linux/drivers/parisc/pdc_stable.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* 
   3 *    Interfaces to retrieve and set PDC Stable options (firmware)
   4 *
   5 *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
   6 *
   7 *    DEV NOTE: the PDC Procedures reference states that:
   8 *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
   9 *    96 bytes of Stable Storage is optional [...]. Failure to provide the
  10 *    optional locations from 96 to 192 results in the loss of certain
  11 *    functionality during boot."
  12 *
  13 *    Since locations between 96 and 192 are the various paths, most (if not
  14 *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
  15 *    following code can deal with just 96 bytes of Stable Storage, and all
  16 *    sizes between 96 and 192 bytes (provided they are multiple of struct
  17 *    device_path size, eg: 128, 160 and 192) to provide full information.
  18 *    One last word: there's one path we can always count on: the primary path.
  19 *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
  20 *
  21 *    The first OS-dependent area should always be available. Obviously, this is
  22 *    not true for the other one. Also bear in mind that reading/writing from/to
  23 *    osdep2 is much more expensive than from/to osdep1.
  24 *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
  25 *    2 bytes of storage available right after OSID. That's a total of 4 bytes
  26 *    sacrificed: -ETOOLAZY :P
  27 *
  28 *    The current policy wrt file permissions is:
  29 *      - write: root only
  30 *      - read: (reading triggers PDC calls) ? root only : everyone
  31 *    The rationale is that PDC calls could hog (DoS) the machine.
  32 *
  33 *      TODO:
  34 *      - timer/fastsize write calls
  35 */
  36
  37#undef PDCS_DEBUG
  38#ifdef PDCS_DEBUG
  39#define DPRINTK(fmt, args...)   printk(KERN_DEBUG fmt, ## args)
  40#else
  41#define DPRINTK(fmt, args...)
  42#endif
  43
  44#include <linux/module.h>
  45#include <linux/init.h>
  46#include <linux/kernel.h>
  47#include <linux/string.h>
  48#include <linux/capability.h>
  49#include <linux/ctype.h>
  50#include <linux/sysfs.h>
  51#include <linux/kobject.h>
  52#include <linux/device.h>
  53#include <linux/errno.h>
  54#include <linux/spinlock.h>
  55
  56#include <asm/pdc.h>
  57#include <asm/page.h>
  58#include <linux/uaccess.h>
  59#include <asm/hardware.h>
  60
  61#define PDCS_VERSION    "0.30"
  62#define PDCS_PREFIX     "PDC Stable Storage"
  63
  64#define PDCS_ADDR_PPRI  0x00
  65#define PDCS_ADDR_OSID  0x40
  66#define PDCS_ADDR_OSD1  0x48
  67#define PDCS_ADDR_DIAG  0x58
  68#define PDCS_ADDR_FSIZ  0x5C
  69#define PDCS_ADDR_PCON  0x60
  70#define PDCS_ADDR_PALT  0x80
  71#define PDCS_ADDR_PKBD  0xA0
  72#define PDCS_ADDR_OSD2  0xE0
  73
  74MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
  75MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
  76MODULE_LICENSE("GPL");
  77MODULE_VERSION(PDCS_VERSION);
  78
  79/* holds Stable Storage size. Initialized once and for all, no lock needed */
  80static unsigned long pdcs_size __read_mostly;
  81
  82/* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
  83static u16 pdcs_osid __read_mostly;
  84
  85/* This struct defines what we need to deal with a parisc pdc path entry */
  86struct pdcspath_entry {
  87        rwlock_t rw_lock;               /* to protect path entry access */
  88        short ready;                    /* entry record is valid if != 0 */
  89        unsigned long addr;             /* entry address in stable storage */
  90        char *name;                     /* entry name */
  91        struct device_path devpath;     /* device path in parisc representation */
  92        struct device *dev;             /* corresponding device */
  93        struct kobject kobj;
  94};
  95
  96struct pdcspath_attribute {
  97        struct attribute attr;
  98        ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
  99        ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
 100};
 101
 102#define PDCSPATH_ENTRY(_addr, _name) \
 103struct pdcspath_entry pdcspath_entry_##_name = { \
 104        .ready = 0, \
 105        .addr = _addr, \
 106        .name = __stringify(_name), \
 107};
 108
 109#define PDCS_ATTR(_name, _mode, _show, _store) \
 110struct kobj_attribute pdcs_attr_##_name = { \
 111        .attr = {.name = __stringify(_name), .mode = _mode}, \
 112        .show = _show, \
 113        .store = _store, \
 114};
 115
 116#define PATHS_ATTR(_name, _mode, _show, _store) \
 117struct pdcspath_attribute paths_attr_##_name = { \
 118        .attr = {.name = __stringify(_name), .mode = _mode}, \
 119        .show = _show, \
 120        .store = _store, \
 121};
 122
 123#define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
 124#define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
 125
 126/**
 127 * pdcspath_fetch - This function populates the path entry structs.
