linux/drivers/pci/controller/pci-hyperv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/pci-ecam.h>
  44#include <linux/delay.h>
  45#include <linux/semaphore.h>
  46#include <linux/irqdomain.h>
  47#include <asm/irqdomain.h>
  48#include <asm/apic.h>
  49#include <linux/irq.h>
  50#include <linux/msi.h>
  51#include <linux/hyperv.h>
  52#include <linux/refcount.h>
  53#include <asm/mshyperv.h>
  54
  55/*
  56 * Protocol versions. The low word is the minor version, the high word the
  57 * major version.
  58 */
  59
  60#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  61#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  62#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  63
  64enum pci_protocol_version_t {
  65        PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),      /* Win10 */
  66        PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),      /* RS1 */
  67        PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),      /* Vibranium */
  68        PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),      /* WS2022 */
  69};
  70
  71#define CPU_AFFINITY_ALL        -1ULL
  72
  73/*
  74 * Supported protocol versions in the order of probing - highest go
  75 * first.
  76 */
  77static enum pci_protocol_version_t pci_protocol_versions[] = {
  78        PCI_PROTOCOL_VERSION_1_4,
  79        PCI_PROTOCOL_VERSION_1_3,
  80        PCI_PROTOCOL_VERSION_1_2,
  81        PCI_PROTOCOL_VERSION_1_1,
  82};
  83
  84#define PCI_CONFIG_MMIO_LENGTH  0x2000
  85#define CFG_PAGE_OFFSET 0x1000
  86#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87
  88#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89
  90#define STATUS_REVISION_MISMATCH 0xC0000059
  91
  92/* space for 32bit serial number as string */
  93#define SLOT_NAME_SIZE 11
  94
  95/*
  96 * Message Types
  97 */
  98
  99enum pci_message_type {
 100        /*
 101         * Version 1.1
 102         */
 103        PCI_MESSAGE_BASE                = 0x42490000,
 104        PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 105        PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 106        PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 107        PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 108        PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 109        PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 110        PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 111        PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 112        PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 113        PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 114        PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 115        PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 116        PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 117        PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 118        PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 119        PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 120        PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 121        PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 122        PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 123        PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 124        PCI_RESOURCES_ASSIGNED2         = PCI_MESSAGE_BASE + 0x16,
 125        PCI_CREATE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x17,
 126        PCI_DELETE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x18, /* unused */
 127        PCI_BUS_RELATIONS2              = PCI_MESSAGE_BASE + 0x19,
 128        PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
 129        PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
 130        PCI_MESSAGE_MAXIMUM
 131};
 132
 133/*
 134 * Structures defining the virtual PCI Express protocol.
 135 */
 136
 137union pci_version {
 138        struct {
 139                u16 minor_version;
 140                u16 major_version;
 141        } parts;
 142        u32 version;
 143} __packed;
 144
 145/*
 146 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 147 * which is all this driver does.  This representation is the one used in
 148 * Windows, which is what is expected when sending this back and forth with
 149 * the Hyper-V parent partition.
 150 */
 151union win_slot_encoding {
 152        struct {
 153                u32     dev:5;
 154                u32     func:3;
 155                u32     reserved:24;
 156        } bits;
 157        u32 slot;
 158} __packed;
 159
 160/*
 161 * Pretty much as defined in the PCI Specifications.
 162 */
 163struct pci_function_description {
 164        u16     v_id;   /* vendor ID */
 165        u16     d_id;   /* device ID */
 166        u8      rev;
 167        u8      prog_intf;
 168        u8      subclass;
 169        u8      base_class;
 170        u32     subsystem_id;
 171        union win_slot_encoding win_slot;
 172        u32     ser;    /* serial number */
 173} __packed;
 174
 175enum pci_device_description_flags {
 176        HV_PCI_DEVICE_FLAG_NONE                 = 0x0,
 177        HV_PCI_DEVICE_FLAG_NUMA_AFFINITY        = 0x1,
 178};
 179
 180struct pci_function_description2 {
 181        u16     v_id;   /* vendor ID */
 182        u16     d_id;   /* device ID */
 183        u8      rev;
 184        u8      prog_intf;
 185        u8      subclass;
 186        u8      base_class;
 187        u32     subsystem_id;
 188        union   win_slot_encoding win_slot;
 189        u32     ser;    /* serial number */
 190        u32     flags;
 191        u16     virtual_numa_node;
 192        u16     reserved;
 193} __packed;
 194
 195/**
 196 * struct hv_msi_desc
 197 * @vector:             IDT entry
 198 * @delivery_mode:      As defined in Intel's Programmer's
 199 *                      Reference Manual, Volume 3, Chapter 8.
 200 * @vector_count:       Number of contiguous entries in the
 201 *                      Interrupt Descriptor Table that are
 202 *                      occupied by this Message-Signaled
 203 *                      Interrupt. For "MSI", as first defined
 204 *                      in PCI 2.2, this can be between 1 and
 205 *                      32. For "MSI-X," as first defined in PCI
 206 *                      3.0, this must be 1, as each MSI-X table
 207 *                      entry would have its own descriptor.
 208 * @reserved:           Empty space
 209 * @cpu_mask:           All the target virtual processors.
 210 */
 211struct hv_msi_desc {
 212        u8      vector;
 213        u8      delivery_mode;
 214        u16     vector_count;
 215        u32     reserved;
 216        u64     cpu_mask;
 217} __packed;
 218
 219/**
 220 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 221 * @vector:             IDT entry
 222 * @delivery_mode:      As defined in Intel's Programmer's
 223 *                      Reference Manual, Volume 3, Chapter 8.
 224 * @vector_count:       Number of contiguous entries in the
 225 *                      Interrupt Descriptor Table that are
 226 *                      occupied by this Message-Signaled
 227 *                      Interrupt. For "MSI", as first defined
 228 *                      in PCI 2.2, this can be between 1 and
 229 *                      32. For "MSI-X," as first defined in PCI
 230 *                      3.0, this must be 1, as each MSI-X table
 231 *                      entry would have its own descriptor.
 232 * @processor_count:    number of bits enabled in array.
 233 * @processor_array:    All the target virtual processors.
 234 */
 235struct hv_msi_desc2 {
 236        u8      vector;
 237        u8      delivery_mode;
 238        u16     vector_count;
 239        u16     processor_count;
 240        u16     processor_array[32];
 241} __packed;
 242
 243/*
 244 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
 245 *      Everything is the same as in 'hv_msi_desc2' except that the size of the
 246 *      'vector' field is larger to support bigger vector values. For ex: LPI
 247 *      vectors on ARM.
 248 */
 249struct hv_msi_desc3 {
 250        u32     vector;
 251        u8      delivery_mode;
 252        u8      reserved;
 253        u16     vector_count;
 254        u16     processor_count;
 255        u16     processor_array[32];
 256} __packed;
 257
 258/**
 259 * struct tran_int_desc
 260 * @reserved:           unused, padding
 261 * @vector_count:       same as in hv_msi_desc
 262 * @data:               This is the "data payload" value that is
 263 *                      written by the device when it generates
 264 *                      a message-signaled interrupt, either MSI
 265 *                      or MSI-X.
 266 * @address:            This is the address to which the data
 267 *                      payload is written on interrupt
 268 *                      generation.
 269 */
 270struct tran_int_desc {
 271        u16     reserved;
 272        u16     vector_count;
 273        u32     data;
 274        u64     address;
 275} __packed;
 276
 277/*
 278 * A generic message format for virtual PCI.
 279 * Specific message formats are defined later in the file.
 280 */
 281
 282struct pci_message {
 283        u32 type;
 284} __packed;
 285
 286struct pci_child_message {
 287        struct pci_message message_type;
 288        union win_slot_encoding wslot;
 289} __packed;
 290
 291struct pci_incoming_message {
 292        struct vmpacket_descriptor hdr;
 293        struct pci_message message_type;
 294} __packed;
 295
 296struct pci_response {
 297        struct vmpacket_descriptor hdr;
 298        s32 status;                     /* negative values are failures */
 299} __packed;
 300
 301struct pci_packet {
 302        void (*completion_func)(void *context, struct pci_response *resp,
 303                                int resp_packet_size);
 304        void *compl_ctxt;
 305
 306        struct pci_message message[];
 307};
 308
 309/*
 310 * Specific message types supporting the PCI protocol.
 311 */
 312
 313/*
 314 * Version negotiation message. Sent from the guest to the host.
 315 * The guest is free to try different versions until the host
 316 * accepts the version.
 317 *
 318 * pci_version: The protocol version requested.
 319 * is_last_attempt: If TRUE, this is the last version guest will request.
 320 * reservedz: Reserved field, set to zero.
 321 */
 322
 323struct pci_version_request {
 324        struct pci_message message_type;
 325        u32 protocol_version;
 326} __packed;
 327
 328/*
 329 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 330 * bus (PCI Express port) is ready for action.
 331 */
 332
 333struct pci_bus_d0_entry {
 334        struct pci_message message_type;
 335        u32 reserved;
 336        u64 mmio_base;
 337} __packed;
 338
 339struct pci_bus_relations {
 340        struct pci_incoming_message incoming;
 341        u32 device_count;
 342        struct pci_function_description func[];
 343} __packed;
 344
 345struct pci_bus_relations2 {
 346        struct pci_incoming_message incoming;
 347        u32 device_count;
 348        struct pci_function_description2 func[];
 349} __packed;
 350
 351struct pci_q_res_req_response {
 352        struct vmpacket_descriptor hdr;
 353        s32 status;                     /* negative values are failures */
 354        u32 probed_bar[PCI_STD_NUM_BARS];
 355} __packed;
 356
 357struct pci_set_power {
 358        struct pci_message message_type;
 359        union win_slot_encoding wslot;
 360        u32 power_state;                /* In Windows terms */
 361        u32 reserved;
 362} __packed;
 363
 364struct pci_set_power_response {
 365        struct vmpacket_descriptor hdr;
 366        s32 status;                     /* negative values are failures */
 367        union win_slot_encoding wslot;
 368        u32 resultant_state;            /* In Windows terms */
 369        u32 reserved;
 370} __packed;
 371
 372struct pci_resources_assigned {
 373        struct pci_message message_type;
 374        union win_slot_encoding wslot;
 375        u8 memory_range[0x14][6];       /* not used here */
 376        u32 msi_descriptors;
 377        u32 reserved[4];
 378} __packed;
 379
 380struct pci_resources_assigned2 {
 381        struct pci_message message_type;
 382        union win_slot_encoding wslot;
 383        u8 memory_range[0x14][6];       /* not used here */
 384        u32 msi_descriptor_count;
 385        u8 reserved[70];
 386} __packed;
 387
 388struct pci_create_interrupt {
 389        struct pci_message message_type;
 390        union win_slot_encoding wslot;
 391        struct hv_msi_desc int_desc;
 392} __packed;
 393
 394struct pci_create_int_response {
 395        struct pci_response response;
 396        u32 reserved;
 397        struct tran_int_desc int_desc;
 398} __packed;
 399
 400struct pci_create_interrupt2 {
 401        struct pci_message message_type;
 402        union win_slot_encoding wslot;
 403        struct hv_msi_desc2 int_desc;
 404} __packed;
 405
 406struct pci_create_interrupt3 {
 407        struct pci_message message_type;
 408        union win_slot_encoding wslot;
 409        struct hv_msi_desc3 int_desc;
 410} __packed;
 411
 412struct pci_delete_interrupt {
 413        struct pci_message message_type;
 414        union win_slot_encoding wslot;
 415        struct tran_int_desc int_desc;
 416} __packed;
 417
 418/*
 419 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 420 */
 421struct pci_read_block {
 422        struct pci_message message_type;
 423        u32 block_id;
 424        union win_slot_encoding wslot;
 425        u32 bytes_requested;
 426} __packed;
 427
 428struct pci_read_block_response {
 429        struct vmpacket_descriptor hdr;
 430        u32 status;
 431        u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 432} __packed;
 433
 434/*
 435 * Note: the VM must pass a valid block id, wslot and byte_count.
 436 */
 437struct pci_write_block {
 438        struct pci_message message_type;
 439        u32 block_id;
 440        union win_slot_encoding wslot;
 441        u32 byte_count;
 442        u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 443} __packed;
 444
 445struct pci_dev_inval_block {
 446        struct pci_incoming_message incoming;
 447        union win_slot_encoding wslot;
 448        u64 block_mask;
 449} __packed;
 450
 451struct pci_dev_incoming {
 452        struct pci_incoming_message incoming;
 453        union win_slot_encoding wslot;
 454} __packed;
 455
 456struct pci_eject_response {
 457        struct pci_message message_type;
 458        union win_slot_encoding wslot;
 459        u32 status;
 460} __packed;
 461
 462static int pci_ring_size = (4 * PAGE_SIZE);
 463
 464/*
 465 * Driver specific state.
 466 */
 467
 468enum hv_pcibus_state {
 469        hv_pcibus_init = 0,
 470        hv_pcibus_probed,
 471        hv_pcibus_installed,
 472        hv_pcibus_removing,
 473        hv_pcibus_maximum
 474};
 475
 476struct hv_pcibus_device {
 477#ifdef CONFIG_X86
 478        struct pci_sysdata sysdata;
 479#elif defined(CONFIG_ARM64)
 480        struct pci_config_window sysdata;
 481#endif
 482        struct pci_host_bridge *bridge;
 483        struct fwnode_handle *fwnode;
 484        /* Protocol version negotiated with the host */
 485        enum pci_protocol_version_t protocol_version;
 486        enum hv_pcibus_state state;
 487        struct hv_device *hdev;
 488        resource_size_t low_mmio_space;
 489        resource_size_t high_mmio_space;
 490        struct resource *mem_config;
 491        struct resource *low_mmio_res;
 492        struct resource *high_mmio_res;
 493        struct completion *survey_event;
 494        struct pci_bus *pci_bus;
 495        spinlock_t config_lock; /* Avoid two threads writing index page */
 496        spinlock_t device_list_lock;    /* Protect lists below */
 497        void __iomem *cfg_addr;
 498
 499        struct list_head children;
 500        struct list_head dr_list;
 501
 502        struct msi_domain_info msi_info;
 503        struct irq_domain *irq_domain;
 504
 505        spinlock_t retarget_msi_interrupt_lock;
 506
 507        struct workqueue_struct *wq;
 508
 509        /* Highest slot of child device with resources allocated */
 510        int wslot_res_allocated;
 511
 512        /* hypercall arg, must not cross page boundary */
 513        struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 514
 515        /*
 516         * Don't put anything here: retarget_msi_interrupt_params must be last
 517         */
 518};
 519
 520/*
 521 * Tracks "Device Relations" messages from the host, which must be both
 522 * processed in order and deferred so that they don't run in the context
 523 * of the incoming packet callback.
