linux/drivers/pci/endpoint/functions/pci-epf-ntb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Endpoint Function Driver to implement Non-Transparent Bridge functionality
   4 *
   5 * Copyright (C) 2020 Texas Instruments
   6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
   7 */
   8
   9/*
  10 * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint
  11 * (EP) controller instances (see diagram below) in such a way that
  12 * transactions from one EP controller are routed to the other EP controller.
  13 * Once PCI NTB function driver configures the SoC with multiple EP instances,
  14 * HOST1 and HOST2 can communicate with each other using SoC as a bridge.
  15 *
  16 *    +-------------+                                   +-------------+
  17 *    |             |                                   |             |
  18 *    |    HOST1    |                                   |    HOST2    |
  19 *    |             |                                   |             |
  20 *    +------^------+                                   +------^------+
  21 *           |                                                 |
  22 *           |                                                 |
  23 * +---------|-------------------------------------------------|---------+
  24 * |  +------v------+                                   +------v------+  |
  25 * |  |             |                                   |             |  |
  26 * |  |     EP      |                                   |     EP      |  |
  27 * |  | CONTROLLER1 |                                   | CONTROLLER2 |  |
  28 * |  |             <----------------------------------->             |  |
  29 * |  |             |                                   |             |  |
  30 * |  |             |                                   |             |  |
  31 * |  |             |  SoC With Multiple EP Instances   |             |  |
  32 * |  |             |  (Configured using NTB Function)  |             |  |
  33 * |  +-------------+                                   +-------------+  |
  34 * +---------------------------------------------------------------------+
  35 */
  36
  37#include <linux/delay.h>
  38#include <linux/io.h>
  39#include <linux/module.h>
  40#include <linux/slab.h>
  41
  42#include <linux/pci-epc.h>
  43#include <linux/pci-epf.h>
  44
  45static struct workqueue_struct *kpcintb_workqueue;
  46
  47#define COMMAND_CONFIGURE_DOORBELL      1
  48#define COMMAND_TEARDOWN_DOORBELL       2
  49#define COMMAND_CONFIGURE_MW            3
  50#define COMMAND_TEARDOWN_MW             4
  51#define COMMAND_LINK_UP                 5
  52#define COMMAND_LINK_DOWN               6
  53
  54#define COMMAND_STATUS_OK               1
  55#define COMMAND_STATUS_ERROR            2
  56
  57#define LINK_STATUS_UP                  BIT(0)
  58
  59#define SPAD_COUNT                      64
  60#define DB_COUNT                        4
  61#define NTB_MW_OFFSET                   2
  62#define DB_COUNT_MASK                   GENMASK(15, 0)
  63#define MSIX_ENABLE                     BIT(16)
  64#define MAX_DB_COUNT                    32
  65#define MAX_MW                          4
  66
  67enum epf_ntb_bar {
  68        BAR_CONFIG,
  69        BAR_PEER_SPAD,
  70        BAR_DB_MW1,
  71        BAR_MW2,
  72        BAR_MW3,
  73        BAR_MW4,
  74};
  75
  76struct epf_ntb {
  77        u32 num_mws;
  78        u32 db_count;
  79        u32 spad_count;
  80        struct pci_epf *epf;
  81        u64 mws_size[MAX_MW];
  82        struct config_group group;
  83        struct epf_ntb_epc *epc[2];
  84};
  85
  86#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
  87
  88struct epf_ntb_epc {
  89        u8 func_no;
  90        u8 vfunc_no;
  91        bool linkup;
  92        bool is_msix;
  93        int msix_bar;
  94        u32 spad_size;
  95        struct pci_epc *epc;
  96        struct epf_ntb *epf_ntb;
  97        void __iomem *mw_addr[6];
  98        size_t msix_table_offset;
  99        struct epf_ntb_ctrl *reg;
 100        struct pci_epf_bar *epf_bar;
 101        enum pci_barno epf_ntb_bar[6];
 102        struct delayed_work cmd_handler;
 103        enum pci_epc_interface_type type;
 104        const struct pci_epc_features *epc_features;
 105};
 106
 107struct epf_ntb_ctrl {
 108        u32     command;
 109        u32     argument;
 110        u16     command_status;
 111        u16     link_status;
 112        u32     topology;
 113        u64     addr;
 114        u64     size;
 115        u32     num_mws;
 116        u32     mw1_offset;
 117        u32     spad_offset;
 118        u32     spad_count;
 119        u32     db_entry_size;
 120        u32     db_data[MAX_DB_COUNT];
 121        u32     db_offset[MAX_DB_COUNT];
 122} __packed;
 123
 124static struct pci_epf_header epf_ntb_header = {
 125        .vendorid       = PCI_ANY_ID,
 126        .deviceid       = PCI_ANY_ID,
 127        .baseclass_code = PCI_BASE_CLASS_MEMORY,
 128        .interrupt_pin  = PCI_INTERRUPT_INTA,
 129};
 130
 131/**
 132 * epf_ntb_link_up() - Raise link_up interrupt to both the hosts
 133 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 134 * @link_up: true or false indicating Link is UP or Down
 135 *
 136 * Once NTB function in HOST1 and the NTB function in HOST2 invoke
 137 * ntb_link_enable(), this NTB function driver will trigger a link event to
 138 * the NTB client in both the hosts.
 139 */
 140static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
 141{
 142        enum pci_epc_interface_type type;
 143        enum pci_epc_irq_type irq_type;
 144        struct epf_ntb_epc *ntb_epc;
 145        struct epf_ntb_ctrl *ctrl;
 146        struct pci_epc *epc;
 147        u8 func_no, vfunc_no;
 148        bool is_msix;
 149        int ret;
 150
 151        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
 152                ntb_epc = ntb->epc[type];
 153                epc = ntb_epc->epc;
 154                func_no = ntb_epc->func_no;
 155                vfunc_no = ntb_epc->vfunc_no;
 156                is_msix = ntb_epc->is_msix;
 157                ctrl = ntb_epc->reg;
 158                if (link_up)
 159                        ctrl->link_status |= LINK_STATUS_UP;
 160                else
 161                        ctrl->link_status &= ~LINK_STATUS_UP;
 162                irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI;
 163                ret = pci_epc_raise_irq(epc, func_no, vfunc_no, irq_type, 1);
 164                if (ret) {
 165                        dev_err(&epc->dev,
 166                                "%s intf: Failed to raise Link Up IRQ\n",
 167                                pci_epc_interface_string(type));
 168                        return ret;
 169                }
 170        }
 171
 172        return 0;
 173}
 174
 175/**
 176 * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host
 177 *   to access the memory window of other host
 178 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 179 * @type: PRIMARY interface or SECONDARY interface
 180 * @mw: Index of the memory window (either 0, 1, 2 or 3)
 181 *
 182 * +-----------------+    +---->+----------------+-----------+-----------------+
 183 * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
 184 * +-----------------+    |     +----------------+           +-----------------+
 185 * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
 186 * +-----------------+----+     +----------------+         | |                 |
 187 * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
 188 * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
 189 * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
 190 * +-----------------+    |     |----------------+     | |   |                 |
 191 * |       BAR4      |    |     |                |     | |   +-----------------+
 192 * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
 193 * |       BAR5      |    |     |                |   | |     +-----------------+
 194 * +-----------------+    +---->-----------------+   | |     |                 |
 195 *   EP CONTROLLER 1            |                |   | |     +-----------------+
 196 *                              |                |   | +---->+ MSI|X ADDRESS 4 |
 197 *                              +----------------+   |       +-----------------+
 198 *                      (A)      EP CONTROLLER 2     |       |                 |
 199 *                                 (OB SPACE)        |       |                 |
 200 *                                                   +------->      MW1        |
 201 *                                                           |                 |
 202 *                                                           |                 |
 203 *                                                   (B)     +-----------------+
 204 *                                                           |                 |
 205 *                                                           |                 |
 206 *                                                           |                 |
 207 *                                                           |                 |
 208 *                                                           |                 |
 209 *                                                           +-----------------+
 210 *                                                           PCI Address Space
 211 *                                                           (Managed by HOST2)
 212 *
 213 * This function performs stage (B) in the above diagram (see MW1) i.e., map OB
 214 * address space of memory window to PCI address space.
 215 *
 216 * This operation requires 3 parameters
 217 *  1) Address in the outbound address space
 218 *  2) Address in the PCI Address space
 219 *  3) Size of the address region to be mapped
 220 *
 221 * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is
 222 * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3
 223 * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This
 224 * is populated in epf_ntb_alloc_peer_mem() in this driver.
 225 *
 226 * The address and size of the PCI address region that has to be mapped would
 227 * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is
 228 * connected to HOST2.
 229 *
 230 * Please note Memory window1 (MW1) and Doorbell registers together will be
 231 * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's
 232 * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1],
 233 * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2].