 128 * @entry: A pointer to an allocated pdcspath_entry.
 129 * 
 130 * The general idea is that you don't read from the Stable Storage every time
 131 * you access the files provided by the facilities. We store a copy of the
 132 * content of the stable storage WRT various paths in these structs. We read
 133 * these structs when reading the files, and we will write to these structs when
 134 * writing to the files, and only then write them back to the Stable Storage.
 135 *
 136 * This function expects to be called with @entry->rw_lock write-hold.
 137 */
 138static int
 139pdcspath_fetch(struct pdcspath_entry *entry)
 140{
 141        struct device_path *devpath;
 142
 143        if (!entry)
 144                return -EINVAL;
 145
 146        devpath = &entry->devpath;
 147        
 148        DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 149                        entry, devpath, entry->addr);
 150
 151        /* addr, devpath and count must be word aligned */
 152        if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 153                return -EIO;
 154                
 155        /* Find the matching device.
 156           NOTE: hardware_path overlays with device_path, so the nice cast can
 157           be used */
 158        entry->dev = hwpath_to_device((struct hardware_path *)devpath);
 159
 160        entry->ready = 1;
 161        
 162        DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 163        
 164        return 0;
 165}
 166
 167/**
 168 * pdcspath_store - This function writes a path to stable storage.
 169 * @entry: A pointer to an allocated pdcspath_entry.
 170 * 
 171 * It can be used in two ways: either by passing it a preset devpath struct
 172 * containing an already computed hardware path, or by passing it a device
 173 * pointer, from which it'll find out the corresponding hardware path.
 174 * For now we do not handle the case where there's an error in writing to the
 175 * Stable Storage area, so you'd better not mess up the data :P
 176 *
 177 * This function expects to be called with @entry->rw_lock write-hold.
 178 */
 179static void
 180pdcspath_store(struct pdcspath_entry *entry)
 181{
 182        struct device_path *devpath;
 183
 184        BUG_ON(!entry);
 185
 186        devpath = &entry->devpath;
 187        
 188        /* We expect the caller to set the ready flag to 0 if the hardware
 189           path struct provided is invalid, so that we know we have to fill it.
 190           First case, we don't have a preset hwpath... */
 191        if (!entry->ready) {
 192                /* ...but we have a device, map it */
 193                BUG_ON(!entry->dev);
 194                device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
 195        }
 196        /* else, we expect the provided hwpath to be valid. */
 197        
 198        DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
 199                        entry, devpath, entry->addr);
 200
 201        /* addr, devpath and count must be word aligned */
 202        if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
 203                WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n"
 204                                "It is likely that the Stable Storage data has been corrupted.\n"
 205                                "Please check it carefully upon next reboot.\n", __func__);
 206                
 207        /* kobject is already registered */
 208        entry->ready = 2;
 209        
 210        DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
 211}
 212
 213/**
 214 * pdcspath_hwpath_read - This function handles hardware path pretty printing.
 215 * @entry: An allocated and populated pdscpath_entry struct.
 216 * @buf: The output buffer to write to.
 217 * 
 218 * We will call this function to format the output of the hwpath attribute file.
 219 */
 220static ssize_t
 221pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
 222{
 223        char *out = buf;
 224        struct device_path *devpath;
 225        short i;
 226
 227        if (!entry || !buf)
 228                return -EINVAL;
 229
 230        read_lock(&entry->rw_lock);
 231        devpath = &entry->devpath;
 232        i = entry->ready;
 233        read_unlock(&entry->rw_lock);
 234
 235        if (!i) /* entry is not ready */
 236                return -ENODATA;
 237        
 238        for (i = 0; i < 6; i++) {
 239                if (devpath->bc[i] >= 128)
 240                        continue;
 241                out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
 242        }
 243        out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
 244        
 245        return out - buf;
 246}
 247
 248/**
 249 * pdcspath_hwpath_write - This function handles hardware path modifying.
