_table_lock, so only
1300 * one creator gets access to the same. But that expands the critical section
1301 * under the lock and may end up causing circular dependencies with frameworks
1302 * like debugfs, interconnect or clock framework as they may be direct or
1303 * indirect users of OPP core.
1304 *
1305 * And for that reason we have to go for a bit tricky implementation here, which
1306 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1307 * of adding an OPP table and others should wait for it to finish.
1308 */
1309struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1310                                         bool getclk)
1311{
1312        struct opp_table *opp_table;
1313
1314again:
1315        mutex_lock(&opp_table_lock);
1316
1317        opp_table = _find_opp_table_unlocked(dev);
1318        if (!IS_ERR(opp_table))
1319                goto unlock;
1320
1321        /*
1322         * The opp_tables list or an OPP table's dev_list is getting updated by
1323         * another user, wait for it to finish.
1324         */
1325        if (unlikely(opp_tables_busy)) {
1326                mutex_unlock(&opp_table_lock);
1327                cpu_relax();
1328                goto again;
1329        }
1330
1331        opp_tables_busy = true;
1332        opp_table = _managed_opp(dev, index);
1333
1334        /* Drop the lock to reduce the size of critical section */
1335        mutex_unlock(&opp_table_lock);
1336
1337        if (opp_table) {
1338                if (!_add_opp_dev(dev, opp_table)) {
1339                        dev_pm_opp_put_opp_table(opp_table);
1340                        opp_table = ERR_PTR(-ENOMEM);
1341                }
1342
1343                mutex_lock(&opp_table_lock);
1344        } else {
1345                opp_table = _allocate_opp_table(dev, index);
1346
1347                mutex_lock(&opp_table_lock);
1348                if (!IS_ERR(opp_table))
1349                        list_add(&opp_table->node, &opp_tables);
1350        }
1351
1352        opp_tables_busy = false;
1353
1354unlock:
1355        mutex_unlock(&opp_table_lock);
1356
1357        return _update_opp_table_clk(dev, opp_table, getclk);
1358}
1359
1360static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1361{
1362        return _add_opp_table_indexed(dev, 0, getclk);
1363}
1364
1365struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1366{
1367        return _find_opp_table(dev);
1368}
1369EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1370
1371static void _opp_table_kref_release(struct kref *kref)
1372{
1373        struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1374        struct opp_device *opp_dev, *temp;
1375        int i;
1376
1377        /* Drop the lock as soon as we can */
1378        list_del(&opp_table->node);
1379        mutex_unlock(&opp_table_lock);
1380
1381        if (opp_table->current_opp)
1382                dev_pm_opp_put(opp_table->current_opp);
1383
1384        _of_clear_opp_table(opp_table);
1385
1386        /* Release clk */
1387        if (!IS_ERR(opp_table->clk))
1388                clk_put(opp_table->clk);
1389
1390        if (opp_table->paths) {
1391                for (i = 0; i < opp_table->path_count; i++)
1392                        icc_put(opp_table->paths[i]);
1393                kfree(opp_table->paths);
1394        }
1395
1396        WARN_ON(!list_empty(&opp_table->opp_list));
1397
1398        list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1399                /*
1400                 * The OPP table is getting removed, drop the performance state
1401                 * constraints.
1402                 */
1403                if (opp_table->genpd_performance_state)
1404                        dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1405
1406                _remove_opp_dev(opp_dev, opp_table);
1407        }
1408
1409        mutex_destroy(&opp_table->genpd_virt_dev_lock);
1410        mutex_destroy(&opp_table->lock);
1411        kfree(opp_table);
1412}
1413
1414void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1415{
1416        kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1417                       &opp_table_lock);
1418}
1419EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1420
1421void _opp_free(struct dev_pm_opp *opp)
1422{
1423        kfree(opp);
1424}
1425
1426static void _opp_kref_release(struct kref *kref)
1427{
1428        struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1429        struct opp_table *opp_table = opp->opp_table;
1430
1431        list_del(&opp->node);
1432        mutex_unlock(&opp_table->lock);
1433
1434        /*
1435         * Notify the changes in the availability of the operable
1436         * frequency/voltage list.
1437         */
1438        blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1439        _of_opp_free_required_opps(opp_table, opp);
1440        opp_debug_remove_one(opp);
1441        kfree(opp);
1442}
1443
1444void dev_pm_opp_get(struct dev_pm_opp *opp)
1445{
1446        kref_get(&opp->kref);
1447}
1448
1449void dev_pm_opp_put(struct dev_pm_opp *opp)
1450{
1451        kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1452}
1453EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1454
1455/**
1456 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1457 * @dev:        device for which we do this operation
1458 * @freq:       OPP to remove with matching 'freq'
1459 *
1460 * This function removes an opp from the opp table.
1461 */
1462void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1463{
1464        struct dev_pm_opp *opp;
1465        struct opp_table *opp_table;
1466        bool found = false;
1467
1468        opp_table = _find_opp_table(dev);
1469        if (IS_ERR(opp_table))
1470                return;
1471
1472        mutex_lock(&opp_table->lock);
1473
1474        list_for_each_entry(opp, &opp_table->opp_list, node) {
1475                if (opp->rate == freq) {
1476                        found = true;
1477                        break;
1478                }
1479        }
1480
1481        mutex_unlock(&opp_table->lock);
1482
1483        if (found) {
1484                dev_pm_opp_put(opp);
1485
1486                /* Drop the reference taken by dev_pm_opp_add() */
1487                dev_pm_opp_put_opp_table(opp_table);
1488        } else {
1489                dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1490                         __func__, freq);
1491        }
1492
1493        /* Drop the reference taken by _find_opp_table() */
1494        dev_pm_opp_put_opp_table(opp_table);
1495}
1496EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1497
1498static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1499                                        bool dynamic)
1500{
1501        struct dev_pm_opp *opp = NULL, *temp;
1502
1503        mutex_lock(&opp_table->lock);
1504        list_for_each_entry(temp, &opp_table->opp_list, node) {
1505                /*
1506                 * Refcount must be dropped only once for each OPP by OPP core,
1507                 * do that with help of "removed" flag.