 524 */
 525struct hv_dr_work {
 526        struct work_struct wrk;
 527        struct hv_pcibus_device *bus;
 528};
 529
 530struct hv_pcidev_description {
 531        u16     v_id;   /* vendor ID */
 532        u16     d_id;   /* device ID */
 533        u8      rev;
 534        u8      prog_intf;
 535        u8      subclass;
 536        u8      base_class;
 537        u32     subsystem_id;
 538        union   win_slot_encoding win_slot;
 539        u32     ser;    /* serial number */
 540        u32     flags;
 541        u16     virtual_numa_node;
 542};
 543
 544struct hv_dr_state {
 545        struct list_head list_entry;
 546        u32 device_count;
 547        struct hv_pcidev_description func[];
 548};
 549
 550enum hv_pcichild_state {
 551        hv_pcichild_init = 0,
 552        hv_pcichild_requirements,
 553        hv_pcichild_resourced,
 554        hv_pcichild_ejecting,
 555        hv_pcichild_maximum
 556};
 557
 558struct hv_pci_dev {
 559        /* List protected by pci_rescan_remove_lock */
 560        struct list_head list_entry;
 561        refcount_t refs;
 562        enum hv_pcichild_state state;
 563        struct pci_slot *pci_slot;
 564        struct hv_pcidev_description desc;
 565        bool reported_missing;
 566        struct hv_pcibus_device *hbus;
 567        struct work_struct wrk;
 568
 569        void (*block_invalidate)(void *context, u64 block_mask);
 570        void *invalidate_context;
 571
 572        /*
 573         * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 574         * read it back, for each of the BAR offsets within config space.
 575         */
 576        u32 probed_bar[PCI_STD_NUM_BARS];
 577};
 578
 579struct hv_pci_compl {
 580        struct completion host_event;
 581        s32 completion_status;
 582};
 583
 584static void hv_pci_onchannelcallback(void *context);
 585
 586/**
 587 * hv_pci_generic_compl() - Invoked for a completion packet
 588 * @context:            Set up by the sender of the packet.
 589 * @resp:               The response packet
 590 * @resp_packet_size:   Size in bytes of the packet
 591 *
 592 * This function is used to trigger an event and report status
 593 * for any message for which the completion packet contains a
 594 * status and nothing else.
 595 */
 596static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 597                                 int resp_packet_size)
 598{
 599        struct hv_pci_compl *comp_pkt = context;
 600
 601        if (resp_packet_size >= offsetofend(struct pci_response, status))
 602                comp_pkt->completion_status = resp->status;
 603        else
 604                comp_pkt->completion_status = -1;
 605
 606        complete(&comp_pkt->host_event);
 607}
 608
 609static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 610                                                u32 wslot);
 611
 612static void get_pcichild(struct hv_pci_dev *hpdev)
 613{
 614        refcount_inc(&hpdev->refs);
 615}
 616
 617static void put_pcichild(struct hv_pci_dev *hpdev)
 618{
 619        if (refcount_dec_and_test(&hpdev->refs))
 620                kfree(hpdev);
 621}
 622
 623/*
 624 * There is no good way to get notified from vmbus_onoffer_rescind(),
 625 * so let's use polling here, since this is not a hot path.
 626 */
 627static int wait_for_response(struct hv_device *hdev,
 628                             struct completion *comp)
 629{
 630        while (true) {
 631                if (hdev->channel->rescind) {
 632                        dev_warn_once(&hdev->device, "The device is gone.\n");
 633                        return -ENODEV;
 634                }
 635
 636                if (wait_for_completion_timeout(comp, HZ / 10))
 637                        break;
 638        }
 639
 640        return 0;
 641}
 642
 643/**
 644 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 645 * @devfn:      The Linux representation of PCI slot
 646 *
 647 * Windows uses a slightly different representation of PCI slot.
 648 *
 649 * Return: The Windows representation
 650 */
 651static u32 devfn_to_wslot(int devfn)
 652{
 653        union win_slot_encoding wslot;
 654
 655        wslot.slot = 0;
 656        wslot.bits.dev = PCI_SLOT(devfn);
 657        wslot.bits.func = PCI_FUNC(devfn);
 658
 659        return wslot.slot;
 660}
 661
 662/**
 663 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 664 * @wslot:      The Windows representation of PCI slot
 665 *
 666 * Windows uses a slightly different representation of PCI slot.
 667 *
 668 * Return: The Linux representation
 669 */
 670static int wslot_to_devfn(u32 wslot)
 671{
 672        union win_slot_encoding slot_no;
 673
 674        slot_no.slot = wslot;
 675        return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 676}
 677
 678/*
 679 * PCI Configuration Space for these root PCI buses is implemented as a pair
 680 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 681 * the PCI function being written or read.  Once the first page has been
 682 * written to, the following page maps in the entire configuration space of
 683 * the function.
 684 */
 685
 686/**
 687 * _hv_pcifront_read_config() - Internal PCI config read
 688 * @hpdev:      The PCI driver's representation of the device
 689 * @where:      Offset within config space
 690 * @size:       Size of the transfer
 691 * @val:        Pointer to the buffer receiving the data
 692 */
 693static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 694                                     int size, u32 *val)
 695{
 696        unsigned long flags;
 697        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 698
 699        /*
 700         * If the attempt is to read the IDs or the ROM BAR, simulate that.
 701         */
 702        if (where + size <= PCI_COMMAND) {
 703                memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 704        } else if (where >= PCI_CLASS_REVISION && where + size <=
 705                   PCI_CACHE_LINE_SIZE) {
 706                memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 707                       PCI_CLASS_REVISION, size);
 708        } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 709                   PCI_ROM_ADDRESS) {
 710                memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 711                       PCI_SUBSYSTEM_VENDOR_ID, size);
 712        } else if (where >= PCI_ROM_ADDRESS && where + size <=
 713                   PCI_CAPABILITY_LIST) {
 714                /* ROM BARs are unimplemented */
 715                *val = 0;
 716        } else if (where >= PCI_INTERRUPT_LINE && where + size <=
 717                   PCI_INTERRUPT_PIN) {
 718                /*
 719                 * Interrupt Line and Interrupt PIN are hard-wired to zero
 720                 * because this front-end only supports message-signaled
 721                 * interrupts.
 722                 */
 723                *val = 0;
 724        } else if (where + size <= CFG_PAGE_SIZE) {
 725                spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 726                /* Choose the function to be read. (See comment above) */
 727                writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 728                /* Make sure the function was chosen before we start reading. */
 729                mb();
 730                /* Read from that function's config space. */
 731                switch (size) {
 732                case 1:
 733                        *val = readb(addr);
 734                        break;
 735                case 2:
 736                        *val = readw(addr);
 737                        break;
 738                default:
 739                        *val = readl(addr);
 740                        break;
 741                }
 742                /*
 743                 * Make sure the read was done before we release the spinlock
 744                 * allowing consecutive reads/writes.
 745                 */
 746                mb();
 747                spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 748        } else {
 749                dev_err(&hpdev->hbus->hdev->device,
 750                        "Attempt to read beyond a function's config space.\n");
 751        }
 752}
 753
 754static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 755{
 756        u16 ret;
 757        unsigned long flags;
 758        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 759                             PCI_VENDOR_ID;
 760
 761        spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 762
 763        /* Choose the function to be read. (See comment above) */
 764        writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 765        /* Make sure the function was chosen before we start reading. */
 766        mb();
 767        /* Read from that function's config space. */
 768        ret = readw(addr);
 769        /*
 770         * mb() is not required here, because the spin_unlock_irqrestore()
 771         * is a barrier.
 772         */
 773
 774        spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 775
 776        return ret;
 777}
 778
 779/**
 780 * _hv_pcifront_write_config() - Internal PCI config write
 781 * @hpdev:      The PCI driver's representation of the device
 782 * @where:      Offset within config space
 783 * @size:       Size of the transfer
 784 * @val:        The data being transferred
 785 */
 786static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 787                                      int size, u32 val)
 788{
 789        unsigned long flags;
 790        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 791
 792        if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 793            where + size <= PCI_CAPABILITY_LIST) {
 794                /* SSIDs and ROM BARs are read-only */
 795        } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 796                spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 797                /* Choose the function to be written. (See comment above) */
 798                writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 799                /* Make sure the function was chosen before we start writing. */
 800                wmb();
 801                /* Write to that function's config space. */
 802                switch (size) {
 803                case 1:
 804                        writeb(val, addr);
 805                        break;
 806                case 2:
 807                        writew(val, addr);
 808                        break;
 809                default:
 810                        writel(val, addr);
 811                        break;
 812                }
 813                /*
 814                 * Make sure the write was done before we release the spinlock
 815                 * allowing consecutive reads/writes.
 816                 */
 817                mb();
 818                spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 819        } else {
 820                dev_err(&hpdev->hbus->hdev->device,
 821                        "Attempt to write beyond a function's config space.\n");
 822        }
 823}
 824
 825/**
 826 * hv_pcifront_read_config() - Read configuration space
 827 * @bus: PCI Bus structure
 828 * @devfn: Device/function
 829 * @where: Offset from base
 830 * @size: Byte/word/dword
 831 * @val: Value to be read
 832 *
 833 * Return: PCIBIOS_SUCCESSFUL on success
 834 *         PCIBIOS_DEVICE_NOT_FOUND on failure
 835 */
 836static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 837                                   int where, int size, u32 *val)
 838{
 839        struct hv_pcibus_device *hbus =
 840                container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 841        struct hv_pci_dev *hpdev;
 842
 843        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 844        if (!hpdev)
 845                return PCIBIOS_DEVICE_NOT_FOUND;
 846
 847        _hv_pcifront_read_config(hpdev, where, size, val);
 848
 849        put_pcichild(hpdev);
 850        return PCIBIOS_SUCCESSFUL;
 851}
 852
 853/**
 854 * hv_pcifront_write_config() - Write configuration space
 855 * @bus: PCI Bus structure
 856 * @devfn: Device/function
 857 * @where: Offset from base
 858 * @size: Byte/word/dword
 859 * @val: Value to be written to device
 860 *
 861 * Return: PCIBIOS_SUCCESSFUL on success
 862 *         PCIBIOS_DEVICE_NOT_FOUND on failure
 863 */
 864static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 865                                    int where, int size, u32 val)
 866{
 867        struct hv_pcibus_device *hbus =
 868            container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 869        struct hv_pci_dev *hpdev;
 870
 871        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 872        if (!hpdev)
 873                return PCIBIOS_DEVICE_NOT_FOUND;
 874
 875        _hv_pcifront_write_config(hpdev, where, size, val);
 876
 877        put_pcichild(hpdev);
 878        return PCIBIOS_SUCCESSFUL;
 879}
 880
 881/* PCIe operations */
 882static struct pci_ops hv_pcifront_ops = {
 883        .read  = hv_pcifront_read_config,
 884        .write = hv_pcifront_write_config,
 885};
 886
 887/*
 888 * Paravirtual backchannel
 889 *
 890 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 891 * communication between a VF driver and a PF driver.  These
 892 * "configuration blocks" are similar in concept to PCI configuration space,
 893 * but instead of doing reads and writes in 32-bit chunks through a very slow
 894 * path, packets of up to 128 bytes can be sent or received asynchronously.
 895 *
 896 * Nearly every SR-IOV device contains just such a communications channel in
 897 * hardware, so using this one in software is usually optional.  Using the
 898 * software channel, however, allows driver implementers to leverage software
 899 * tools that fuzz the communications channel looking for vulnerabilities.
 900 *
 901 * The usage model for these packets puts the responsibility for reading or
 902 * writing on the VF driver.  The VF driver sends a read or a write packet,
 903 * indicating which "block" is being referred to by number.
 904 *
 905 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 906 * more of the first 64 blocks.  This invalidation is delivered via a callback
 907 * supplied by the VF driver by this driver.
 908 *
 909 * No protocol is implied, except that supplied by the PF and VF drivers.
 910 */
 911
 912struct hv_read_config_compl {
 913        struct hv_pci_compl comp_pkt;
 914        void *buf;
 915        unsigned int len;
 916        unsigned int bytes_returned;
 917};
 918
 919/**
 920 * hv_pci_read_config_compl() - Invoked when a response packet
 921 * for a read config block operation arrives.
 922 * @context:            Identifies the read config operation
 923 * @resp:               The response packet itself
 924 * @resp_packet_size:   Size in bytes of the response packet
 925 */
 926static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 927                                     int resp_packet_size)
 928{
 929        struct hv_read_config_compl *comp = context;
 930        struct pci_read_block_response *read_resp =
 931                (struct pci_read_block_response *)resp;
 932        unsigned int data_len, hdr_len;
 933
 934        hdr_len = offsetof(struct pci_read_block_response, bytes);
 935        if (resp_packet_size < hdr_len) {
 936                comp->comp_pkt.completion_status = -1;
 937                goto out;
 938        }
 939
 940        data_len = resp_packet_size - hdr_len;
 941        if (data_len > 0 && read_resp->status == 0) {
 942                comp->bytes_returned = min(comp->len, data_len);
 943                memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 944        } else {
 945                comp->bytes_returned = 0;
 946        }
 947
 948        comp->comp_pkt.completion_status = read_resp->status;
 949out:
 950        complete(&comp->comp_pkt.host_event);
 951}
 952
 953/**
 954 * hv_read_config_block() - Sends a read config block request to
 955 * the back-end driver running in the Hyper-V parent partition.
 956 * @pdev:               The PCI driver's representation for this device.
 957 * @buf:                Buffer into which the config block will be copied.
