linux/drivers/pci/endpoint/pci-epc-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Endpoint *Controller* (EPC) library
   4 *
   5 * Copyright (C) 2017 Texas Instruments
   6 * Author: Kishon Vijay Abraham I <kishon@ti.com>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13
  14#include <linux/pci-epc.h>
  15#include <linux/pci-epf.h>
  16#include <linux/pci-ep-cfs.h>
  17
  18static struct class *pci_epc_class;
  19
  20static void devm_pci_epc_release(struct device *dev, void *res)
  21{
  22        struct pci_epc *epc = *(struct pci_epc **)res;
  23
  24        pci_epc_destroy(epc);
  25}
  26
  27static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
  28{
  29        struct pci_epc **epc = res;
  30
  31        return *epc == match_data;
  32}
  33
  34/**
  35 * pci_epc_put() - release the PCI endpoint controller
  36 * @epc: epc returned by pci_epc_get()
  37 *
  38 * release the refcount the caller obtained by invoking pci_epc_get()
  39 */
  40void pci_epc_put(struct pci_epc *epc)
  41{
  42        if (!epc || IS_ERR(epc))
  43                return;
  44
  45        module_put(epc->ops->owner);
  46        put_device(&epc->dev);
  47}
  48EXPORT_SYMBOL_GPL(pci_epc_put);
  49
  50/**
  51 * pci_epc_get() - get the PCI endpoint controller
  52 * @epc_name: device name of the endpoint controller
  53 *
  54 * Invoke to get struct pci_epc * corresponding to the device name of the
  55 * endpoint controller
  56 */
  57struct pci_epc *pci_epc_get(const char *epc_name)
  58{
  59        int ret = -EINVAL;
  60        struct pci_epc *epc;
  61        struct device *dev;
  62        struct class_dev_iter iter;
  63
  64        class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
  65        while ((dev = class_dev_iter_next(&iter))) {
  66                if (strcmp(epc_name, dev_name(dev)))
  67                        continue;
  68
  69                epc = to_pci_epc(dev);
  70                if (!try_module_get(epc->ops->owner)) {
  71                        ret = -EINVAL;
  72                        goto err;
  73                }
  74
  75                class_dev_iter_exit(&iter);
  76                get_device(&epc->dev);
  77                return epc;
  78        }
  79
  80err:
  81        class_dev_iter_exit(&iter);
  82        return ERR_PTR(ret);
  83}
  84EXPORT_SYMBOL_GPL(pci_epc_get);
  85
  86/**
  87 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
  88 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
  89 *
  90 * Invoke to get the first unreserved BAR that can be used by the endpoint
  91 * function. For any incorrect value in reserved_bar return '0'.
  92 */
  93enum pci_barno
  94pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
  95{
  96        return pci_epc_get_next_free_bar(epc_features, BAR_0);
  97}
  98EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
  99
 100/**
 101 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
 102 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
 103 * @bar: the starting BAR number from where unreserved BAR should be searched
 104 *
 105 * Invoke to get the next unreserved BAR starting from @bar that can be used
 106 * for endpoint function. For any incorrect value in reserved_bar return '0'.
 107 */
 108enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
 109                                         *epc_features, enum pci_barno bar)
 110{
 111        unsigned long free_bar;
 112
 113        if (!epc_features)
 114                return BAR_0;
 115
 116        /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
 117        if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
 118                bar++;
 119
 120        /* Find if the reserved BAR is also a 64-bit BAR */
 121        free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
 122
 123        /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
 124        free_bar <<= 1;
 125        free_bar |= epc_features->reserved_bar;
 126
 127        free_bar = find_next_zero_bit(&free_bar, 6, bar);
 128        if (free_bar > 5)
 129                return NO_BAR;
 130
 131        return free_bar;
 132}
 133EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
 134
 135/**
 136 * pci_epc_get_features() - get the features supported by EPC
 137 * @epc: the features supported by *this* EPC device will be returned
 138 * @func_no: the features supported by the EPC device specific to the
 139 *           endpoint function with func_no will be returned
 140 * @vfunc_no: the features supported by the EPC device specific to the
 141 *           virtual endpoint function with vfunc_no will be returned
 142 *
 143 * Invoke to get the features provided by the EPC which may be
 144 * specific to an endpoint function. Returns pci_epc_features on success
 145 * and NULL for any failures.
