linux/drivers/pinctrl/aspeed/pinmux-aspeed.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* Copyright (C) 2019 IBM Corp.  */
   3
   4#ifndef ASPEED_PINMUX_H
   5#define ASPEED_PINMUX_H
   6
   7#include <linux/regmap.h>
   8
   9/*
  10 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other
  11 * functions. The SoC function enabled on a pin is determined on a priority
  12 * basis where a given pin can provide a number of different signal types.
  13 *
  14 * The signal active on a pin is described by both a priority level and
  15 * compound logical expressions involving multiple operators, registers and
  16 * bits. Some difficulty arises as the pin's function bit masks for each
  17 * priority level are frequently not the same (i.e. cannot just flip a bit to
  18 * change from a high to low priority signal), or even in the same register.
  19 * Further, not all signals can be unmuxed, as some expressions depend on
  20 * values in the hardware strapping register (which may be treated as
  21 * read-only).
  22 *
  23 * SoC Multi-function Pin Expression Examples
  24 * ------------------------------------------
  25 *
  26 * Here are some sample mux configurations from the AST2400 and AST2500
  27 * datasheets to illustrate the corner cases, roughly in order of least to most
  28 * corner. The signal priorities are in decending order from P0 (highest).
  29 *
  30 * D6 is a pin with a single function (beside GPIO); a high priority signal
  31 * that participates in one function:
  32 *
  33 * Ball | Default | P0 Signal | P0 Expression               | P1 Signal | P1 Expression | Other
  34 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  35 *  D6    GPIOA0    MAC1LINK    SCU80[0]=1                                                GPIOA0
  36 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  37 *
  38 * C5 is a multi-signal pin (high and low priority signals). Here we touch
  39 * different registers for the different functions that enable each signal:
  40 *
  41 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  42 *  C5    GPIOA4    SCL9        SCU90[22]=1                   TIMER5      SCU80[4]=1      GPIOA4
  43 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  44 *
  45 * E19 is a single-signal pin with two functions that influence the active
  46 * signal. In this case both bits have the same meaning - enable a dedicated
  47 * LPC reset pin. However it's not always the case that the bits in the
  48 * OR-relationship have the same meaning.
  49 *
  50 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  51 *  E19   GPIOB4    LPCRST#     SCU80[12]=1 | Strap[14]=1                                 GPIOB4
  52 * -----+---------+-----------+-----------------------------+-----------+---------------+----------
  53 *
  54 * For example, pin B19 has a low-priority signal that's enabled by two
  55 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI
  56 * bit in the STRAP register. The ACPI bit configures signals on pins in
  57 * addition to B19. Both of the low priority functions as well as the high
  58 * priority function must be disabled for GPIOF1 to be used.
  59 *
  60 * Ball | Default | P0 Signal | P0 Expression                           | P1 Signal | P1 Expression                          | Other
  61 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  62 *  B19   GPIOF1    NDCD4       SCU80[25]=1                               SIOPBI#     SCUA4[12]=1 | Strap[19]=0                GPIOF1
  63 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  64 *
  65 * For pin E18, the SoC ANDs the expected state of three bits to determine the
  66 * pin's active signal:
  67 *
  68 * * SCU3C[3]: Enable external SOC reset function
  69 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin
  70 * * SCU90[31]: Select SPI interface CS# output
  71 *
  72 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  73 *  E18   GPIOB7    EXTRST#     SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0    SPICS1#     SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1   GPIOB7
  74 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+----------
  75 *
  76 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for
  77 * selecting the signals on pin E18)
  78 *
  79 * Pin T5 is a multi-signal pin with a more complex configuration:
  80 *
  81 * Ball | Default | P0 Signal | P0 Expression                | P1 Signal | P1 Expression | Other
  82 * -----+---------+-----------+------------------------------+-----------+---------------+----------
  83 *  T5    GPIOL1    VPIDE       SCU90[5:4]!=0 & SCU84[17]=1    NDCD1       SCU84[17]=1     GPIOL1
  84 * -----+---------+-----------+------------------------------+-----------+---------------+----------
  85 *
  86 * The high priority signal configuration is best thought of in terms of its
  87 * exploded form, with reference to the SCU90[5:4] bits:
  88 *
  89 * * SCU90[5:4]=00: disable
  90 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode.
  91 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode.
  92 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode.