 958 * @len:                Size in bytes of buf.
 959 * @block_id:           Identifies the config block which has been requested.
 960 * @bytes_returned:     Size which came back from the back-end driver.
 961 *
 962 * Return: 0 on success, -errno on failure
 963 */
 964static int hv_read_config_block(struct pci_dev *pdev, void *buf,
 965                                unsigned int len, unsigned int block_id,
 966                                unsigned int *bytes_returned)
 967{
 968        struct hv_pcibus_device *hbus =
 969                container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 970                             sysdata);
 971        struct {
 972                struct pci_packet pkt;
 973                char buf[sizeof(struct pci_read_block)];
 974        } pkt;
 975        struct hv_read_config_compl comp_pkt;
 976        struct pci_read_block *read_blk;
 977        int ret;
 978
 979        if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 980                return -EINVAL;
 981
 982        init_completion(&comp_pkt.comp_pkt.host_event);
 983        comp_pkt.buf = buf;
 984        comp_pkt.len = len;
 985
 986        memset(&pkt, 0, sizeof(pkt));
 987        pkt.pkt.completion_func = hv_pci_read_config_compl;
 988        pkt.pkt.compl_ctxt = &comp_pkt;
 989        read_blk = (struct pci_read_block *)&pkt.pkt.message;
 990        read_blk->message_type.type = PCI_READ_BLOCK;
 991        read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 992        read_blk->block_id = block_id;
 993        read_blk->bytes_requested = len;
 994
 995        ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 996                               sizeof(*read_blk), (unsigned long)&pkt.pkt,
 997                               VM_PKT_DATA_INBAND,
 998                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 999        if (ret)
1000                return ret;
1001
1002        ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1003        if (ret)
1004                return ret;
1005
1006        if (comp_pkt.comp_pkt.completion_status != 0 ||
1007            comp_pkt.bytes_returned == 0) {
1008                dev_err(&hbus->hdev->device,
1009                        "Read Config Block failed: 0x%x, bytes_returned=%d\n",
1010                        comp_pkt.comp_pkt.completion_status,
1011                        comp_pkt.bytes_returned);
1012                return -EIO;
1013        }
1014
1015        *bytes_returned = comp_pkt.bytes_returned;
1016        return 0;
1017}
1018
1019/**
1020 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1021 * config block operation arrives.
1022 * @context:            Identifies the write config operation
1023 * @resp:               The response packet itself
1024 * @resp_packet_size:   Size in bytes of the response packet
1025 */
1026static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1027                                      int resp_packet_size)
1028{
1029        struct hv_pci_compl *comp_pkt = context;
1030
1031        comp_pkt->completion_status = resp->status;
1032        complete(&comp_pkt->host_event);
1033}
1034
1035/**
1036 * hv_write_config_block() - Sends a write config block request to the
1037 * back-end driver running in the Hyper-V parent partition.
1038 * @pdev:               The PCI driver's representation for this device.
1039 * @buf:                Buffer from which the config block will be copied.
1040 * @len:                Size in bytes of buf.
1041 * @block_id:           Identifies the config block which is being written.
1042 *
1043 * Return: 0 on success, -errno on failure
1044 */
1045static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1046                                unsigned int len, unsigned int block_id)
1047{
1048        struct hv_pcibus_device *hbus =
1049                container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1050                             sysdata);
1051        struct {
1052                struct pci_packet pkt;
1053                char buf[sizeof(struct pci_write_block)];
1054                u32 reserved;
1055        } pkt;
1056        struct hv_pci_compl comp_pkt;
1057        struct pci_write_block *write_blk;
1058        u32 pkt_size;
1059        int ret;
1060
1061        if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1062                return -EINVAL;
1063
1064        init_completion(&comp_pkt.host_event);
1065
1066        memset(&pkt, 0, sizeof(pkt));
1067        pkt.pkt.completion_func = hv_pci_write_config_compl;
1068        pkt.pkt.compl_ctxt = &comp_pkt;
1069        write_blk = (struct pci_write_block *)&pkt.pkt.message;
1070        write_blk->message_type.type = PCI_WRITE_BLOCK;
1071        write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1072        write_blk->block_id = block_id;
1073        write_blk->byte_count = len;
1074        memcpy(write_blk->bytes, buf, len);
1075        pkt_size = offsetof(struct pci_write_block, bytes) + len;
1076        /*
1077         * This quirk is required on some hosts shipped around 2018, because
1078         * these hosts don't check the pkt_size correctly (new hosts have been
1079         * fixed since early 2019). The quirk is also safe on very old hosts
1080         * and new hosts, because, on them, what really matters is the length
1081         * specified in write_blk->byte_count.
1082         */
1083        pkt_size += sizeof(pkt.reserved);
1084
1085        ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1086                               (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1087                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1088        if (ret)
1089                return ret;
1090
1091        ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1092        if (ret)
1093                return ret;
1094
1095        if (comp_pkt.completion_status != 0) {
1096                dev_err(&hbus->hdev->device,
1097                        "Write Config Block failed: 0x%x\n",
1098                        comp_pkt.completion_status);
1099                return -EIO;
1100        }
1101
1102        return 0;
1103}
1104
1105/**
1106 * hv_register_block_invalidate() - Invoked when a config block invalidation
1107 * arrives from the back-end driver.
1108 * @pdev:               The PCI driver's representation for this device.
1109 * @context:            Identifies the device.
1110 * @block_invalidate:   Identifies all of the blocks being invalidated.
1111 *
1112 * Return: 0 on success, -errno on failure
1113 */
1114static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1115                                        void (*block_invalidate)(void *context,
1116                                                                 u64 block_mask))
1117{
1118        struct hv_pcibus_device *hbus =
1119                container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1120                             sysdata);
1121        struct hv_pci_dev *hpdev;
1122
1123        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1124        if (!hpdev)
1125                return -ENODEV;
1126
1127        hpdev->block_invalidate = block_invalidate;
1128        hpdev->invalidate_context = context;
1129
1130        put_pcichild(hpdev);
1131        return 0;
1132
1133}
1134
1135/* Interrupt management hooks */
1136static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1137                             struct tran_int_desc *int_desc)
1138{
1139        struct pci_delete_interrupt *int_pkt;
1140        struct {
1141                struct pci_packet pkt;
1142                u8 buffer[sizeof(struct pci_delete_interrupt)];
1143        } ctxt;
1144
1145        memset(&ctxt, 0, sizeof(ctxt));
1146        int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1147        int_pkt->message_type.type =
1148                PCI_DELETE_INTERRUPT_MESSAGE;
1149        int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1150        int_pkt->int_desc = *int_desc;
1151        vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1152                         (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1153        kfree(int_desc);
1154}
1155
1156/**
1157 * hv_msi_free() - Free the MSI.
1158 * @domain:     The interrupt domain pointer
1159 * @info:       Extra MSI-related context
1160 * @irq:        Identifies the IRQ.
1161 *
1162 * The Hyper-V parent partition and hypervisor are tracking the
1163 * messages that are in use, keeping the interrupt redirection
1164 * table up to date.  This callback sends a message that frees
1165 * the IRT entry and related tracking nonsense.
1166 */
1167static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1168                        unsigned int irq)
1169{
1170        struct hv_pcibus_device *hbus;
1171        struct hv_pci_dev *hpdev;
1172        struct pci_dev *pdev;
1173        struct tran_int_desc *int_desc;
1174        struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1175        struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1176
1177        pdev = msi_desc_to_pci_dev(msi);
1178        hbus = info->data;
1179        int_desc = irq_data_get_irq_chip_data(irq_data);
1180        if (!int_desc)
1181                return;
1182
1183        irq_data->chip_data = NULL;
1184        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1185        if (!hpdev) {
1186                kfree(int_desc);
1187                return;
1188        }
1189
1190        hv_int_desc_free(hpdev, int_desc);
1191        put_pcichild(hpdev);
1192}
1193
1194static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1195                           bool force)
1196{
1197        struct irq_data *parent = data->parent_data;
1198
1199        return parent->chip->irq_set_affinity(parent, dest, force);
1200}
1201
1202static void hv_irq_mask(struct irq_data *data)
1203{
1204        pci_msi_mask_irq(data);
1205}
1206
1207/**
1208 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1209 * affinity.
1210 * @data:       Describes the IRQ
1211 *
1212 * Build new a destination for the MSI and make a hypercall to
1213 * update the Interrupt Redirection Table. "Device Logical ID"
1214 * is built out of this PCI bus's instance GUID and the function
1215 * number of the device.
1216 */
1217static void hv_irq_unmask(struct irq_data *data)
1218{
1219        struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1220        struct irq_cfg *cfg = irqd_cfg(data);
1221        struct hv_retarget_device_interrupt *params;
1222        struct hv_pcibus_device *hbus;
1223        struct cpumask *dest;
1224        cpumask_var_t tmp;
1225        struct pci_bus *pbus;
1226        struct pci_dev *pdev;
1227        unsigned long flags;
1228        u32 var_size = 0;
1229        int cpu, nr_bank;
1230        u64 res;
1231
1232        dest = irq_data_get_effective_affinity_mask(data);
1233        pdev = msi_desc_to_pci_dev(msi_desc);
1234        pbus = pdev->bus;
1235        hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1236
1237        spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1238
1239        params = &hbus->retarget_msi_interrupt_params;
1240        memset(params, 0, sizeof(*params));
1241        params->partition_id = HV_PARTITION_ID_SELF;
1242        params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1243        hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1244        params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1245                           (hbus->hdev->dev_instance.b[4] << 16) |
1246                           (hbus->hdev->dev_instance.b[7] << 8) |
1247                           (hbus->hdev->dev_instance.b[6] & 0xf8) |
1248                           PCI_FUNC(pdev->devfn);
1249        params->int_target.vector = cfg->vector;
1250
1251        /*
1252         * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1253         * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1254         * spurious interrupt storm. Not doing so does not seem to have a
1255         * negative effect (yet?).
1256         */
1257
1258        if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1259                /*
1260                 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1261                 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1262                 * with >64 VP support.
1263                 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1264                 * is not sufficient for this hypercall.
1265                 */
1266                params->int_target.flags |=
1267                        HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1268
1269                if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1270                        res = 1;
1271                        goto exit_unlock;
1272                }
1273
1274                cpumask_and(tmp, dest, cpu_online_mask);
1275                nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1276                free_cpumask_var(tmp);
1277
1278                if (nr_bank <= 0) {
1279                        res = 1;
1280                        goto exit_unlock;
1281                }
1282
1283                /*
1284                 * var-sized hypercall, var-size starts after vp_mask (thus
1285                 * vp_set.format does not count, but vp_set.valid_bank_mask
1286                 * does).
1287                 */
1288                var_size = 1 + nr_bank;
1289        } else {
1290                for_each_cpu_and(cpu, dest, cpu_online_mask) {
1291                        params->int_target.vp_mask |=
1292                                (1ULL << hv_cpu_number_to_vp_number(cpu));
1293                }
1294        }
1295
1296        res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1297                              params, NULL);
1298
1299exit_unlock:
1300        spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1301
1302        /*
1303         * During hibernation, when a CPU is offlined, the kernel tries
1304         * to move the interrupt to the remaining CPUs that haven't
1305         * been offlined yet. In this case, the below hv_do_hypercall()
1306         * always fails since the vmbus channel has been closed:
1307         * refer to cpu_disable_common() -> fixup_irqs() ->
1308         * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1309         *
1310         * Suppress the error message for hibernation because the failure
1311         * during hibernation does not matter (at this time all the devices
1312         * have been frozen). Note: the correct affinity info is still updated
1313         * into the irqdata data structure in migrate_one_irq() ->
1314         * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1315         * resumes, hv_pci_restore_msi_state() is able to correctly restore
1316         * the interrupt with the correct affinity.
1317         */
1318        if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
1319                dev_err(&hbus->hdev->device,
1320                        "%s() failed: %#llx", __func__, res);
1321
1322        pci_msi_unmask_irq(data);
1323}
1324
1325struct compose_comp_ctxt {
1326        struct hv_pci_compl comp_pkt;
1327        struct tran_int_desc int_desc;
1328};
1329
1330static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1331                                 int resp_packet_size)
1332{
1333        struct compose_comp_ctxt *comp_pkt = context;
1334        struct pci_create_int_response *int_resp =
1335                (struct pci_create_int_response *)resp;
1336
1337        comp_pkt->comp_pkt.completion_status = resp->status;
1338        comp_pkt->int_desc = int_resp->int_desc;
1339        complete(&comp_pkt->comp_pkt.host_event);
1340}
1341
1342static u32 hv_compose_msi_req_v1(
1343        struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1344        u32 slot, u8 vector)
1345{
1346        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1347        int_pkt->wslot.slot = slot;
1348        int_pkt->int_desc.vector = vector;
1349        int_pkt->int_desc.vector_count = 1;
1350        int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1351
1352        /*
1353         * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1354         * hv_irq_unmask().
1355         */
1356        int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1357
1358        return sizeof(*int_pkt);
1359}
1360
1361/*
1362 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1363 * by subsequent retarget in hv_irq_unmask().
1364 */
1365static int hv_compose_msi_req_get_cpu(struct cpumask *affinity)
1366{
1367        return cpumask_first_and(affinity, cpu_online_mask);
1368}
1369
1370static u32 hv_compose_msi_req_v2(
1371        struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1372        u32 slot, u8 vector)
1373{
1374        int cpu;
1375
1376        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1377        int_pkt->wslot.slot = slot;
1378        int_pkt->int_desc.vector = vector;
1379        int_pkt->int_desc.vector_count = 1;
1380        int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1381        cpu = hv_compose_msi_req_get_cpu(affinity);
1382        int_pkt->int_desc.processor_array[0] =
1383                hv_cpu_number_to_vp_number(cpu);
1384        int_pkt->int_desc.processor_count = 1;
1385
1386        return sizeof(*int_pkt);
1387}
1388
1389static u32 hv_compose_msi_req_v3(
1390        struct pci_create_interrupt3 *int_pkt, struct cpumask *affinity,
1391        u32 slot, u32 vector)
1392{
1393        int cpu;
1394
1395        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1396        int_pkt->wslot.slot = slot;
1397        int_pkt->int_desc.vector = vector;
1398        int_pkt->int_desc.reserved = 0;
1399        int_pkt->int_desc.vector_count = 1;
1400        int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1401        cpu = hv_compose_msi_req_get_cpu(affinity);
1402        int_pkt->int_desc.processor_array[0] =
1403                hv_cpu_number_to_vp_number(cpu);
1404        int_pkt->int_desc.processor_count = 1;
1405
1406        return sizeof(*int_pkt);
1407}
1408
1409/**
1410 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1411 * @data:       Everything about this MSI
1412 * @msg:        Buffer that is filled in by this function
1413 *
1414 * This function unpacks the IRQ looking for target CPU set, IDT
1415 * vector and mode and sends a message to the parent partition
1416 * asking for a mapping for that tuple in this partition.  The
1417 * response supplies a data value and address to which that data
1418 * should be written to trigger that interrupt.