 234 */
 235static int epf_ntb_configure_mw(struct epf_ntb *ntb,
 236                                enum pci_epc_interface_type type, u32 mw)
 237{
 238        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 239        struct pci_epf_bar *peer_epf_bar;
 240        enum pci_barno peer_barno;
 241        struct epf_ntb_ctrl *ctrl;
 242        phys_addr_t phys_addr;
 243        u8 func_no, vfunc_no;
 244        struct pci_epc *epc;
 245        u64 addr, size;
 246        int ret = 0;
 247
 248        ntb_epc = ntb->epc[type];
 249        epc = ntb_epc->epc;
 250
 251        peer_ntb_epc = ntb->epc[!type];
 252        peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
 253        peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
 254
 255        phys_addr = peer_epf_bar->phys_addr;
 256        ctrl = ntb_epc->reg;
 257        addr = ctrl->addr;
 258        size = ctrl->size;
 259        if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
 260                phys_addr += ctrl->mw1_offset;
 261
 262        if (size > ntb->mws_size[mw]) {
 263                dev_err(&epc->dev,
 264                        "%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n",
 265                        pci_epc_interface_string(type), mw, size,
 266                        ntb->mws_size[mw]);
 267                ret = -EINVAL;
 268                goto err_invalid_size;
 269        }
 270
 271        func_no = ntb_epc->func_no;
 272        vfunc_no = ntb_epc->vfunc_no;
 273
 274        ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, addr, size);
 275        if (ret)
 276                dev_err(&epc->dev,
 277                        "%s intf: Failed to map memory window %d address\n",
 278                        pci_epc_interface_string(type), mw);
 279
 280err_invalid_size:
 281
 282        return ret;
 283}
 284
 285/**
 286 * epf_ntb_teardown_mw() - Teardown the configured OB ATU
 287 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 288 * @type: PRIMARY interface or SECONDARY interface
 289 * @mw: Index of the memory window (either 0, 1, 2 or 3)
 290 *
 291 * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
 292 * pci_epc_unmap_addr()
 293 */
 294static void epf_ntb_teardown_mw(struct epf_ntb *ntb,
 295                                enum pci_epc_interface_type type, u32 mw)
 296{
 297        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 298        struct pci_epf_bar *peer_epf_bar;
 299        enum pci_barno peer_barno;
 300        struct epf_ntb_ctrl *ctrl;
 301        phys_addr_t phys_addr;
 302        u8 func_no, vfunc_no;
 303        struct pci_epc *epc;
 304
 305        ntb_epc = ntb->epc[type];
 306        epc = ntb_epc->epc;
 307
 308        peer_ntb_epc = ntb->epc[!type];
 309        peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
 310        peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
 311
 312        phys_addr = peer_epf_bar->phys_addr;
 313        ctrl = ntb_epc->reg;
 314        if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
 315                phys_addr += ctrl->mw1_offset;
 316        func_no = ntb_epc->func_no;
 317        vfunc_no = ntb_epc->vfunc_no;
 318
 319        pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
 320}
 321
 322/**
 323 * epf_ntb_configure_msi() - Map OB address space to MSI address
 324 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 325 * @type: PRIMARY interface or SECONDARY interface
 326 * @db_count: Number of doorbell interrupts to map
 327 *
 328 *+-----------------+    +----->+----------------+-----------+-----------------+
 329 *|       BAR0      |    |      |   Doorbell 1   +---+------->   MSI ADDRESS   |
 330 *+-----------------+    |      +----------------+   |       +-----------------+
 331 *|       BAR1      |    |      |   Doorbell 2   +---+       |                 |
 332 *+-----------------+----+      +----------------+   |       |                 |
 333 *|       BAR2      |           |   Doorbell 3   +---+       |                 |
 334 *+-----------------+----+      +----------------+   |       |                 |
 335 *|       BAR3      |    |      |   Doorbell 4   +---+       |                 |
 336 *+-----------------+    |      |----------------+           |                 |
 337 *|       BAR4      |    |      |                |           |                 |
 338 *+-----------------+    |      |      MW1       |           |                 |
 339 *|       BAR5      |    |      |                |           |                 |
 340 *+-----------------+    +----->-----------------+           |                 |
 341 *  EP CONTROLLER 1             |                |           |                 |
 342 *                              |                |           |                 |
 343 *                              +----------------+           +-----------------+
 344 *                     (A)       EP CONTROLLER 2             |                 |
 345 *                                 (OB SPACE)                |                 |
 346 *                                                           |      MW1        |
 347 *                                                           |                 |
 348 *                                                           |                 |
 349 *                                                   (B)     +-----------------+
 350 *                                                           |                 |
 351 *                                                           |                 |
 352 *                                                           |                 |
 353 *                                                           |                 |
 354 *                                                           |                 |
 355 *                                                           +-----------------+
 356 *                                                           PCI Address Space
 357 *                                                           (Managed by HOST2)
 358 *
 359 *
 360 * This function performs stage (B) in the above diagram (see Doorbell 1,
 361 * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
 362 * doorbell to MSI address in PCI address space.
 363 *
 364 * This operation requires 3 parameters
 365 *  1) Address reserved for doorbell in the outbound address space
 366 *  2) MSI-X address in the PCIe Address space
 367 *  3) Number of MSI-X interrupts that has to be configured
 368 *
 369 * The address in the outbound address space (for the Doorbell) is stored in
 370 * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
 371 * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
 372 * with address for MW1.
 373 *
 374 * pci_epc_map_msi_irq() takes the MSI address from MSI capability register
 375 * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI
 376 * address.
 377 *
 378 * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt
 379 * in db_data of the peer's control region. This helps the peer to raise
 380 * doorbell of the other host by writing db_data to the BAR corresponding to
 381 * BAR_DB_MW1.
 382 */
 383static int epf_ntb_configure_msi(struct epf_ntb *ntb,
 384                                 enum pci_epc_interface_type type, u16 db_count)
 385{
 386        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 387        u32 db_entry_size, db_data, db_offset;
 388        struct pci_epf_bar *peer_epf_bar;
 389        struct epf_ntb_ctrl *peer_ctrl;
 390        enum pci_barno peer_barno;
 391        phys_addr_t phys_addr;
 392        u8 func_no, vfunc_no;
 393        struct pci_epc *epc;
 394        int ret, i;
 395
 396        ntb_epc = ntb->epc[type];
 397        epc = ntb_epc->epc;
 398
 399        peer_ntb_epc = ntb->epc[!type];
 400        peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
 401        peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
 402        peer_ctrl = peer_ntb_epc->reg;
 403        db_entry_size = peer_ctrl->db_entry_size;
 404
 405        phys_addr = peer_epf_bar->phys_addr;
 406        func_no = ntb_epc->func_no;
 407        vfunc_no = ntb_epc->vfunc_no;
 408
 409        ret = pci_epc_map_msi_irq(epc, func_no, vfunc_no, phys_addr, db_count,
 410                                  db_entry_size, &db_data, &db_offset);
 411        if (ret) {
 412                dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n",
 413                        pci_epc_interface_string(type));
 414                return ret;
 415        }
 416
 417        for (i = 0; i < db_count; i++) {
 418                peer_ctrl->db_data[i] = db_data | i;
 419                peer_ctrl->db_offset[i] = db_offset;
 420        }
 421
 422        return 0;
 423}
 424
 425/**
 426 * epf_ntb_configure_msix() - Map OB address space to MSI-X address
 427 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 428 * @type: PRIMARY interface or SECONDARY interface
 429 * @db_count: Number of doorbell interrupts to map
 430 *
 431 *+-----------------+    +----->+----------------+-----------+-----------------+
 432 *|       BAR0      |    |      |   Doorbell 1   +-----------> MSI-X ADDRESS 1 |
 433 *+-----------------+    |      +----------------+           +-----------------+
 434 *|       BAR1      |    |      |   Doorbell 2   +---------+ |                 |
 435 *+-----------------+----+      +----------------+         | |                 |
 436 *|       BAR2      |           |   Doorbell 3   +-------+ | +-----------------+
 437 *+-----------------+----+      +----------------+       | +-> MSI-X ADDRESS 2 |
 438 *|       BAR3      |    |      |   Doorbell 4   +-----+ |   +-----------------+
 439 *+-----------------+    |      |----------------+     | |   |                 |
 440 *|       BAR4      |    |      |                |     | |   +-----------------+
 441 *+-----------------+    |      |      MW1       +     | +-->+ MSI-X ADDRESS 3||
 442 *|       BAR5      |    |      |                |     |     +-----------------+
 443 *+-----------------+    +----->-----------------+     |     |                 |
 444 *  EP CONTROLLER 1             |                |     |     +-----------------+
 445 *                              |                |     +---->+ MSI-X ADDRESS 4 |
 446 *                              +----------------+           +-----------------+
 447 *                     (A)       EP CONTROLLER 2             |                 |
 448 *                                 (OB SPACE)                |                 |
 449 *                                                           |      MW1        |
 450 *                                                           |                 |
 451 *                                                           |                 |
 452 *                                                   (B)     +-----------------+
 453 *                                                           |                 |
 454 *                                                           |                 |
 455 *                                                           |                 |
 456 *                                                           |                 |
 457 *                                                           |                 |
 458 *                                                           +-----------------+
 459 *                                                           PCI Address Space
 460 *                                                           (Managed by HOST2)
 461 *
 462 * This function performs stage (B) in the above diagram (see Doorbell 1,
 463 * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
 464 * doorbell to MSI-X address in PCI address space.
 465 *
 466 * This operation requires 3 parameters
 467 *  1) Address reserved for doorbell in the outbound address space
 468 *  2) MSI-X address in the PCIe Address space
 469 *  3) Number of MSI-X interrupts that has to be configured
 470 *
 471 * The address in the outbound address space (for the Doorbell) is stored in
 472 * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
 473 * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
 474 * with address for MW1.
 475 *
 476 * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and
 477 * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected
 478 * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the
 479 * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix()
 480 * gets the MSI-X address and data.
 481 *
 482 * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt
 483 * in db_data of the peer's control region. This helps the peer to raise
 484 * doorbell of the other host by writing db_data to the BAR corresponding to
 485 * BAR_DB_MW1.