 146 */
 147const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
 148                                                    u8 func_no, u8 vfunc_no)
 149{
 150        const struct pci_epc_features *epc_features;
 151
 152        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 153                return NULL;
 154
 155        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 156                return NULL;
 157
 158        if (!epc->ops->get_features)
 159                return NULL;
 160
 161        mutex_lock(&epc->lock);
 162        epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
 163        mutex_unlock(&epc->lock);
 164
 165        return epc_features;
 166}
 167EXPORT_SYMBOL_GPL(pci_epc_get_features);
 168
 169/**
 170 * pci_epc_stop() - stop the PCI link
 171 * @epc: the link of the EPC device that has to be stopped
 172 *
 173 * Invoke to stop the PCI link
 174 */
 175void pci_epc_stop(struct pci_epc *epc)
 176{
 177        if (IS_ERR(epc) || !epc->ops->stop)
 178                return;
 179
 180        mutex_lock(&epc->lock);
 181        epc->ops->stop(epc);
 182        mutex_unlock(&epc->lock);
 183}
 184EXPORT_SYMBOL_GPL(pci_epc_stop);
 185
 186/**
 187 * pci_epc_start() - start the PCI link
 188 * @epc: the link of *this* EPC device has to be started
 189 *
 190 * Invoke to start the PCI link
 191 */
 192int pci_epc_start(struct pci_epc *epc)
 193{
 194        int ret;
 195
 196        if (IS_ERR(epc))
 197                return -EINVAL;
 198
 199        if (!epc->ops->start)
 200                return 0;
 201
 202        mutex_lock(&epc->lock);
 203        ret = epc->ops->start(epc);
 204        mutex_unlock(&epc->lock);
 205
 206        return ret;
 207}
 208EXPORT_SYMBOL_GPL(pci_epc_start);
 209
 210/**
 211 * pci_epc_raise_irq() - interrupt the host system
 212 * @epc: the EPC device which has to interrupt the host
 213 * @func_no: the physical endpoint function number in the EPC device
 214 * @vfunc_no: the virtual endpoint function number in the physical function
 215 * @type: specify the type of interrupt; legacy, MSI or MSI-X
 216 * @interrupt_num: the MSI or MSI-X interrupt number
 217 *
 218 * Invoke to raise an legacy, MSI or MSI-X interrupt
 219 */
 220int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 221                      enum pci_epc_irq_type type, u16 interrupt_num)
 222{
 223        int ret;
 224
 225        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 226                return -EINVAL;
 227
 228        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 229                return -EINVAL;
 230
 231        if (!epc->ops->raise_irq)
 232                return 0;
 233
 234        mutex_lock(&epc->lock);
 235        ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
 236        mutex_unlock(&epc->lock);
 237
 238        return ret;
 239}
 240EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
 241
 242/**
 243 * pci_epc_map_msi_irq() - Map physical address to MSI address and return
 244 *                         MSI data
 245 * @epc: the EPC device which has the MSI capability
 246 * @func_no: the physical endpoint function number in the EPC device
 247 * @vfunc_no: the virtual endpoint function number in the physical function
 248 * @phys_addr: the physical address of the outbound region
 249 * @interrupt_num: the MSI interrupt number
 250 * @entry_size: Size of Outbound address region for each interrupt
 251 * @msi_data: the data that should be written in order to raise MSI interrupt
 252 *            with interrupt number as 'interrupt num'
 253 * @msi_addr_offset: Offset of MSI address from the aligned outbound address
 254 *                   to which the MSI address is mapped
 255 *
 256 * Invoke to map physical address to MSI address and return MSI data. The
 257 * physical address should be an address in the outbound region. This is
 258 * required to implement doorbell functionality of NTB wherein EPC on either
 259 * side of the interface (primary and secondary) can directly write to the
 260 * physical address (in outbound region) of the other interface to ring
 261 * doorbell.