 250 * @entry: An allocated and populated pdscpath_entry struct.
 251 * @buf: The input buffer to read from.
 252 * @count: The number of bytes to be read.
 253 * 
 254 * We will call this function to change the current hardware path.
 255 * Hardware paths are to be given '/'-delimited, without brackets.
 256 * We make sure that the provided path actually maps to an existing
 257 * device, BUT nothing would prevent some foolish user to set the path to some
 258 * PCI bridge or even a CPU...
 259 * A better work around would be to make sure we are at the end of a device tree
 260 * for instance, but it would be IMHO beyond the simple scope of that driver.
 261 * The aim is to provide a facility. Data correctness is left to userland.
 262 */
 263static ssize_t
 264pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 265{
 266        struct hardware_path hwpath;
 267        unsigned short i;
 268        char in[64], *temp;
 269        struct device *dev;
 270        int ret;
 271
 272        if (!entry || !buf || !count)
 273                return -EINVAL;
 274
 275        /* We'll use a local copy of buf */
 276        count = min_t(size_t, count, sizeof(in)-1);
 277        strncpy(in, buf, count);
 278        in[count] = '\0';
 279        
 280        /* Let's clean up the target. 0xff is a blank pattern */
 281        memset(&hwpath, 0xff, sizeof(hwpath));
 282        
 283        /* First, pick the mod field (the last one of the input string) */
 284        if (!(temp = strrchr(in, '/')))
 285                return -EINVAL;
 286                        
 287        hwpath.mod = simple_strtoul(temp+1, NULL, 10);
 288        in[temp-in] = '\0';     /* truncate the remaining string. just precaution */
 289        DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
 290        
 291        /* Then, loop for each delimiter, making sure we don't have too many.
 292           we write the bc fields in a down-top way. No matter what, we stop
 293           before writing the last field. If there are too many fields anyway,
 294           then the user is a moron and it'll be caught up later when we'll
 295           check the consistency of the given hwpath. */
 296        for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
 297                hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
 298                in[temp-in] = '\0';
 299                DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 300        }
 301        
 302        /* Store the final field */             
 303        hwpath.bc[i] = simple_strtoul(in, NULL, 10);
 304        DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
 305        
 306        /* Now we check that the user isn't trying to lure us */
 307        if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
 308                printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
 309                        "hardware path: %s\n", __func__, entry->name, buf);
 310                return -EINVAL;
 311        }
 312        
 313        /* So far so good, let's get in deep */
 314        write_lock(&entry->rw_lock);
 315        entry->ready = 0;
 316        entry->dev = dev;
 317        
 318        /* Now, dive in. Write back to the hardware */
 319        pdcspath_store(entry);
 320        
 321        /* Update the symlink to the real device */
 322        sysfs_remove_link(&entry->kobj, "device");
 323        write_unlock(&entry->rw_lock);
 324
 325        ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 326        WARN_ON(ret);
 327
 328        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
 329                entry->name, buf);
 330        
 331        return count;
 332}
 333
 334/**
 335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
 336 * @entry: An allocated and populated pdscpath_entry struct.
 337 * @buf: The output buffer to write to.
 338 * 
 339 * We will call this function to format the output of the layer attribute file.
 340 */
 341static ssize_t
 342pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
 343{
 344        char *out = buf;
 345        struct device_path *devpath;
 346        short i;
 347
 348        if (!entry || !buf)
 349                return -EINVAL;
 350        
 351        read_lock(&entry->rw_lock);
 352        devpath = &entry->devpath;
 353        i = entry->ready;
 354        read_unlock(&entry->rw_lock);
 355
 356        if (!i) /* entry is not ready */
 357                return -ENODATA;
 358        
 359        for (i = 0; i < 6 && devpath->layers[i]; i++)
 360                out += sprintf(out, "%u ", devpath->layers[i]);
 361
 362        out += sprintf(out, "\n");
 363        
 364        return out - buf;
 365}
 366
 367/**
 368 * pdcspath_layer_write - This function handles extended layer modifying.
 369 * @entry: An allocated and populated pdscpath_entry struct.
 370 * @buf: The input buffer to read from.
 371 * @count: The number of bytes to be read.
 372 * 
 373 * We will call this function to change the current layer value.