1419 */
1420static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1421{
1422        struct irq_cfg *cfg = irqd_cfg(data);
1423        struct hv_pcibus_device *hbus;
1424        struct vmbus_channel *channel;
1425        struct hv_pci_dev *hpdev;
1426        struct pci_bus *pbus;
1427        struct pci_dev *pdev;
1428        struct cpumask *dest;
1429        struct compose_comp_ctxt comp;
1430        struct tran_int_desc *int_desc;
1431        struct {
1432                struct pci_packet pci_pkt;
1433                union {
1434                        struct pci_create_interrupt v1;
1435                        struct pci_create_interrupt2 v2;
1436                        struct pci_create_interrupt3 v3;
1437                } int_pkts;
1438        } __packed ctxt;
1439
1440        u32 size;
1441        int ret;
1442
1443        pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1444        dest = irq_data_get_effective_affinity_mask(data);
1445        pbus = pdev->bus;
1446        hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1447        channel = hbus->hdev->channel;
1448        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1449        if (!hpdev)
1450                goto return_null_message;
1451
1452        /* Free any previous message that might have already been composed. */
1453        if (data->chip_data) {
1454                int_desc = data->chip_data;
1455                data->chip_data = NULL;
1456                hv_int_desc_free(hpdev, int_desc);
1457        }
1458
1459        int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1460        if (!int_desc)
1461                goto drop_reference;
1462
1463        memset(&ctxt, 0, sizeof(ctxt));
1464        init_completion(&comp.comp_pkt.host_event);
1465        ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1466        ctxt.pci_pkt.compl_ctxt = &comp;
1467
1468        switch (hbus->protocol_version) {
1469        case PCI_PROTOCOL_VERSION_1_1:
1470                size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1471                                        dest,
1472                                        hpdev->desc.win_slot.slot,
1473                                        cfg->vector);
1474                break;
1475
1476        case PCI_PROTOCOL_VERSION_1_2:
1477        case PCI_PROTOCOL_VERSION_1_3:
1478                size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1479                                        dest,
1480                                        hpdev->desc.win_slot.slot,
1481                                        cfg->vector);
1482                break;
1483
1484        case PCI_PROTOCOL_VERSION_1_4:
1485                size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1486                                        dest,
1487                                        hpdev->desc.win_slot.slot,
1488                                        cfg->vector);
1489                break;
1490
1491        default:
1492                /* As we only negotiate protocol versions known to this driver,
1493                 * this path should never hit. However, this is it not a hot
1494                 * path so we print a message to aid future updates.
1495                 */
1496                dev_err(&hbus->hdev->device,
1497                        "Unexpected vPCI protocol, update driver.");
1498                goto free_int_desc;
1499        }
1500
1501        ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1502                               size, (unsigned long)&ctxt.pci_pkt,
1503                               VM_PKT_DATA_INBAND,
1504                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1505        if (ret) {
1506                dev_err(&hbus->hdev->device,
1507                        "Sending request for interrupt failed: 0x%x",
1508                        comp.comp_pkt.completion_status);
1509                goto free_int_desc;
1510        }
1511
1512        /*
1513         * Prevents hv_pci_onchannelcallback() from running concurrently
1514         * in the tasklet.
1515         */
1516        tasklet_disable_in_atomic(&channel->callback_event);
1517
1518        /*
1519         * Since this function is called with IRQ locks held, can't
1520         * do normal wait for completion; instead poll.
1521         */
1522        while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1523                unsigned long flags;
1524
1525                /* 0xFFFF means an invalid PCI VENDOR ID. */
1526                if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1527                        dev_err_once(&hbus->hdev->device,
1528                                     "the device has gone\n");
1529                        goto enable_tasklet;
1530                }
1531
1532                /*
1533                 * Make sure that the ring buffer data structure doesn't get
1534                 * freed while we dereference the ring buffer pointer.  Test
1535                 * for the channel's onchannel_callback being NULL within a
1536                 * sched_lock critical section.  See also the inline comments
1537                 * in vmbus_reset_channel_cb().
1538                 */
1539                spin_lock_irqsave(&channel->sched_lock, flags);
1540                if (unlikely(channel->onchannel_callback == NULL)) {
1541                        spin_unlock_irqrestore(&channel->sched_lock, flags);
1542                        goto enable_tasklet;
1543                }
1544                hv_pci_onchannelcallback(hbus);
1545                spin_unlock_irqrestore(&channel->sched_lock, flags);
1546
1547                if (hpdev->state == hv_pcichild_ejecting) {
1548                        dev_err_once(&hbus->hdev->device,
1549                                     "the device is being ejected\n");
1550                        goto enable_tasklet;
1551                }
1552
1553                udelay(100);
1554        }
1555
1556        tasklet_enable(&channel->callback_event);
1557
1558        if (comp.comp_pkt.completion_status < 0) {
1559                dev_err(&hbus->hdev->device,
1560                        "Request for interrupt failed: 0x%x",
1561                        comp.comp_pkt.completion_status);
1562                goto free_int_desc;
1563        }
1564
1565        /*
1566         * Record the assignment so that this can be unwound later. Using
1567         * irq_set_chip_data() here would be appropriate, but the lock it takes
1568         * is already held.
1569         */
1570        *int_desc = comp.int_desc;
1571        data->chip_data = int_desc;
1572
1573        /* Pass up the result. */
1574        msg->address_hi = comp.int_desc.address >> 32;
1575        msg->address_lo = comp.int_desc.address & 0xffffffff;
1576        msg->data = comp.int_desc.data;
1577
1578        put_pcichild(hpdev);
1579        return;
1580
1581enable_tasklet:
1582        tasklet_enable(&channel->callback_event);
1583free_int_desc:
1584        kfree(int_desc);
1585drop_reference:
1586        put_pcichild(hpdev);
1587return_null_message:
1588        msg->address_hi = 0;
1589        msg->address_lo = 0;
1590        msg->data = 0;
1591}
1592
1593/* HW Interrupt Chip Descriptor */
1594static struct irq_chip hv_msi_irq_chip = {
1595        .name                   = "Hyper-V PCIe MSI",
1596        .irq_compose_msi_msg    = hv_compose_msi_msg,
1597        .irq_set_affinity       = hv_set_affinity,
1598        .irq_ack                = irq_chip_ack_parent,
1599        .irq_mask               = hv_irq_mask,
1600        .irq_unmask             = hv_irq_unmask,
1601};
1602
1603static struct msi_domain_ops hv_msi_ops = {
1604        .msi_prepare    = pci_msi_prepare,
1605        .msi_free       = hv_msi_free,
1606};
1607
1608/**
1609 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1610 * @hbus:       The root PCI bus
1611 *
1612 * This function creates an IRQ domain which will be used for
1613 * interrupts from devices that have been passed through.  These
1614 * devices only support MSI and MSI-X, not line-based interrupts
1615 * or simulations of line-based interrupts through PCIe's
1616 * fabric-layer messages.  Because interrupts are remapped, we
1617 * can support multi-message MSI here.
1618 *
1619 * Return: '0' on success and error value on failure
1620 */
1621static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1622{
1623        hbus->msi_info.chip = &hv_msi_irq_chip;
1624        hbus->msi_info.ops = &hv_msi_ops;
1625        hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1626                MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1627                MSI_FLAG_PCI_MSIX);
1628        hbus->msi_info.handler = handle_edge_irq;
1629        hbus->msi_info.handler_name = "edge";
1630        hbus->msi_info.data = hbus;
1631        hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
1632                                                     &hbus->msi_info,
1633                                                     x86_vector_domain);
1634        if (!hbus->irq_domain) {
1635                dev_err(&hbus->hdev->device,
1636                        "Failed to build an MSI IRQ domain\n");
1637                return -ENODEV;
1638        }
1639
1640        dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
1641
1642        return 0;
1643}
1644
1645/**
1646 * get_bar_size() - Get the address space consumed by a BAR
1647 * @bar_val:    Value that a BAR returned after -1 was written
1648 *              to it.
1649 *
1650 * This function returns the size of the BAR, rounded up to 1
1651 * page.  It has to be rounded up because the hypervisor's page
1652 * table entry that maps the BAR into the VM can't specify an
1653 * offset within a page.  The invariant is that the hypervisor
1654 * must place any BARs of smaller than page length at the
1655 * beginning of a page.
1656 *
1657 * Return:      Size in bytes of the consumed MMIO space.
1658 */
1659static u64 get_bar_size(u64 bar_val)
1660{
1661        return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1662                        PAGE_SIZE);
1663}
1664
1665/**
1666 * survey_child_resources() - Total all MMIO requirements
1667 * @hbus:       Root PCI bus, as understood by this driver
1668 */
1669static void survey_child_resources(struct hv_pcibus_device *hbus)
1670{
1671        struct hv_pci_dev *hpdev;
1672        resource_size_t bar_size = 0;
1673        unsigned long flags;
1674        struct completion *event;
1675        u64 bar_val;
1676        int i;
1677
1678        /* If nobody is waiting on the answer, don't compute it. */
1679        event = xchg(&hbus->survey_event, NULL);
1680        if (!event)
1681                return;
1682
1683        /* If the answer has already been computed, go with it. */
1684        if (hbus->low_mmio_space || hbus->high_mmio_space) {
1685                complete(event);
1686                return;
1687        }
1688
1689        spin_lock_irqsave(&hbus->device_list_lock, flags);
1690
1691        /*
1692         * Due to an interesting quirk of the PCI spec, all memory regions
1693         * for a child device are a power of 2 in size and aligned in memory,
1694         * so it's sufficient to just add them up without tracking alignment.
1695         */
1696        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1697                for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1698                        if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1699                                dev_err(&hbus->hdev->device,
1700                                        "There's an I/O BAR in this list!\n");
1701
1702                        if (hpdev->probed_bar[i] != 0) {
1703                                /*
1704                                 * A probed BAR has all the upper bits set that
1705                                 * can be changed.
1706                                 */
1707
1708                                bar_val = hpdev->probed_bar[i];
1709                                if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1710                                        bar_val |=
1711                                        ((u64)hpdev->probed_bar[++i] << 32);
1712                                else
1713                                        bar_val |= 0xffffffff00000000ULL;
1714
1715                                bar_size = get_bar_size(bar_val);
1716
1717                                if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1718                                        hbus->high_mmio_space += bar_size;
1719                                else
1720                                        hbus->low_mmio_space += bar_size;
1721                        }
1722                }
1723        }
1724
1725        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1726        complete(event);
1727}
1728
1729/**
1730 * prepopulate_bars() - Fill in BARs with defaults
1731 * @hbus:       Root PCI bus, as understood by this driver
1732 *
1733 * The core PCI driver code seems much, much happier if the BARs
1734 * for a device have values upon first scan. So fill them in.
1735 * The algorithm below works down from large sizes to small,
1736 * attempting to pack the assignments optimally. The assumption,
1737 * enforced in other parts of the code, is that the beginning of
1738 * the memory-mapped I/O space will be aligned on the largest
1739 * BAR size.
1740 */
1741static void prepopulate_bars(struct hv_pcibus_device *hbus)
1742{
1743        resource_size_t high_size = 0;
1744        resource_size_t low_size = 0;
1745        resource_size_t high_base = 0;
1746        resource_size_t low_base = 0;
1747        resource_size_t bar_size;
1748        struct hv_pci_dev *hpdev;
1749        unsigned long flags;
1750        u64 bar_val;
1751        u32 command;
1752        bool high;
1753        int i;
1754
1755        if (hbus->low_mmio_space) {
1756                low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1757                low_base = hbus->low_mmio_res->start;
1758        }
1759
1760        if (hbus->high_mmio_space) {
1761                high_size = 1ULL <<
1762                        (63 - __builtin_clzll(hbus->high_mmio_space));
1763                high_base = hbus->high_mmio_res->start;
1764        }
1765
1766        spin_lock_irqsave(&hbus->device_list_lock, flags);
1767
1768        /*
1769         * Clear the memory enable bit, in case it's already set. This occurs
1770         * in the suspend path of hibernation, where the device is suspended,
1771         * resumed and suspended again: see hibernation_snapshot() and
1772         * hibernation_platform_enter().
1773         *
1774         * If the memory enable bit is already set, Hyper-V silently ignores
1775         * the below BAR updates, and the related PCI device driver can not
1776         * work, because reading from the device register(s) always returns
1777         * 0xFFFFFFFF.
