linux/drivers/pinctrl/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Core driver for the pin control subsystem
   4 *
   5 * Copyright (C) 2011-2012 ST-Ericsson SA
   6 * Written on behalf of Linaro for ST-Ericsson
   7 * Based on bits of regulator core, gpio core and clk core
   8 *
   9 * Author: Linus Walleij <linus.walleij@linaro.org>
  10 *
  11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  12 */
  13#define pr_fmt(fmt) "pinctrl core: " fmt
  14
  15#include <linux/kernel.h>
  16#include <linux/kref.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/err.h>
  22#include <linux/list.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/pinctrl/consumer.h>
  26#include <linux/pinctrl/pinctrl.h>
  27#include <linux/pinctrl/machine.h>
  28
  29#ifdef CONFIG_GPIOLIB
  30#include "../gpio/gpiolib.h"
  31#include <asm-generic/gpio.h>
  32#endif
  33
  34#include "core.h"
  35#include "devicetree.h"
  36#include "pinmux.h"
  37#include "pinconf.h"
  38
  39
  40static bool pinctrl_dummy_state;
  41
  42/* Mutex taken to protect pinctrl_list */
  43static DEFINE_MUTEX(pinctrl_list_mutex);
  44
  45/* Mutex taken to protect pinctrl_maps */
  46DEFINE_MUTEX(pinctrl_maps_mutex);
  47
  48/* Mutex taken to protect pinctrldev_list */
  49static DEFINE_MUTEX(pinctrldev_list_mutex);
  50
  51/* Global list of pin control devices (struct pinctrl_dev) */
  52static LIST_HEAD(pinctrldev_list);
  53
  54/* List of pin controller handles (struct pinctrl) */
  55static LIST_HEAD(pinctrl_list);
  56
  57/* List of pinctrl maps (struct pinctrl_maps) */
  58LIST_HEAD(pinctrl_maps);
  59
  60
  61/**
  62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
  63 *
  64 * Usually this function is called by platforms without pinctrl driver support
  65 * but run with some shared drivers using pinctrl APIs.
  66 * After calling this function, the pinctrl core will return successfully
  67 * with creating a dummy state for the driver to keep going smoothly.
  68 */
  69void pinctrl_provide_dummies(void)
  70{
  71        pinctrl_dummy_state = true;
  72}
  73
  74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
  75{
  76        /* We're not allowed to register devices without name */
  77        return pctldev->desc->name;
  78}
  79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
  80
  81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
  82{
  83        return dev_name(pctldev->dev);
  84}
  85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
  86
  87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
  88{
  89        return pctldev->driver_data;
  90}
  91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
  92
  93/**
  94 * get_pinctrl_dev_from_devname() - look up pin controller device
  95 * @devname: the name of a device instance, as returned by dev_name()
  96 *
  97 * Looks up a pin control device matching a certain device name or pure device
  98 * pointer, the pure device pointer will take precedence.
  99 */
 100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
 101{
 102        struct pinctrl_dev *pctldev;
 103
 104        if (!devname)
 105                return NULL;
 106
 107        mutex_lock(&pinctrldev_list_mutex);
 108
 109        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 110                if (!strcmp(dev_name(pctldev->dev), devname)) {
 111                        /* Matched on device name */
 112                        mutex_unlock(&pinctrldev_list_mutex);
 113                        return pctldev;
 114                }
 115        }
 116
 117        mutex_unlock(&pinctrldev_list_mutex);
 118
 119        return NULL;
 120}
 121
 122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
 123{
 124        struct pinctrl_dev *pctldev;
 125
 126        mutex_lock(&pinctrldev_list_mutex);
 127
 128        list_for_each_entry(pctldev, &pinctrldev_list, node)
 129                if (pctldev->dev->of_node == np) {
 130                        mutex_unlock(&pinctrldev_list_mutex);
 131                        return pctldev;
 132                }
 133
 134        mutex_unlock(&pinctrldev_list_mutex);
 135
 136        return NULL;
 137}
 138
 139/**
 140 * pin_get_from_name() - look up a pin number from a name
 141 * @pctldev: the pin control device to lookup the pin on
 142 * @name: the name of the pin to look up
 143 */
 144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
 145{
 146        unsigned i, pin;
 147
 148        /* The pin number can be retrived from the pin controller descriptor */
 149        for (i = 0; i < pctldev->desc->npins; i++) {
 150                struct pin_desc *desc;
 151
 152                pin = pctldev->desc->pins[i].number;
 153                desc = pin_desc_get(pctldev, pin);
 154                /* Pin space may be sparse */
 155                if (desc && !strcmp(name, desc->name))
 156                        return pin;
 157        }
 158
 159        return -EINVAL;
 160}
 161
 162/**
 163 * pin_get_name() - look up a pin name from a pin id
 164 * @pctldev: the pin control device to lookup the pin on
 165 * @pin: pin number/id to look up
 166 */
 167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
 168{
 169        const struct pin_desc *desc;
 170
 171        desc = pin_desc_get(pctldev, pin);