 262 */
 263int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 264                        phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
 265                        u32 *msi_data, u32 *msi_addr_offset)
 266{
 267        int ret;
 268
 269        if (IS_ERR_OR_NULL(epc))
 270                return -EINVAL;
 271
 272        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 273                return -EINVAL;
 274
 275        if (!epc->ops->map_msi_irq)
 276                return -EINVAL;
 277
 278        mutex_lock(&epc->lock);
 279        ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
 280                                    interrupt_num, entry_size, msi_data,
 281                                    msi_addr_offset);
 282        mutex_unlock(&epc->lock);
 283
 284        return ret;
 285}
 286EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
 287
 288/**
 289 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
 290 * @epc: the EPC device to which MSI interrupts was requested
 291 * @func_no: the physical endpoint function number in the EPC device
 292 * @vfunc_no: the virtual endpoint function number in the physical function
 293 *
 294 * Invoke to get the number of MSI interrupts allocated by the RC
 295 */
 296int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
 297{
 298        int interrupt;
 299
 300        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 301                return 0;
 302
 303        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 304                return 0;
 305
 306        if (!epc->ops->get_msi)
 307                return 0;
 308
 309        mutex_lock(&epc->lock);
 310        interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
 311        mutex_unlock(&epc->lock);
 312
 313        if (interrupt < 0)
 314                return 0;
 315
 316        interrupt = 1 << interrupt;
 317
 318        return interrupt;
 319}
 320EXPORT_SYMBOL_GPL(pci_epc_get_msi);
 321
 322/**
 323 * pci_epc_set_msi() - set the number of MSI interrupt numbers required
 324 * @epc: the EPC device on which MSI has to be configured
 325 * @func_no: the physical endpoint function number in the EPC device
 326 * @vfunc_no: the virtual endpoint function number in the physical function
 327 * @interrupts: number of MSI interrupts required by the EPF
 328 *
 329 * Invoke to set the required number of MSI interrupts.
 330 */
 331int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
 332{
 333        int ret;
 334        u8 encode_int;
 335
 336        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
 337            interrupts > 32)
 338                return -EINVAL;
 339
 340        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 341                return -EINVAL;
 342
 343        if (!epc->ops->set_msi)
 344                return 0;
 345
 346        encode_int = order_base_2(interrupts);
 347
 348        mutex_lock(&epc->lock);
 349        ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
 350        mutex_unlock(&epc->lock);
 351
 352        return ret;
 353}
 354EXPORT_SYMBOL_GPL(pci_epc_set_msi);
 355
 356/**
 357 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
 358 * @epc: the EPC device to which MSI-X interrupts was requested
 359 * @func_no: the physical endpoint function number in the EPC device
 360 * @vfunc_no: the virtual endpoint function number in the physical function
 361 *
 362 * Invoke to get the number of MSI-X interrupts allocated by the RC
 363 */
 364int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
 365{
 366        int interrupt;
 367
 368        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 369                return 0;
 370
 371        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 372                return 0;
 373
 374        if (!epc->ops->get_msix)
 375                return 0;
 376
 377        mutex_lock(&epc->lock);
 378        interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
 379        mutex_unlock(&epc->lock);
 380
 381        if (interrupt < 0)
 382                return 0;
 383
 384        return interrupt + 1;
 385}
 386EXPORT_SYMBOL_GPL(pci_epc_get_msix);
 387
 388/**
 389 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
 390 * @epc: the EPC device on which MSI-X has to be configured
 391 * @func_no: the physical endpoint function number in the EPC device
 392 * @vfunc_no: the virtual endpoint function number in the physical function
 393 * @interrupts: number of MSI-X interrupts required by the EPF
 394 * @bir: BAR where the MSI-X table resides
 395 * @offset: Offset pointing to the start of MSI-X table
 396 *
 397 * Invoke to set the required number of MSI-X interrupts.
 398 */
 399int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 400                     u16 interrupts, enum pci_barno bir, u32 offset)
 401{
 402        int ret;
 403
 404        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
 405            interrupts < 1 || interrupts > 2048)
 406                return -EINVAL;
 407
 408        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 409                return -EINVAL;
 410
 411        if (!epc->ops->set_msix)
 412                return 0;
 413
 414        mutex_lock(&epc->lock);
 415        ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
 416                                 offset);
 417        mutex_unlock(&epc->lock);
 418
 419        return ret;
 420}
 421EXPORT_SYMBOL_GPL(pci_epc_set_msix);
 422
 423/**
 424 * pci_epc_unmap_addr() - unmap CPU address from PCI address
 425 * @epc: the EPC device on which address is allocated
 426 * @func_no: the physical endpoint function number in the EPC device
 427 * @vfunc_no: the virtual endpoint function number in the physical function
 428 * @phys_addr: physical address of the local system
 429 *
 430 * Invoke to unmap the CPU address from PCI address.