 374 * Layers are to be given '.'-delimited, without brackets.
 375 * XXX beware we are far less checky WRT input data provided than for hwpath.
 376 * Potential harm can be done, since there's no way to check the validity of
 377 * the layer fields.
 378 */
 379static ssize_t
 380pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
 381{
 382        unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
 383        unsigned short i;
 384        char in[64], *temp;
 385
 386        if (!entry || !buf || !count)
 387                return -EINVAL;
 388
 389        /* We'll use a local copy of buf */
 390        count = min_t(size_t, count, sizeof(in)-1);
 391        strncpy(in, buf, count);
 392        in[count] = '\0';
 393        
 394        /* Let's clean up the target. 0 is a blank pattern */
 395        memset(&layers, 0, sizeof(layers));
 396        
 397        /* First, pick the first layer */
 398        if (unlikely(!isdigit(*in)))
 399                return -EINVAL;
 400        layers[0] = simple_strtoul(in, NULL, 10);
 401        DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
 402        
 403        temp = in;
 404        for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
 405                if (unlikely(!isdigit(*(++temp))))
 406                        return -EINVAL;
 407                layers[i] = simple_strtoul(temp, NULL, 10);
 408                DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
 409        }
 410                
 411        /* So far so good, let's get in deep */
 412        write_lock(&entry->rw_lock);
 413        
 414        /* First, overwrite the current layers with the new ones, not touching
 415           the hardware path. */
 416        memcpy(&entry->devpath.layers, &layers, sizeof(layers));
 417        
 418        /* Now, dive in. Write back to the hardware */
 419        pdcspath_store(entry);
 420        write_unlock(&entry->rw_lock);
 421        
 422        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
 423                entry->name, buf);
 424        
 425        return count;
 426}
 427
 428/**
 429 * pdcspath_attr_show - Generic read function call wrapper.
 430 * @kobj: The kobject to get info from.
 431 * @attr: The attribute looked upon.
 432 * @buf: The output buffer.
 433 */
 434static ssize_t
 435pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
 436{
 437        struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 438        struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 439        ssize_t ret = 0;
 440
 441        if (pdcs_attr->show)
 442                ret = pdcs_attr->show(entry, buf);
 443
 444        return ret;
 445}
 446
 447/**
 448 * pdcspath_attr_store - Generic write function call wrapper.
 449 * @kobj: The kobject to write info to.
 450 * @attr: The attribute to be modified.
 451 * @buf: The input buffer.
 452 * @count: The size of the buffer.
 453 */
 454static ssize_t
 455pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
 456                        const char *buf, size_t count)
 457{
 458        struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
 459        struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
 460        ssize_t ret = 0;
 461
 462        if (!capable(CAP_SYS_ADMIN))
 463                return -EACCES;
 464
 465        if (pdcs_attr->store)
 466                ret = pdcs_attr->store(entry, buf, count);
 467
 468        return ret;
 469}
 470
 471static const struct sysfs_ops pdcspath_attr_ops = {
 472        .show = pdcspath_attr_show,
 473        .store = pdcspath_attr_store,
 474};
 475
 476/* These are the two attributes of any PDC path. */
 477static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
 478static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
 479
 480static struct attribute *paths_subsys_attrs[] = {
 481        &paths_attr_hwpath.attr,
 482        &paths_attr_layer.attr,
 483        NULL,
 484};
 485
 486/* Specific kobject type for our PDC paths */
 487static struct kobj_type ktype_pdcspath = {
 488        .sysfs_ops = &pdcspath_attr_ops,
 489        .default_attrs = paths_subsys_attrs,
 490};
 491
 492/* We hard define the 4 types of path we expect to find */
 493static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
 494static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
 495static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
 496static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
 497
 498/* An array containing all PDC paths we will deal with */
 499static struct pdcspath_entry *pdcspath_entries[] = {
 500        &pdcspath_entry_primary,
 501        &pdcspath_entry_alternative,
 502        &pdcspath_entry_console,
 503        &pdcspath_entry_keyboard,
 504        NULL,
 505};
 506
 507
 508/* For more insight of what's going on here, refer to PDC Procedures doc,
 509 * Section PDC_STABLE */
 510
 511/**
 512 * pdcs_size_read - Stable Storage size output.
 513 * @buf: The output buffer to write to.