1508                 */
1509                if (!temp->removed && dynamic == temp->dynamic) {
1510                        opp = temp;
1511                        break;
1512                }
1513        }
1514
1515        mutex_unlock(&opp_table->lock);
1516        return opp;
1517}
1518
1519/*
1520 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1521 * happen lock less to avoid circular dependency issues. This routine must be
1522 * called without the opp_table->lock held.
1523 */
1524static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1525{
1526        struct dev_pm_opp *opp;
1527
1528        while ((opp = _opp_get_next(opp_table, dynamic))) {
1529                opp->removed = true;
1530                dev_pm_opp_put(opp);
1531
1532                /* Drop the references taken by dev_pm_opp_add() */
1533                if (dynamic)
1534                        dev_pm_opp_put_opp_table(opp_table);
1535        }
1536}
1537
1538bool _opp_remove_all_static(struct opp_table *opp_table)
1539{
1540        mutex_lock(&opp_table->lock);
1541
1542        if (!opp_table->parsed_static_opps) {
1543                mutex_unlock(&opp_table->lock);
1544                return false;
1545        }
1546
1547        if (--opp_table->parsed_static_opps) {
1548                mutex_unlock(&opp_table->lock);
1549                return true;
1550        }
1551
1552        mutex_unlock(&opp_table->lock);
1553
1554        _opp_remove_all(opp_table, false);
1555        return true;
1556}
1557
1558/**
1559 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1560 * @dev:        device for which we do this operation
1561 *
1562 * This function removes all dynamically created OPPs from the opp table.
1563 */
1564void dev_pm_opp_remove_all_dynamic(struct device *dev)
1565{
1566        struct opp_table *opp_table;
1567
1568        opp_table = _find_opp_table(dev);
1569        if (IS_ERR(opp_table))
1570                return;
1571
1572        _opp_remove_all(opp_table, true);
1573
1574        /* Drop the reference taken by _find_opp_table() */
1575        dev_pm_opp_put_opp_table(opp_table);
1576}
1577EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1578
1579struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1580{
1581        struct dev_pm_opp *opp;
1582        int supply_count, supply_size, icc_size;
1583
1584        /* Allocate space for at least one supply */
1585        supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1586        supply_size = sizeof(*opp->supplies) * supply_count;
1587        icc_size = sizeof(*opp->bandwidth) * table->path_count;
1588
1589        /* allocate new OPP node and supplies structures */
1590        opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1591
1592        if (!opp)
1593                return NULL;
1594
1595        /* Put the supplies at the end of the OPP structure as an empty array */
1596        opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1597        if (icc_size)
1598                opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1599        INIT_LIST_HEAD(&opp->node);
1600
1601        return opp;
1602}
1603
1604static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1605                                         struct opp_table *opp_table)
1606{
1607        struct regulator *reg;
1608        int i;
1609
1610        if (!opp_table->regulators)
1611                return true;
1612
1613        for (i = 0; i < opp_table->regulator_count; i++) {
1614                reg = opp_table->regulators[i];
1615
1616                if (!regulator_is_supported_voltage(reg,
1617                                        opp->supplies[i].u_volt_min,
1618                                        opp->supplies[i].u_volt_max)) {
1619                        pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1620                                __func__, opp->supplies[i].u_volt_min,
1621                                opp->supplies[i].u_volt_max);
1622                        return false;
1623                }
1624        }
1625
1626        return true;
1627}
1628
1629int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1630{
1631        if (opp1->rate != opp2->rate)
1632                return opp1->rate < opp2->rate ? -1 : 1;
1633        if (opp1->bandwidth && opp2->bandwidth &&
1634            opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1635                return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1636        if (opp1->level != opp2->level)
1637                return opp1->level < opp2->level ? -1 : 1;
1638        return 0;
1639}
1640
1641static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1642                             struct opp_table *opp_table,
1643                             struct list_head **head)
1644{
1645        struct dev_pm_opp *opp;
1646        int opp_cmp;
1647
1648        /*
1649         * Insert new OPP in order of increasing frequency and discard if
1650         * already present.
1651         *
1652         * Need to use &opp_table->opp_list in the condition part of the 'for'
1653         * loop, don't replace it with head otherwise it will become an infinite
1654         * loop.
1655         */
1656        list_for_each_entry(opp, &opp_table->opp_list, node) {
1657                opp_cmp = _opp_compare_key(new_opp, opp);
1658                if (opp_cmp > 0) {
1659                        *head = &opp->node;
1660                        continue;
1661                }
1662
1663                if (opp_cmp < 0)
1664                        return 0;
1665
1666                /* Duplicate OPPs */
1667                dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1668                         __func__, opp->rate, opp->supplies[0].u_volt,
1669                         opp->available, new_opp->rate,
1670                         new_opp->supplies[0].u_volt, new_opp->available);
1671
1672                /* Should we compare voltages for all regulators here ? */
1673                return opp->available &&
1674                       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1675        }
1676
1677        return 0;
1678}
1679
1680void _required_opps_available(struct dev_pm_opp *opp, int count)
1681{
1682        int i;
1683
1684        for (i = 0; i < count; i++) {
1685                if (opp->required_opps[i]->available)
1686                        continue;
1687
1688                opp->available = false;
1689                pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1690                         __func__, opp->required_opps[i]->np, opp->rate);
1691                return;
1692        }
1693}
1694
1695/*
1696 * Returns:
1697 * 0: On success. And appropriate error message for duplicate OPPs.
1698 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1699 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1700 *  sure we don't print error messages unnecessarily if different parts of
1701 *  kernel try to initialize the OPP table.
1702 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1703 *  should be considered an error by the callers of _opp_add().