 431 */
 432void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 433                        phys_addr_t phys_addr)
 434{
 435        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 436                return;
 437
 438        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 439                return;
 440
 441        if (!epc->ops->unmap_addr)
 442                return;
 443
 444        mutex_lock(&epc->lock);
 445        epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
 446        mutex_unlock(&epc->lock);
 447}
 448EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
 449
 450/**
 451 * pci_epc_map_addr() - map CPU address to PCI address
 452 * @epc: the EPC device on which address is allocated
 453 * @func_no: the physical endpoint function number in the EPC device
 454 * @vfunc_no: the virtual endpoint function number in the physical function
 455 * @phys_addr: physical address of the local system
 456 * @pci_addr: PCI address to which the physical address should be mapped
 457 * @size: the size of the allocation
 458 *
 459 * Invoke to map CPU address with PCI address.
 460 */
 461int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 462                     phys_addr_t phys_addr, u64 pci_addr, size_t size)
 463{
 464        int ret;
 465
 466        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 467                return -EINVAL;
 468
 469        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 470                return -EINVAL;
 471
 472        if (!epc->ops->map_addr)
 473                return 0;
 474
 475        mutex_lock(&epc->lock);
 476        ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
 477                                 size);
 478        mutex_unlock(&epc->lock);
 479
 480        return ret;
 481}
 482EXPORT_SYMBOL_GPL(pci_epc_map_addr);
 483
 484/**
 485 * pci_epc_clear_bar() - reset the BAR
 486 * @epc: the EPC device for which the BAR has to be cleared
 487 * @func_no: the physical endpoint function number in the EPC device
 488 * @vfunc_no: the virtual endpoint function number in the physical function
 489 * @epf_bar: the struct epf_bar that contains the BAR information
 490 *
 491 * Invoke to reset the BAR of the endpoint device.
 492 */
 493void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 494                       struct pci_epf_bar *epf_bar)
 495{
 496        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
 497            (epf_bar->barno == BAR_5 &&
 498             epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
 499                return;
 500
 501        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 502                return;
 503
 504        if (!epc->ops->clear_bar)
 505                return;
 506
 507        mutex_lock(&epc->lock);
 508        epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
 509        mutex_unlock(&epc->lock);
 510}
 511EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
 512
 513/**
 514 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
 515 * @epc: the EPC device on which BAR has to be configured
 516 * @func_no: the physical endpoint function number in the EPC device
 517 * @vfunc_no: the virtual endpoint function number in the physical function
 518 * @epf_bar: the struct epf_bar that contains the BAR information
 519 *
 520 * Invoke to configure the BAR of the endpoint device.
 521 */
 522int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 523                    struct pci_epf_bar *epf_bar)
 524{
 525        int ret;
 526        int flags = epf_bar->flags;
 527
 528        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
 529            (epf_bar->barno == BAR_5 &&
 530             flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
 531            (flags & PCI_BASE_ADDRESS_SPACE_IO &&
 532             flags & PCI_BASE_ADDRESS_IO_MASK) ||
 533            (upper_32_bits(epf_bar->size) &&
 534             !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
 535                return -EINVAL;
 536
 537        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 538                return -EINVAL;
 539
 540        if (!epc->ops->set_bar)
 541                return 0;
 542
 543        mutex_lock(&epc->lock);
 544        ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
 545        mutex_unlock(&epc->lock);
 546
 547        return ret;
 548}
 549EXPORT_SYMBOL_GPL(pci_epc_set_bar);
 550
 551/**
 552 * pci_epc_write_header() - write standard configuration header
 553 * @epc: the EPC device to which the configuration header should be written
 554 * @func_no: the physical endpoint function number in the EPC device
 555 * @vfunc_no: the virtual endpoint function number in the physical function
 556 * @header: standard configuration header fields
 557 *
 558 * Invoke to write the configuration header to the endpoint controller. Every
 559 * endpoint controller will have a dedicated location to which the standard
 560 * configuration header would be written. The callback function should write
 561 * the header fields to this dedicated location.