 514 */
 515static ssize_t pdcs_size_read(struct kobject *kobj,
 516                              struct kobj_attribute *attr,
 517                              char *buf)
 518{
 519        char *out = buf;
 520
 521        if (!buf)
 522                return -EINVAL;
 523
 524        /* show the size of the stable storage */
 525        out += sprintf(out, "%ld\n", pdcs_size);
 526
 527        return out - buf;
 528}
 529
 530/**
 531 * pdcs_auto_read - Stable Storage autoboot/search flag output.
 532 * @buf: The output buffer to write to.
 533 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 534 */
 535static ssize_t pdcs_auto_read(struct kobject *kobj,
 536                              struct kobj_attribute *attr,
 537                              char *buf, int knob)
 538{
 539        char *out = buf;
 540        struct pdcspath_entry *pathentry;
 541
 542        if (!buf)
 543                return -EINVAL;
 544
 545        /* Current flags are stored in primary boot path entry */
 546        pathentry = &pdcspath_entry_primary;
 547
 548        read_lock(&pathentry->rw_lock);
 549        out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
 550                                        "On" : "Off");
 551        read_unlock(&pathentry->rw_lock);
 552
 553        return out - buf;
 554}
 555
 556/**
 557 * pdcs_autoboot_read - Stable Storage autoboot flag output.
 558 * @buf: The output buffer to write to.
 559 */
 560static ssize_t pdcs_autoboot_read(struct kobject *kobj,
 561                                  struct kobj_attribute *attr, char *buf)
 562{
 563        return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT);
 564}
 565
 566/**
 567 * pdcs_autosearch_read - Stable Storage autoboot flag output.
 568 * @buf: The output buffer to write to.
 569 */
 570static ssize_t pdcs_autosearch_read(struct kobject *kobj,
 571                                    struct kobj_attribute *attr, char *buf)
 572{
 573        return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH);
 574}
 575
 576/**
 577 * pdcs_timer_read - Stable Storage timer count output (in seconds).
 578 * @buf: The output buffer to write to.
 579 *
 580 * The value of the timer field correponds to a number of seconds in powers of 2.
 581 */
 582static ssize_t pdcs_timer_read(struct kobject *kobj,
 583                               struct kobj_attribute *attr, char *buf)
 584{
 585        char *out = buf;
 586        struct pdcspath_entry *pathentry;
 587
 588        if (!buf)
 589                return -EINVAL;
 590
 591        /* Current flags are stored in primary boot path entry */
 592        pathentry = &pdcspath_entry_primary;
 593
 594        /* print the timer value in seconds */
 595        read_lock(&pathentry->rw_lock);
 596        out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
 597                                (1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
 598        read_unlock(&pathentry->rw_lock);
 599
 600        return out - buf;
 601}
 602
 603/**
 604 * pdcs_osid_read - Stable Storage OS ID register output.
 605 * @buf: The output buffer to write to.
 606 */
 607static ssize_t pdcs_osid_read(struct kobject *kobj,
 608                              struct kobj_attribute *attr, char *buf)
 609{
 610        char *out = buf;
 611
 612        if (!buf)
 613                return -EINVAL;
 614
 615        out += sprintf(out, "%s dependent data (0x%.4x)\n",
 616                os_id_to_string(pdcs_osid), pdcs_osid);
 617
 618        return out - buf;
 619}
 620
 621/**
 622 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
 623 * @buf: The output buffer to write to.
 624 *
 625 * This can hold 16 bytes of OS-Dependent data.
 626 */
 627static ssize_t pdcs_osdep1_read(struct kobject *kobj,
 628                                struct kobj_attribute *attr, char *buf)
 629{
 630        char *out = buf;
 631        u32 result[4];
 632
 633        if (!buf)
 634                return -EINVAL;
 635
 636        if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
 637                return -EIO;
 638
 639        out += sprintf(out, "0x%.8x\n", result[0]);
 640        out += sprintf(out, "0x%.8x\n", result[1]);
 641        out += sprintf(out, "0x%.8x\n", result[2]);
 642        out += sprintf(out, "0x%.8x\n", result[3]);
 643
 644        return out - buf;
 645}
 646
 647/**
 648 * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
 649 * @buf: The output buffer to write to.
 650 *
 651 * I have NFC how to interpret the content of that register ;-).