 486 */
 487static int epf_ntb_configure_msix(struct epf_ntb *ntb,
 488                                  enum pci_epc_interface_type type,
 489                                  u16 db_count)
 490{
 491        const struct pci_epc_features *epc_features;
 492        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 493        struct pci_epf_bar *peer_epf_bar, *epf_bar;
 494        struct pci_epf_msix_tbl *msix_tbl;
 495        struct epf_ntb_ctrl *peer_ctrl;
 496        u32 db_entry_size, msg_data;
 497        enum pci_barno peer_barno;
 498        phys_addr_t phys_addr;
 499        u8 func_no, vfunc_no;
 500        struct pci_epc *epc;
 501        size_t align;
 502        u64 msg_addr;
 503        int ret, i;
 504
 505        ntb_epc = ntb->epc[type];
 506        epc = ntb_epc->epc;
 507
 508        epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar];
 509        msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset;
 510
 511        peer_ntb_epc = ntb->epc[!type];
 512        peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
 513        peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
 514        phys_addr = peer_epf_bar->phys_addr;
 515        peer_ctrl = peer_ntb_epc->reg;
 516        epc_features = ntb_epc->epc_features;
 517        align = epc_features->align;
 518
 519        func_no = ntb_epc->func_no;
 520        vfunc_no = ntb_epc->vfunc_no;
 521        db_entry_size = peer_ctrl->db_entry_size;
 522
 523        for (i = 0; i < db_count; i++) {
 524                msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align);
 525                msg_data = msix_tbl[i].msg_data;
 526                ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, msg_addr,
 527                                       db_entry_size);
 528                if (ret) {
 529                        dev_err(&epc->dev,
 530                                "%s intf: Failed to configure MSI-X IRQ\n",
 531                                pci_epc_interface_string(type));
 532                        return ret;
 533                }
 534                phys_addr = phys_addr + db_entry_size;
 535                peer_ctrl->db_data[i] = msg_data;
 536                peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1);
 537        }
 538        ntb_epc->is_msix = true;
 539
 540        return 0;
 541}
 542
 543/**
 544 * epf_ntb_configure_db() - Configure the Outbound Address Space for one host
 545 *   to ring the doorbell of other host
 546 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 547 * @type: PRIMARY interface or SECONDARY interface
 548 * @db_count: Count of the number of doorbells that has to be configured
 549 * @msix: Indicates whether MSI-X or MSI should be used
 550 *
 551 * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for
 552 * one HOST to ring the doorbell of other HOST.
 553 */
 554static int epf_ntb_configure_db(struct epf_ntb *ntb,
 555                                enum pci_epc_interface_type type,
 556                                u16 db_count, bool msix)
 557{
 558        struct epf_ntb_epc *ntb_epc;
 559        struct pci_epc *epc;
 560        int ret;
 561
 562        if (db_count > MAX_DB_COUNT)
 563                return -EINVAL;
 564
 565        ntb_epc = ntb->epc[type];
 566        epc = ntb_epc->epc;
 567
 568        if (msix)
 569                ret = epf_ntb_configure_msix(ntb, type, db_count);
 570        else
 571                ret = epf_ntb_configure_msi(ntb, type, db_count);
 572
 573        if (ret)
 574                dev_err(&epc->dev, "%s intf: Failed to configure DB\n",
 575                        pci_epc_interface_string(type));
 576
 577        return ret;
 578}
 579
 580/**
 581 * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X
 582 *   address
 583 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 584 * @type: PRIMARY interface or SECONDARY interface
 585 *
 586 * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address.
 587 */
 588static void
 589epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type)
 590{
 591        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 592        struct pci_epf_bar *peer_epf_bar;
 593        enum pci_barno peer_barno;
 594        phys_addr_t phys_addr;
 595        u8 func_no, vfunc_no;
 596        struct pci_epc *epc;
 597
 598        ntb_epc = ntb->epc[type];
 599        epc = ntb_epc->epc;
 600
 601        peer_ntb_epc = ntb->epc[!type];
 602        peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
 603        peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
 604        phys_addr = peer_epf_bar->phys_addr;
 605        func_no = ntb_epc->func_no;
 606        vfunc_no = ntb_epc->vfunc_no;
 607
 608        pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
 609}
 610
 611/**
 612 * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
 613 * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY)
 614 *
 615 * Workqueue function that gets invoked for the two epf_ntb_epc
 616 * periodically (once every 5ms) to see if it has received any commands
 617 * from NTB host. The host can send commands to configure doorbell or
 618 * configure memory window or to update link status.
 619 */
 620static void epf_ntb_cmd_handler(struct work_struct *work)
 621{
 622        enum pci_epc_interface_type type;
 623        struct epf_ntb_epc *ntb_epc;
 624        struct epf_ntb_ctrl *ctrl;
 625        u32 command, argument;
 626        struct epf_ntb *ntb;
 627        struct device *dev;
 628        u16 db_count;
 629        bool is_msix;
 630        int ret;
 631
 632        ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work);
 633        ctrl = ntb_epc->reg;
 634        command = ctrl->command;
 635        if (!command)
 636                goto reset_handler;
 637        argument = ctrl->argument;
 638
 639        ctrl->command = 0;
 640        ctrl->argument = 0;
 641
 642        ctrl = ntb_epc->reg;
 643        type = ntb_epc->type;
 644        ntb = ntb_epc->epf_ntb;
 645        dev = &ntb->epf->dev;
 646
 647        switch (command) {
 648        case COMMAND_CONFIGURE_DOORBELL:
 649                db_count = argument & DB_COUNT_MASK;
 650                is_msix = argument & MSIX_ENABLE;
 651                ret = epf_ntb_configure_db(ntb, type, db_count, is_msix);
 652                if (ret < 0)
 653                        ctrl->command_status = COMMAND_STATUS_ERROR;
 654                else
 655                        ctrl->command_status = COMMAND_STATUS_OK;
 656                break;
 657        case COMMAND_TEARDOWN_DOORBELL:
 658                epf_ntb_teardown_db(ntb, type);
 659                ctrl->command_status = COMMAND_STATUS_OK;
 660                break;
 661        case COMMAND_CONFIGURE_MW:
 662                ret = epf_ntb_configure_mw(ntb, type, argument);
 663                if (ret < 0)
 664                        ctrl->command_status = COMMAND_STATUS_ERROR;
 665                else
 666                        ctrl->command_status = COMMAND_STATUS_OK;
 667                break;
 668        case COMMAND_TEARDOWN_MW:
 669                epf_ntb_teardown_mw(ntb, type, argument);
 670                ctrl->command_status = COMMAND_STATUS_OK;
 671                break;
 672        case COMMAND_LINK_UP:
 673                ntb_epc->linkup = true;
 674                if (ntb->epc[PRIMARY_INTERFACE]->linkup &&
 675                    ntb->epc[SECONDARY_INTERFACE]->linkup) {
 676                        ret = epf_ntb_link_up(ntb, true);
 677                        if (ret < 0)
 678                                ctrl->command_status = COMMAND_STATUS_ERROR;
 679                        else
 680                                ctrl->command_status = COMMAND_STATUS_OK;
 681                        goto reset_handler;
 682                }
 683                ctrl->command_status = COMMAND_STATUS_OK;
 684                break;
 685        case COMMAND_LINK_DOWN:
 686                ntb_epc->linkup = false;
 687                ret = epf_ntb_link_up(ntb, false);
 688                if (ret < 0)
 689                        ctrl->command_status = COMMAND_STATUS_ERROR;
 690                else
 691                        ctrl->command_status = COMMAND_STATUS_OK;
 692                break;
 693        default:
 694                dev_err(dev, "%s intf UNKNOWN command: %d\n",
 695                        pci_epc_interface_string(type), command);
 696                break;
 697        }
 698
 699reset_handler:
 700        queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler,
 701                           msecs_to_jiffies(5));
 702}
 703
 704/**
 705 * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR
 706 * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
 707 *           address.
 708 *
 709 *+-----------------+------->+------------------+        +-----------------+
 710 *|       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
 711 *+-----------------+----+   +------------------+<-------+-----------------+
 712 *|       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
 713 *+-----------------+    +-->+------------------+<-------+-----------------+
 714 *|       BAR2      |            Local Memory            |       BAR2      |
 715 *+-----------------+                                    +-----------------+
 716 *|       BAR3      |                                    |       BAR3      |
 717 *+-----------------+                                    +-----------------+
 718 *|       BAR4      |                                    |       BAR4      |
 719 *+-----------------+                                    +-----------------+
 720 *|       BAR5      |                                    |       BAR5      |
 721 *+-----------------+                                    +-----------------+
 722 *  EP CONTROLLER 1                                        EP CONTROLLER 2
 723 *
 724 * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
 725 * region. While BAR1 is the default peer scratchpad BAR, an NTB could have
 726 * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
 727 * This function can get the exact BAR used for peer scratchpad from
 728 * epf_ntb_bar[BAR_PEER_SPAD].