  93 *
  94 * Re-writing:
  95 *
  96 * -----+---------+-----------+------------------------------+-----------+---------------+----------
  97 *  T5    GPIOL1    VPIDE      (SCU90[5:4]=1 & SCU84[17]=1)    NDCD1       SCU84[17]=1     GPIOL1
  98 *                             | (SCU90[5:4]=2 & SCU84[17]=1)
  99 *                             | (SCU90[5:4]=3 & SCU84[17]=1)
 100 * -----+---------+-----------+------------------------------+-----------+---------------+----------
 101 *
 102 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE
 103 * function pin", where the signal itself is determined by whether SCU94[5:4]
 104 * is disabled or in one of the 18, 24 or 30bit video modes.
 105 *
 106 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g.
 107 * W1 and U5:
 108 *
 109 * -----+---------+-----------+------------------------------+-----------+---------------+----------
 110 *  W1    GPIOL6    VPIB0       SCU90[5:4]=3 & SCU84[22]=1     TXD1        SCU84[22]=1     GPIOL6
 111 *  U5    GPIOL7    VPIB1       SCU90[5:4]=3 & SCU84[23]=1     RXD1        SCU84[23]=1     GPIOL7
 112 * -----+---------+-----------+------------------------------+-----------+---------------+----------
 113 *
 114 * The examples of T5 and W1 are particularly fertile, as they also demonstrate
 115 * that despite operating as part of the video input bus each signal needs to
 116 * be enabled individually via it's own SCU84 (in the cases of T5 and W1)
 117 * register bit. This is a little crazy if the bus doesn't have optional
 118 * signals, but is used to decent effect with some of the UARTs where not all
 119 * signals are required. However, this isn't done consistently - UART1 is
 120 * enabled on a per-pin basis, and by contrast, all signals for UART6 are
 121 * enabled by a single bit.
 122 *
 123 * Further, the high and low priority signals listed in the table above share
 124 * a configuration bit. The VPI signals should operate in concert in a single
 125 * function, but the UART signals should retain the ability to be configured
 126 * independently. This pushes the implementation down the path of tagging a
 127 * signal's expressions with the function they participate in, rather than
 128 * defining masks affecting multiple signals per function. The latter approach
 129 * fails in this instance where applying the configuration for the UART pin of
 130 * interest will stomp on the state of other UART signals when disabling the
 131 * VPI functions on the current pin.
 132 *
 133 * Ball |  Default   | P0 Signal | P0 Expression             | P1 Signal | P1 Expression | Other
 134 * -----+------------+-----------+---------------------------+-----------+---------------+------------
 135 *  A12   RGMII1TXCK   GPIOT0      SCUA0[0]=1                  RMII1TXEN   Strap[6]=0      RGMII1TXCK
 136 *  B12   RGMII1TXCTL  GPIOT1      SCUA0[1]=1                  –           Strap[6]=0      RGMII1TXCTL
 137 * -----+------------+-----------+---------------------------+-----------+---------------+------------
 138 *
 139 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case
 140 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO
 141 * should be treated like any other signal type with full function expression
 142 * requirements, and not assumed to be the default case. Separately, GPIOT0 and
 143 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all
 144 * pins in the function's group to disable the higher-priority signals such
 145 * that the signal for the function of interest is correctly enabled.
 146 *
 147 * Finally, three priority levels aren't always enough; the AST2500 brings with
 148 * it 18 pins of five priority levels, however the 18 pins only use three of
 149 * the five priority levels.
 150 *
 151 * Ultimately the requirement to control pins in the examples above drive the
 152 * design:
 153 *
 154 * * Pins provide signals according to functions activated in the mux
 155 *   configuration
 156 *
 157 * * Pins provide up to five signal types in a priority order
 158 *
 159 * * For priorities levels defined on a pin, each priority provides one signal
 160 *
 161 * * Enabling lower priority signals requires higher priority signals be
 162 *   disabled
 163 *
 164 * * A function represents a set of signals; functions are distinct if they
 165 *   do not share a subset of signals (and may be distinct if they are a
 166 *   strict subset).
 167 *
 168 * * Signals participate in one or more functions or groups
 169 *
 170 * * A function is described by an expression of one or more signal
 171 *   descriptors, which compare bit values in a register
 172 *
 173 * * A signal expression is the smallest set of signal descriptors whose
 174 *   comparisons must evaluate 'true' for a signal to be enabled on a pin.
 175 *
 176 * * A signal participating in a function is active on a pin if evaluating all
 177 *   signal descriptors in the pin's signal expression for the function yields
 178 *   a 'true' result
 179 *
 180 * * A signal at a given priority on a given pin is active if any of the
 181 *   functions in which the signal participates are active, and no higher
 182 *   priority signal on the pin is active
 183 *
 184 * * GPIO is configured per-pin
 185 *
 186 * And so:
 187 *
 188 * * To disable a signal, any function(s) activating the signal must be
 189 *   disabled
 190 *
 191 * * Each pin must know the signal expressions of functions in which it
 192 *   participates, for the purpose of enabling the Other function. This is done
 193 *   by deactivating all functions that activate higher priority signals on the
 194 *   pin.