1778         */
1779        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780                _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1781                command &= ~PCI_COMMAND_MEMORY;
1782                _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1783        }
1784
1785        /* Pick addresses for the BARs. */
1786        do {
1787                list_for_each_entry(hpdev, &hbus->children, list_entry) {
1788                        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1789                                bar_val = hpdev->probed_bar[i];
1790                                if (bar_val == 0)
1791                                        continue;
1792                                high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1793                                if (high) {
1794                                        bar_val |=
1795                                                ((u64)hpdev->probed_bar[i + 1]
1796                                                 << 32);
1797                                } else {
1798                                        bar_val |= 0xffffffffULL << 32;
1799                                }
1800                                bar_size = get_bar_size(bar_val);
1801                                if (high) {
1802                                        if (high_size != bar_size) {
1803                                                i++;
1804                                                continue;
1805                                        }
1806                                        _hv_pcifront_write_config(hpdev,
1807                                                PCI_BASE_ADDRESS_0 + (4 * i),
1808                                                4,
1809                                                (u32)(high_base & 0xffffff00));
1810                                        i++;
1811                                        _hv_pcifront_write_config(hpdev,
1812                                                PCI_BASE_ADDRESS_0 + (4 * i),
1813                                                4, (u32)(high_base >> 32));
1814                                        high_base += bar_size;
1815                                } else {
1816                                        if (low_size != bar_size)
1817                                                continue;
1818                                        _hv_pcifront_write_config(hpdev,
1819                                                PCI_BASE_ADDRESS_0 + (4 * i),
1820                                                4,
1821                                                (u32)(low_base & 0xffffff00));
1822                                        low_base += bar_size;
1823                                }
1824                        }
1825                        if (high_size <= 1 && low_size <= 1) {
1826                                /* Set the memory enable bit. */
1827                                _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1828                                                         &command);
1829                                command |= PCI_COMMAND_MEMORY;
1830                                _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1831                                                          command);
1832                                break;
1833                        }
1834                }
1835
1836                high_size >>= 1;
1837                low_size >>= 1;
1838        }  while (high_size || low_size);
1839
1840        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1841}
1842
1843/*
1844 * Assign entries in sysfs pci slot directory.
1845 *
1846 * Note that this function does not need to lock the children list
1847 * because it is called from pci_devices_present_work which
1848 * is serialized with hv_eject_device_work because they are on the
1849 * same ordered workqueue. Therefore hbus->children list will not change
1850 * even when pci_create_slot sleeps.
1851 */
1852static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1853{
1854        struct hv_pci_dev *hpdev;
1855        char name[SLOT_NAME_SIZE];
1856        int slot_nr;
1857
1858        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1859                if (hpdev->pci_slot)
1860                        continue;
1861
1862                slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1863                snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1864                hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
1865                                          name, NULL);
1866                if (IS_ERR(hpdev->pci_slot)) {
1867                        pr_warn("pci_create slot %s failed\n", name);
1868                        hpdev->pci_slot = NULL;
1869                }
1870        }
1871}
1872
1873/*
1874 * Remove entries in sysfs pci slot directory.
1875 */
1876static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1877{
1878        struct hv_pci_dev *hpdev;
1879
1880        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1881                if (!hpdev->pci_slot)
1882                        continue;
1883                pci_destroy_slot(hpdev->pci_slot);
1884                hpdev->pci_slot = NULL;
1885        }
1886}
1887
1888/*
1889 * Set NUMA node for the devices on the bus
1890 */
1891static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1892{
1893        struct pci_dev *dev;
1894        struct pci_bus *bus = hbus->bridge->bus;
1895        struct hv_pci_dev *hv_dev;
1896
1897        list_for_each_entry(dev, &bus->devices, bus_list) {
1898                hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1899                if (!hv_dev)
1900                        continue;
1901
1902                if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1903                        set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1904
1905                put_pcichild(hv_dev);
1906        }
1907}
1908
1909/**
1910 * create_root_hv_pci_bus() - Expose a new root PCI bus
1911 * @hbus:       Root PCI bus, as understood by this driver
1912 *
1913 * Return: 0 on success, -errno on failure
1914 */
1915static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1916{
1917        int error;
1918        struct pci_host_bridge *bridge = hbus->bridge;
1919
1920        bridge->dev.parent = &hbus->hdev->device;
1921        bridge->sysdata = &hbus->sysdata;
1922        bridge->ops = &hv_pcifront_ops;
1923
1924        error = pci_scan_root_bus_bridge(bridge);
1925        if (error)
1926                return error;
1927
1928        pci_lock_rescan_remove();
1929        hv_pci_assign_numa_node(hbus);
1930        pci_bus_assign_resources(bridge->bus);
1931        hv_pci_assign_slots(hbus);
1932        pci_bus_add_devices(bridge->bus);
1933        pci_unlock_rescan_remove();
1934        hbus->state = hv_pcibus_installed;
1935        return 0;
1936}
1937
1938struct q_res_req_compl {
1939        struct completion host_event;
1940        struct hv_pci_dev *hpdev;
1941};
1942
1943/**
1944 * q_resource_requirements() - Query Resource Requirements
1945 * @context:            The completion context.
1946 * @resp:               The response that came from the host.
1947 * @resp_packet_size:   The size in bytes of resp.
1948 *
1949 * This function is invoked on completion of a Query Resource
1950 * Requirements packet.
1951 */
1952static void q_resource_requirements(void *context, struct pci_response *resp,
1953                                    int resp_packet_size)
1954{
1955        struct q_res_req_compl *completion = context;
1956        struct pci_q_res_req_response *q_res_req =
1957                (struct pci_q_res_req_response *)resp;
1958        int i;
1959
1960        if (resp->status < 0) {
1961                dev_err(&completion->hpdev->hbus->hdev->device,
1962                        "query resource requirements failed: %x\n",
1963                        resp->status);
1964        } else {
1965                for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1966                        completion->hpdev->probed_bar[i] =
1967                                q_res_req->probed_bar[i];
1968                }
1969        }
1970
1971        complete(&completion->host_event);
1972}
1973
1974/**
1975 * new_pcichild_device() - Create a new child device
1976 * @hbus:       The internal struct tracking this root PCI bus.
1977 * @desc:       The information supplied so far from the host
1978 *              about the device.
1979 *
1980 * This function creates the tracking structure for a new child
1981 * device and kicks off the process of figuring out what it is.
1982 *
1983 * Return: Pointer to the new tracking struct
1984 */
1985static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1986                struct hv_pcidev_description *desc)
1987{
1988        struct hv_pci_dev *hpdev;
1989        struct pci_child_message *res_req;
1990        struct q_res_req_compl comp_pkt;
1991        struct {
1992                struct pci_packet init_packet;
1993                u8 buffer[sizeof(struct pci_child_message)];
1994        } pkt;
1995        unsigned long flags;
1996        int ret;
1997
1998        hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1999        if (!hpdev)
2000                return NULL;
2001
2002        hpdev->hbus = hbus;
2003
2004        memset(&pkt, 0, sizeof(pkt));
2005        init_completion(&comp_pkt.host_event);
2006        comp_pkt.hpdev = hpdev;
2007        pkt.init_packet.compl_ctxt = &comp_pkt;
2008        pkt.init_packet.completion_func = q_resource_requirements;
2009        res_req = (struct pci_child_message *)&pkt.init_packet.message;
2010        res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2011        res_req->wslot.slot = desc->win_slot.slot;
2012
2013        ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2014                               sizeof(struct pci_child_message),
2015                               (unsigned long)&pkt.init_packet,
2016                               VM_PKT_DATA_INBAND,
2017                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2018        if (ret)
2019                goto error;
2020
2021        if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2022                goto error;
2023
2024        hpdev->desc = *desc;
2025        refcount_set(&hpdev->refs, 1);
2026        get_pcichild(hpdev);
2027        spin_lock_irqsave(&hbus->device_list_lock, flags);
2028
2029        list_add_tail(&hpdev->list_entry, &hbus->children);
2030        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2031        return hpdev;
2032
2033error:
2034        kfree(hpdev);
2035        return NULL;
2036}
2037
2038/**
2039 * get_pcichild_wslot() - Find device from slot
2040 * @hbus:       Root PCI bus, as understood by this driver
2041 * @wslot:      Location on the bus
2042 *
2043 * This function looks up a PCI device and returns the internal
2044 * representation of it.  It acquires a reference on it, so that
2045 * the device won't be deleted while somebody is using it.  The
2046 * caller is responsible for calling put_pcichild() to release
2047 * this reference.
2048 *
2049 * Return:      Internal representation of a PCI device
2050 */
2051static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2052                                             u32 wslot)
2053{
2054        unsigned long flags;
2055        struct hv_pci_dev *iter, *hpdev = NULL;
2056
2057        spin_lock_irqsave(&hbus->device_list_lock, flags);
2058        list_for_each_entry(iter, &hbus->children, list_entry) {
2059                if (iter->desc.win_slot.slot == wslot) {
2060                        hpdev = iter;
2061                        get_pcichild(hpdev);
2062                        break;
2063                }
2064        }
2065        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2066
2067        return hpdev;
2068}
2069
2070/**
2071 * pci_devices_present_work() - Handle new list of child devices
2072 * @work:       Work struct embedded in struct hv_dr_work
2073 *
2074 * "Bus Relations" is the Windows term for "children of this
2075 * bus."  The terminology is preserved here for people trying to
2076 * debug the interaction between Hyper-V and Linux.  This
2077 * function is called when the parent partition reports a list
2078 * of functions that should be observed under this PCI Express
2079 * port (bus).
2080 *
2081 * This function updates the list, and must tolerate being
2082 * called multiple times with the same information.  The typical
2083 * number of child devices is one, with very atypical cases
2084 * involving three or four, so the algorithms used here can be
2085 * simple and inefficient.
2086 *
2087 * It must also treat the omission of a previously observed device as
2088 * notification that the device no longer exists.
2089 *
2090 * Note that this function is serialized with hv_eject_device_work(),
2091 * because both are pushed to the ordered workqueue hbus->wq.
2092 */
2093static void pci_devices_present_work(struct work_struct *work)
2094{
2095        u32 child_no;
2096        bool found;
2097        struct hv_pcidev_description *new_desc;
2098        struct hv_pci_dev *hpdev;
2099        struct hv_pcibus_device *hbus;
2100        struct list_head removed;
2101        struct hv_dr_work *dr_wrk;
2102        struct hv_dr_state *dr = NULL;
2103        unsigned long flags;
2104
2105        dr_wrk = container_of(work, struct hv_dr_work, wrk);
2106        hbus = dr_wrk->bus;
2107        kfree(dr_wrk);
2108
2109        INIT_LIST_HEAD(&removed);
2110
2111        /* Pull this off the queue and process it if it was the last one. */
2112        spin_lock_irqsave(&hbus->device_list_lock, flags);
2113        while (!list_empty(&hbus->dr_list)) {
2114                dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2115                                      list_entry);
2116                list_del(&dr->list_entry);
2117
2118                /* Throw this away if the list still has stuff in it. */
2119                if (!list_empty(&hbus->dr_list)) {
2120                        kfree(dr);
2121                        continue;
2122                }
2123        }
2124        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2125
2126        if (!dr)
2127                return;
2128
2129        /* First, mark all existing children as reported missing. */
2130        spin_lock_irqsave(&hbus->device_list_lock, flags);
2131        list_for_each_entry(hpdev, &hbus->children, list_entry) {
2132                hpdev->reported_missing = true;
2133        }
2134        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2135
2136        /* Next, add back any reported devices. */
2137        for (child_no = 0; child_no < dr->device_count; child_no++) {
2138                found = false;
2139                new_desc = &dr->func[child_no];
2140
2141                spin_lock_irqsave(&hbus->device_list_lock, flags);
2142                list_for_each_entry(hpdev, &hbus->children, list_entry) {
2143                        if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2144                            (hpdev->desc.v_id == new_desc->v_id) &&
2145                            (hpdev->desc.d_id == new_desc->d_id) &&
2146                            (hpdev->desc.ser == new_desc->ser)) {
2147                                hpdev->reported_missing = false;
2148                                found = true;
2149                        }
2150                }
2151                spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2152
2153                if (!found) {
2154                        hpdev = new_pcichild_device(hbus, new_desc);
2155                        if (!hpdev)
2156                                dev_err(&hbus->hdev->device,
2157                                        "couldn't record a child device.\n");
2158                }
2159        }
2160
2161        /* Move missing children to a list on the stack. */
2162        spin_lock_irqsave(&hbus->device_list_lock, flags);
2163        do {
2164                found = false;
2165                list_for_each_entry(hpdev, &hbus->children, list_entry) {
2166                        if (hpdev->reported_missing) {
2167                                found = true;
2168                                put_pcichild(hpdev);
2169                                list_move_tail(&hpdev->list_entry, &removed);
2170                                break;
2171                        }
2172                }
2173        } while (found);
2174        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2175
2176        /* Delete everything that should no longer exist. */
2177        while (!list_empty(&removed)) {
2178                hpdev = list_first_entry(&removed, struct hv_pci_dev,
2179                                         list_entry);
2180                list_del(&hpdev->list_entry);
2181
2182                if (hpdev->pci_slot)
2183                        pci_destroy_slot(hpdev->pci_slot);
2184
2185                put_pcichild(hpdev);
2186        }
2187
2188        switch (hbus->state) {
2189        case hv_pcibus_installed:
2190                /*
2191                 * Tell the core to rescan bus
2192                 * because there may have been changes.
2193                 */
2194                pci_lock_rescan_remove();
2195                pci_scan_child_bus(hbus->bridge->bus);
2196                hv_pci_assign_numa_node(hbus);
2197                hv_pci_assign_slots(hbus);
2198                pci_unlock_rescan_remove();
2199                break;
2200
2201        case hv_pcibus_init:
2202        case hv_pcibus_probed:
2203                survey_child_resources(hbus);
2204                break;
2205
2206        default:
2207                break;
2208        }
2209
2210        kfree(dr);
2211}
2212
2213/**
2214 * hv_pci_start_relations_work() - Queue work to start device discovery
2215 * @hbus:       Root PCI bus, as understood by this driver
2216 * @dr:         The list of children returned from host
2217 *
2218 * Return:  0 on success, -errno on failure
2219 */
2220static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2221                                       struct hv_dr_state *dr)
2222{
2223        struct hv_dr_work *dr_wrk;
2224        unsigned long flags;
2225        bool pending_dr;
2226
2227        if (hbus->state == hv_pcibus_removing) {
2228                dev_info(&hbus->hdev->device,
2229                         "PCI VMBus BUS_RELATIONS: ignored\n");
2230                return -ENOENT;
2231        }
2232
2233        dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2234        if (!dr_wrk)
2235                return -ENOMEM;
2236
2237        INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2238        dr_wrk->bus = hbus;
2239
2240        spin_lock_irqsave(&hbus->device_list_lock, flags);
2241        /*
2242         * If pending_dr is true, we have already queued a work,
2243         * which will see the new dr. Otherwise, we need to
2244         * queue a new work.