 729 *
 730 * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
 731 * gets the address of peer scratchpad from
 732 * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
 733 */
 734static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc)
 735{
 736        struct pci_epf_bar *epf_bar;
 737        enum pci_barno barno;
 738        u8 func_no, vfunc_no;
 739        struct pci_epc *epc;
 740
 741        epc = ntb_epc->epc;
 742        func_no = ntb_epc->func_no;
 743        vfunc_no = ntb_epc->vfunc_no;
 744        barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
 745        epf_bar = &ntb_epc->epf_bar[barno];
 746        pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
 747}
 748
 749/**
 750 * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR
 751 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 752 * @type: PRIMARY interface or SECONDARY interface
 753 *
 754 *+-----------------+------->+------------------+        +-----------------+
 755 *|       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
 756 *+-----------------+----+   +------------------+<-------+-----------------+
 757 *|       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
 758 *+-----------------+    +-->+------------------+<-------+-----------------+
 759 *|       BAR2      |            Local Memory            |       BAR2      |
 760 *+-----------------+                                    +-----------------+
 761 *|       BAR3      |                                    |       BAR3      |
 762 *+-----------------+                                    +-----------------+
 763 *|       BAR4      |                                    |       BAR4      |
 764 *+-----------------+                                    +-----------------+
 765 *|       BAR5      |                                    |       BAR5      |
 766 *+-----------------+                                    +-----------------+
 767 *  EP CONTROLLER 1                                        EP CONTROLLER 2
 768 *
 769 * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
 770 * region. While BAR1 is the default peer scratchpad BAR, an NTB could have
 771 * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
 772 * This function can get the exact BAR used for peer scratchpad from
 773 * epf_ntb_bar[BAR_PEER_SPAD].
 774 *
 775 * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
 776 * gets the address of peer scratchpad from
 777 * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
 778 */
 779static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb,
 780                                     enum pci_epc_interface_type type)
 781{
 782        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 783        struct pci_epf_bar *peer_epf_bar, *epf_bar;
 784        enum pci_barno peer_barno, barno;
 785        u32 peer_spad_offset;
 786        u8 func_no, vfunc_no;
 787        struct pci_epc *epc;
 788        struct device *dev;
 789        int ret;
 790
 791        dev = &ntb->epf->dev;
 792
 793        peer_ntb_epc = ntb->epc[!type];
 794        peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG];
 795        peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
 796
 797        ntb_epc = ntb->epc[type];
 798        barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
 799        epf_bar = &ntb_epc->epf_bar[barno];
 800        func_no = ntb_epc->func_no;
 801        vfunc_no = ntb_epc->vfunc_no;
 802        epc = ntb_epc->epc;
 803
 804        peer_spad_offset = peer_ntb_epc->reg->spad_offset;
 805        epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset;
 806        epf_bar->size = peer_ntb_epc->spad_size;
 807        epf_bar->barno = barno;
 808        epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
 809
 810        ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
 811        if (ret) {
 812                dev_err(dev, "%s intf: peer SPAD BAR set failed\n",
 813                        pci_epc_interface_string(type));
 814                return ret;
 815        }
 816
 817        return 0;
 818}
 819
 820/**
 821 * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
 822 * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
 823 *           address.
 824 *
 825 * +-----------------+------->+------------------+        +-----------------+
 826 * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
 827 * +-----------------+----+   +------------------+<-------+-----------------+
 828 * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
 829 * +-----------------+    +-->+------------------+<-------+-----------------+
 830 * |       BAR2      |            Local Memory            |       BAR2      |
 831 * +-----------------+                                    +-----------------+
 832 * |       BAR3      |                                    |       BAR3      |
 833 * +-----------------+                                    +-----------------+
 834 * |       BAR4      |                                    |       BAR4      |
 835 * +-----------------+                                    +-----------------+
 836 * |       BAR5      |                                    |       BAR5      |
 837 * +-----------------+                                    +-----------------+
 838 *   EP CONTROLLER 1                                        EP CONTROLLER 2
 839 *
 840 * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
 841 * self scratchpad region (removes inbound ATU configuration). While BAR0 is
 842 * the default self scratchpad BAR, an NTB could have other BARs for self
 843 * scratchpad (because of reserved BARs). This function can get the exact BAR
 844 * used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
 845 *
 846 * Please note the self scratchpad region and config region is combined to
 847 * a single region and mapped using the same BAR. Also note HOST2's peer
 848 * scratchpad is HOST1's self scratchpad.
 849 */
 850static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc)
 851{
 852        struct pci_epf_bar *epf_bar;
 853        enum pci_barno barno;
 854        u8 func_no, vfunc_no;
 855        struct pci_epc *epc;
 856
 857        epc = ntb_epc->epc;
 858        func_no = ntb_epc->func_no;
 859        vfunc_no = ntb_epc->vfunc_no;
 860        barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
 861        epf_bar = &ntb_epc->epf_bar[barno];
 862        pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
 863}
 864
 865/**
 866 * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
 867 * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
 868 *           address.
 869 *
 870 * +-----------------+------->+------------------+        +-----------------+
 871 * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
 872 * +-----------------+----+   +------------------+<-------+-----------------+
 873 * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
 874 * +-----------------+    +-->+------------------+<-------+-----------------+
 875 * |       BAR2      |            Local Memory            |       BAR2      |
 876 * +-----------------+                                    +-----------------+
 877 * |       BAR3      |                                    |       BAR3      |
 878 * +-----------------+                                    +-----------------+
 879 * |       BAR4      |                                    |       BAR4      |
 880 * +-----------------+                                    +-----------------+
 881 * |       BAR5      |                                    |       BAR5      |
 882 * +-----------------+                                    +-----------------+
 883 *   EP CONTROLLER 1                                        EP CONTROLLER 2
 884 *
 885 * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
 886 * self scratchpad region. While BAR0 is the default self scratchpad BAR, an
 887 * NTB could have other BARs for self scratchpad (because of reserved BARs).
 888 * This function can get the exact BAR used for self scratchpad from
 889 * epf_ntb_bar[BAR_CONFIG].
 890 *
 891 * Please note the self scratchpad region and config region is combined to
 892 * a single region and mapped using the same BAR. Also note HOST2's peer
 893 * scratchpad is HOST1's self scratchpad.
 894 */
 895static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc)
 896{
 897        struct pci_epf_bar *epf_bar;
 898        enum pci_barno barno;
 899        u8 func_no, vfunc_no;
 900        struct epf_ntb *ntb;
 901        struct pci_epc *epc;
 902        struct device *dev;
 903        int ret;
 904
 905        ntb = ntb_epc->epf_ntb;
 906        dev = &ntb->epf->dev;
 907
 908        epc = ntb_epc->epc;
 909        func_no = ntb_epc->func_no;
 910        vfunc_no = ntb_epc->vfunc_no;
 911        barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
 912        epf_bar = &ntb_epc->epf_bar[barno];
 913
 914        ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
 915        if (ret) {
 916                dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n",
 917                        pci_epc_interface_string(ntb_epc->type));
 918                return ret;
 919        }
 920
 921        return 0;
 922}
 923
 924/**
 925 * epf_ntb_config_spad_bar_free() - Free the physical memory associated with
 926 *   config + scratchpad region
 927 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 928 *
 929 * +-----------------+------->+------------------+        +-----------------+
 930 * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
 931 * +-----------------+----+   +------------------+<-------+-----------------+
 932 * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
 933 * +-----------------+    +-->+------------------+<-------+-----------------+
 934 * |       BAR2      |            Local Memory            |       BAR2      |
 935 * +-----------------+                                    +-----------------+
 936 * |       BAR3      |                                    |       BAR3      |
 937 * +-----------------+                                    +-----------------+
 938 * |       BAR4      |                                    |       BAR4      |
 939 * +-----------------+                                    +-----------------+
 940 * |       BAR5      |                                    |       BAR5      |
 941 * +-----------------+                                    +-----------------+
 942 *   EP CONTROLLER 1                                        EP CONTROLLER 2
 943 *
 944 * Free the Local Memory mentioned in the above diagram. After invoking this
 945 * function, any of config + self scratchpad region of HOST1 or peer scratchpad
 946 * region of HOST2 should not be accessed.
 947 */
 948static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
 949{
 950        enum pci_epc_interface_type type;
 951        struct epf_ntb_epc *ntb_epc;
 952        enum pci_barno barno;
 953        struct pci_epf *epf;
 954
 955        epf = ntb->epf;
 956        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
 957                ntb_epc = ntb->epc[type];
 958                barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
 959                if (ntb_epc->reg)
 960                        pci_epf_free_space(epf, ntb_epc->reg, barno, type);
 961        }
 962}
 963
 964/**
 965 * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
 966 *   region
 967 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
 968 * @type: PRIMARY interface or SECONDARY interface
 969 *
 970 * +-----------------+------->+------------------+        +-----------------+
 971 * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
 972 * +-----------------+----+   +------------------+<-------+-----------------+
 973 * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
 974 * +-----------------+    +-->+------------------+<-------+-----------------+
 975 * |       BAR2      |            Local Memory            |       BAR2      |
 976 * +-----------------+                                    +-----------------+
 977 * |       BAR3      |                                    |       BAR3      |
 978 * +-----------------+                                    +-----------------+
 979 * |       BAR4      |                                    |       BAR4      |
 980 * +-----------------+                                    +-----------------+
 981 * |       BAR5      |                                    |       BAR5      |
 982 * +-----------------+                                    +-----------------+
 983 *   EP CONTROLLER 1                                        EP CONTROLLER 2
 984 *
 985 * Allocate the Local Memory mentioned in the above diagram. The size of
 986 * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
 987 * is obtained from "spad-count" configfs entry.
 988 *
 989 * The size of both config region and scratchpad region has to be aligned,
 990 * since the scratchpad region will also be mapped as PEER SCRATCHPAD of
 991 * other host using a separate BAR.