 172        if (!desc) {
 173                dev_err(pctldev->dev, "failed to get pin(%d) name\n",
 174                        pin);
 175                return NULL;
 176        }
 177
 178        return desc->name;
 179}
 180EXPORT_SYMBOL_GPL(pin_get_name);
 181
 182/* Deletes a range of pin descriptors */
 183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
 184                                  const struct pinctrl_pin_desc *pins,
 185                                  unsigned num_pins)
 186{
 187        int i;
 188
 189        for (i = 0; i < num_pins; i++) {
 190                struct pin_desc *pindesc;
 191
 192                pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
 193                                            pins[i].number);
 194                if (pindesc) {
 195                        radix_tree_delete(&pctldev->pin_desc_tree,
 196                                          pins[i].number);
 197                        if (pindesc->dynamic_name)
 198                                kfree(pindesc->name);
 199                }
 200                kfree(pindesc);
 201        }
 202}
 203
 204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
 205                                    const struct pinctrl_pin_desc *pin)
 206{
 207        struct pin_desc *pindesc;
 208
 209        pindesc = pin_desc_get(pctldev, pin->number);
 210        if (pindesc) {
 211                dev_err(pctldev->dev, "pin %d already registered\n",
 212                        pin->number);
 213                return -EINVAL;
 214        }
 215
 216        pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
 217        if (!pindesc)
 218                return -ENOMEM;
 219
 220        /* Set owner */
 221        pindesc->pctldev = pctldev;
 222
 223        /* Copy basic pin info */
 224        if (pin->name) {
 225                pindesc->name = pin->name;
 226        } else {
 227                pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
 228                if (!pindesc->name) {
 229                        kfree(pindesc);
 230                        return -ENOMEM;
 231                }
 232                pindesc->dynamic_name = true;
 233        }
 234
 235        pindesc->drv_data = pin->drv_data;
 236
 237        radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
 238        pr_debug("registered pin %d (%s) on %s\n",
 239                 pin->number, pindesc->name, pctldev->desc->name);
 240        return 0;
 241}
 242
 243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
 244                                 const struct pinctrl_pin_desc *pins,
 245                                 unsigned num_descs)
 246{
 247        unsigned i;
 248        int ret = 0;
 249
 250        for (i = 0; i < num_descs; i++) {
 251                ret = pinctrl_register_one_pin(pctldev, &pins[i]);
 252                if (ret)
 253                        return ret;
 254        }
 255
 256        return 0;
 257}
 258
 259/**
 260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 261 * @range: GPIO range used for the translation
 262 * @gpio: gpio pin to translate to a pin number
 263 *
 264 * Finds the pin number for a given GPIO using the specified GPIO range
 265 * as a base for translation. The distinction between linear GPIO ranges
 266 * and pin list based GPIO ranges is managed correctly by this function.
 267 *
 268 * This function assumes the gpio is part of the specified GPIO range, use
 269 * only after making sure this is the case (e.g. by calling it on the
 270 * result of successful pinctrl_get_device_gpio_range calls)!
 271 */
 272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
 273                                unsigned int gpio)
 274{
 275        unsigned int offset = gpio - range->base;
 276        if (range->pins)
 277                return range->pins[offset];
 278        else
 279                return range->pin_base + offset;
 280}
 281
 282/**
 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 284 * @pctldev: pin controller device to check
 285 * @gpio: gpio pin to check taken from the global GPIO pin space
 286 *
 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 288 * controller, return the range or NULL
 289 */
 290static struct pinctrl_gpio_range *
 291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
 292{
 293        struct pinctrl_gpio_range *range;
 294
 295        mutex_lock(&pctldev->mutex);
 296        /* Loop over the ranges */
 297        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 298                /* Check if we're in the valid range */
 299                if (gpio >= range->base &&
 300                    gpio < range->base + range->npins) {
 301                        mutex_unlock(&pctldev->mutex);
 302                        return range;
 303                }
 304        }
 305        mutex_unlock(&pctldev->mutex);
 306        return NULL;
 307}
 308
 309/**
 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 311 * the same GPIO chip are in range
 312 * @gpio: gpio pin to check taken from the global GPIO pin space
 313 *
 314 * This function is complement of pinctrl_match_gpio_range(). If the return
 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 317 * of the same GPIO chip don't have back-end pinctrl interface.