 652 */
 653static ssize_t pdcs_diagnostic_read(struct kobject *kobj,
 654                                    struct kobj_attribute *attr, char *buf)
 655{
 656        char *out = buf;
 657        u32 result;
 658
 659        if (!buf)
 660                return -EINVAL;
 661
 662        /* get diagnostic */
 663        if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
 664                return -EIO;
 665
 666        out += sprintf(out, "0x%.4x\n", (result >> 16));
 667
 668        return out - buf;
 669}
 670
 671/**
 672 * pdcs_fastsize_read - Stable Storage FastSize register output.
 673 * @buf: The output buffer to write to.
 674 *
 675 * This register holds the amount of system RAM to be tested during boot sequence.
 676 */
 677static ssize_t pdcs_fastsize_read(struct kobject *kobj,
 678                                  struct kobj_attribute *attr, char *buf)
 679{
 680        char *out = buf;
 681        u32 result;
 682
 683        if (!buf)
 684                return -EINVAL;
 685
 686        /* get fast-size */
 687        if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
 688                return -EIO;
 689
 690        if ((result & 0x0F) < 0x0E)
 691                out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
 692        else
 693                out += sprintf(out, "All");
 694        out += sprintf(out, "\n");
 695        
 696        return out - buf;
 697}
 698
 699/**
 700 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
 701 * @buf: The output buffer to write to.
 702 *
 703 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
 704 */
 705static ssize_t pdcs_osdep2_read(struct kobject *kobj,
 706                                struct kobj_attribute *attr, char *buf)
 707{
 708        char *out = buf;
 709        unsigned long size;
 710        unsigned short i;
 711        u32 result;
 712
 713        if (unlikely(pdcs_size <= 224))
 714                return -ENODATA;
 715
 716        size = pdcs_size - 224;
 717
 718        if (!buf)
 719                return -EINVAL;
 720
 721        for (i=0; i<size; i+=4) {
 722                if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
 723                                        sizeof(result)) != PDC_OK))
 724                        return -EIO;
 725                out += sprintf(out, "0x%.8x\n", result);
 726        }
 727
 728        return out - buf;
 729}
 730
 731/**
 732 * pdcs_auto_write - This function handles autoboot/search flag modifying.
 733 * @buf: The input buffer to read from.
 734 * @count: The number of bytes to be read.
 735 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
 736 * 
 737 * We will call this function to change the current autoboot flag.
 738 * We expect a precise syntax:
 739 *      \"n\" (n == 0 or 1) to toggle AutoBoot Off or On
 740 */
 741static ssize_t pdcs_auto_write(struct kobject *kobj,
 742                               struct kobj_attribute *attr, const char *buf,
 743                               size_t count, int knob)
 744{
 745        struct pdcspath_entry *pathentry;
 746        unsigned char flags;
 747        char in[8], *temp;
 748        char c;
 749
 750        if (!capable(CAP_SYS_ADMIN))
 751                return -EACCES;
 752
 753        if (!buf || !count)
 754                return -EINVAL;
 755
 756        /* We'll use a local copy of buf */
 757        count = min_t(size_t, count, sizeof(in)-1);
 758        strncpy(in, buf, count);
 759        in[count] = '\0';
 760
 761        /* Current flags are stored in primary boot path entry */
 762        pathentry = &pdcspath_entry_primary;
 763        
 764        /* Be nice to the existing flag record */
 765        read_lock(&pathentry->rw_lock);
 766        flags = pathentry->devpath.flags;
 767        read_unlock(&pathentry->rw_lock);
 768        
 769        DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
 770
 771        temp = skip_spaces(in);
 772
 773        c = *temp++ - '0';
 774        if ((c != 0) && (c != 1))
 775                goto parse_error;
 776        if (c == 0)
 777                flags &= ~knob;
 778        else
 779                flags |= knob;
 780        
 781        DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
 782                
 783        /* So far so good, let's get in deep */
 784        write_lock(&pathentry->rw_lock);
 785        
 786        /* Change the path entry flags first */
 787        pathentry->devpath.flags = flags;
 788                
 789        /* Now, dive in. Write back to the hardware */
 790        pdcspath_store(pathentry);
 791        write_unlock(&pathentry->rw_lock);
 792        
 793        printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
 794                (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
 795                (flags & knob) ? "On" : "Off");
 796        
 797        return count;
 798
 799parse_error:
 800        printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
 801        return -EINVAL;
 802}
 803
 804/**
 805 * pdcs_autoboot_write - This function handles autoboot flag modifying.