1704 */
1705int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1706             struct opp_table *opp_table, bool rate_not_available)
1707{
1708        struct list_head *head;
1709        int ret;
1710
1711        mutex_lock(&opp_table->lock);
1712        head = &opp_table->opp_list;
1713
1714        ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1715        if (ret) {
1716                mutex_unlock(&opp_table->lock);
1717                return ret;
1718        }
1719
1720        list_add(&new_opp->node, head);
1721        mutex_unlock(&opp_table->lock);
1722
1723        new_opp->opp_table = opp_table;
1724        kref_init(&new_opp->kref);
1725
1726        opp_debug_create_one(new_opp, opp_table);
1727
1728        if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1729                new_opp->available = false;
1730                dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1731                         __func__, new_opp->rate);
1732        }
1733
1734        /* required-opps not fully initialized yet */
1735        if (lazy_linking_pending(opp_table))
1736                return 0;
1737
1738        _required_opps_available(new_opp, opp_table->required_opp_count);
1739
1740        return 0;
1741}
1742
1743/**
1744 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1745 * @opp_table:  OPP table
1746 * @dev:        device for which we do this operation
1747 * @freq:       Frequency in Hz for this OPP
1748 * @u_volt:     Voltage in uVolts for this OPP
1749 * @dynamic:    Dynamically added OPPs.
1750 *
1751 * This function adds an opp definition to the opp table and returns status.
1752 * The opp is made available by default and it can be controlled using
1753 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1754 *
1755 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1756 * and freed by dev_pm_opp_of_remove_table.
1757 *
1758 * Return:
1759 * 0            On success OR
1760 *              Duplicate OPPs (both freq and volt are same) and opp->available
1761 * -EEXIST      Freq are same and volt are different OR
1762 *              Duplicate OPPs (both freq and volt are same) and !opp->available
1763 * -ENOMEM      Memory allocation failure
1764 */
1765int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1766                unsigned long freq, long u_volt, bool dynamic)
1767{
1768        struct dev_pm_opp *new_opp;
1769        unsigned long tol;
1770        int ret;
1771
1772        new_opp = _opp_allocate(opp_table);
1773        if (!new_opp)
1774                return -ENOMEM;
1775
1776        /* populate the opp table */
1777        new_opp->rate = freq;
1778        tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1779        new_opp->supplies[0].u_volt = u_volt;
1780        new_opp->supplies[0].u_volt_min = u_volt - tol;
1781        new_opp->supplies[0].u_volt_max = u_volt + tol;
1782        new_opp->available = true;
1783        new_opp->dynamic = dynamic;
1784
1785        ret = _opp_add(dev, new_opp, opp_table, false);
1786        if (ret) {
1787                /* Don't return error for duplicate OPPs */
1788                if (ret == -EBUSY)
1789                        ret = 0;
1790                goto free_opp;
1791        }
1792
1793        /*
1794         * Notify the changes in the availability of the operable
1795         * frequency/voltage list.
1796         */
1797        blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1798        return 0;
1799
1800free_opp:
1801        _opp_free(new_opp);
1802
1803        return ret;
1804}
1805
1806/**
1807 * dev_pm_opp_set_supported_hw() - Set supported platforms
1808 * @dev: Device for which supported-hw has to be set.
1809 * @versions: Array of hierarchy of versions to match.
1810 * @count: Number of elements in the array.
1811 *
1812 * This is required only for the V2 bindings, and it enables a platform to
1813 * specify the hierarchy of versions it supports. OPP layer will then enable
1814 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1815 * property.
1816 */
1817struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1818                        const u32 *versions, unsigned int count)
1819{
1820        struct opp_table *opp_table;
1821
1822        opp_table = _add_opp_table(dev, false);
1823        if (IS_ERR(opp_table))
1824                return opp_table;
1825
1826        /* Make sure there are no concurrent readers while updating opp_table */
1827        WARN_ON(!list_empty(&opp_table->opp_list));
1828
1829        /* Another CPU that shares the OPP table has set the property ? */
1830        if (opp_table->supported_hw)
1831                return opp_table;
1832
1833        opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1834                                        GFP_KERNEL);
1835        if (!opp_table->supported_hw) {
1836                dev_pm_opp_put_opp_table(opp_table);
1837                return ERR_PTR(-ENOMEM);
1838        }
1839
1840        opp_table->supported_hw_count = count;
1841
1842        return opp_table;
1843}
1844EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1845
1846/**
1847 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1848 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1849 *
1850 * This is required only for the V2 bindings, and is called for a matching
1851 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1852 * will not be freed.
1853 */
1854void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1855{
1856        if (unlikely(!opp_table))
1857                return;
1858
1859        kfree(opp_table->supported_hw);
1860        opp_table->supported_hw = NULL;
1861        opp_table->supported_hw_count = 0;
1862
1863        dev_pm_opp_put_opp_table(opp_table);
1864}
1865EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1866
1867static void devm_pm_opp_supported_hw_release(void *data)
1868{
1869        dev_pm_opp_put_supported_hw(data);
1870}
1871
1872/**
1873 * devm_pm_opp_set_supported_hw() - Set supported platforms
1874 * @dev: Device for which supported-hw has to be set.
1875 * @versions: Array of hierarchy of versions to match.
1876 * @count: Number of elements in the array.
1877 *
1878 * This is a resource-managed variant of dev_pm_opp_set_supported_hw().
1879 *
1880 * Return: 0 on success and errorno otherwise.
1881 */
1882int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
1883                                 unsigned int count)
1884{
1885        struct opp_table *opp_table;
1886
1887        opp_table = dev_pm_opp_set_supported_hw(dev, versions, count);
1888        if (IS_ERR(opp_table))
1889                return PTR_ERR(opp_table);
1890
1891        return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release,
1892                                        opp_table);
1893}
1894EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw);
1895
1896/**
1897 * dev_pm_opp_set_prop_name() - Set prop-extn name
1898 * @dev: Device for which the prop-name has to be set.
1899 * @name: name to postfix to properties.
1900 *
1901 * This is required only for the V2 bindings, and it enables a platform to
1902 * specify the extn to be used for certain property names. The properties to
1903 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1904 * should postfix the property name with -<name> while looking for them.