 195 *
 196 * As a concrete example:
 197 *
 198 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO
 199 *
 200 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30
 201 *
 202 * * The NDCD1 signal participates in just its own NDCD1 function
 203 *
 204 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least
 205 *   prioritised
 206 *
 207 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24
 208 *   and VPI30 functions all be disabled
 209 *
 210 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled
 211 *   to provide GPIOL6
 212 *
 213 * Considerations
 214 * --------------
 215 *
 216 * If pinctrl allows us to allocate a pin we can configure a function without
 217 * concern for the function of already allocated pins, if pin groups are
 218 * created with respect to the SoC functions in which they participate. This is
 219 * intuitive, but it did not feel obvious from the bit/pin relationships.
 220 *
 221 * Conversely, failing to allocate all pins in a group indicates some bits (as
 222 * well as pins) required for the group's configuration will already be in use,
 223 * likely in a way that's inconsistent with the requirements of the failed
 224 * group.
 225 *
 226 * Implementation
 227 * --------------
 228 *
 229 * Beyond the documentation below the various structures and helper macros that
 230 * allow the implementation to hang together are defined. The macros are fairly
 231 * dense, so below we walk through some raw examples of the configuration
 232 * tables in an effort to clarify the concepts.
 233 *
 234 * The complexity of configuring the mux combined with the scale of the pins
 235 * and functions was a concern, so the table design along with the macro jungle
 236 * is an attempt to address it. The rough principles of the approach are:
 237 *
 238 * 1. Use a data-driven solution rather than embedding state into code
 239 * 2. Minimise editing to the specifics of the given mux configuration
 240 * 3. Detect as many errors as possible at compile time
 241 *
 242 * Addressing point 3 leads to naming of symbols in terms of the four
 243 * properties associated with a given mux configuration: The pin, the signal,
 244 * the group and the function. In this way copy/paste errors cause duplicate
 245 * symbols to be defined, which prevents successful compilation. Failing to
 246 * properly parent the tables leads to unused symbol warnings, and use of
 247 * designated initialisers and additional warnings ensures that there are
 248 * no override errors in the pin, group and function arrays.
 249 *
 250 * Addressing point 2 drives the development of the macro jungle, as it
 251 * centralises the definition noise at the cost of taking some time to
 252 * understand.
 253 *
 254 * Here's a complete, concrete "pre-processed" example of the table structures
 255 * used to describe the D6 ball from the examples above:
 256 *
 257 * ```
 258 * static const struct aspeed_sig_desc sig_descs_MAC1LINK_MAC1LINK[] = {
 259 *     {
 260 *         .ip = ASPEED_IP_SCU,
 261 *         .reg = 0x80,
 262 *         .mask = BIT(0),
 263 *         .enable = 1,
 264 *         .disable = 0
 265 *     },
 266 * };
 267 *
 268 * static const struct aspeed_sig_expr sig_expr_MAC1LINK_MAC1LINK = {
 269 *     .signal = "MAC1LINK",
 270 *     .function = "MAC1LINK",
 271 *     .ndescs = ARRAY_SIZE(sig_descs_MAC1LINK_MAC1LINK),
 272 *     .descs = &(sig_descs_MAC1LINK_MAC1LINK)[0],
 273 * };
 274 *
 275 * static const struct aspeed_sig_expr *sig_exprs_MAC1LINK_MAC1LINK[] = {
 276 *     &sig_expr_MAC1LINK_MAC1LINK,
 277 *     NULL,
 278 * };
 279 *
 280 * static const struct aspeed_sig_desc sig_descs_GPIOA0_GPIOA0[] = { };
 281 *
 282 * static const struct aspeed_sig_expr sig_expr_GPIOA0_GPIOA0 = {
 283 *     .signal = "GPIOA0",
 284 *     .function = "GPIOA0",
 285 *     .ndescs = ARRAY_SIZE(sig_descs_GPIOA0_GPIOA0),
 286 *     .descs = &(sig_descs_GPIOA0_GPIOA0)[0],
 287 * };
 288 *