 806 * @buf: The input buffer to read from.
 807 * @count: The number of bytes to be read.
 808 *
 809 * We will call this function to change the current boot flags.
 810 * We expect a precise syntax:
 811 *      \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 812 */
 813static ssize_t pdcs_autoboot_write(struct kobject *kobj,
 814                                   struct kobj_attribute *attr,
 815                                   const char *buf, size_t count)
 816{
 817        return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT);
 818}
 819
 820/**
 821 * pdcs_autosearch_write - This function handles autosearch flag modifying.
 822 * @buf: The input buffer to read from.
 823 * @count: The number of bytes to be read.
 824 *
 825 * We will call this function to change the current boot flags.
 826 * We expect a precise syntax:
 827 *      \"n\" (n == 0 or 1) to toggle AutoSearch Off or On
 828 */
 829static ssize_t pdcs_autosearch_write(struct kobject *kobj,
 830                                     struct kobj_attribute *attr,
 831                                     const char *buf, size_t count)
 832{
 833        return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH);
 834}
 835
 836/**
 837 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
 838 * @buf: The input buffer to read from.
 839 * @count: The number of bytes to be read.
 840 *
 841 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
 842 * write approach. It's up to userspace to deal with it when constructing
 843 * its input buffer.
 844 */
 845static ssize_t pdcs_osdep1_write(struct kobject *kobj,
 846                                 struct kobj_attribute *attr,
 847                                 const char *buf, size_t count)
 848{
 849        u8 in[16];
 850
 851        if (!capable(CAP_SYS_ADMIN))
 852                return -EACCES;
 853
 854        if (!buf || !count)
 855                return -EINVAL;
 856
 857        if (unlikely(pdcs_osid != OS_ID_LINUX))
 858                return -EPERM;
 859
 860        if (count > 16)
 861                return -EMSGSIZE;
 862
 863        /* We'll use a local copy of buf */
 864        memset(in, 0, 16);
 865        memcpy(in, buf, count);
 866
 867        if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
 868                return -EIO;
 869
 870        return count;
 871}
 872
 873/**
 874 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
 875 * @buf: The input buffer to read from.
 876 * @count: The number of bytes to be read.
 877 *
 878 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
 879 * byte-by-byte write approach. It's up to userspace to deal with it when
 880 * constructing its input buffer.
 881 */
 882static ssize_t pdcs_osdep2_write(struct kobject *kobj,
 883                                 struct kobj_attribute *attr,
 884                                 const char *buf, size_t count)
 885{
 886        unsigned long size;
 887        unsigned short i;
 888        u8 in[4];
 889
 890        if (!capable(CAP_SYS_ADMIN))
 891                return -EACCES;
 892
 893        if (!buf || !count)
 894                return -EINVAL;
 895
 896        if (unlikely(pdcs_size <= 224))
 897                return -ENOSYS;
 898
 899        if (unlikely(pdcs_osid != OS_ID_LINUX))
 900                return -EPERM;
 901
 902        size = pdcs_size - 224;
 903
 904        if (count > size)
 905                return -EMSGSIZE;
 906
 907        /* We'll use a local copy of buf */
 908
 909        for (i=0; i<count; i+=4) {
 910                memset(in, 0, 4);
 911                memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
 912                if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
 913                                        sizeof(in)) != PDC_OK))
 914                        return -EIO;
 915        }
 916
 917        return count;
 918}
 919
 920/* The remaining attributes. */
 921static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
 922static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
 923static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
 924static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
 925static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
 926static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
 927static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
 928static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
 929static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
 930
 931static struct attribute *pdcs_subsys_attrs[] = {
 932        &pdcs_attr_size.attr,
 933        &pdcs_attr_autoboot.attr,
 934        &pdcs_attr_autosearch.attr,
 935        &pdcs_attr_timer.attr,
 936        &pdcs_attr_osid.attr,
 937        &pdcs_attr_osdep1.attr,
 938        &pdcs_attr_diagnostic.attr,
 939        &pdcs_attr_fastsize.attr,
 940        &pdcs_attr_osdep2.attr,
 941        NULL,
 942};
 943
 944static const struct attribute_group pdcs_attr_group = {
 945        .attrs = pdcs_subsys_attrs,
 946};
 947
 948static struct kobject *stable_kobj;
 949static struct kset *paths_kset;
 950
 951/**
 952 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
 953 * 
 954 * It creates kobjects corresponding to each path entry with nice sysfs
 955 * links to the real device. This is where the magic takes place: when
 956 * registering the subsystem attributes during module init, each kobject hereby
 957 * created will show in the sysfs tree as a folder containing files as defined
 958 * by path_subsys_attr[].