 992 */
 993static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb,
 994                                         enum pci_epc_interface_type type)
 995{
 996        const struct pci_epc_features *peer_epc_features, *epc_features;
 997        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
 998        size_t msix_table_size, pba_size, align;
 999        enum pci_barno peer_barno, barno;
1000        struct epf_ntb_ctrl *ctrl;
1001        u32 spad_size, ctrl_size;
1002        u64 size, peer_size;
1003        struct pci_epf *epf;
1004        struct device *dev;
1005        bool msix_capable;
1006        u32 spad_count;
1007        void *base;
1008
1009        epf = ntb->epf;
1010        dev = &epf->dev;
1011        ntb_epc = ntb->epc[type];
1012
1013        epc_features = ntb_epc->epc_features;
1014        barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
1015        size = epc_features->bar_fixed_size[barno];
1016        align = epc_features->align;
1017
1018        peer_ntb_epc = ntb->epc[!type];
1019        peer_epc_features = peer_ntb_epc->epc_features;
1020        peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
1021        peer_size = peer_epc_features->bar_fixed_size[peer_barno];
1022
1023        /* Check if epc_features is populated incorrectly */
1024        if ((!IS_ALIGNED(size, align)))
1025                return -EINVAL;
1026
1027        spad_count = ntb->spad_count;
1028
1029        ctrl_size = sizeof(struct epf_ntb_ctrl);
1030        spad_size = spad_count * 4;
1031
1032        msix_capable = epc_features->msix_capable;
1033        if (msix_capable) {
1034                msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count;
1035                ctrl_size = ALIGN(ctrl_size, 8);
1036                ntb_epc->msix_table_offset = ctrl_size;
1037                ntb_epc->msix_bar = barno;
1038                /* Align to QWORD or 8 Bytes */
1039                pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8);
1040                ctrl_size = ctrl_size + msix_table_size + pba_size;
1041        }
1042
1043        if (!align) {
1044                ctrl_size = roundup_pow_of_two(ctrl_size);
1045                spad_size = roundup_pow_of_two(spad_size);
1046        } else {
1047                ctrl_size = ALIGN(ctrl_size, align);
1048                spad_size = ALIGN(spad_size, align);
1049        }
1050
1051        if (peer_size) {
1052                if (peer_size < spad_size)
1053                        spad_count = peer_size / 4;
1054                spad_size = peer_size;
1055        }
1056
1057        /*
1058         * In order to make sure SPAD offset is aligned to its size,
1059         * expand control region size to the size of SPAD if SPAD size
1060         * is greater than control region size.
1061         */
1062        if (spad_size > ctrl_size)
1063                ctrl_size = spad_size;
1064
1065        if (!size)
1066                size = ctrl_size + spad_size;
1067        else if (size < ctrl_size + spad_size)
1068                return -EINVAL;
1069
1070        base = pci_epf_alloc_space(epf, size, barno, align, type);
1071        if (!base) {
1072                dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n",
1073                        pci_epc_interface_string(type));
1074                return -ENOMEM;
1075        }
1076
1077        ntb_epc->reg = base;
1078
1079        ctrl = ntb_epc->reg;
1080        ctrl->spad_offset = ctrl_size;
1081        ctrl->spad_count = spad_count;
1082        ctrl->num_mws = ntb->num_mws;
1083        ctrl->db_entry_size = align ? align : 4;
1084        ntb_epc->spad_size = spad_size;
1085
1086        return 0;
1087}
1088
1089/**
1090 * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config +
1091 *   scratchpad region for each of PRIMARY and SECONDARY interface
1092 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1093 *
1094 * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for
1095 * config + scratchpad region for a specific interface
1096 */
1097static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb)
1098{
1099        enum pci_epc_interface_type type;
1100        struct device *dev;
1101        int ret;
1102
1103        dev = &ntb->epf->dev;
1104
1105        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1106                ret = epf_ntb_config_spad_bar_alloc(ntb, type);
1107                if (ret) {
1108                        dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n",
1109                                pci_epc_interface_string(type));
1110                        return ret;
1111                }
1112        }
1113
1114        return 0;
1115}
1116
1117/**
1118 * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address
1119 *   space
1120 * @ntb_epc: EPC associated with one of the HOST which holds peers outbound
1121 *   address regions
1122 *
1123 * +-----------------+    +---->+----------------+-----------+-----------------+
1124 * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1125 * +-----------------+    |     +----------------+           +-----------------+
1126 * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1127 * +-----------------+----+     +----------------+         | |                 |
1128 * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1129 * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1130 * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1131 * +-----------------+    |     |----------------+     | |   |                 |
1132 * |       BAR4      |    |     |                |     | |   +-----------------+
1133 * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1134 * |       BAR5      |    |     |                |   | |     +-----------------+
1135 * +-----------------+    +---->-----------------+   | |     |                 |
1136 *   EP CONTROLLER 1            |                |   | |     +-----------------+
1137 *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1138 *                              +----------------+   |       +-----------------+
1139 *                      (A)      EP CONTROLLER 2     |       |                 |
1140 *                                 (OB SPACE)        |       |                 |
1141 *                                                   +------->      MW1        |
1142 *                                                           |                 |
1143 *                                                           |                 |
1144 *                                                   (B)     +-----------------+
1145 *                                                           |                 |
1146 *                                                           |                 |
1147 *                                                           |                 |
1148 *                                                           |                 |
1149 *                                                           |                 |
1150 *                                                           +-----------------+
1151 *                                                           PCI Address Space
1152 *                                                           (Managed by HOST2)
1153 *
1154 * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram.
1155 * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3,
1156 * MW4).
1157 */
1158static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc)
1159{
1160        struct pci_epf_bar *epf_bar;
1161        void __iomem *mw_addr;
1162        phys_addr_t phys_addr;
1163        enum epf_ntb_bar bar;
1164        enum pci_barno barno;
1165        struct pci_epc *epc;
1166        size_t size;
1167
1168        epc = ntb_epc->epc;
1169
1170        for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
1171                barno = ntb_epc->epf_ntb_bar[bar];
1172                mw_addr = ntb_epc->mw_addr[barno];
1173                epf_bar = &ntb_epc->epf_bar[barno];
1174                phys_addr = epf_bar->phys_addr;
1175                size = epf_bar->size;
1176                if (mw_addr) {
1177                        pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size);
1178                        ntb_epc->mw_addr[barno] = NULL;
1179                }
1180        }
1181}
1182
1183/**
1184 * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR
1185 * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
1186 *   address
1187 *
1188 * +-----------------+    +---->+----------------+-----------+-----------------+
1189 * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1190 * +-----------------+    |     +----------------+           +-----------------+
1191 * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1192 * +-----------------+----+     +----------------+         | |                 |
1193 * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1194 * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1195 * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1196 * +-----------------+    |     |----------------+     | |   |                 |
1197 * |       BAR4      |    |     |                |     | |   +-----------------+
1198 * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1199 * |       BAR5      |    |     |                |   | |     +-----------------+
1200 * +-----------------+    +---->-----------------+   | |     |                 |
1201 *   EP CONTROLLER 1            |                |   | |     +-----------------+
1202 *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1203 *                              +----------------+   |       +-----------------+
1204 *                      (A)      EP CONTROLLER 2     |       |                 |
1205 *                                 (OB SPACE)        |       |                 |
1206 *                                                   +------->      MW1        |
1207 *                                                           |                 |
1208 *                                                           |                 |
1209 *                                                   (B)     +-----------------+
1210 *                                                           |                 |
1211 *                                                           |                 |
1212 *                                                           |                 |
1213 *                                                           |                 |
1214 *                                                           |                 |
1215 *                                                           +-----------------+
1216 *                                                           PCI Address Space
1217 *                                                           (Managed by HOST2)
1218 *
1219 * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above
1220 * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2
1221 * BAR, MW3 BAR and MW4 BAR).
1222 */
1223static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc)
1224{
1225        struct pci_epf_bar *epf_bar;
1226        enum epf_ntb_bar bar;
1227        enum pci_barno barno;
1228        u8 func_no, vfunc_no;
1229        struct pci_epc *epc;
1230
1231        epc = ntb_epc->epc;
1232
1233        func_no = ntb_epc->func_no;
1234        vfunc_no = ntb_epc->vfunc_no;
1235
1236        for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
1237                barno = ntb_epc->epf_ntb_bar[bar];
1238                epf_bar = &ntb_epc->epf_bar[barno];
1239                pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
1240        }
1241}
1242
1243/**
1244 * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory
1245 *   allocated in peers outbound address space
1246 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1247 * @type: PRIMARY interface or SECONDARY interface
1248 *
1249 * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and
1250 * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory.
1251 */
1252static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb,
1253                                      enum pci_epc_interface_type type)
1254{
1255        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
1256
1257        ntb_epc = ntb->epc[type];
1258        peer_ntb_epc = ntb->epc[!type];
1259
1260        epf_ntb_db_mw_bar_clear(ntb_epc);
1261        epf_ntb_free_peer_mem(peer_ntb_epc);
1262}
1263
1264/**
1265 * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity
1266 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1267 * @type: PRIMARY interface or SECONDARY interface
1268 *
1269 * Configure MSI/MSI-X capability for each interface with number of
1270 * interrupts equal to "db_count" configfs entry.