2245         */
2246        pending_dr = !list_empty(&hbus->dr_list);
2247        list_add_tail(&dr->list_entry, &hbus->dr_list);
2248        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2249
2250        if (pending_dr)
2251                kfree(dr_wrk);
2252        else
2253                queue_work(hbus->wq, &dr_wrk->wrk);
2254
2255        return 0;
2256}
2257
2258/**
2259 * hv_pci_devices_present() - Handle list of new children
2260 * @hbus:      Root PCI bus, as understood by this driver
2261 * @relations: Packet from host listing children
2262 *
2263 * Process a new list of devices on the bus. The list of devices is
2264 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2265 * whenever a new list of devices for this bus appears.
2266 */
2267static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2268                                   struct pci_bus_relations *relations)
2269{
2270        struct hv_dr_state *dr;
2271        int i;
2272
2273        dr = kzalloc(struct_size(dr, func, relations->device_count),
2274                     GFP_NOWAIT);
2275        if (!dr)
2276                return;
2277
2278        dr->device_count = relations->device_count;
2279        for (i = 0; i < dr->device_count; i++) {
2280                dr->func[i].v_id = relations->func[i].v_id;
2281                dr->func[i].d_id = relations->func[i].d_id;
2282                dr->func[i].rev = relations->func[i].rev;
2283                dr->func[i].prog_intf = relations->func[i].prog_intf;
2284                dr->func[i].subclass = relations->func[i].subclass;
2285                dr->func[i].base_class = relations->func[i].base_class;
2286                dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2287                dr->func[i].win_slot = relations->func[i].win_slot;
2288                dr->func[i].ser = relations->func[i].ser;
2289        }
2290
2291        if (hv_pci_start_relations_work(hbus, dr))
2292                kfree(dr);
2293}
2294
2295/**
2296 * hv_pci_devices_present2() - Handle list of new children
2297 * @hbus:       Root PCI bus, as understood by this driver
2298 * @relations:  Packet from host listing children
2299 *
2300 * This function is the v2 version of hv_pci_devices_present()
2301 */
2302static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2303                                    struct pci_bus_relations2 *relations)
2304{
2305        struct hv_dr_state *dr;
2306        int i;
2307
2308        dr = kzalloc(struct_size(dr, func, relations->device_count),
2309                     GFP_NOWAIT);
2310        if (!dr)
2311                return;
2312
2313        dr->device_count = relations->device_count;
2314        for (i = 0; i < dr->device_count; i++) {
2315                dr->func[i].v_id = relations->func[i].v_id;
2316                dr->func[i].d_id = relations->func[i].d_id;
2317                dr->func[i].rev = relations->func[i].rev;
2318                dr->func[i].prog_intf = relations->func[i].prog_intf;
2319                dr->func[i].subclass = relations->func[i].subclass;
2320                dr->func[i].base_class = relations->func[i].base_class;
2321                dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2322                dr->func[i].win_slot = relations->func[i].win_slot;
2323                dr->func[i].ser = relations->func[i].ser;
2324                dr->func[i].flags = relations->func[i].flags;
2325                dr->func[i].virtual_numa_node =
2326                        relations->func[i].virtual_numa_node;
2327        }
2328
2329        if (hv_pci_start_relations_work(hbus, dr))
2330                kfree(dr);
2331}
2332
2333/**
2334 * hv_eject_device_work() - Asynchronously handles ejection
2335 * @work:       Work struct embedded in internal device struct
2336 *
2337 * This function handles ejecting a device.  Windows will
2338 * attempt to gracefully eject a device, waiting 60 seconds to
2339 * hear back from the guest OS that this completed successfully.
2340 * If this timer expires, the device will be forcibly removed.
2341 */
2342static void hv_eject_device_work(struct work_struct *work)
2343{
2344        struct pci_eject_response *ejct_pkt;
2345        struct hv_pcibus_device *hbus;
2346        struct hv_pci_dev *hpdev;
2347        struct pci_dev *pdev;
2348        unsigned long flags;
2349        int wslot;
2350        struct {
2351                struct pci_packet pkt;
2352                u8 buffer[sizeof(struct pci_eject_response)];
2353        } ctxt;
2354
2355        hpdev = container_of(work, struct hv_pci_dev, wrk);
2356        hbus = hpdev->hbus;
2357
2358        WARN_ON(hpdev->state != hv_pcichild_ejecting);
2359
2360        /*
2361         * Ejection can come before or after the PCI bus has been set up, so
2362         * attempt to find it and tear down the bus state, if it exists.  This
2363         * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2364         * because hbus->bridge->bus may not exist yet.
2365         */
2366        wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2367        pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2368        if (pdev) {
2369                pci_lock_rescan_remove();
2370                pci_stop_and_remove_bus_device(pdev);
2371                pci_dev_put(pdev);
2372                pci_unlock_rescan_remove();
2373        }
2374
2375        spin_lock_irqsave(&hbus->device_list_lock, flags);
2376        list_del(&hpdev->list_entry);
2377        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2378
2379        if (hpdev->pci_slot)
2380                pci_destroy_slot(hpdev->pci_slot);
2381
2382        memset(&ctxt, 0, sizeof(ctxt));
2383        ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2384        ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2385        ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2386        vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2387                         sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2388                         VM_PKT_DATA_INBAND, 0);
2389
2390        /* For the get_pcichild() in hv_pci_eject_device() */
2391        put_pcichild(hpdev);
2392        /* For the two refs got in new_pcichild_device() */
2393        put_pcichild(hpdev);
2394        put_pcichild(hpdev);
2395        /* hpdev has been freed. Do not use it any more. */
2396}
2397
2398/**
2399 * hv_pci_eject_device() - Handles device ejection
2400 * @hpdev:      Internal device tracking struct
2401 *
2402 * This function is invoked when an ejection packet arrives.  It
2403 * just schedules work so that we don't re-enter the packet
2404 * delivery code handling the ejection.
2405 */
2406static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2407{
2408        struct hv_pcibus_device *hbus = hpdev->hbus;
2409        struct hv_device *hdev = hbus->hdev;
2410
2411        if (hbus->state == hv_pcibus_removing) {
2412                dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2413                return;
2414        }
2415
2416        hpdev->state = hv_pcichild_ejecting;
2417        get_pcichild(hpdev);
2418        INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2419        queue_work(hbus->wq, &hpdev->wrk);
2420}
2421
2422/**
2423 * hv_pci_onchannelcallback() - Handles incoming packets
2424 * @context:    Internal bus tracking struct
2425 *
2426 * This function is invoked whenever the host sends a packet to
2427 * this channel (which is private to this root PCI bus).
2428 */
2429static void hv_pci_onchannelcallback(void *context)
2430{
2431        const int packet_size = 0x100;
2432        int ret;
2433        struct hv_pcibus_device *hbus = context;
2434        u32 bytes_recvd;
2435        u64 req_id;
2436        struct vmpacket_descriptor *desc;
2437        unsigned char *buffer;
2438        int bufferlen = packet_size;
2439        struct pci_packet *comp_packet;
2440        struct pci_response *response;
2441        struct pci_incoming_message *new_message;
2442        struct pci_bus_relations *bus_rel;
2443        struct pci_bus_relations2 *bus_rel2;
2444        struct pci_dev_inval_block *inval;
2445        struct pci_dev_incoming *dev_message;
2446        struct hv_pci_dev *hpdev;
2447
2448        buffer = kmalloc(bufferlen, GFP_ATOMIC);
2449        if (!buffer)
2450                return;
2451
2452        while (1) {
2453                ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2454                                           bufferlen, &bytes_recvd, &req_id);
2455
2456                if (ret == -ENOBUFS) {
2457                        kfree(buffer);
2458                        /* Handle large packet */
2459                        bufferlen = bytes_recvd;
2460                        buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2461                        if (!buffer)
2462                                return;
2463                        continue;
2464                }
2465
2466                /* Zero length indicates there are no more packets. */
2467                if (ret || !bytes_recvd)
2468                        break;
2469
2470                /*
2471                 * All incoming packets must be at least as large as a
2472                 * response.
2473                 */
2474                if (bytes_recvd <= sizeof(struct pci_response))
2475                        continue;
2476                desc = (struct vmpacket_descriptor *)buffer;
2477
2478                switch (desc->type) {
2479                case VM_PKT_COMP:
2480
2481                        /*
2482                         * The host is trusted, and thus it's safe to interpret
2483                         * this transaction ID as a pointer.
2484                         */
2485                        comp_packet = (struct pci_packet *)req_id;
2486                        response = (struct pci_response *)buffer;
2487                        comp_packet->completion_func(comp_packet->compl_ctxt,
2488                                                     response,
2489                                                     bytes_recvd);
2490                        break;
2491
2492                case VM_PKT_DATA_INBAND:
2493
2494                        new_message = (struct pci_incoming_message *)buffer;
2495                        switch (new_message->message_type.type) {
2496                        case PCI_BUS_RELATIONS:
2497
2498                                bus_rel = (struct pci_bus_relations *)buffer;
2499                                if (bytes_recvd <
2500                                        struct_size(bus_rel, func,
2501                                                    bus_rel->device_count)) {
2502                                        dev_err(&hbus->hdev->device,
2503                                                "bus relations too small\n");
2504                                        break;
2505                                }
2506
2507                                hv_pci_devices_present(hbus, bus_rel);
2508                                break;
2509
2510                        case PCI_BUS_RELATIONS2:
2511
2512                                bus_rel2 = (struct pci_bus_relations2 *)buffer;
2513                                if (bytes_recvd <
2514                                        struct_size(bus_rel2, func,
2515                                                    bus_rel2->device_count)) {
2516                                        dev_err(&hbus->hdev->device,
2517                                                "bus relations v2 too small\n");
2518                                        break;
2519                                }
2520
2521                                hv_pci_devices_present2(hbus, bus_rel2);
2522                                break;
2523
2524                        case PCI_EJECT:
2525
2526                                dev_message = (struct pci_dev_incoming *)buffer;
2527                                hpdev = get_pcichild_wslot(hbus,
2528                                                      dev_message->wslot.slot);
2529                                if (hpdev) {
2530                                        hv_pci_eject_device(hpdev);
2531                                        put_pcichild(hpdev);
2532                                }
2533                                break;
2534
2535                        case PCI_INVALIDATE_BLOCK:
2536
2537                                inval = (struct pci_dev_inval_block *)buffer;
2538                                hpdev = get_pcichild_wslot(hbus,
2539                                                           inval->wslot.slot);
2540                                if (hpdev) {
2541                                        if (hpdev->block_invalidate) {
2542                                                hpdev->block_invalidate(
2543                                                    hpdev->invalidate_context,
2544                                                    inval->block_mask);
2545                                        }
2546                                        put_pcichild(hpdev);
2547                                }
2548                                break;
2549
2550                        default:
2551                                dev_warn(&hbus->hdev->device,
2552                                        "Unimplemented protocol message %x\n",
2553                                        new_message->message_type.type);
2554                                break;
2555                        }
2556                        break;
2557
2558                default:
2559                        dev_err(&hbus->hdev->device,
2560                                "unhandled packet type %d, tid %llx len %d\n",
2561                                desc->type, req_id, bytes_recvd);
2562                        break;
2563                }
2564        }
2565
2566        kfree(buffer);
2567}
2568
2569/**
2570 * hv_pci_protocol_negotiation() - Set up protocol
2571 * @hdev:               VMBus's tracking struct for this root PCI bus.
2572 * @version:            Array of supported channel protocol versions in
2573 *                      the order of probing - highest go first.
2574 * @num_version:        Number of elements in the version array.
2575 *
2576 * This driver is intended to support running on Windows 10
2577 * (server) and later versions. It will not run on earlier
2578 * versions, as they assume that many of the operations which
2579 * Linux needs accomplished with a spinlock held were done via
2580 * asynchronous messaging via VMBus.  Windows 10 increases the
2581 * surface area of PCI emulation so that these actions can take
2582 * place by suspending a virtual processor for their duration.
2583 *
2584 * This function negotiates the channel protocol version,
2585 * failing if the host doesn't support the necessary protocol
2586 * level.
2587 */
2588static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2589                                       enum pci_protocol_version_t version[],
2590                                       int num_version)
2591{
2592        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2593        struct pci_version_request *version_req;
2594        struct hv_pci_compl comp_pkt;
2595        struct pci_packet *pkt;
2596        int ret;
2597        int i;
2598
2599        /*
2600         * Initiate the handshake with the host and negotiate
2601         * a version that the host can support. We start with the
2602         * highest version number and go down if the host cannot
2603         * support it.
2604         */
2605        pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2606        if (!pkt)
2607                return -ENOMEM;
2608
2609        init_completion(&comp_pkt.host_event);
2610        pkt->completion_func = hv_pci_generic_compl;
2611        pkt->compl_ctxt = &comp_pkt;
2612        version_req = (struct pci_version_request *)&pkt->message;
2613        version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2614
2615        for (i = 0; i < num_version; i++) {
2616                version_req->protocol_version = version[i];
2617                ret = vmbus_sendpacket(hdev->channel, version_req,
2618                                sizeof(struct pci_version_request),
2619                                (unsigned long)pkt, VM_PKT_DATA_INBAND,
2620                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2621                if (!ret)
2622                        ret = wait_for_response(hdev, &comp_pkt.host_event);
2623
2624                if (ret) {
2625                        dev_err(&hdev->device,
2626                                "PCI Pass-through VSP failed to request version: %d",
2627                                ret);
2628                        goto exit;
2629                }
2630
2631                if (comp_pkt.completion_status >= 0) {
2632                        hbus->protocol_version = version[i];
2633                        dev_info(&hdev->device,
2634                                "PCI VMBus probing: Using version %#x\n",
2635                                hbus->protocol_version);
2636                        goto exit;
2637                }
2638
2639                if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2640                        dev_err(&hdev->device,
2641                                "PCI Pass-through VSP failed version request: %#x",
2642                                comp_pkt.completion_status);
2643                        ret = -EPROTO;
2644                        goto exit;
2645                }
2646
2647                reinit_completion(&comp_pkt.host_event);
2648        }
2649
2650        dev_err(&hdev->device,
2651                "PCI pass-through VSP failed to find supported version");
2652        ret = -EPROTO;
2653
2654exit:
2655        kfree(pkt);
2656        return ret;
2657}
2658
2659/**
2660 * hv_pci_free_bridge_windows() - Release memory regions for the
2661 * bus
2662 * @hbus:       Root PCI bus, as understood by this driver
2663 */
2664static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2665{
2666        /*
2667         * Set the resources back to the way they looked when they
2668         * were allocated by setting IORESOURCE_BUSY again.