 289 * static const struct aspeed_sig_expr *sig_exprs_GPIOA0_GPIOA0[] = {
 290 *     &sig_expr_GPIOA0_GPIOA0,
 291 *     NULL
 292 * };
 293 *
 294 * static const struct aspeed_sig_expr **pin_exprs_0[] = {
 295 *     sig_exprs_MAC1LINK_MAC1LINK,
 296 *     sig_exprs_GPIOA0_GPIOA0,
 297 *     NULL
 298 * };
 299 *
 300 * static const struct aspeed_pin_desc pin_0 = { "0", (&pin_exprs_0[0]) };
 301 * static const int group_pins_MAC1LINK[] = { 0 };
 302 * static const char *func_groups_MAC1LINK[] = { "MAC1LINK" };
 303 *
 304 * static struct pinctrl_pin_desc aspeed_g4_pins[] = {
 305 *     [0] = { .number = 0, .name = "D6", .drv_data = &pin_0 },
 306 * };
 307 *
 308 * static const struct aspeed_pin_group aspeed_g4_groups[] = {
 309 *     {
 310 *         .name = "MAC1LINK",
 311 *         .pins = &(group_pins_MAC1LINK)[0],
 312 *         .npins = ARRAY_SIZE(group_pins_MAC1LINK),
 313 *     },
 314 * };
 315 *
 316 * static const struct aspeed_pin_function aspeed_g4_functions[] = {
 317 *     {
 318 *         .name = "MAC1LINK",
 319 *         .groups = &func_groups_MAC1LINK[0],
 320 *         .ngroups = ARRAY_SIZE(func_groups_MAC1LINK),
 321 *     },
 322 * };
 323 * ```
 324 *
 325 * At the end of the day much of the above code is compressed into the
 326 * following two lines:
 327 *
 328 * ```
 329 * #define D6 0
 330 * SSSF_PIN_DECL(D6, GPIOA0, MAC1LINK, SIG_DESC_SET(SCU80, 0));
 331 * ```
 332 *
 333 * The two examples below show just the differences from the example above.
 334 *
 335 * Ball E18 demonstrates a function, EXTRST, that requires multiple descriptors
 336 * be set for it to be muxed:
 337 *
 338 * ```
 339 * static const struct aspeed_sig_desc sig_descs_EXTRST_EXTRST[] = {
 340 *     {
 341 *         .ip = ASPEED_IP_SCU,
 342 *         .reg = 0x3C,
 343 *         .mask = BIT(3),
 344 *         .enable = 1,
 345 *         .disable = 0
 346 *     },
 347 *     {
 348 *         .ip = ASPEED_IP_SCU,
 349 *         .reg = 0x80,
 350 *         .mask = BIT(15),
 351 *         .enable = 1,
 352 *         .disable = 0
 353 *     },
 354 *     {
 355 *         .ip = ASPEED_IP_SCU,
 356 *         .reg = 0x90,
 357 *         .mask = BIT(31),
 358 *         .enable = 0,
 359 *         .disable = 1
 360 *     },
 361 * };
 362 *
 363 * static const struct aspeed_sig_expr sig_expr_EXTRST_EXTRST = {
 364 *     .signal = "EXTRST",
 365 *     .function = "EXTRST",
 366 *     .ndescs = ARRAY_SIZE(sig_descs_EXTRST_EXTRST),
 367 *     .descs = &(sig_descs_EXTRST_EXTRST)[0],
 368 * };
 369 * ...
 370 * ```
 371 *
 372 * For ball E19, we have multiple functions enabling a single signal, LPCRST#.
 373 * The data structures look like:
 374 *
 375 * static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRST[] = {
 376 *     {
 377 *         .ip = ASPEED_IP_SCU,
 378 *         .reg = 0x80,
 379 *         .mask = BIT(12),
 380 *         .enable = 1,
 381 *         .disable = 0
 382 *     },
 383 * };
 384 *
 385 * static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRST = {
 386 *     .signal = "LPCRST",
 387 *     .function = "LPCRST",
 388 *     .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRST),
 389 *     .descs = &(sig_descs_LPCRST_LPCRST)[0],
 390 * };
 391 *
 392 * static const struct aspeed_sig_desc sig_descs_LPCRST_LPCRSTS[] = {
 393 *     {
 394 *         .ip = ASPEED_IP_SCU,
 395 *         .reg = 0x70,
 396 *         .mask = BIT(14),
 397 *         .enable = 1,
 398 *         .disable = 0
 399 *     },
 400 * };
 401 *
 402 * static const struct aspeed_sig_expr sig_expr_LPCRST_LPCRSTS = {
 403 *     .signal = "LPCRST",
 404 *     .function = "LPCRSTS",
 405 *     .ndescs = ARRAY_SIZE(sig_descs_LPCRST_LPCRSTS),
 406 *     .descs = &(sig_descs_LPCRST_LPCRSTS)[0],
 407 * };
 408 *
 409 * static const struct aspeed_sig_expr *sig_exprs_LPCRST_LPCRST[] = {
 410 *     &sig_expr_LPCRST_LPCRST,
 411 *     &sig_expr_LPCRST_LPCRSTS,
 412 *     NULL,
 413 * };
 414 * ...