1271 */
1272static int epf_ntb_configure_interrupt(struct epf_ntb *ntb,
1273                                       enum pci_epc_interface_type type)
1274{
1275        const struct pci_epc_features *epc_features;
1276        bool msix_capable, msi_capable;
1277        struct epf_ntb_epc *ntb_epc;
1278        u8 func_no, vfunc_no;
1279        struct pci_epc *epc;
1280        struct device *dev;
1281        u32 db_count;
1282        int ret;
1283
1284        ntb_epc = ntb->epc[type];
1285        dev = &ntb->epf->dev;
1286
1287        epc_features = ntb_epc->epc_features;
1288        msix_capable = epc_features->msix_capable;
1289        msi_capable = epc_features->msi_capable;
1290
1291        if (!(msix_capable || msi_capable)) {
1292                dev_err(dev, "MSI or MSI-X is required for doorbell\n");
1293                return -EINVAL;
1294        }
1295
1296        func_no = ntb_epc->func_no;
1297        vfunc_no = ntb_epc->vfunc_no;
1298
1299        db_count = ntb->db_count;
1300        if (db_count > MAX_DB_COUNT) {
1301                dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
1302                return -EINVAL;
1303        }
1304
1305        ntb->db_count = db_count;
1306        epc = ntb_epc->epc;
1307
1308        if (msi_capable) {
1309                ret = pci_epc_set_msi(epc, func_no, vfunc_no, db_count);
1310                if (ret) {
1311                        dev_err(dev, "%s intf: MSI configuration failed\n",
1312                                pci_epc_interface_string(type));
1313                        return ret;
1314                }
1315        }
1316
1317        if (msix_capable) {
1318                ret = pci_epc_set_msix(epc, func_no, vfunc_no, db_count,
1319                                       ntb_epc->msix_bar,
1320                                       ntb_epc->msix_table_offset);
1321                if (ret) {
1322                        dev_err(dev, "MSI configuration failed\n");
1323                        return ret;
1324                }
1325        }
1326
1327        return 0;
1328}
1329
1330/**
1331 * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space
1332 * @dev: The PCI device.
1333 * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound
1334 *   address
1335 * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be
1336 *   BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4)
1337 * @peer_ntb_epc: EPC associated with HOST whose outbound address space is
1338 *   used by @ntb_epc
1339 * @size: Size of the address region that has to be allocated in peers OB SPACE
1340 *
1341 *
1342 * +-----------------+    +---->+----------------+-----------+-----------------+
1343 * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1344 * +-----------------+    |     +----------------+           +-----------------+
1345 * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1346 * +-----------------+----+     +----------------+         | |                 |
1347 * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1348 * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1349 * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1350 * +-----------------+    |     |----------------+     | |   |                 |
1351 * |       BAR4      |    |     |                |     | |   +-----------------+
1352 * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1353 * |       BAR5      |    |     |                |   | |     +-----------------+
1354 * +-----------------+    +---->-----------------+   | |     |                 |
1355 *   EP CONTROLLER 1            |                |   | |     +-----------------+
1356 *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1357 *                              +----------------+   |       +-----------------+
1358 *                      (A)      EP CONTROLLER 2     |       |                 |
1359 *                                 (OB SPACE)        |       |                 |
1360 *                                                   +------->      MW1        |
1361 *                                                           |                 |
1362 *                                                           |                 |
1363 *                                                   (B)     +-----------------+
1364 *                                                           |                 |
1365 *                                                           |                 |
1366 *                                                           |                 |
1367 *                                                           |                 |
1368 *                                                           |                 |
1369 *                                                           +-----------------+
1370 *                                                           PCI Address Space
1371 *                                                           (Managed by HOST2)
1372 *
1373 * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate
1374 * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4).
1375 */
1376static int epf_ntb_alloc_peer_mem(struct device *dev,
1377                                  struct epf_ntb_epc *ntb_epc,
1378                                  enum epf_ntb_bar bar,
1379                                  struct epf_ntb_epc *peer_ntb_epc,
1380                                  size_t size)
1381{
1382        const struct pci_epc_features *epc_features;
1383        struct pci_epf_bar *epf_bar;
1384        struct pci_epc *peer_epc;
1385        phys_addr_t phys_addr;
1386        void __iomem *mw_addr;
1387        enum pci_barno barno;
1388        size_t align;
1389
1390        epc_features = ntb_epc->epc_features;
1391        align = epc_features->align;
1392
1393        if (size < 128)
1394                size = 128;
1395
1396        if (align)
1397                size = ALIGN(size, align);
1398        else
1399                size = roundup_pow_of_two(size);
1400
1401        peer_epc = peer_ntb_epc->epc;
1402        mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size);
1403        if (!mw_addr) {
1404                dev_err(dev, "%s intf: Failed to allocate OB address\n",
1405                        pci_epc_interface_string(peer_ntb_epc->type));
1406                return -ENOMEM;
1407        }
1408
1409        barno = ntb_epc->epf_ntb_bar[bar];
1410        epf_bar = &ntb_epc->epf_bar[barno];
1411        ntb_epc->mw_addr[barno] = mw_addr;
1412
1413        epf_bar->phys_addr = phys_addr;
1414        epf_bar->size = size;
1415        epf_bar->barno = barno;
1416        epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
1417
1418        return 0;
1419}
1420
1421/**
1422 * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs
1423 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1424 * @type: PRIMARY interface or SECONDARY interface
1425 *
1426 * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates
1427 * memory in OB address space of HOST2 and configures BAR of HOST1
1428 */
1429static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb,
1430                                  enum pci_epc_interface_type type)
1431{
1432        const struct pci_epc_features *epc_features;
1433        struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
1434        struct pci_epf_bar *epf_bar;
1435        struct epf_ntb_ctrl *ctrl;
1436        u32 num_mws, db_count;
1437        enum epf_ntb_bar bar;
1438        enum pci_barno barno;
1439        u8 func_no, vfunc_no;
1440        struct pci_epc *epc;
1441        struct device *dev;
1442        size_t align;
1443        int ret, i;
1444        u64 size;
1445
1446        ntb_epc = ntb->epc[type];
1447        peer_ntb_epc = ntb->epc[!type];
1448
1449        dev = &ntb->epf->dev;
1450        epc_features = ntb_epc->epc_features;
1451        align = epc_features->align;
1452        func_no = ntb_epc->func_no;
1453        vfunc_no = ntb_epc->vfunc_no;
1454        epc = ntb_epc->epc;
1455        num_mws = ntb->num_mws;
1456        db_count = ntb->db_count;
1457
1458        for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) {
1459                if (bar == BAR_DB_MW1) {
1460                        align = align ? align : 4;
1461                        size = db_count * align;
1462                        size = ALIGN(size, ntb->mws_size[i]);
1463                        ctrl = ntb_epc->reg;
1464                        ctrl->mw1_offset = size;
1465                        size += ntb->mws_size[i];
1466                } else {
1467                        size = ntb->mws_size[i];
1468                }
1469
1470                ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar,
1471                                             peer_ntb_epc, size);
1472                if (ret) {
1473                        dev_err(dev, "%s intf: DoorBell mem alloc failed\n",
1474                                pci_epc_interface_string(type));
1475                        goto err_alloc_peer_mem;
1476                }
1477
1478                barno = ntb_epc->epf_ntb_bar[bar];
1479                epf_bar = &ntb_epc->epf_bar[barno];
1480
1481                ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
1482                if (ret) {
1483                        dev_err(dev, "%s intf: DoorBell BAR set failed\n",
1484                                pci_epc_interface_string(type));
1485                        goto err_alloc_peer_mem;
1486                }
1487        }
1488
1489        return 0;
1490
1491err_alloc_peer_mem:
1492        epf_ntb_db_mw_bar_cleanup(ntb, type);
1493
1494        return ret;
1495}
1496
1497/**
1498 * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface
1499 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1500 * @type: PRIMARY interface or SECONDARY interface
1501 *
1502 * Unbind NTB function device from EPC and relinquish reference to pci_epc
1503 * for each of the interface.
1504 */
1505static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb,
1506                                          enum pci_epc_interface_type type)
1507{
1508        struct epf_ntb_epc *ntb_epc;
1509        struct pci_epc *epc;
1510        struct pci_epf *epf;
1511
1512        if (type < 0)
1513                return;
1514
1515        epf = ntb->epf;
1516        ntb_epc = ntb->epc[type];
1517        if (!ntb_epc)
1518                return;
1519        epc = ntb_epc->epc;
1520        pci_epc_remove_epf(epc, epf, type);
1521        pci_epc_put(epc);
1522}
1523
1524/**
1525 * epf_ntb_epc_destroy() - Cleanup NTB EPC interface
1526 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1527 *
1528 * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
1529 */
1530static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
1531{
1532        enum pci_epc_interface_type type;
1533
1534        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
1535                epf_ntb_epc_destroy_interface(ntb, type);
1536}
1537
1538/**
1539 * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface
1540 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1541 * @epc: struct pci_epc to which a particular NTB interface should be associated
1542 * @type: PRIMARY interface or SECONDARY interface
1543 *
1544 * Allocate memory for NTB EPC interface and initialize it.