 959 */
 960static inline int __init
 961pdcs_register_pathentries(void)
 962{
 963        unsigned short i;
 964        struct pdcspath_entry *entry;
 965        int err;
 966        
 967        /* Initialize the entries rw_lock before anything else */
 968        for (i = 0; (entry = pdcspath_entries[i]); i++)
 969                rwlock_init(&entry->rw_lock);
 970
 971        for (i = 0; (entry = pdcspath_entries[i]); i++) {
 972                write_lock(&entry->rw_lock);
 973                err = pdcspath_fetch(entry);
 974                write_unlock(&entry->rw_lock);
 975
 976                if (err < 0)
 977                        continue;
 978
 979                entry->kobj.kset = paths_kset;
 980                err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL,
 981                                           "%s", entry->name);
 982                if (err)
 983                        return err;
 984
 985                /* kobject is now registered */
 986                write_lock(&entry->rw_lock);
 987                entry->ready = 2;
 988                write_unlock(&entry->rw_lock);
 989                
 990                /* Add a nice symlink to the real device */
 991                if (entry->dev) {
 992                        err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
 993                        WARN_ON(err);
 994                }
 995
 996                kobject_uevent(&entry->kobj, KOBJ_ADD);
 997        }
 998        
 999        return 0;
1000}
1001
1002/**
1003 * pdcs_unregister_pathentries - Routine called when unregistering the module.
1004 */
1005static inline void
1006pdcs_unregister_pathentries(void)
1007{
1008        unsigned short i;
1009        struct pdcspath_entry *entry;
1010        
1011        for (i = 0; (entry = pdcspath_entries[i]); i++) {
1012                read_lock(&entry->rw_lock);
1013                if (entry->ready >= 2)
1014                        kobject_put(&entry->kobj);
1015                read_unlock(&entry->rw_lock);
1016        }
1017}
1018
1019/*
1020 * For now we register the stable subsystem with the firmware subsystem
1021 * and the paths subsystem with the stable subsystem
1022 */
1023static int __init
1024pdc_stable_init(void)
1025{
1026        int rc = 0, error = 0;
1027        u32 result;
1028
1029        /* find the size of the stable storage */
1030        if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 
1031                return -ENODEV;
1032
1033        /* make sure we have enough data */
1034        if (pdcs_size < 96)
1035                return -ENODATA;
1036
1037        printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1038
1039        /* get OSID */
1040        if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1041                return -EIO;
1042
1043        /* the actual result is 16 bits away */
1044        pdcs_osid = (u16)(result >> 16);
1045
1046        /* For now we'll register the directory at /sys/firmware/stable */
1047        stable_kobj = kobject_create_and_add("stable", firmware_kobj);
1048        if (!stable_kobj) {
1049                rc = -ENOMEM;
1050                goto fail_firmreg;
1051        }
1052
1053        /* Don't forget the root entries */
1054        error = sysfs_create_group(stable_kobj, &pdcs_attr_group);
1055
1056        /* register the paths kset as a child of the stable kset */
1057        paths_kset = kset_create_and_add("paths", NULL, stable_kobj);
1058        if (!paths_kset) {
1059                rc = -ENOMEM;
1060                goto fail_ksetreg;
1061        }
1062
1063        /* now we create all "files" for the paths kset */
1064        if ((rc = pdcs_register_pathentries()))
1065                goto fail_pdcsreg;
1066
1067        return rc;
1068        
1069fail_pdcsreg:
1070        pdcs_unregister_pathentries();
1071        kset_unregister(paths_kset);
1072        
1073fail_ksetreg:
1074        kobject_put(stable_kobj);
1075        
1076fail_firmreg:
1077        printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1078        return rc;
1079}
1080
1081static void __exit
1082pdc_stable_exit(void)
1083{
1084        pdcs_unregister_pathentries();
1085        kset_unregister(paths_kset);
1086        kobject_put(stable_kobj);
1087}
1088
1089
1090module_init(pdc_stable_init);
1091module_exit(pdc_stable_exit);
1092