 415 * ```
 416 *
 417 * Both expressions listed in the sig_exprs_LPCRST_LPCRST array need to be set
 418 * to disabled for the associated GPIO to be muxed.
 419 *
 420 */
 421
 422#define ASPEED_IP_SCU           0
 423#define ASPEED_IP_GFX           1
 424#define ASPEED_IP_LPC           2
 425#define ASPEED_NR_PINMUX_IPS    3
 426
 427 /**
 428  * A signal descriptor, which describes the register, bits and the
 429  * enable/disable values that should be compared or written.
 430  *
 431  * @ip: The IP block identifier, used as an index into the regmap array in
 432  *      struct aspeed_pinctrl_data
 433  * @reg: The register offset with respect to the base address of the IP block
 434  * @mask: The mask to apply to the register. The lowest set bit of the mask is
 435  *        used to derive the shift value.
 436  * @enable: The value that enables the function. Value should be in the LSBs,
 437  *          not at the position of the mask.
 438  * @disable: The value that disables the function. Value should be in the
 439  *           LSBs, not at the position of the mask.
 440  */
 441struct aspeed_sig_desc {
 442        unsigned int ip;
 443        unsigned int reg;
 444        u32 mask;
 445        u32 enable;
 446        u32 disable;
 447};
 448
 449/**
 450 * Describes a signal expression. The expression is evaluated by ANDing the
 451 * evaluation of the descriptors.
 452 *
 453 * @signal: The signal name for the priority level on the pin. If the signal
 454 *          type is GPIO, then the signal name must begin with the
 455 *          prefix "GPI", e.g. GPIOA0, GPIT0 etc.
 456 * @function: The name of the function the signal participates in for the
 457 *            associated expression. For pin-specific GPIO, the function
 458 *            name must match the signal name.
 459 * @ndescs: The number of signal descriptors in the expression
 460 * @descs: Pointer to an array of signal descriptors that comprise the
 461 *         function expression
 462 */
 463struct aspeed_sig_expr {
 464        const char *signal;
 465        const char *function;
 466        int ndescs;
 467        const struct aspeed_sig_desc *descs;
 468};
 469
 470/**
 471 * A struct capturing the list of expressions enabling signals at each priority
 472 * for a given pin. The signal configuration for a priority level is evaluated
 473 * by ORing the evaluation of the signal expressions in the respective
 474 * priority's list.
 475 *
 476 * @name: A name for the pin
 477 * @prios: A pointer to an array of expression list pointers
 478 *
 479 */
 480struct aspeed_pin_desc {
 481        const char *name;
 482        const struct aspeed_sig_expr ***prios;
 483};
 484
 485/* Macro hell */
 486
 487#define SIG_DESC_IP_BIT(ip, reg, idx, val) \
 488        { ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) }
 489
 490/**
 491 * Short-hand macro for describing an SCU descriptor enabled by the state of
 492 * one bit. The disable value is derived.
 493 *
 494 * @reg: The signal's associated register, offset from base
 495 * @idx: The signal's bit index in the register
 496 * @val: The value (0 or 1) that enables the function
 497 */
 498#define SIG_DESC_BIT(reg, idx, val) \
 499        SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val)
 500
 501#define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1)
 502
 503/**
 504 * A further short-hand macro expanding to an SCU descriptor enabled by a set
 505 * bit.
 506 *
 507 * @reg: The register, offset from base
 508 * @idx: The bit index in the register
 509 */
 510#define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1)
 511#define SIG_DESC_CLEAR(reg, idx) { ASPEED_IP_SCU, reg, BIT_MASK(idx), 0, 0 }
 512
 513#define SIG_DESC_LIST_SYM(sig, group) sig_descs_ ## sig ## _ ## group
 514#define SIG_DESC_LIST_DECL(sig, group, ...) \
 515        static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, group)[] = \
 516                { __VA_ARGS__ }
 517
 518#define SIG_EXPR_SYM(sig, group) sig_expr_ ## sig ## _ ## group
 519#define SIG_EXPR_DECL_(sig, group, func) \
 520        static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, group) = \
 521        { \
 522                .signal = #sig, \
 523                .function = #func, \
 524                .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, group)), \
 525                .descs = &(SIG_DESC_LIST_SYM(sig, group))[0], \
 526        }
 527
 528/**
 529 * Declare a signal expression.