1545 */
1546static int epf_ntb_epc_create_interface(struct epf_ntb *ntb,
1547                                        struct pci_epc *epc,
1548                                        enum pci_epc_interface_type type)
1549{
1550        const struct pci_epc_features *epc_features;
1551        struct pci_epf_bar *epf_bar;
1552        struct epf_ntb_epc *ntb_epc;
1553        u8 func_no, vfunc_no;
1554        struct pci_epf *epf;
1555        struct device *dev;
1556
1557        dev = &ntb->epf->dev;
1558
1559        ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL);
1560        if (!ntb_epc)
1561                return -ENOMEM;
1562
1563        epf = ntb->epf;
1564        vfunc_no = epf->vfunc_no;
1565        if (type == PRIMARY_INTERFACE) {
1566                func_no = epf->func_no;
1567                epf_bar = epf->bar;
1568        } else {
1569                func_no = epf->sec_epc_func_no;
1570                epf_bar = epf->sec_epc_bar;
1571        }
1572
1573        ntb_epc->linkup = false;
1574        ntb_epc->epc = epc;
1575        ntb_epc->func_no = func_no;
1576        ntb_epc->vfunc_no = vfunc_no;
1577        ntb_epc->type = type;
1578        ntb_epc->epf_bar = epf_bar;
1579        ntb_epc->epf_ntb = ntb;
1580
1581        epc_features = pci_epc_get_features(epc, func_no, vfunc_no);
1582        if (!epc_features)
1583                return -EINVAL;
1584        ntb_epc->epc_features = epc_features;
1585
1586        ntb->epc[type] = ntb_epc;
1587
1588        return 0;
1589}
1590
1591/**
1592 * epf_ntb_epc_create() - Create and initialize NTB EPC interface
1593 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1594 *
1595 * Get a reference to EPC device and bind NTB function device to that EPC
1596 * for each of the interface. It is also a wrapper to
1597 * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface
1598 * and initialize it
1599 */
1600static int epf_ntb_epc_create(struct epf_ntb *ntb)
1601{
1602        struct pci_epf *epf;
1603        struct device *dev;
1604        int ret;
1605
1606        epf = ntb->epf;
1607        dev = &epf->dev;
1608
1609        ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE);
1610        if (ret) {
1611                dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n");
1612                return ret;
1613        }
1614
1615        ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc,
1616                                           SECONDARY_INTERFACE);
1617        if (ret) {
1618                dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n");
1619                goto err_epc_create;
1620        }
1621
1622        return 0;
1623
1624err_epc_create:
1625        epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE);
1626
1627        return ret;
1628}
1629
1630/**
1631 * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of
1632 *   the NTB constructs (scratchpad region, doorbell, memorywindow)
1633 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1634 * @type: PRIMARY interface or SECONDARY interface
1635 *
1636 * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD,
1637 * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4.
1638 */
1639static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb,
1640                                          enum pci_epc_interface_type type)
1641{
1642        const struct pci_epc_features *epc_features;
1643        struct epf_ntb_epc *ntb_epc;
1644        enum pci_barno barno;
1645        enum epf_ntb_bar bar;
1646        struct device *dev;
1647        u32 num_mws;
1648        int i;
1649
1650        barno = BAR_0;
1651        ntb_epc = ntb->epc[type];
1652        num_mws = ntb->num_mws;
1653        dev = &ntb->epf->dev;
1654        epc_features = ntb_epc->epc_features;
1655
1656        /* These are required BARs which are mandatory for NTB functionality */
1657        for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) {
1658                barno = pci_epc_get_next_free_bar(epc_features, barno);
1659                if (barno < 0) {
1660                        dev_err(dev, "%s intf: Fail to get NTB function BAR\n",
1661                                pci_epc_interface_string(type));
1662                        return barno;
1663                }
1664                ntb_epc->epf_ntb_bar[bar] = barno;
1665        }
1666
1667        /* These are optional BARs which don't impact NTB functionality */
1668        for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) {
1669                barno = pci_epc_get_next_free_bar(epc_features, barno);
1670                if (barno < 0) {
1671                        ntb->num_mws = i;
1672                        dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
1673                }
1674                ntb_epc->epf_ntb_bar[bar] = barno;
1675        }
1676
1677        return 0;
1678}
1679
1680/**
1681 * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
1682 * constructs (scratchpad region, doorbell, memorywindow)
1683 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1684 *
1685 * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs
1686 * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2,
1687 * BAR_MW3 and BAR_MW4 for all the interfaces.
1688 */
1689static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
1690{
1691        enum pci_epc_interface_type type;
1692        struct device *dev;
1693        int ret;
1694
1695        dev = &ntb->epf->dev;
1696        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1697                ret = epf_ntb_init_epc_bar_interface(ntb, type);
1698                if (ret) {
1699                        dev_err(dev, "Fail to init EPC bar for %s interface\n",
1700                                pci_epc_interface_string(type));
1701                        return ret;
1702                }
1703        }
1704
1705        return 0;
1706}
1707
1708/**
1709 * epf_ntb_epc_init_interface() - Initialize NTB interface
1710 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1711 * @type: PRIMARY interface or SECONDARY interface
1712 *
1713 * Wrapper to initialize a particular EPC interface and start the workqueue
1714 * to check for commands from host. This function will write to the
1715 * EP controller HW for configuring it.
1716 */
1717static int epf_ntb_epc_init_interface(struct epf_ntb *ntb,
1718                                      enum pci_epc_interface_type type)
1719{
1720        struct epf_ntb_epc *ntb_epc;
1721        u8 func_no, vfunc_no;
1722        struct pci_epc *epc;
1723        struct pci_epf *epf;
1724        struct device *dev;
1725        int ret;
1726
1727        ntb_epc = ntb->epc[type];
1728        epf = ntb->epf;
1729        dev = &epf->dev;
1730        epc = ntb_epc->epc;
1731        func_no = ntb_epc->func_no;
1732        vfunc_no = ntb_epc->vfunc_no;
1733
1734        ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]);
1735        if (ret) {
1736                dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n",
1737                        pci_epc_interface_string(type));
1738                return ret;
1739        }
1740
1741        ret = epf_ntb_peer_spad_bar_set(ntb, type);
1742        if (ret) {
1743                dev_err(dev, "%s intf: Peer SPAD BAR init failed\n",
1744                        pci_epc_interface_string(type));
1745                goto err_peer_spad_bar_init;
1746        }
1747
1748        ret = epf_ntb_configure_interrupt(ntb, type);
1749        if (ret) {
1750                dev_err(dev, "%s intf: Interrupt configuration failed\n",
1751                        pci_epc_interface_string(type));
1752                goto err_peer_spad_bar_init;
1753        }
1754
1755        ret = epf_ntb_db_mw_bar_init(ntb, type);
1756        if (ret) {
1757                dev_err(dev, "%s intf: DB/MW BAR init failed\n",
1758                        pci_epc_interface_string(type));
1759                goto err_db_mw_bar_init;
1760        }
1761
1762        if (vfunc_no <= 1) {
1763                ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
1764                if (ret) {
1765                        dev_err(dev, "%s intf: Configuration header write failed\n",
1766                                pci_epc_interface_string(type));
1767                        goto err_write_header;
1768                }
1769        }
1770
1771        INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler);
1772        queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work);
1773
1774        return 0;
1775
1776err_write_header:
1777        epf_ntb_db_mw_bar_cleanup(ntb, type);
1778
1779err_db_mw_bar_init:
1780        epf_ntb_peer_spad_bar_clear(ntb->epc[type]);
1781
1782err_peer_spad_bar_init:
1783        epf_ntb_config_sspad_bar_clear(ntb->epc[type]);
1784
1785        return ret;
1786}
1787
1788/**
1789 * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface
1790 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1791 * @type: PRIMARY interface or SECONDARY interface
1792 *
1793 * Wrapper to cleanup a particular NTB interface.
1794 */
1795static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb,
1796                                          enum pci_epc_interface_type type)
1797{
1798        struct epf_ntb_epc *ntb_epc;
1799
1800        if (type < 0)
1801                return;
1802
1803        ntb_epc = ntb->epc[type];
1804        cancel_delayed_work(&ntb_epc->cmd_handler);
1805        epf_ntb_db_mw_bar_cleanup(ntb, type);
1806        epf_ntb_peer_spad_bar_clear(ntb_epc);
1807        epf_ntb_config_sspad_bar_clear(ntb_epc);
1808}
1809
1810/**
1811 * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
1812 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1813 *
1814 * Wrapper to cleanup all NTB interfaces.
1815 */
1816static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
1817{
1818        enum pci_epc_interface_type type;
1819
1820        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
1821                epf_ntb_epc_cleanup_interface(ntb, type);
1822}
1823
1824/**
1825 * epf_ntb_epc_init() - Initialize all NTB interfaces
1826 * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1827 *
1828 * Wrapper to initialize all NTB interface and start the workqueue
1829 * to check for commands from host.
1830 */
1831static int epf_ntb_epc_init(struct epf_ntb *ntb)
1832{
1833        enum pci_epc_interface_type type;
1834        struct device *dev;
1835        int ret;
1836
1837        dev = &ntb->epf->dev;
1838
1839        for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1840                ret = epf_ntb_epc_init_interface(ntb, type);
1841                if (ret) {
1842                        dev_err(dev, "%s intf: Failed to initialize\n",
1843                                pci_epc_interface_string(type));
1844                        goto err_init_type;
1845                }
1846        }
1847
1848        return 0;
1849
1850err_init_type:
1851        epf_ntb_epc_cleanup_interface(ntb, type - 1);
1852
1853        return ret;
1854}
1855
1856/**
1857 * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
1858 * @epf: NTB endpoint function device
1859 *
1860 * Initialize both the endpoint controllers associated with NTB function device.
1861 * Invoked when a primary interface or secondary interface is bound to EPC
1862 * device. This function will succeed only when EPC is bound to both the
1863 * interfaces.