1905 */
1906struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1907{
1908        struct opp_table *opp_table;
1909
1910        opp_table = _add_opp_table(dev, false);
1911        if (IS_ERR(opp_table))
1912                return opp_table;
1913
1914        /* Make sure there are no concurrent readers while updating opp_table */
1915        WARN_ON(!list_empty(&opp_table->opp_list));
1916
1917        /* Another CPU that shares the OPP table has set the property ? */
1918        if (opp_table->prop_name)
1919                return opp_table;
1920
1921        opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1922        if (!opp_table->prop_name) {
1923                dev_pm_opp_put_opp_table(opp_table);
1924                return ERR_PTR(-ENOMEM);
1925        }
1926
1927        return opp_table;
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1930
1931/**
1932 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1933 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1934 *
1935 * This is required only for the V2 bindings, and is called for a matching
1936 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1937 * will not be freed.
1938 */
1939void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1940{
1941        if (unlikely(!opp_table))
1942                return;
1943
1944        kfree(opp_table->prop_name);
1945        opp_table->prop_name = NULL;
1946
1947        dev_pm_opp_put_opp_table(opp_table);
1948}
1949EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1950
1951/**
1952 * dev_pm_opp_set_regulators() - Set regulator names for the device
1953 * @dev: Device for which regulator name is being set.
1954 * @names: Array of pointers to the names of the regulator.
1955 * @count: Number of regulators.
1956 *
1957 * In order to support OPP switching, OPP layer needs to know the name of the
1958 * device's regulators, as the core would be required to switch voltages as
1959 * well.
1960 *
1961 * This must be called before any OPPs are initialized for the device.
1962 */
1963struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1964                                            const char * const names[],
1965                                            unsigned int count)
1966{
1967        struct dev_pm_opp_supply *supplies;
1968        struct opp_table *opp_table;
1969        struct regulator *reg;
1970        int ret, i;
1971
1972        opp_table = _add_opp_table(dev, false);
1973        if (IS_ERR(opp_table))
1974                return opp_table;
1975
1976        /* This should be called before OPPs are initialized */
1977        if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1978                ret = -EBUSY;
1979                goto err;
1980        }
1981
1982        /* Another CPU that shares the OPP table has set the regulators ? */
1983        if (opp_table->regulators)
1984                return opp_table;
1985
1986        opp_table->regulators = kmalloc_array(count,
1987                                              sizeof(*opp_table->regulators),
1988                                              GFP_KERNEL);
1989        if (!opp_table->regulators) {
1990                ret = -ENOMEM;
1991                goto err;
1992        }
1993
1994        for (i = 0; i < count; i++) {
1995                reg = regulator_get_optional(dev, names[i]);
1996                if (IS_ERR(reg)) {
1997                        ret = PTR_ERR(reg);
1998                        if (ret != -EPROBE_DEFER)
1999                                dev_err(dev, "%s: no regulator (%s) found: %d\n",
2000                                        __func__, names[i], ret);
2001                        goto free_regulators;
2002                }
2003
2004                opp_table->regulators[i] = reg;
2005        }
2006
2007        opp_table->regulator_count = count;
2008
2009        supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
2010        if (!supplies) {
2011                ret = -ENOMEM;
2012                goto free_regulators;
2013        }
2014
2015        mutex_lock(&opp_table->lock);
2016        opp_table->sod_supplies = supplies;
2017        if (opp_table->set_opp_data) {
2018                opp_table->set_opp_data->old_opp.supplies = supplies;
2019                opp_table->set_opp_data->new_opp.supplies = supplies + count;
2020        }
2021        mutex_unlock(&opp_table->lock);
2022
2023        return opp_table;
2024
2025free_regulators:
2026        while (i != 0)
2027                regulator_put(opp_table->regulators[--i]);
2028
2029        kfree(opp_table->regulators);
2030        opp_table->regulators = NULL;
2031        opp_table->regulator_count = -1;
2032err:
2033        dev_pm_opp_put_opp_table(opp_table);
2034
2035        return ERR_PTR(ret);
2036}
2037EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2038
2039/**
2040 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2041 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2042 */
2043void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2044{
2045        int i;
2046
2047        if (unlikely(!opp_table))
2048                return;
2049
2050        if (!opp_table->regulators)
2051                goto put_opp_table;
2052
2053        if (opp_table->enabled) {
2054                for (i = opp_table->regulator_count - 1; i >= 0; i--)
2055                        regulator_disable(opp_table->regulators[i]);
2056        }
2057
2058        for (i = opp_table->regulator_count - 1; i >= 0; i--)
2059                regulator_put(opp_table->regulators[i]);
2060
2061        mutex_lock(&opp_table->lock);
2062        if (opp_table->set_opp_data) {
2063                opp_table->set_opp_data->old_opp.supplies = NULL;
2064                opp_table->set_opp_data->new_opp.supplies = NULL;
2065        }
2066
2067        kfree(opp_table->sod_supplies);
2068        opp_table->sod_supplies = NULL;
2069        mutex_unlock(&opp_table->lock);
2070
2071        kfree(opp_table->regulators);
2072        opp_table->regulators = NULL;
2073        opp_table->regulator_count = -1;
2074
2075put_opp_table:
2076        dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2079
2080static void devm_pm_opp_regulators_release(void *data)
2081{
2082        dev_pm_opp_put_regulators(data);
2083}
2084
2085/**
2086 * devm_pm_opp_set_regulators() - Set regulator names for the device
2087 * @dev: Device for which regulator name is being set.
2088 * @names: Array of pointers to the names of the regulator.
2089 * @count: Number of regulators.
2090 *
2091 * This is a resource-managed variant of dev_pm_opp_set_regulators().
2092 *
2093 * Return: 0 on success and errorno otherwise.
2094 */
2095int devm_pm_opp_set_regulators(struct device *dev,
2096                               const char * const names[],
2097                               unsigned int count)
2098{
2099        struct opp_table *opp_table;
2100
2101        opp_table = dev_pm_opp_set_regulators(dev, names, count);
2102        if (IS_ERR(opp_table))
2103                return PTR_ERR(opp_table);
2104
2105        return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release,
2106                                        opp_table);
2107}
2108EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators);
2109
2110/**
2111 * dev_pm_opp_set_clkname() - Set clk name for the device
2112 * @dev: Device for which clk name is being set.
2113 * @name: Clk name.
2114 *
2115 * In order to support OPP switching, OPP layer needs to get pointer to the
2116 * clock for the device. Simple cases work fine without using this routine (i.e.