 318 * If the return value is true, it means that pinctrl device is ready & the
 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 320 * is false, it means that pinctrl device may not be ready.
 321 */
 322#ifdef CONFIG_GPIOLIB
 323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
 324{
 325        struct pinctrl_dev *pctldev;
 326        struct pinctrl_gpio_range *range = NULL;
 327        struct gpio_chip *chip = gpio_to_chip(gpio);
 328
 329        if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
 330                return false;
 331
 332        mutex_lock(&pinctrldev_list_mutex);
 333
 334        /* Loop over the pin controllers */
 335        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 336                /* Loop over the ranges */
 337                mutex_lock(&pctldev->mutex);
 338                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 339                        /* Check if any gpio range overlapped with gpio chip */
 340                        if (range->base + range->npins - 1 < chip->base ||
 341                            range->base > chip->base + chip->ngpio - 1)
 342                                continue;
 343                        mutex_unlock(&pctldev->mutex);
 344                        mutex_unlock(&pinctrldev_list_mutex);
 345                        return true;
 346                }
 347                mutex_unlock(&pctldev->mutex);
 348        }
 349
 350        mutex_unlock(&pinctrldev_list_mutex);
 351
 352        return false;
 353}
 354#else
 355static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
 356#endif
 357
 358/**
 359 * pinctrl_get_device_gpio_range() - find device for GPIO range
 360 * @gpio: the pin to locate the pin controller for
 361 * @outdev: the pin control device if found
 362 * @outrange: the GPIO range if found
 363 *
 364 * Find the pin controller handling a certain GPIO pin from the pinspace of
 365 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 366 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 367 * may still have not been registered.
 368 */
 369static int pinctrl_get_device_gpio_range(unsigned gpio,
 370                                         struct pinctrl_dev **outdev,
 371                                         struct pinctrl_gpio_range **outrange)
 372{
 373        struct pinctrl_dev *pctldev;
 374
 375        mutex_lock(&pinctrldev_list_mutex);
 376
 377        /* Loop over the pin controllers */
 378        list_for_each_entry(pctldev, &pinctrldev_list, node) {
 379                struct pinctrl_gpio_range *range;
 380
 381                range = pinctrl_match_gpio_range(pctldev, gpio);
 382                if (range) {
 383                        *outdev = pctldev;
 384                        *outrange = range;
 385                        mutex_unlock(&pinctrldev_list_mutex);
 386                        return 0;
 387                }
 388        }
 389
 390        mutex_unlock(&pinctrldev_list_mutex);
 391
 392        return -EPROBE_DEFER;
 393}
 394
 395/**
 396 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 397 * @pctldev: pin controller device to add the range to
 398 * @range: the GPIO range to add
 399 *
 400 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 401 * this to register handled ranges after registering your pin controller.
 402 */
 403void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
 404                            struct pinctrl_gpio_range *range)
 405{
 406        mutex_lock(&pctldev->mutex);
 407        list_add_tail(&range->node, &pctldev->gpio_ranges);
 408        mutex_unlock(&pctldev->mutex);
 409}
 410EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
 411
 412void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
 413                             struct pinctrl_gpio_range *ranges,
 414                             unsigned nranges)
 415{
 416        int i;
 417
 418        for (i = 0; i < nranges; i++)
 419                pinctrl_add_gpio_range(pctldev, &ranges[i]);
 420}
 421EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
 422
 423struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
 424                struct pinctrl_gpio_range *range)
 425{
 426        struct pinctrl_dev *pctldev;
 427
 428        pctldev = get_pinctrl_dev_from_devname(devname);
 429
 430        /*
 431         * If we can't find this device, let's assume that is because
 432         * it has not probed yet, so the driver trying to register this
 433         * range need to defer probing.