 562 */
 563int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
 564                         struct pci_epf_header *header)
 565{
 566        int ret;
 567
 568        if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
 569                return -EINVAL;
 570
 571        if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
 572                return -EINVAL;
 573
 574        /* Only Virtual Function #1 has deviceID */
 575        if (vfunc_no > 1)
 576                return -EINVAL;
 577
 578        if (!epc->ops->write_header)
 579                return 0;
 580
 581        mutex_lock(&epc->lock);
 582        ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
 583        mutex_unlock(&epc->lock);
 584
 585        return ret;
 586}
 587EXPORT_SYMBOL_GPL(pci_epc_write_header);
 588
 589/**
 590 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
 591 * @epc: the EPC device to which the endpoint function should be added
 592 * @epf: the endpoint function to be added
 593 * @type: Identifies if the EPC is connected to the primary or secondary
 594 *        interface of EPF
 595 *
 596 * A PCI endpoint device can have one or more functions. In the case of PCIe,
 597 * the specification allows up to 8 PCIe endpoint functions. Invoke
 598 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
 599 */
 600int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
 601                    enum pci_epc_interface_type type)
 602{
 603        struct list_head *list;
 604        u32 func_no;
 605        int ret = 0;
 606
 607        if (IS_ERR_OR_NULL(epc) || epf->is_vf)
 608                return -EINVAL;
 609
 610        if (type == PRIMARY_INTERFACE && epf->epc)
 611                return -EBUSY;
 612
 613        if (type == SECONDARY_INTERFACE && epf->sec_epc)
 614                return -EBUSY;
 615
 616        mutex_lock(&epc->lock);
 617        func_no = find_first_zero_bit(&epc->function_num_map,
 618                                      BITS_PER_LONG);
 619        if (func_no >= BITS_PER_LONG) {
 620                ret = -EINVAL;
 621                goto ret;
 622        }
 623
 624        if (func_no > epc->max_functions - 1) {
 625                dev_err(&epc->dev, "Exceeding max supported Function Number\n");
 626                ret = -EINVAL;
 627                goto ret;
 628        }
 629
 630        set_bit(func_no, &epc->function_num_map);
 631        if (type == PRIMARY_INTERFACE) {
 632                epf->func_no = func_no;
 633                epf->epc = epc;
 634                list = &epf->list;
 635        } else {
 636                epf->sec_epc_func_no = func_no;
 637                epf->sec_epc = epc;
 638                list = &epf->sec_epc_list;
 639        }
 640
 641        list_add_tail(list, &epc->pci_epf);
 642ret:
 643        mutex_unlock(&epc->lock);
 644
 645        return ret;
 646}
 647EXPORT_SYMBOL_GPL(pci_epc_add_epf);
 648
 649/**
 650 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
 651 * @epc: the EPC device from which the endpoint function should be removed
 652 * @epf: the endpoint function to be removed
 653 * @type: identifies if the EPC is connected to the primary or secondary
 654 *        interface of EPF
 655 *
 656 * Invoke to remove PCI endpoint function from the endpoint controller.
 657 */
 658void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
 659                        enum pci_epc_interface_type type)
 660{
 661        struct list_head *list;
 662        u32 func_no = 0;
 663
 664        if (!epc || IS_ERR(epc) || !epf)
 665                return;
 666
 667        if (type == PRIMARY_INTERFACE) {
 668                func_no = epf->func_no;
 669                list = &epf->list;
 670        } else {
 671                func_no = epf->sec_epc_func_no;
 672                list = &epf->sec_epc_list;
 673        }
 674
 675        mutex_lock(&epc->lock);
 676        clear_bit(func_no, &epc->function_num_map);
 677        list_del(list);
 678        epf->epc = NULL;
 679        mutex_unlock(&epc->lock);
 680}
 681EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
 682
 683/**
 684 * pci_epc_linkup() - Notify the EPF device that EPC device has established a
 685 *                    connection with the Root Complex.
 686 * @epc: the EPC device which has established link with the host
 687 *
 688 * Invoke to Notify the EPF device that the EPC device has established a
 689 * connection with the Root Complex.
 690 */
 691void pci_epc_linkup(struct pci_epc *epc)
 692{
 693        if (!epc || IS_ERR(epc))
 694                return;
 695
 696        atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL);
 697}
 698EXPORT_SYMBOL_GPL(pci_epc_linkup);
 699
 700/**
 701 * pci_epc_init_notify() - Notify the EPF device that EPC device's core
 702 *                         initialization is completed.
 703 * @epc: the EPC device whose core initialization is completeds
 704 *
 705 * Invoke to Notify the EPF device that the EPC device's initialization
 706 * is completed.