2117 * by passing connection-id as NULL), but for a device with multiple clocks
2118 * available, the OPP core needs to know the exact name of the clk to use.
2119 *
2120 * This must be called before any OPPs are initialized for the device.
2121 */
2122struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2123{
2124        struct opp_table *opp_table;
2125        int ret;
2126
2127        opp_table = _add_opp_table(dev, false);
2128        if (IS_ERR(opp_table))
2129                return opp_table;
2130
2131        /* This should be called before OPPs are initialized */
2132        if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2133                ret = -EBUSY;
2134                goto err;
2135        }
2136
2137        /* clk shouldn't be initialized at this point */
2138        if (WARN_ON(opp_table->clk)) {
2139                ret = -EBUSY;
2140                goto err;
2141        }
2142
2143        /* Find clk for the device */
2144        opp_table->clk = clk_get(dev, name);
2145        if (IS_ERR(opp_table->clk)) {
2146                ret = PTR_ERR(opp_table->clk);
2147                if (ret != -EPROBE_DEFER) {
2148                        dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2149                                ret);
2150                }
2151                goto err;
2152        }
2153
2154        return opp_table;
2155
2156err:
2157        dev_pm_opp_put_opp_table(opp_table);
2158
2159        return ERR_PTR(ret);
2160}
2161EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2162
2163/**
2164 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2165 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2166 */
2167void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2168{
2169        if (unlikely(!opp_table))
2170                return;
2171
2172        clk_put(opp_table->clk);
2173        opp_table->clk = ERR_PTR(-EINVAL);
2174
2175        dev_pm_opp_put_opp_table(opp_table);
2176}
2177EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2178
2179static void devm_pm_opp_clkname_release(void *data)
2180{
2181        dev_pm_opp_put_clkname(data);
2182}
2183
2184/**
2185 * devm_pm_opp_set_clkname() - Set clk name for the device
2186 * @dev: Device for which clk name is being set.
2187 * @name: Clk name.
2188 *
2189 * This is a resource-managed variant of dev_pm_opp_set_clkname().
2190 *
2191 * Return: 0 on success and errorno otherwise.
2192 */
2193int devm_pm_opp_set_clkname(struct device *dev, const char *name)
2194{
2195        struct opp_table *opp_table;
2196
2197        opp_table = dev_pm_opp_set_clkname(dev, name);
2198        if (IS_ERR(opp_table))
2199                return PTR_ERR(opp_table);
2200
2201        return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release,
2202                                        opp_table);
2203}
2204EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname);
2205
2206/**
2207 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2208 * @dev: Device for which the helper is getting registered.
2209 * @set_opp: Custom set OPP helper.
2210 *
2211 * This is useful to support complex platforms (like platforms with multiple
2212 * regulators per device), instead of the generic OPP set rate helper.
2213 *
2214 * This must be called before any OPPs are initialized for the device.
2215 */
2216struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2217                        int (*set_opp)(struct dev_pm_set_opp_data *data))
2218{
2219        struct dev_pm_set_opp_data *data;
2220        struct opp_table *opp_table;
2221
2222        if (!set_opp)
2223                return ERR_PTR(-EINVAL);
2224
2225        opp_table = _add_opp_table(dev, false);
2226        if (IS_ERR(opp_table))
2227                return opp_table;
2228
2229        /* This should be called before OPPs are initialized */
2230        if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2231                dev_pm_opp_put_opp_table(opp_table);
2232                return ERR_PTR(-EBUSY);
2233        }
2234
2235        /* Another CPU that shares the OPP table has set the helper ? */
2236        if (opp_table->set_opp)
2237                return opp_table;
2238
2239        data = kzalloc(sizeof(*data), GFP_KERNEL);
2240        if (!data)
2241                return ERR_PTR(-ENOMEM);
2242
2243        mutex_lock(&opp_table->lock);
2244        opp_table->set_opp_data = data;
2245        if (opp_table->sod_supplies) {
2246                data->old_opp.supplies = opp_table->sod_supplies;
2247                data->new_opp.supplies = opp_table->sod_supplies +
2248                                         opp_table->regulator_count;
2249        }
2250        mutex_unlock(&opp_table->lock);
2251
2252        opp_table->set_opp = set_opp;
2253
2254        return opp_table;
2255}
2256EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2257
2258/**
2259 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2260 *                                         set_opp helper
2261 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2262 *
2263 * Release resources blocked for platform specific set_opp helper.
2264 */
2265void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2266{
2267        if (unlikely(!opp_table))
2268                return;
2269
2270        opp_table->set_opp = NULL;
2271
2272        mutex_lock(&opp_table->lock);
2273        kfree(opp_table->set_opp_data);
2274        opp_table->set_opp_data = NULL;
2275        mutex_unlock(&opp_table->lock);
2276
2277        dev_pm_opp_put_opp_table(opp_table);
2278}
2279EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2280
2281static void devm_pm_opp_unregister_set_opp_helper(void *data)
2282{
2283        dev_pm_opp_unregister_set_opp_helper(data);
2284}
2285
2286/**
2287 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2288 * @dev: Device for which the helper is getting registered.
2289 * @set_opp: Custom set OPP helper.
2290 *
2291 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2292 *
2293 * Return: 0 on success and errorno otherwise.
2294 */
2295int devm_pm_opp_register_set_opp_helper(struct device *dev,
2296                                        int (*set_opp)(struct dev_pm_set_opp_data *data))
2297{
2298        struct opp_table *opp_table;
2299
2300        opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2301        if (IS_ERR(opp_table))
2302                return PTR_ERR(opp_table);
2303
2304        return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2305                                        opp_table);
2306}
2307EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2308
2309static void _opp_detach_genpd(struct opp_table *opp_table)
2310{
2311        int index;
2312
2313        if (!opp_table->genpd_virt_devs)
2314                return;
2315
2316        for (index = 0; index < opp_table->required_opp_count; index++) {
2317                if (!opp_table->genpd_virt_devs[index])
2318                        continue;
2319
2320                dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2321                opp_table->genpd_virt_devs[index] = NULL;
2322        }
2323
2324        kfree(opp_table->genpd_virt_devs);
2325        opp_table->genpd_virt_devs = NULL;
2326}
2327
2328/**
2329 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2330 * @dev: Consumer device for which the genpd is getting attached.