1864 */
1865static int epf_ntb_bind(struct pci_epf *epf)
1866{
1867        struct epf_ntb *ntb = epf_get_drvdata(epf);
1868        struct device *dev = &epf->dev;
1869        int ret;
1870
1871        if (!epf->epc) {
1872                dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
1873                return 0;
1874        }
1875
1876        if (!epf->sec_epc) {
1877                dev_dbg(dev, "SECONDARY EPC interface not yet bound\n");
1878                return 0;
1879        }
1880
1881        ret = epf_ntb_epc_create(ntb);
1882        if (ret) {
1883                dev_err(dev, "Failed to create NTB EPC\n");
1884                return ret;
1885        }
1886
1887        ret = epf_ntb_init_epc_bar(ntb);
1888        if (ret) {
1889                dev_err(dev, "Failed to create NTB EPC\n");
1890                goto err_bar_init;
1891        }
1892
1893        ret = epf_ntb_config_spad_bar_alloc_interface(ntb);
1894        if (ret) {
1895                dev_err(dev, "Failed to allocate BAR memory\n");
1896                goto err_bar_alloc;
1897        }
1898
1899        ret = epf_ntb_epc_init(ntb);
1900        if (ret) {
1901                dev_err(dev, "Failed to initialize EPC\n");
1902                goto err_bar_alloc;
1903        }
1904
1905        epf_set_drvdata(epf, ntb);
1906
1907        return 0;
1908
1909err_bar_alloc:
1910        epf_ntb_config_spad_bar_free(ntb);
1911
1912err_bar_init:
1913        epf_ntb_epc_destroy(ntb);
1914
1915        return ret;
1916}
1917
1918/**
1919 * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
1920 * @epf: NTB endpoint function device
1921 *
1922 * Cleanup the initialization from epf_ntb_bind()
1923 */
1924static void epf_ntb_unbind(struct pci_epf *epf)
1925{
1926        struct epf_ntb *ntb = epf_get_drvdata(epf);
1927
1928        epf_ntb_epc_cleanup(ntb);
1929        epf_ntb_config_spad_bar_free(ntb);
1930        epf_ntb_epc_destroy(ntb);
1931}
1932
1933#define EPF_NTB_R(_name)                                                \
1934static ssize_t epf_ntb_##_name##_show(struct config_item *item,         \
1935                                      char *page)                       \
1936{                                                                       \
1937        struct config_group *group = to_config_group(item);             \
1938        struct epf_ntb *ntb = to_epf_ntb(group);                        \
1939                                                                        \
1940        return sprintf(page, "%d\n", ntb->_name);                       \
1941}
1942
1943#define EPF_NTB_W(_name)                                                \
1944static ssize_t epf_ntb_##_name##_store(struct config_item *item,        \
1945                                       const char *page, size_t len)    \
1946{                                                                       \
1947        struct config_group *group = to_config_group(item);             \
1948        struct epf_ntb *ntb = to_epf_ntb(group);                        \
1949        u32 val;                                                        \
1950        int ret;                                                        \
1951                                                                        \
1952        ret = kstrtou32(page, 0, &val);                                 \
1953        if (ret)                                                        \
1954                return ret;                                             \
1955                                                                        \
1956        ntb->_name = val;                                               \
1957                                                                        \
1958        return len;                                                     \
1959}
1960
1961#define EPF_NTB_MW_R(_name)                                             \
1962static ssize_t epf_ntb_##_name##_show(struct config_item *item,         \
1963                                      char *page)                       \
1964{                                                                       \
1965        struct config_group *group = to_config_group(item);             \
1966        struct epf_ntb *ntb = to_epf_ntb(group);                        \
1967        int win_no;                                                     \
1968                                                                        \
1969        sscanf(#_name, "mw%d", &win_no);                                \
1970                                                                        \
1971        return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]);      \
1972}
1973
1974#define EPF_NTB_MW_W(_name)                                             \
1975static ssize_t epf_ntb_##_name##_store(struct config_item *item,        \
1976                                       const char *page, size_t len)    \
1977{                                                                       \
1978        struct config_group *group = to_config_group(item);             \
1979        struct epf_ntb *ntb = to_epf_ntb(group);                        \
1980        struct device *dev = &ntb->epf->dev;                            \
1981        int win_no;                                                     \
1982        u64 val;                                                        \
1983        int ret;                                                        \
1984                                                                        \
1985        ret = kstrtou64(page, 0, &val);                                 \
1986        if (ret)                                                        \
1987                return ret;                                             \
1988                                                                        \
1989        if (sscanf(#_name, "mw%d", &win_no) != 1)                       \
1990                return -EINVAL;                                         \
1991                                                                        \
1992        if (ntb->num_mws < win_no) {                                    \
1993                dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
1994                return -EINVAL;                                         \
1995        }                                                               \
1996                                                                        \
1997        ntb->mws_size[win_no - 1] = val;                                \
1998                                                                        \
1999        return len;                                                     \
2000}
2001
2002static ssize_t epf_ntb_num_mws_store(struct config_item *item,
2003                                     const char *page, size_t len)
2004{
2005        struct config_group *group = to_config_group(item);
2006        struct epf_ntb *ntb = to_epf_ntb(group);
2007        u32 val;
2008        int ret;
2009
2010        ret = kstrtou32(page, 0, &val);
2011        if (ret)
2012                return ret;
2013
2014        if (val > MAX_MW)
2015                return -EINVAL;
2016
2017        ntb->num_mws = val;
2018
2019        return len;
2020}
2021
2022EPF_NTB_R(spad_count)
2023EPF_NTB_W(spad_count)
2024EPF_NTB_R(db_count)
2025EPF_NTB_W(db_count)
2026EPF_NTB_R(num_mws)
2027EPF_NTB_MW_R(mw1)
2028EPF_NTB_MW_W(mw1)
2029EPF_NTB_MW_R(mw2)
2030EPF_NTB_MW_W(mw2)
2031EPF_NTB_MW_R(mw3)
2032EPF_NTB_MW_W(mw3)
2033EPF_NTB_MW_R(mw4)
2034EPF_NTB_MW_W(mw4)
2035
2036CONFIGFS_ATTR(epf_ntb_, spad_count);
2037CONFIGFS_ATTR(epf_ntb_, db_count);
2038CONFIGFS_ATTR(epf_ntb_, num_mws);
2039CONFIGFS_ATTR(epf_ntb_, mw1);
2040CONFIGFS_ATTR(epf_ntb_, mw2);
2041CONFIGFS_ATTR(epf_ntb_, mw3);
2042CONFIGFS_ATTR(epf_ntb_, mw4);
2043
2044static struct configfs_attribute *epf_ntb_attrs[] = {
2045        &epf_ntb_attr_spad_count,
2046        &epf_ntb_attr_db_count,
2047        &epf_ntb_attr_num_mws,
2048        &epf_ntb_attr_mw1,
2049        &epf_ntb_attr_mw2,
2050        &epf_ntb_attr_mw3,
2051        &epf_ntb_attr_mw4,
2052        NULL,
2053};
2054
2055static const struct config_item_type ntb_group_type = {
2056        .ct_attrs       = epf_ntb_attrs,
2057        .ct_owner       = THIS_MODULE,
2058};
2059
2060/**
2061 * epf_ntb_add_cfs() - Add configfs directory specific to NTB
2062 * @epf: NTB endpoint function device
2063 * @group: A pointer to the config_group structure referencing a group of
2064 *         config_items of a specific type that belong to a specific sub-system.
2065 *
2066 * Add configfs directory specific to NTB. This directory will hold
2067 * NTB specific properties like db_count, spad_count, num_mws etc.,
2068 */
2069static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
2070                                            struct config_group *group)
2071{
2072        struct epf_ntb *ntb = epf_get_drvdata(epf);
2073        struct config_group *ntb_group = &ntb->group;
2074        struct device *dev = &epf->dev;
2075
2076        config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
2077
2078        return ntb_group;
2079}
2080
2081/**
2082 * epf_ntb_probe() - Probe NTB function driver
2083 * @epf: NTB endpoint function device
2084 *
2085 * Probe NTB function driver when endpoint function bus detects a NTB
2086 * endpoint function.
2087 */
2088static int epf_ntb_probe(struct pci_epf *epf)
2089{
2090        struct epf_ntb *ntb;
2091        struct device *dev;
2092
2093        dev = &epf->dev;
2094
2095        ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
2096        if (!ntb)
2097                return -ENOMEM;
2098
2099        epf->header = &epf_ntb_header;
2100        ntb->epf = epf;
2101        epf_set_drvdata(epf, ntb);
2102
2103        return 0;
2104}
2105
2106static struct pci_epf_ops epf_ntb_ops = {
2107        .bind   = epf_ntb_bind,
2108        .unbind = epf_ntb_unbind,
2109        .add_cfs = epf_ntb_add_cfs,
2110};
2111
2112static const struct pci_epf_device_id epf_ntb_ids[] = {
2113        {
2114                .name = "pci_epf_ntb",
2115        },
2116        {},
2117};
2118
2119static struct pci_epf_driver epf_ntb_driver = {
2120        .driver.name    = "pci_epf_ntb",
2121        .probe          = epf_ntb_probe,
2122        .id_table       = epf_ntb_ids,
2123        .ops            = &epf_ntb_ops,
2124        .owner          = THIS_MODULE,
2125};
2126
2127static int __init epf_ntb_init(void)
2128{
2129        int ret;
2130
2131        kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
2132                                            WQ_HIGHPRI, 0);
2133        ret = pci_epf_register_driver(&epf_ntb_driver);
2134        if (ret) {
2135                destroy_workqueue(kpcintb_workqueue);
2136                pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
2137                return ret;
2138        }
2139
2140        return 0;
2141}
2142module_init(epf_ntb_init);
2143
2144static void __exit epf_ntb_exit(void)
2145{
2146        pci_epf_unregister_driver(&epf_ntb_driver);
2147        destroy_workqueue(kpcintb_workqueue);
2148}
2149module_exit(epf_ntb_exit);
2150
2151MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
2152MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
2153MODULE_LICENSE("GPL v2");
2154