 530 *
 531 * @sig: A macro symbol name for the signal (is subjected to stringification
 532 *        and token pasting)
 533 * @func: The function in which the signal is participating
 534 * @...: Signal descriptors that define the signal expression
 535 *
 536 * For example, the following declares the ROMD8 signal for the ROM16 function:
 537 *
 538 *     SIG_EXPR_DECL(ROMD8, ROM16, ROM16, SIG_DESC_SET(SCU90, 6));
 539 *
 540 * And with multiple signal descriptors:
 541 *
 542 *     SIG_EXPR_DECL(ROMD8, ROM16S, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
 543 *              { HW_STRAP1, GENMASK(1, 0), 0, 0 });
 544 */
 545#define SIG_EXPR_DECL(sig, group, func, ...) \
 546        SIG_DESC_LIST_DECL(sig, group, __VA_ARGS__); \
 547        SIG_EXPR_DECL_(sig, group, func)
 548
 549/**
 550 * Declare a pointer to a signal expression
 551 *
 552 * @sig: The macro symbol name for the signal (subjected to token pasting)
 553 * @func: The macro symbol name for the function (subjected to token pasting)
 554 */
 555#define SIG_EXPR_PTR(sig, group) (&SIG_EXPR_SYM(sig, group))
 556
 557#define SIG_EXPR_LIST_SYM(sig, group) sig_exprs_ ## sig ## _ ## group
 558
 559/**
 560 * Declare a signal expression list for reference in a struct aspeed_pin_prio.
 561 *
 562 * @sig: A macro symbol name for the signal (is subjected to token pasting)
 563 * @...: Signal expression structure pointers (use SIG_EXPR_PTR())
 564 *
 565 * For example, the 16-bit ROM bus can be enabled by one of two possible signal
 566 * expressions:
 567 *
 568 *     SIG_EXPR_DECL(ROMD8, ROM16, ROM16, SIG_DESC_SET(SCU90, 6));
 569 *     SIG_EXPR_DECL(ROMD8, ROM16S, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
 570 *              { HW_STRAP1, GENMASK(1, 0), 0, 0 });
 571 *     SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
 572 *              SIG_EXPR_PTR(ROMD8, ROM16S));
 573 */
 574#define SIG_EXPR_LIST_DECL(sig, group, ...) \
 575        static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig, group)[] =\
 576                { __VA_ARGS__, NULL }
 577
 578#define stringify(x) #x
 579#define istringify(x) stringify(x)
 580
 581/**
 582 * Create an expression symbol alias from (signal, group) to (pin, signal).
 583 *
 584 * @pin: The pin number
 585 * @sig: The signal name
 586 * @group: The name of the group of which the pin is a member that is
 587 *         associated with the function's signal
 588 *
 589 * Using an alias in this way enables detection of copy/paste errors (defining
 590 * the signal for a group multiple times) whilst enabling multiple pin groups
 591 * to exist for a signal without intrusive side-effects on defining the list of
 592 * signals available on a pin.
 593 */
 594#define SIG_EXPR_LIST_ALIAS(pin, sig, group) \
 595        static const struct aspeed_sig_expr *\
 596                SIG_EXPR_LIST_SYM(pin, sig)[ARRAY_SIZE(SIG_EXPR_LIST_SYM(sig, group))] \
 597                __attribute__((alias(istringify(SIG_EXPR_LIST_SYM(sig, group)))))
 598
 599/**
 600 * A short-hand macro for declaring a function expression and an expression
 601 * list with a single expression (SE) and a single group (SG) of pins.
 602 *
 603 * @pin: The pin the signal will be routed to
 604 * @sig: The signal that will be routed to the pin for the function
 605 * @func: A macro symbol name for the function
 606 * @...: Function descriptors that define the function expression
 607 *
 608 * For example, signal NCTS6 participates in its own function with one group:
 609 *
 610 *     SIG_EXPR_LIST_DECL_SINGLE(A18, NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
 611 */
 612#define SIG_EXPR_LIST_DECL_SESG(pin, sig, func, ...) \
 613        SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \
 614        SIG_EXPR_DECL_(sig, func, func); \
 615        SIG_EXPR_LIST_DECL(sig, func, SIG_EXPR_PTR(sig, func)); \
 616        SIG_EXPR_LIST_ALIAS(pin, sig, func)
 617
 618/**
 619 * Similar to the above, but for pins with a single expression (SE) and
 620 * multiple groups (MG) of pins.