2331 * @names: Null terminated array of pointers containing names of genpd to attach.
2332 * @virt_devs: Pointer to return the array of virtual devices.
2333 *
2334 * Multiple generic power domains for a device are supported with the help of
2335 * virtual genpd devices, which are created for each consumer device - genpd
2336 * pair. These are the device structures which are attached to the power domain
2337 * and are required by the OPP core to set the performance state of the genpd.
2338 * The same API also works for the case where single genpd is available and so
2339 * we don't need to support that separately.
2340 *
2341 * This helper will normally be called by the consumer driver of the device
2342 * "dev", as only that has details of the genpd names.
2343 *
2344 * This helper needs to be called once with a list of all genpd to attach.
2345 * Otherwise the original device structure will be used instead by the OPP core.
2346 *
2347 * The order of entries in the names array must match the order in which
2348 * "required-opps" are added in DT.
2349 */
2350struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2351                const char **names, struct device ***virt_devs)
2352{
2353        struct opp_table *opp_table;
2354        struct device *virt_dev;
2355        int index = 0, ret = -EINVAL;
2356        const char **name = names;
2357
2358        opp_table = _add_opp_table(dev, false);
2359        if (IS_ERR(opp_table))
2360                return opp_table;
2361
2362        if (opp_table->genpd_virt_devs)
2363                return opp_table;
2364
2365        /*
2366         * If the genpd's OPP table isn't already initialized, parsing of the
2367         * required-opps fail for dev. We should retry this after genpd's OPP
2368         * table is added.
2369         */
2370        if (!opp_table->required_opp_count) {
2371                ret = -EPROBE_DEFER;
2372                goto put_table;
2373        }
2374
2375        mutex_lock(&opp_table->genpd_virt_dev_lock);
2376
2377        opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2378                                             sizeof(*opp_table->genpd_virt_devs),
2379                                             GFP_KERNEL);
2380        if (!opp_table->genpd_virt_devs)
2381                goto unlock;
2382
2383        while (*name) {
2384                if (index >= opp_table->required_opp_count) {
2385                        dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2386                                *name, opp_table->required_opp_count, index);
2387                        goto err;
2388                }
2389
2390                virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2391                if (IS_ERR(virt_dev)) {
2392                        ret = PTR_ERR(virt_dev);
2393                        dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2394                        goto err;
2395                }
2396
2397                opp_table->genpd_virt_devs[index] = virt_dev;
2398                index++;
2399                name++;
2400        }
2401
2402        if (virt_devs)
2403                *virt_devs = opp_table->genpd_virt_devs;
2404        mutex_unlock(&opp_table->genpd_virt_dev_lock);
2405
2406        return opp_table;
2407
2408err:
2409        _opp_detach_genpd(opp_table);
2410unlock:
2411        mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412
2413put_table:
2414        dev_pm_opp_put_opp_table(opp_table);
2415
2416        return ERR_PTR(ret);
2417}
2418EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2419
2420/**
2421 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2422 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2423 *
2424 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2425 * OPP table.
2426 */
2427void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2428{
2429        if (unlikely(!opp_table))
2430                return;
2431
2432        /*
2433         * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2434         * used in parallel.
2435         */
2436        mutex_lock(&opp_table->genpd_virt_dev_lock);
2437        _opp_detach_genpd(opp_table);
2438        mutex_unlock(&opp_table->genpd_virt_dev_lock);
2439
2440        dev_pm_opp_put_opp_table(opp_table);
2441}
2442EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2443
2444static void devm_pm_opp_detach_genpd(void *data)
2445{
2446        dev_pm_opp_detach_genpd(data);
2447}
2448
2449/**
2450 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2451 *                            device pointer
2452 * @dev: Consumer device for which the genpd is getting attached.
2453 * @names: Null terminated array of pointers containing names of genpd to attach.
2454 * @virt_devs: Pointer to return the array of virtual devices.
2455 *
2456 * This is a resource-managed version of dev_pm_opp_attach_genpd().
2457 *
2458 * Return: 0 on success and errorno otherwise.
2459 */
2460int devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2461                             struct device ***virt_devs)
2462{
2463        struct opp_table *opp_table;
2464
2465        opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2466        if (IS_ERR(opp_table))
2467                return PTR_ERR(opp_table);
2468
2469        return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2470                                        opp_table);
2471}
2472EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2473
2474/**
2475 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2476 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2477 * @dst_table: Required OPP table of the @src_table.
2478 * @src_opp: OPP from the @src_table.
2479 *
2480 * This function returns the OPP (present in @dst_table) pointed out by the
2481 * "required-opps" property of the @src_opp (present in @src_table).
2482 *
2483 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2484 * use.
2485 *
2486 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2487 */
2488struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2489                                                 struct opp_table *dst_table,
2490                                                 struct dev_pm_opp *src_opp)
2491{
2492        struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2493        int i;
2494
2495        if (!src_table || !dst_table || !src_opp ||
2496            !src_table->required_opp_tables)
2497                return ERR_PTR(-EINVAL);
2498
2499        /* required-opps not fully initialized yet */
2500        if (lazy_linking_pending(src_table))
2501                return ERR_PTR(-EBUSY);
2502
2503        for (i = 0; i < src_table->required_opp_count; i++) {
2504                if (src_table->required_opp_tables[i] == dst_table) {
2505                        mutex_lock(&src_table->lock);
2506
2507                        list_for_each_entry(opp, &src_table->opp_list, node) {
2508                                if (opp == src_opp) {
2509                                        dest_opp = opp->required_opps[i];
2510                                        dev_pm_opp_get(dest_opp);
2511                                        break;
2512                                }
2513                        }
2514
2515                        mutex_unlock(&src_table->lock);
2516                        break;
2517                }
2518        }
2519
2520        if (IS_ERR(dest_opp)) {
2521                pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2522                       src_table, dst_table);
2523        }
2524
2525        return dest_opp;
2526}
2527EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2528
2529/**
2530 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2531 * @src_table: OPP table which has dst_table as one of its required OPP table.