2669         */
2670
2671        if (hbus->low_mmio_space && hbus->low_mmio_res) {
2672                hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2673                vmbus_free_mmio(hbus->low_mmio_res->start,
2674                                resource_size(hbus->low_mmio_res));
2675        }
2676
2677        if (hbus->high_mmio_space && hbus->high_mmio_res) {
2678                hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2679                vmbus_free_mmio(hbus->high_mmio_res->start,
2680                                resource_size(hbus->high_mmio_res));
2681        }
2682}
2683
2684/**
2685 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2686 * for the bus
2687 * @hbus:       Root PCI bus, as understood by this driver
2688 *
2689 * This function calls vmbus_allocate_mmio(), which is itself a
2690 * bit of a compromise.  Ideally, we might change the pnp layer
2691 * in the kernel such that it comprehends either PCI devices
2692 * which are "grandchildren of ACPI," with some intermediate bus
2693 * node (in this case, VMBus) or change it such that it
2694 * understands VMBus.  The pnp layer, however, has been declared
2695 * deprecated, and not subject to change.
2696 *
2697 * The workaround, implemented here, is to ask VMBus to allocate
2698 * MMIO space for this bus.  VMBus itself knows which ranges are
2699 * appropriate by looking at its own ACPI objects.  Then, after
2700 * these ranges are claimed, they're modified to look like they
2701 * would have looked if the ACPI and pnp code had allocated
2702 * bridge windows.  These descriptors have to exist in this form
2703 * in order to satisfy the code which will get invoked when the
2704 * endpoint PCI function driver calls request_mem_region() or
2705 * request_mem_region_exclusive().
2706 *
2707 * Return: 0 on success, -errno on failure
2708 */
2709static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2710{
2711        resource_size_t align;
2712        int ret;
2713
2714        if (hbus->low_mmio_space) {
2715                align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2716                ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2717                                          (u64)(u32)0xffffffff,
2718                                          hbus->low_mmio_space,
2719                                          align, false);
2720                if (ret) {
2721                        dev_err(&hbus->hdev->device,
2722                                "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2723                                hbus->low_mmio_space);
2724                        return ret;
2725                }
2726
2727                /* Modify this resource to become a bridge window. */
2728                hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2729                hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2730                pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
2731        }
2732
2733        if (hbus->high_mmio_space) {
2734                align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2735                ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2736                                          0x100000000, -1,
2737                                          hbus->high_mmio_space, align,
2738                                          false);
2739                if (ret) {
2740                        dev_err(&hbus->hdev->device,
2741                                "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2742                                hbus->high_mmio_space);
2743                        goto release_low_mmio;
2744                }
2745
2746                /* Modify this resource to become a bridge window. */
2747                hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2748                hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2749                pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
2750        }
2751
2752        return 0;
2753
2754release_low_mmio:
2755        if (hbus->low_mmio_res) {
2756                vmbus_free_mmio(hbus->low_mmio_res->start,
2757                                resource_size(hbus->low_mmio_res));
2758        }
2759
2760        return ret;
2761}
2762
2763/**
2764 * hv_allocate_config_window() - Find MMIO space for PCI Config
2765 * @hbus:       Root PCI bus, as understood by this driver
2766 *
2767 * This function claims memory-mapped I/O space for accessing
2768 * configuration space for the functions on this bus.
2769 *
2770 * Return: 0 on success, -errno on failure
2771 */
2772static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2773{
2774        int ret;
2775
2776        /*
2777         * Set up a region of MMIO space to use for accessing configuration
2778         * space.
2779         */
2780        ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2781                                  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2782        if (ret)
2783                return ret;
2784
2785        /*
2786         * vmbus_allocate_mmio() gets used for allocating both device endpoint
2787         * resource claims (those which cannot be overlapped) and the ranges
2788         * which are valid for the children of this bus, which are intended
2789         * to be overlapped by those children.  Set the flag on this claim
2790         * meaning that this region can't be overlapped.
2791         */
2792
2793        hbus->mem_config->flags |= IORESOURCE_BUSY;
2794
2795        return 0;
2796}
2797
2798static void hv_free_config_window(struct hv_pcibus_device *hbus)
2799{
2800        vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2801}
2802
2803static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2804
2805/**
2806 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2807 * @hdev:       VMBus's tracking struct for this root PCI bus
2808 *
2809 * Return: 0 on success, -errno on failure
2810 */
2811static int hv_pci_enter_d0(struct hv_device *hdev)
2812{
2813        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2814        struct pci_bus_d0_entry *d0_entry;
2815        struct hv_pci_compl comp_pkt;
2816        struct pci_packet *pkt;
2817        int ret;
2818
2819        /*
2820         * Tell the host that the bus is ready to use, and moved into the
2821         * powered-on state.  This includes telling the host which region
2822         * of memory-mapped I/O space has been chosen for configuration space
2823         * access.
2824         */
2825        pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2826        if (!pkt)
2827                return -ENOMEM;
2828
2829        init_completion(&comp_pkt.host_event);
2830        pkt->completion_func = hv_pci_generic_compl;
2831        pkt->compl_ctxt = &comp_pkt;
2832        d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2833        d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2834        d0_entry->mmio_base = hbus->mem_config->start;
2835
2836        ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2837                               (unsigned long)pkt, VM_PKT_DATA_INBAND,
2838                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2839        if (!ret)
2840                ret = wait_for_response(hdev, &comp_pkt.host_event);
2841
2842        if (ret)
2843                goto exit;
2844
2845        if (comp_pkt.completion_status < 0) {
2846                dev_err(&hdev->device,
2847                        "PCI Pass-through VSP failed D0 Entry with status %x\n",
2848                        comp_pkt.completion_status);
2849                ret = -EPROTO;
2850                goto exit;
2851        }
2852
2853        ret = 0;
2854
2855exit:
2856        kfree(pkt);
2857        return ret;
2858}
2859
2860/**
2861 * hv_pci_query_relations() - Ask host to send list of child
2862 * devices
2863 * @hdev:       VMBus's tracking struct for this root PCI bus
2864 *
2865 * Return: 0 on success, -errno on failure
2866 */
2867static int hv_pci_query_relations(struct hv_device *hdev)
2868{
2869        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2870        struct pci_message message;
2871        struct completion comp;
2872        int ret;
2873
2874        /* Ask the host to send along the list of child devices */
2875        init_completion(&comp);
2876        if (cmpxchg(&hbus->survey_event, NULL, &comp))
2877                return -ENOTEMPTY;
2878
2879        memset(&message, 0, sizeof(message));
2880        message.type = PCI_QUERY_BUS_RELATIONS;
2881
2882        ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2883                               0, VM_PKT_DATA_INBAND, 0);
2884        if (!ret)
2885                ret = wait_for_response(hdev, &comp);
2886
2887        return ret;
2888}
2889
2890/**
2891 * hv_send_resources_allocated() - Report local resource choices
2892 * @hdev:       VMBus's tracking struct for this root PCI bus
2893 *
2894 * The host OS is expecting to be sent a request as a message
2895 * which contains all the resources that the device will use.
2896 * The response contains those same resources, "translated"
2897 * which is to say, the values which should be used by the
2898 * hardware, when it delivers an interrupt.  (MMIO resources are
2899 * used in local terms.)  This is nice for Windows, and lines up
2900 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2901 * is deeply expecting to scan an emulated PCI configuration
2902 * space.  So this message is sent here only to drive the state
2903 * machine on the host forward.
2904 *
2905 * Return: 0 on success, -errno on failure
2906 */
2907static int hv_send_resources_allocated(struct hv_device *hdev)
2908{
2909        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2910        struct pci_resources_assigned *res_assigned;
2911        struct pci_resources_assigned2 *res_assigned2;
2912        struct hv_pci_compl comp_pkt;
2913        struct hv_pci_dev *hpdev;
2914        struct pci_packet *pkt;
2915        size_t size_res;
2916        int wslot;
2917        int ret;
2918
2919        size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2920                        ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2921
2922        pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2923        if (!pkt)
2924                return -ENOMEM;
2925
2926        ret = 0;
2927
2928        for (wslot = 0; wslot < 256; wslot++) {
2929                hpdev = get_pcichild_wslot(hbus, wslot);
2930                if (!hpdev)
2931                        continue;
2932
2933                memset(pkt, 0, sizeof(*pkt) + size_res);
2934                init_completion(&comp_pkt.host_event);
2935                pkt->completion_func = hv_pci_generic_compl;
2936                pkt->compl_ctxt = &comp_pkt;
2937
2938                if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2939                        res_assigned =
2940                                (struct pci_resources_assigned *)&pkt->message;
2941                        res_assigned->message_type.type =
2942                                PCI_RESOURCES_ASSIGNED;
2943                        res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2944                } else {
2945                        res_assigned2 =
2946                                (struct pci_resources_assigned2 *)&pkt->message;
2947                        res_assigned2->message_type.type =
2948                                PCI_RESOURCES_ASSIGNED2;
2949                        res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2950                }
2951                put_pcichild(hpdev);
2952
2953                ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2954                                size_res, (unsigned long)pkt,
2955                                VM_PKT_DATA_INBAND,
2956                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2957                if (!ret)
2958                        ret = wait_for_response(hdev, &comp_pkt.host_event);
2959                if (ret)
2960                        break;
2961
2962                if (comp_pkt.completion_status < 0) {
2963                        ret = -EPROTO;
2964                        dev_err(&hdev->device,
2965                                "resource allocated returned 0x%x",
2966                                comp_pkt.completion_status);
2967                        break;
2968                }
2969
2970                hbus->wslot_res_allocated = wslot;
2971        }
2972
2973        kfree(pkt);
2974        return ret;
2975}
2976
2977/**
2978 * hv_send_resources_released() - Report local resources
2979 * released
2980 * @hdev:       VMBus's tracking struct for this root PCI bus
2981 *
2982 * Return: 0 on success, -errno on failure
2983 */
2984static int hv_send_resources_released(struct hv_device *hdev)
2985{
2986        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2987        struct pci_child_message pkt;
2988        struct hv_pci_dev *hpdev;
2989        int wslot;
2990        int ret;
2991
2992        for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2993                hpdev = get_pcichild_wslot(hbus, wslot);
2994                if (!hpdev)
2995                        continue;
2996
2997                memset(&pkt, 0, sizeof(pkt));
2998                pkt.message_type.type = PCI_RESOURCES_RELEASED;
2999                pkt.wslot.slot = hpdev->desc.win_slot.slot;
3000
3001                put_pcichild(hpdev);
3002
3003                ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3004                                       VM_PKT_DATA_INBAND, 0);
3005                if (ret)
3006                        return ret;
3007
3008                hbus->wslot_res_allocated = wslot - 1;
3009        }
3010
3011        hbus->wslot_res_allocated = -1;
3012
3013        return 0;
3014}
3015
3016#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3017static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3018
3019/*
3020 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3021 * as invalid for passthrough PCI devices of this driver.
3022 */
3023#define HVPCI_DOM_INVALID 0
3024
3025/**
3026 * hv_get_dom_num() - Get a valid PCI domain number
3027 * Check if the PCI domain number is in use, and return another number if
3028 * it is in use.
3029 *
3030 * @dom: Requested domain number
3031 *
3032 * return: domain number on success, HVPCI_DOM_INVALID on failure
3033 */
3034static u16 hv_get_dom_num(u16 dom)
3035{
3036        unsigned int i;
3037
3038        if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3039                return dom;
3040
3041        for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3042                if (test_and_set_bit(i, hvpci_dom_map) == 0)
3043                        return i;
3044        }
3045
3046        return HVPCI_DOM_INVALID;
3047}
3048
3049/**
3050 * hv_put_dom_num() - Mark the PCI domain number as free
3051 * @dom: Domain number to be freed
3052 */
3053static void hv_put_dom_num(u16 dom)
3054{
3055        clear_bit(dom, hvpci_dom_map);
3056}
3057
3058/**
3059 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3060 * @hdev:       VMBus's tracking struct for this root PCI bus
3061 * @dev_id:     Identifies the device itself
3062 *
3063 * Return: 0 on success, -errno on failure
3064 */
3065static int hv_pci_probe(struct hv_device *hdev,
3066                        const struct hv_vmbus_device_id *dev_id)
3067{
3068        struct pci_host_bridge *bridge;
3069        struct hv_pcibus_device *hbus;
3070        u16 dom_req, dom;
3071        char *name;
3072        bool enter_d0_retry = true;
3073        int ret;
3074
3075        /*
3076         * hv_pcibus_device contains the hypercall arguments for retargeting in
3077         * hv_irq_unmask(). Those must not cross a page boundary.
3078         */
3079        BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3080
3081        bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3082        if (!bridge)
3083                return -ENOMEM;
3084
3085        /*
3086         * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3087         * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3088         * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3089         * alignment of hbus is important because hbus's field
3090         * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3091         *
3092         * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3093         * allocated by the latter is not tracked and scanned by kmemleak, and
3094         * hence kmemleak reports the pointer contained in the hbus buffer
3095         * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3096         * is tracked by hbus->children) as memory leak (false positive).
3097         *
3098         * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3099         * used to allocate the hbus buffer and we can avoid the kmemleak false
3100         * positive by using kmemleak_alloc() and kmemleak_free() to ask
3101         * kmemleak to track and scan the hbus buffer.
3102         */
3103        hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3104        if (!hbus)
3105                return -ENOMEM;
3106
3107        hbus->bridge = bridge;
3108        hbus->state = hv_pcibus_init;
3109        hbus->wslot_res_allocated = -1;
3110
3111        /*
3112         * The PCI bus "domain" is what is called "segment" in ACPI and other
3113         * specs. Pull it from the instance ID, to get something usually
3114         * unique. In rare cases of collision, we will find out another number
3115         * not in use.