 621 *
 622 * @pin: The pin the signal will be routed to
 623 * @sig: The signal that will be routed to the pin for the function
 624 * @group: The name of the function's pin group in which the pin participates
 625 * @func: A macro symbol name for the function
 626 * @...: Function descriptors that define the function expression
 627 */
 628#define SIG_EXPR_LIST_DECL_SEMG(pin, sig, group, func, ...) \
 629        SIG_DESC_LIST_DECL(sig, group, __VA_ARGS__); \
 630        SIG_EXPR_DECL_(sig, group, func); \
 631        SIG_EXPR_LIST_DECL(sig, group, SIG_EXPR_PTR(sig, group)); \
 632        SIG_EXPR_LIST_ALIAS(pin, sig, group)
 633
 634/**
 635 * Similar to the above, but for pins with a dual expressions (DE) and
 636 * and a single group (SG) of pins.
 637 *
 638 * @pin: The pin the signal will be routed to
 639 * @sig: The signal that will be routed to the pin for the function
 640 * @group: The name of the function's pin group in which the pin participates
 641 * @func: A macro symbol name for the function
 642 * @...: Function descriptors that define the function expression
 643 */
 644#define SIG_EXPR_LIST_DECL_DESG(pin, sig, f0, f1) \
 645        SIG_EXPR_LIST_DECL(sig, f0, \
 646                           SIG_EXPR_PTR(sig, f0), \
 647                           SIG_EXPR_PTR(sig, f1)); \
 648        SIG_EXPR_LIST_ALIAS(pin, sig, f0)
 649
 650#define SIG_EXPR_LIST_PTR(sig, group) SIG_EXPR_LIST_SYM(sig, group)
 651
 652#define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin
 653#define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0])
 654#define PIN_SYM(pin) pin_ ## pin
 655
 656#define PIN_DECL_(pin, ...) \
 657        static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \
 658                { __VA_ARGS__, NULL }; \
 659        static const struct aspeed_pin_desc PIN_SYM(pin) = \
 660                { #pin, PIN_EXPRS_PTR(pin) }
 661
 662/**
 663 * Declare a single signal pin
 664 *
 665 * @pin: The pin number
 666 * @other: Macro name for "other" functionality (subjected to stringification)
 667 * @sig: Macro name for the signal (subjected to stringification)
 668 *
 669 * For example:
 670 *
 671 *     #define E3 80
 672 *     SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC);
 673 *     PIN_DECL_1(E3, GPIOK0, SCL5);
 674 */
 675#define PIN_DECL_1(pin, other, sig) \
 676        SIG_EXPR_LIST_DECL_SESG(pin, other, other); \
 677        PIN_DECL_(pin, SIG_EXPR_LIST_PTR(pin, sig), \
 678                  SIG_EXPR_LIST_PTR(pin, other))
 679
 680/**
 681 * Single signal, single function pin declaration
 682 *
 683 * @pin: The pin number
 684 * @other: Macro name for "other" functionality (subjected to stringification)
 685 * @sig: Macro name for the signal (subjected to stringification)
 686 * @...: Signal descriptors that define the function expression
 687 *
 688 * For example:
 689 *
 690 *    SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2));
 691 */
 692#define SSSF_PIN_DECL(pin, other, sig, ...) \
 693        SIG_EXPR_LIST_DECL_SESG(pin, sig, sig, __VA_ARGS__); \
 694        SIG_EXPR_LIST_DECL_SESG(pin, other, other); \
 695        PIN_DECL_(pin, SIG_EXPR_LIST_PTR(pin, sig), \
 696                  SIG_EXPR_LIST_PTR(pin, other)); \
 697        FUNC_GROUP_DECL(sig, pin)
 698/**
 699 * Declare a two-signal pin
 700 *
 701 * @pin: The pin number
 702 * @other: Macro name for "other" functionality (subjected to stringification)
 703 * @high: Macro name for the highest priority signal functions
 704 * @low: Macro name for the low signal functions
 705 *
 706 * For example:
 707 *
 708 *     #define A8 56
 709 *     SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6));
 710 *     SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4),
 711 *              { HW_STRAP1, GENMASK(1, 0), 0, 0 });
 712 *     SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16),
 713 *              SIG_EXPR_PTR(ROMD8, ROM16S));
 714 *     SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7));