 434         */
 435        if (!pctldev) {
 436                return ERR_PTR(-EPROBE_DEFER);
 437        }
 438        pinctrl_add_gpio_range(pctldev, range);
 439
 440        return pctldev;
 441}
 442EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
 443
 444int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
 445                                const unsigned **pins, unsigned *num_pins)
 446{
 447        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 448        int gs;
 449
 450        if (!pctlops->get_group_pins)
 451                return -EINVAL;
 452
 453        gs = pinctrl_get_group_selector(pctldev, pin_group);
 454        if (gs < 0)
 455                return gs;
 456
 457        return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
 458}
 459EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
 460
 461struct pinctrl_gpio_range *
 462pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
 463                                        unsigned int pin)
 464{
 465        struct pinctrl_gpio_range *range;
 466
 467        /* Loop over the ranges */
 468        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
 469                /* Check if we're in the valid range */
 470                if (range->pins) {
 471                        int a;
 472                        for (a = 0; a < range->npins; a++) {
 473                                if (range->pins[a] == pin)
 474                                        return range;
 475                        }
 476                } else if (pin >= range->pin_base &&
 477                           pin < range->pin_base + range->npins)
 478                        return range;
 479        }
 480
 481        return NULL;
 482}
 483EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
 484
 485/**
 486 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 487 * @pctldev: the pin controller device to look in
 488 * @pin: a controller-local number to find the range for
 489 */
 490struct pinctrl_gpio_range *
 491pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
 492                                 unsigned int pin)
 493{
 494        struct pinctrl_gpio_range *range;
 495
 496        mutex_lock(&pctldev->mutex);
 497        range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
 498        mutex_unlock(&pctldev->mutex);
 499
 500        return range;
 501}
 502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
 503
 504/**
 505 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
 506 * @pctldev: pin controller device to remove the range from
 507 * @range: the GPIO range to remove
 508 */
 509void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
 510                               struct pinctrl_gpio_range *range)
 511{
 512        mutex_lock(&pctldev->mutex);
 513        list_del(&range->node);
 514        mutex_unlock(&pctldev->mutex);
 515}
 516EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
 517
 518#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
 519
 520/**
 521 * pinctrl_generic_get_group_count() - returns the number of pin groups
 522 * @pctldev: pin controller device
 523 */
 524int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
 525{
 526        return pctldev->num_groups;
 527}
 528EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
 529
 530/**
 531 * pinctrl_generic_get_group_name() - returns the name of a pin group
 532 * @pctldev: pin controller device
 533 * @selector: group number
 534 */
 535const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
 536                                           unsigned int selector)
 537{
 538        struct group_desc *group;
 539
 540        group = radix_tree_lookup(&pctldev->pin_group_tree,
 541                                  selector);
 542        if (!group)
 543                return NULL;
 544
 545        return group->name;
 546}
 547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
 548
 549/**
 550 * pinctrl_generic_get_group_pins() - gets the pin group pins
 551 * @pctldev: pin controller device
 552 * @selector: group number
 553 * @pins: pins in the group
 554 * @num_pins: number of pins in the group
 555 */
 556int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
 557                                   unsigned int selector,
 558                                   const unsigned int **pins,
 559                                   unsigned int *num_pins)
 560{
 561        struct group_desc *group;
 562
 563        group = radix_tree_lookup(&pctldev->pin_group_tree,
 564                                  selector);
 565        if (!group) {
 566                dev_err(pctldev->dev, "%s could not find pingroup%i\n",
 567                        __func__, selector);
 568                return -EINVAL;
 569        }
 570
 571        *pins = group->pins;
 572        *num_pins = group->num_pins;
 573
 574        return 0;
 575}
 576EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
 577
 578/**
 579 * pinctrl_generic_get_group() - returns a pin group based on the number
 580 * @pctldev: pin controller device
 581 * @selector: group number
 582 */
 583struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
 584                                             unsigned int selector)
 585{
 586        struct group_desc *group;
 587
 588        group = radix_tree_lookup(&pctldev->pin_group_tree,
 589                                  selector);
 590        if (!group)
 591                return NULL;
 592
 593        return group;
 594}
 595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
 596
 597static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
 598                                                  const char *function)
 599{
 600        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
 601        int ngroups = ops->get_groups_count(pctldev);
 602        int selector = 0;
 603
 604        /* See if this pctldev has this group */
 605        while (selector < ngroups) {
 606                const char *gname = ops->get_group_name(pctldev, selector);
 607
 608                if (gname && !strcmp(function, gname))
 609                        return selector;
 610
 611                selector++;
 612        }
 613
 614        return -EINVAL;
 615}
 616
 617/**
 618 * pinctrl_generic_add_group() - adds a new pin group
 619 * @pctldev: pin controller device
 620 * @name: name of the pin group
 621 * @pins: pins in the pin group
 622 * @num_pins: number of pins in the pin group
 623 * @data: pin controller driver specific data
 624 *
 625 * Note that the caller must take care of locking.