 707 */
 708void pci_epc_init_notify(struct pci_epc *epc)
 709{
 710        if (!epc || IS_ERR(epc))
 711                return;
 712
 713        atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL);
 714}
 715EXPORT_SYMBOL_GPL(pci_epc_init_notify);
 716
 717/**
 718 * pci_epc_destroy() - destroy the EPC device
 719 * @epc: the EPC device that has to be destroyed
 720 *
 721 * Invoke to destroy the PCI EPC device
 722 */
 723void pci_epc_destroy(struct pci_epc *epc)
 724{
 725        pci_ep_cfs_remove_epc_group(epc->group);
 726        device_unregister(&epc->dev);
 727        kfree(epc);
 728}
 729EXPORT_SYMBOL_GPL(pci_epc_destroy);
 730
 731/**
 732 * devm_pci_epc_destroy() - destroy the EPC device
 733 * @dev: device that wants to destroy the EPC
 734 * @epc: the EPC device that has to be destroyed
 735 *
 736 * Invoke to destroy the devres associated with this
 737 * pci_epc and destroy the EPC device.
 738 */
 739void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
 740{
 741        int r;
 742
 743        r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
 744                           epc);
 745        dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
 746}
 747EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
 748
 749/**
 750 * __pci_epc_create() - create a new endpoint controller (EPC) device
 751 * @dev: device that is creating the new EPC
 752 * @ops: function pointers for performing EPC operations
 753 * @owner: the owner of the module that creates the EPC device
 754 *
 755 * Invoke to create a new EPC device and add it to pci_epc class.
 756 */
 757struct pci_epc *
 758__pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
 759                 struct module *owner)
 760{
 761        int ret;
 762        struct pci_epc *epc;
 763
 764        if (WARN_ON(!dev)) {
 765                ret = -EINVAL;
 766                goto err_ret;
 767        }
 768
 769        epc = kzalloc(sizeof(*epc), GFP_KERNEL);
 770        if (!epc) {
 771                ret = -ENOMEM;
 772                goto err_ret;
 773        }
 774
 775        mutex_init(&epc->lock);
 776        INIT_LIST_HEAD(&epc->pci_epf);
 777        ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier);
 778
 779        device_initialize(&epc->dev);
 780        epc->dev.class = pci_epc_class;
 781        epc->dev.parent = dev;
 782        epc->ops = ops;
 783
 784        ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
 785        if (ret)
 786                goto put_dev;
 787
 788        ret = device_add(&epc->dev);
 789        if (ret)
 790                goto put_dev;
 791
 792        epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
 793
 794        return epc;
 795
 796put_dev:
 797        put_device(&epc->dev);
 798        kfree(epc);
 799
 800err_ret:
 801        return ERR_PTR(ret);
 802}
 803EXPORT_SYMBOL_GPL(__pci_epc_create);
 804
 805/**
 806 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
 807 * @dev: device that is creating the new EPC
 808 * @ops: function pointers for performing EPC operations
 809 * @owner: the owner of the module that creates the EPC device
 810 *
 811 * Invoke to create a new EPC device and add it to pci_epc class.
 812 * While at that, it also associates the device with the pci_epc using devres.
 813 * On driver detach, release function is invoked on the devres data,
 814 * then, devres data is freed.
 815 */
 816struct pci_epc *
 817__devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
 818                      struct module *owner)
 819{
 820        struct pci_epc **ptr, *epc;
 821
 822        ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
 823        if (!ptr)
 824                return ERR_PTR(-ENOMEM);
 825
 826        epc = __pci_epc_create(dev, ops, owner);
 827        if (!IS_ERR(epc)) {
 828                *ptr = epc;
 829                devres_add(dev, ptr);
 830        } else {
 831                devres_free(ptr);
 832        }
 833
 834        return epc;
 835}
 836EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
 837
 838static int __init pci_epc_init(void)
 839{
 840        pci_epc_class = class_create(THIS_MODULE, "pci_epc");
 841        if (IS_ERR(pci_epc_class)) {
 842                pr_err("failed to create pci epc class --> %ld\n",
 843                       PTR_ERR(pci_epc_class));
 844                return PTR_ERR(pci_epc_class);
 845        }
 846
 847        return 0;
 848}
 849module_init(pci_epc_init);
 850
 851static void __exit pci_epc_exit(void)
 852{
 853        class_destroy(pci_epc_class);
 854}
 855module_exit(pci_epc_exit);
 856
 857MODULE_DESCRIPTION("PCI EPC Library");
 858MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
 859MODULE_LICENSE("GPL v2");
 860