 715 *     PIN_DECL_2(A8, GPIOH0, ROMD8, NCTS6);
 716 */
 717#define PIN_DECL_2(pin, other, high, low) \
 718        SIG_EXPR_LIST_DECL_SESG(pin, other, other); \
 719        PIN_DECL_(pin, \
 720                        SIG_EXPR_LIST_PTR(pin, high), \
 721                        SIG_EXPR_LIST_PTR(pin, low), \
 722                        SIG_EXPR_LIST_PTR(pin, other))
 723
 724#define PIN_DECL_3(pin, other, high, medium, low) \
 725        SIG_EXPR_LIST_DECL_SESG(pin, other, other); \
 726        PIN_DECL_(pin, \
 727                        SIG_EXPR_LIST_PTR(pin, high), \
 728                        SIG_EXPR_LIST_PTR(pin, medium), \
 729                        SIG_EXPR_LIST_PTR(pin, low), \
 730                        SIG_EXPR_LIST_PTR(pin, other))
 731
 732#define PIN_DECL_4(pin, other, prio1, prio2, prio3, prio4) \
 733        SIG_EXPR_LIST_DECL_SESG(pin, other, other); \
 734        PIN_DECL_(pin, \
 735                        SIG_EXPR_LIST_PTR(pin, prio1), \
 736                        SIG_EXPR_LIST_PTR(pin, prio2), \
 737                        SIG_EXPR_LIST_PTR(pin, prio3), \
 738                        SIG_EXPR_LIST_PTR(pin, prio4), \
 739                        SIG_EXPR_LIST_PTR(pin, other))
 740
 741#define GROUP_SYM(group) group_pins_ ## group
 742#define GROUP_DECL(group, ...) \
 743        static const int GROUP_SYM(group)[] = { __VA_ARGS__ }
 744
 745#define FUNC_SYM(func) func_groups_ ## func
 746#define FUNC_DECL_(func, ...) \
 747        static const char *FUNC_SYM(func)[] = { __VA_ARGS__ }
 748
 749#define FUNC_DECL_1(func, group) FUNC_DECL_(func, #group)
 750#define FUNC_DECL_2(func, one, two) FUNC_DECL_(func, #one, #two)
 751#define FUNC_DECL_3(func, one, two, three) FUNC_DECL_(func, #one, #two, #three)
 752
 753#define FUNC_GROUP_DECL(func, ...) \
 754        GROUP_DECL(func, __VA_ARGS__); \
 755        FUNC_DECL_(func, #func)
 756
 757
 758#define GPIO_PIN_DECL(pin, gpio) \
 759        SIG_EXPR_LIST_DECL_SESG(pin, gpio, gpio); \
 760        PIN_DECL_(pin, SIG_EXPR_LIST_PTR(pin, gpio))
 761
 762struct aspeed_pin_group {
 763        const char *name;
 764        const unsigned int *pins;
 765        const unsigned int npins;
 766};
 767
 768#define ASPEED_PINCTRL_GROUP(name_) { \
 769        .name = #name_, \
 770        .pins = &(GROUP_SYM(name_))[0], \
 771        .npins = ARRAY_SIZE(GROUP_SYM(name_)), \
 772}
 773
 774struct aspeed_pin_function {
 775        const char *name;
 776        const char *const *groups;
 777        unsigned int ngroups;
 778};
 779
 780#define ASPEED_PINCTRL_FUNC(name_, ...) { \
 781        .name = #name_, \
 782        .groups = &FUNC_SYM(name_)[0], \
 783        .ngroups = ARRAY_SIZE(FUNC_SYM(name_)), \
 784}
 785
 786struct aspeed_pinmux_data;
 787
 788struct aspeed_pinmux_ops {
 789        int (*eval)(struct aspeed_pinmux_data *ctx,
 790                    const struct aspeed_sig_expr *expr, bool enabled);
 791        int (*set)(struct aspeed_pinmux_data *ctx,
 792                   const struct aspeed_sig_expr *expr, bool enabled);
 793};
 794
 795struct aspeed_pinmux_data {
 796        struct device *dev;
 797        struct regmap *maps[ASPEED_NR_PINMUX_IPS];
 798
 799        const struct aspeed_pinmux_ops *ops;
 800
 801        const struct aspeed_pin_group *groups;
 802        const unsigned int ngroups;
 803
 804        const struct aspeed_pin_function *functions;
 805        const unsigned int nfunctions;
 806};
 807
 808int aspeed_sig_desc_eval(const struct aspeed_sig_desc *desc, bool enabled,
 809                         struct regmap *map);
 810
 811int aspeed_sig_expr_eval(struct aspeed_pinmux_data *ctx,
 812                         const struct aspeed_sig_expr *expr, bool enabled);
 813
 814static inline int aspeed_sig_expr_set(struct aspeed_pinmux_data *ctx,
 815                                      const struct aspeed_sig_expr *expr,
 816                                      bool enabled)
 817{
 818        return ctx->ops->set(ctx, expr, enabled);
 819}
 820
 821#endif /* ASPEED_PINMUX_H */
 822