2532 * @dst_table: Required OPP table of the src_table.
2533 * @pstate: Current performance state of the src_table.
2534 *
2535 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2536 * "required-opps" property of the OPP (present in @src_table) which has
2537 * performance state set to @pstate.
2538 *
2539 * Return: Zero or positive performance state on success, otherwise negative
2540 * value on errors.
2541 */
2542int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2543                                       struct opp_table *dst_table,
2544                                       unsigned int pstate)
2545{
2546        struct dev_pm_opp *opp;
2547        int dest_pstate = -EINVAL;
2548        int i;
2549
2550        /*
2551         * Normally the src_table will have the "required_opps" property set to
2552         * point to one of the OPPs in the dst_table, but in some cases the
2553         * genpd and its master have one to one mapping of performance states
2554         * and so none of them have the "required-opps" property set. Return the
2555         * pstate of the src_table as it is in such cases.
2556         */
2557        if (!src_table || !src_table->required_opp_count)
2558                return pstate;
2559
2560        /* required-opps not fully initialized yet */
2561        if (lazy_linking_pending(src_table))
2562                return -EBUSY;
2563
2564        for (i = 0; i < src_table->required_opp_count; i++) {
2565                if (src_table->required_opp_tables[i]->np == dst_table->np)
2566                        break;
2567        }
2568
2569        if (unlikely(i == src_table->required_opp_count)) {
2570                pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2571                       __func__, src_table, dst_table);
2572                return -EINVAL;
2573        }
2574
2575        mutex_lock(&src_table->lock);
2576
2577        list_for_each_entry(opp, &src_table->opp_list, node) {
2578                if (opp->pstate == pstate) {
2579                        dest_pstate = opp->required_opps[i]->pstate;
2580                        goto unlock;
2581                }
2582        }
2583
2584        pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2585               dst_table);
2586
2587unlock:
2588        mutex_unlock(&src_table->lock);
2589
2590        return dest_pstate;
2591}
2592
2593/**
2594 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2595 * @dev:        device for which we do this operation
2596 * @freq:       Frequency in Hz for this OPP
2597 * @u_volt:     Voltage in uVolts for this OPP
2598 *
2599 * This function adds an opp definition to the opp table and returns status.
2600 * The opp is made available by default and it can be controlled using
2601 * dev_pm_opp_enable/disable functions.
2602 *
2603 * Return:
2604 * 0            On success OR
2605 *              Duplicate OPPs (both freq and volt are same) and opp->available
2606 * -EEXIST      Freq are same and volt are different OR
2607 *              Duplicate OPPs (both freq and volt are same) and !opp->available
2608 * -ENOMEM      Memory allocation failure
2609 */
2610int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2611{
2612        struct opp_table *opp_table;
2613        int ret;
2614
2615        opp_table = _add_opp_table(dev, true);
2616        if (IS_ERR(opp_table))
2617                return PTR_ERR(opp_table);
2618
2619        /* Fix regulator count for dynamic OPPs */
2620        opp_table->regulator_count = 1;
2621
2622        ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2623        if (ret)
2624                dev_pm_opp_put_opp_table(opp_table);
2625
2626        return ret;
2627}
2628EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2629
2630/**
2631 * _opp_set_availability() - helper to set the availability of an opp
2632 * @dev:                device for which we do this operation
2633 * @freq:               OPP frequency to modify availability
2634 * @availability_req:   availability status requested for this opp
2635 *
2636 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2637 * which is isolated here.
2638 *
2639 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2640 * copy operation, returns 0 if no modification was done OR modification was
2641 * successful.
2642 */
2643static int _opp_set_availability(struct device *dev, unsigned long freq,
2644                                 bool availability_req)
2645{
2646        struct opp_table *opp_table;
2647        struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2648        int r = 0;
2649
2650        /* Find the opp_table */
2651        opp_table = _find_opp_table(dev);
2652        if (IS_ERR(opp_table)) {
2653                r = PTR_ERR(opp_table);
2654                dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2655                return r;
2656        }
2657
2658        mutex_lock(&opp_table->lock);
2659
2660        /* Do we have the frequency? */
2661        list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2662                if (tmp_opp->rate == freq) {
2663                        opp = tmp_opp;
2664                        break;
2665                }
2666        }
2667
2668        if (IS_ERR(opp)) {
2669                r = PTR_ERR(opp);
2670                goto unlock;
2671        }
2672
2673        /* Is update really needed? */
2674        if (opp->available == availability_req)
2675                goto unlock;
2676
2677        opp->available = availability_req;
2678
2679        dev_pm_opp_get(opp);
2680        mutex_unlock(&opp_table->lock);
2681
2682        /* Notify the change of the OPP availability */
2683        if (availability_req)
2684                blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2685                                             opp);
2686        else
2687                blocking_notifier_call_chain(&opp_table->head,
2688                                             OPP_EVENT_DISABLE, opp);
2689
2690        dev_pm_opp_put(opp);
2691        goto put_table;
2692
2693unlock:
2694        mutex_unlock(&opp_table->lock);
2695put_table:
2696        dev_pm_opp_put_opp_table(opp_table);
2697        return r;
2698}
2699
2700/**
2701 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2702 * @dev:                device for which we do this operation
2703 * @freq:               OPP frequency to adjust voltage of
2704 * @u_volt:             new OPP target voltage
2705 * @u_volt_min:         new OPP min voltage
2706 * @u_volt_max:         new OPP max voltage
2707 *
2708 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2709 * copy operation, returns 0 if no modifcation was done OR modification was
2710 * successful.