3116         *
3117         * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3118         * together with this guest driver can guarantee that (1) The only
3119         * domain used by Gen1 VMs for something that looks like a physical
3120         * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3121         * (2) There will be no overlap between domains (after fixing possible
3122         * collisions) in the same VM.
3123         */
3124        dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3125        dom = hv_get_dom_num(dom_req);
3126
3127        if (dom == HVPCI_DOM_INVALID) {
3128                dev_err(&hdev->device,
3129                        "Unable to use dom# 0x%hx or other numbers", dom_req);
3130                ret = -EINVAL;
3131                goto free_bus;
3132        }
3133
3134        if (dom != dom_req)
3135                dev_info(&hdev->device,
3136                         "PCI dom# 0x%hx has collision, using 0x%hx",
3137                         dom_req, dom);
3138
3139        hbus->bridge->domain_nr = dom;
3140#ifdef CONFIG_X86
3141        hbus->sysdata.domain = dom;
3142#endif
3143
3144        hbus->hdev = hdev;
3145        INIT_LIST_HEAD(&hbus->children);
3146        INIT_LIST_HEAD(&hbus->dr_list);
3147        spin_lock_init(&hbus->config_lock);
3148        spin_lock_init(&hbus->device_list_lock);
3149        spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3150        hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3151                                           hbus->bridge->domain_nr);
3152        if (!hbus->wq) {
3153                ret = -ENOMEM;
3154                goto free_dom;
3155        }
3156
3157        ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3158                         hv_pci_onchannelcallback, hbus);
3159        if (ret)
3160                goto destroy_wq;
3161
3162        hv_set_drvdata(hdev, hbus);
3163
3164        ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3165                                          ARRAY_SIZE(pci_protocol_versions));
3166        if (ret)
3167                goto close;
3168
3169        ret = hv_allocate_config_window(hbus);
3170        if (ret)
3171                goto close;
3172
3173        hbus->cfg_addr = ioremap(hbus->mem_config->start,
3174                                 PCI_CONFIG_MMIO_LENGTH);
3175        if (!hbus->cfg_addr) {
3176                dev_err(&hdev->device,
3177                        "Unable to map a virtual address for config space\n");
3178                ret = -ENOMEM;
3179                goto free_config;
3180        }
3181
3182        name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3183        if (!name) {
3184                ret = -ENOMEM;
3185                goto unmap;
3186        }
3187
3188        hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3189        kfree(name);
3190        if (!hbus->fwnode) {
3191                ret = -ENOMEM;
3192                goto unmap;
3193        }
3194
3195        ret = hv_pcie_init_irq_domain(hbus);
3196        if (ret)
3197                goto free_fwnode;
3198
3199retry:
3200        ret = hv_pci_query_relations(hdev);
3201        if (ret)
3202                goto free_irq_domain;
3203
3204        ret = hv_pci_enter_d0(hdev);
3205        /*
3206         * In certain case (Kdump) the pci device of interest was
3207         * not cleanly shut down and resource is still held on host
3208         * side, the host could return invalid device status.
3209         * We need to explicitly request host to release the resource
3210         * and try to enter D0 again.
3211         * Since the hv_pci_bus_exit() call releases structures
3212         * of all its child devices, we need to start the retry from
3213         * hv_pci_query_relations() call, requesting host to send
3214         * the synchronous child device relations message before this
3215         * information is needed in hv_send_resources_allocated()
3216         * call later.
3217         */
3218        if (ret == -EPROTO && enter_d0_retry) {
3219                enter_d0_retry = false;
3220
3221                dev_err(&hdev->device, "Retrying D0 Entry\n");
3222
3223                /*
3224                 * Hv_pci_bus_exit() calls hv_send_resources_released()
3225                 * to free up resources of its child devices.
3226                 * In the kdump kernel we need to set the
3227                 * wslot_res_allocated to 255 so it scans all child
3228                 * devices to release resources allocated in the
3229                 * normal kernel before panic happened.
3230                 */
3231                hbus->wslot_res_allocated = 255;
3232                ret = hv_pci_bus_exit(hdev, true);
3233
3234                if (ret == 0)
3235                        goto retry;
3236
3237                dev_err(&hdev->device,
3238                        "Retrying D0 failed with ret %d\n", ret);
3239        }
3240        if (ret)
3241                goto free_irq_domain;
3242
3243        ret = hv_pci_allocate_bridge_windows(hbus);
3244        if (ret)
3245                goto exit_d0;
3246
3247        ret = hv_send_resources_allocated(hdev);
3248        if (ret)
3249                goto free_windows;
3250
3251        prepopulate_bars(hbus);
3252
3253        hbus->state = hv_pcibus_probed;
3254
3255        ret = create_root_hv_pci_bus(hbus);
3256        if (ret)
3257                goto free_windows;
3258
3259        return 0;
3260
3261free_windows:
3262        hv_pci_free_bridge_windows(hbus);
3263exit_d0:
3264        (void) hv_pci_bus_exit(hdev, true);
3265free_irq_domain:
3266        irq_domain_remove(hbus->irq_domain);
3267free_fwnode:
3268        irq_domain_free_fwnode(hbus->fwnode);
3269unmap:
3270        iounmap(hbus->cfg_addr);
3271free_config:
3272        hv_free_config_window(hbus);
3273close:
3274        vmbus_close(hdev->channel);
3275destroy_wq:
3276        destroy_workqueue(hbus->wq);
3277free_dom:
3278        hv_put_dom_num(hbus->bridge->domain_nr);
3279free_bus:
3280        kfree(hbus);
3281        return ret;
3282}
3283
3284static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3285{
3286        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3287        struct {
3288                struct pci_packet teardown_packet;
3289                u8 buffer[sizeof(struct pci_message)];
3290        } pkt;
3291        struct hv_pci_compl comp_pkt;
3292        struct hv_pci_dev *hpdev, *tmp;
3293        unsigned long flags;
3294        int ret;
3295
3296        /*
3297         * After the host sends the RESCIND_CHANNEL message, it doesn't
3298         * access the per-channel ringbuffer any longer.
3299         */
3300        if (hdev->channel->rescind)
3301                return 0;
3302
3303        if (!keep_devs) {
3304                struct list_head removed;
3305
3306                /* Move all present children to the list on stack */
3307                INIT_LIST_HEAD(&removed);
3308                spin_lock_irqsave(&hbus->device_list_lock, flags);
3309                list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3310                        list_move_tail(&hpdev->list_entry, &removed);
3311                spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3312
3313                /* Remove all children in the list */
3314                list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3315                        list_del(&hpdev->list_entry);
3316                        if (hpdev->pci_slot)
3317                                pci_destroy_slot(hpdev->pci_slot);
3318                        /* For the two refs got in new_pcichild_device() */
3319                        put_pcichild(hpdev);
3320                        put_pcichild(hpdev);
3321                }
3322        }
3323
3324        ret = hv_send_resources_released(hdev);
3325        if (ret) {
3326                dev_err(&hdev->device,
3327                        "Couldn't send resources released packet(s)\n");
3328                return ret;
3329        }
3330
3331        memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3332        init_completion(&comp_pkt.host_event);
3333        pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3334        pkt.teardown_packet.compl_ctxt = &comp_pkt;
3335        pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3336
3337        ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3338                               sizeof(struct pci_message),
3339                               (unsigned long)&pkt.teardown_packet,
3340                               VM_PKT_DATA_INBAND,
3341                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3342        if (ret)
3343                return ret;
3344
3345        if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3346                return -ETIMEDOUT;
3347
3348        return 0;
3349}
3350
3351/**
3352 * hv_pci_remove() - Remove routine for this VMBus channel
3353 * @hdev:       VMBus's tracking struct for this root PCI bus
3354 *
3355 * Return: 0 on success, -errno on failure
3356 */
3357static int hv_pci_remove(struct hv_device *hdev)
3358{
3359        struct hv_pcibus_device *hbus;
3360        int ret;
3361
3362        hbus = hv_get_drvdata(hdev);
3363        if (hbus->state == hv_pcibus_installed) {
3364                tasklet_disable(&hdev->channel->callback_event);
3365                hbus->state = hv_pcibus_removing;
3366                tasklet_enable(&hdev->channel->callback_event);
3367                destroy_workqueue(hbus->wq);
3368                hbus->wq = NULL;
3369                /*
3370                 * At this point, no work is running or can be scheduled
3371                 * on hbus-wq. We can't race with hv_pci_devices_present()
3372                 * or hv_pci_eject_device(), it's safe to proceed.
3373                 */
3374
3375                /* Remove the bus from PCI's point of view. */
3376                pci_lock_rescan_remove();
3377                pci_stop_root_bus(hbus->bridge->bus);
3378                hv_pci_remove_slots(hbus);
3379                pci_remove_root_bus(hbus->bridge->bus);
3380                pci_unlock_rescan_remove();
3381        }
3382
3383        ret = hv_pci_bus_exit(hdev, false);
3384
3385        vmbus_close(hdev->channel);
3386
3387        iounmap(hbus->cfg_addr);
3388        hv_free_config_window(hbus);
3389        hv_pci_free_bridge_windows(hbus);
3390        irq_domain_remove(hbus->irq_domain);
3391        irq_domain_free_fwnode(hbus->fwnode);
3392
3393        hv_put_dom_num(hbus->bridge->domain_nr);
3394
3395        kfree(hbus);
3396        return ret;
3397}
3398
3399static int hv_pci_suspend(struct hv_device *hdev)
3400{
3401        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3402        enum hv_pcibus_state old_state;
3403        int ret;
3404
3405        /*
3406         * hv_pci_suspend() must make sure there are no pending work items
3407         * before calling vmbus_close(), since it runs in a process context
3408         * as a callback in dpm_suspend().  When it starts to run, the channel
3409         * callback hv_pci_onchannelcallback(), which runs in a tasklet
3410         * context, can be still running concurrently and scheduling new work
3411         * items onto hbus->wq in hv_pci_devices_present() and
3412         * hv_pci_eject_device(), and the work item handlers can access the
3413         * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3414         * the work item handler pci_devices_present_work() ->
3415         * new_pcichild_device() writes to the vmbus channel.
3416         *
3417         * To eliminate the race, hv_pci_suspend() disables the channel
3418         * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3419         * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3420         * it knows that no new work item can be scheduled, and then it flushes
3421         * hbus->wq and safely closes the vmbus channel.
3422         */
3423        tasklet_disable(&hdev->channel->callback_event);
3424
3425        /* Change the hbus state to prevent new work items. */
3426        old_state = hbus->state;
3427        if (hbus->state == hv_pcibus_installed)
3428                hbus->state = hv_pcibus_removing;
3429
3430        tasklet_enable(&hdev->channel->callback_event);
3431
3432        if (old_state != hv_pcibus_installed)
3433                return -EINVAL;
3434
3435        flush_workqueue(hbus->wq);
3436
3437        ret = hv_pci_bus_exit(hdev, true);
3438        if (ret)
3439                return ret;
3440
3441        vmbus_close(hdev->channel);
3442
3443        return 0;
3444}
3445
3446static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3447{
3448        struct msi_desc *entry;
3449        struct irq_data *irq_data;
3450
3451        for_each_pci_msi_entry(entry, pdev) {
3452                irq_data = irq_get_irq_data(entry->irq);
3453                if (WARN_ON_ONCE(!irq_data))
3454                        return -EINVAL;
3455
3456                hv_compose_msi_msg(irq_data, &entry->msg);
3457        }
3458
3459        return 0;
3460}
3461
3462/*
3463 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3464 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3465 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3466 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3467 * Table entries.
3468 */
3469static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3470{
3471        pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3472}
3473
3474static int hv_pci_resume(struct hv_device *hdev)
3475{
3476        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3477        enum pci_protocol_version_t version[1];
3478        int ret;
3479
3480        hbus->state = hv_pcibus_init;
3481
3482        ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3483                         hv_pci_onchannelcallback, hbus);
3484        if (ret)
3485                return ret;
3486
3487        /* Only use the version that was in use before hibernation. */
3488        version[0] = hbus->protocol_version;
3489        ret = hv_pci_protocol_negotiation(hdev, version, 1);
3490        if (ret)
3491                goto out;
3492
3493        ret = hv_pci_query_relations(hdev);
3494        if (ret)
3495                goto out;
3496
3497        ret = hv_pci_enter_d0(hdev);
3498        if (ret)
3499                goto out;
3500
3501        ret = hv_send_resources_allocated(hdev);
3502        if (ret)
3503                goto out;
3504
3505        prepopulate_bars(hbus);
3506
3507        hv_pci_restore_msi_state(hbus);
3508
3509        hbus->state = hv_pcibus_installed;
3510        return 0;
3511out:
3512        vmbus_close(hdev->channel);
3513        return ret;
3514}
3515
3516static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3517        /* PCI Pass-through Class ID */
3518        /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3519        { HV_PCIE_GUID, },
3520        { },
3521};
3522
3523MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3524
3525static struct hv_driver hv_pci_drv = {
3526        .name           = "hv_pci",
3527        .id_table       = hv_pci_id_table,
3528        .probe          = hv_pci_probe,
3529        .remove         = hv_pci_remove,
3530        .suspend        = hv_pci_suspend,
3531        .resume         = hv_pci_resume,
3532};
3533
3534static void __exit exit_hv_pci_drv(void)
3535{
3536        vmbus_driver_unregister(&hv_pci_drv);
3537
3538        hvpci_block_ops.read_block = NULL;
3539        hvpci_block_ops.write_block = NULL;
3540        hvpci_block_ops.reg_blk_invalidate = NULL;
3541}
3542
3543static int __init init_hv_pci_drv(void)
3544{
3545        if (!hv_is_hyperv_initialized())
3546                return -ENODEV;
3547
3548        /* Set the invalid domain number's bit, so it will not be used */
3549        set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3550
3551        /* Initialize PCI block r/w interface */
3552        hvpci_block_ops.read_block = hv_read_config_block;
3553        hvpci_block_ops.write_block = hv_write_config_block;
3554        hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3555
3556        return vmbus_driver_register(&hv_pci_drv);
3557}
3558
3559module_init(init_hv_pci_drv);
3560module_exit(exit_hv_pci_drv);
3561
3562MODULE_DESCRIPTION("Hyper-V PCI");
3563MODULE_LICENSE("GPL v2");
3564