2711 */
2712int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2713                              unsigned long u_volt, unsigned long u_volt_min,
2714                              unsigned long u_volt_max)
2715
2716{
2717        struct opp_table *opp_table;
2718        struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2719        int r = 0;
2720
2721        /* Find the opp_table */
2722        opp_table = _find_opp_table(dev);
2723        if (IS_ERR(opp_table)) {
2724                r = PTR_ERR(opp_table);
2725                dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2726                return r;
2727        }
2728
2729        mutex_lock(&opp_table->lock);
2730
2731        /* Do we have the frequency? */
2732        list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2733                if (tmp_opp->rate == freq) {
2734                        opp = tmp_opp;
2735                        break;
2736                }
2737        }
2738
2739        if (IS_ERR(opp)) {
2740                r = PTR_ERR(opp);
2741                goto adjust_unlock;
2742        }
2743
2744        /* Is update really needed? */
2745        if (opp->supplies->u_volt == u_volt)
2746                goto adjust_unlock;
2747
2748        opp->supplies->u_volt = u_volt;
2749        opp->supplies->u_volt_min = u_volt_min;
2750        opp->supplies->u_volt_max = u_volt_max;
2751
2752        dev_pm_opp_get(opp);
2753        mutex_unlock(&opp_table->lock);
2754
2755        /* Notify the voltage change of the OPP */
2756        blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2757                                     opp);
2758
2759        dev_pm_opp_put(opp);
2760        goto adjust_put_table;
2761
2762adjust_unlock:
2763        mutex_unlock(&opp_table->lock);
2764adjust_put_table:
2765        dev_pm_opp_put_opp_table(opp_table);
2766        return r;
2767}
2768EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2769
2770/**
2771 * dev_pm_opp_enable() - Enable a specific OPP
2772 * @dev:        device for which we do this operation
2773 * @freq:       OPP frequency to enable
2774 *
2775 * Enables a provided opp. If the operation is valid, this returns 0, else the
2776 * corresponding error value. It is meant to be used for users an OPP available
2777 * after being temporarily made unavailable with dev_pm_opp_disable.
2778 *
2779 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2780 * copy operation, returns 0 if no modification was done OR modification was
2781 * successful.
2782 */
2783int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2784{
2785        return _opp_set_availability(dev, freq, true);
2786}
2787EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2788
2789/**
2790 * dev_pm_opp_disable() - Disable a specific OPP
2791 * @dev:        device for which we do this operation
2792 * @freq:       OPP frequency to disable
2793 *
2794 * Disables a provided opp. If the operation is valid, this returns
2795 * 0, else the corresponding error value. It is meant to be a temporary
2796 * control by users to make this OPP not available until the circumstances are
2797 * right to make it available again (with a call to dev_pm_opp_enable).
2798 *
2799 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2800 * copy operation, returns 0 if no modification was done OR modification was
2801 * successful.
2802 */
2803int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2804{
2805        return _opp_set_availability(dev, freq, false);
2806}
2807EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2808
2809/**
2810 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2811 * @dev:        Device for which notifier needs to be registered
2812 * @nb:         Notifier block to be registered
2813 *
2814 * Return: 0 on success or a negative error value.
2815 */
2816int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2817{
2818        struct opp_table *opp_table;
2819        int ret;
2820
2821        opp_table = _find_opp_table(dev);
2822        if (IS_ERR(opp_table))
2823                return PTR_ERR(opp_table);
2824
2825        ret = blocking_notifier_chain_register(&opp_table->head, nb);
2826
2827        dev_pm_opp_put_opp_table(opp_table);
2828
2829        return ret;
2830}
2831EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2832
2833/**
2834 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2835 * @dev:        Device for which notifier needs to be unregistered
2836 * @nb:         Notifier block to be unregistered
2837 *
2838 * Return: 0 on success or a negative error value.
2839 */
2840int dev_pm_opp_unregister_notifier(struct device *dev,
2841                                   struct notifier_block *nb)
2842{
2843        struct opp_table *opp_table;
2844        int ret;
2845
2846        opp_table = _find_opp_table(dev);
2847        if (IS_ERR(opp_table))
2848                return PTR_ERR(opp_table);
2849
2850        ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2851
2852        dev_pm_opp_put_opp_table(opp_table);
2853
2854        return ret;
2855}
2856EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2857
2858/**
2859 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2860 * @dev:        device pointer used to lookup OPP table.
2861 *
2862 * Free both OPPs created using static entries present in DT and the
2863 * dynamically added entries.
2864 */
2865void dev_pm_opp_remove_table(struct device *dev)
2866{
2867        struct opp_table *opp_table;
2868
2869        /* Check for existing table for 'dev' */
2870        opp_table = _find_opp_table(dev);
2871        if (IS_ERR(opp_table)) {
2872                int error = PTR_ERR(opp_table);
2873
2874                if (error != -ENODEV)
2875                        WARN(1, "%s: opp_table: %d\n",
2876                             IS_ERR_OR_NULL(dev) ?
2877                                        "Invalid device" : dev_name(dev),
2878                             error);
2879                return;
2880        }
2881
2882        /*
2883         * Drop the extra reference only if the OPP table was successfully added
2884         * with dev_pm_opp_of_add_table() earlier.
2885         **/
2886        if (_opp_remove_all_static(opp_table))
2887                dev_pm_opp_put_opp_table(opp_table);
2888
2889        /* Drop reference taken by _find_opp_table() */
2890        dev_pm_opp_put_opp_table(opp_table);
2891}
2892EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2893
2894/**
2895 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2896 * @dev:        device for which we do this operation
2897 *
2898 * Sync voltage state of the OPP table regulators.
2899 *
2900 * Return: 0 on success or a negative error value.
2901 */
2902int dev_pm_opp_sync_regulators(struct device *dev)
2903{
2904        struct opp_table *opp_table;
2905        struct regulator *reg;
2906        int i, ret = 0;
2907
2908        /* Device may not have OPP table */
2909        opp_table = _find_opp_table(dev);
2910        if (IS_ERR(opp_table))
2911                return 0;
2912
2913        /* Regulator may not be required for the device */
2914        if (unlikely(!opp_table->regulators))
2915                goto put_table;
2916
2917        /* Nothing to sync if voltage wasn't changed */
2918        if (!opp_table->enabled)
2919                goto put_table;
2920
2921        for (i = 0; i < opp_table->regulator_count; i++) {
2922                reg = opp_table->regulators[i];
2923                ret = regulator_sync_voltage(reg);
2924                if (ret)
2925                        break;
2926        }
2927put_table:
2928        /* Drop reference taken by _find_opp_table() */
2929        dev_pm_opp_put_opp_table(opp_table);
2930
2931        return ret;
2932}
2933EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2934