 626 */
 627int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
 628                              int *pins, int num_pins, void *data)
 629{
 630        struct group_desc *group;
 631        int selector;
 632
 633        if (!name)
 634                return -EINVAL;
 635
 636        selector = pinctrl_generic_group_name_to_selector(pctldev, name);
 637        if (selector >= 0)
 638                return selector;
 639
 640        selector = pctldev->num_groups;
 641
 642        group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
 643        if (!group)
 644                return -ENOMEM;
 645
 646        group->name = name;
 647        group->pins = pins;
 648        group->num_pins = num_pins;
 649        group->data = data;
 650
 651        radix_tree_insert(&pctldev->pin_group_tree, selector, group);
 652
 653        pctldev->num_groups++;
 654
 655        return selector;
 656}
 657EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
 658
 659/**
 660 * pinctrl_generic_remove_group() - removes a numbered pin group
 661 * @pctldev: pin controller device
 662 * @selector: group number
 663 *
 664 * Note that the caller must take care of locking.
 665 */
 666int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
 667                                 unsigned int selector)
 668{
 669        struct group_desc *group;
 670
 671        group = radix_tree_lookup(&pctldev->pin_group_tree,
 672                                  selector);
 673        if (!group)
 674                return -ENOENT;
 675
 676        radix_tree_delete(&pctldev->pin_group_tree, selector);
 677        devm_kfree(pctldev->dev, group);
 678
 679        pctldev->num_groups--;
 680
 681        return 0;
 682}
 683EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
 684
 685/**
 686 * pinctrl_generic_free_groups() - removes all pin groups
 687 * @pctldev: pin controller device
 688 *
 689 * Note that the caller must take care of locking. The pinctrl groups
 690 * are allocated with devm_kzalloc() so no need to free them here.
 691 */
 692static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 693{
 694        struct radix_tree_iter iter;
 695        void __rcu **slot;
 696
 697        radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
 698                radix_tree_delete(&pctldev->pin_group_tree, iter.index);
 699
 700        pctldev->num_groups = 0;
 701}
 702
 703#else
 704static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
 705{
 706}
 707#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
 708
 709/**
 710 * pinctrl_get_group_selector() - returns the group selector for a group
 711 * @pctldev: the pin controller handling the group
 712 * @pin_group: the pin group to look up
 713 */
 714int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
 715                               const char *pin_group)
 716{
 717        const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
 718        unsigned ngroups = pctlops->get_groups_count(pctldev);
 719        unsigned group_selector = 0;
 720
 721        while (group_selector < ngroups) {
 722                const char *gname = pctlops->get_group_name(pctldev,
 723                                                            group_selector);
 724                if (gname && !strcmp(gname, pin_group)) {
 725                        dev_dbg(pctldev->dev,
 726                                "found group selector %u for %s\n",
 727                                group_selector,
 728                                pin_group);
 729                        return group_selector;
 730                }
 731
 732                group_selector++;
 733        }
 734
 735        dev_err(pctldev->dev, "does not have pin group %s\n",
 736                pin_group);
 737
 738        return -EINVAL;
 739}
 740
 741bool pinctrl_gpio_can_use_line(unsigned gpio)
 742{
 743        struct pinctrl_dev *pctldev;
 744        struct pinctrl_gpio_range *range;
 745        bool result;
 746        int pin;
 747
 748        /*
 749         * Try to obtain GPIO range, if it fails
 750         * we're probably dealing with GPIO driver
 751         * without a backing pin controller - bail out.
 752         */
 753        if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
 754                return true;
 755
 756        mutex_lock(&pctldev->mutex);
 757
 758        /* Convert to the pin controllers number space */
 759        pin = gpio_to_pin(range, gpio);
 760
 761        result = pinmux_can_be_used_for_gpio(pctldev, pin);
 762
 763        mutex_unlock(&pctldev->mutex);
 764
 765        return result;
 766}
 767EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
 768
 769/**
 770 * pinctrl_gpio_request() - request a single pin to be used as GPIO
 771 * @gpio: the GPIO pin number from the GPIO subsystem number space
 772 *
 773 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 774 * as part of their gpio_request() semantics, platforms and individual drivers
 775 * shall *NOT* request GPIO pins to be muxed in.
 776 */
 777int pinctrl_gpio_request(unsigned gpio)
 778{
 779        struct pinctrl_dev *pctldev;
 780        struct pinctrl_gpio_range *range;
 781        int ret;
 782        int pin;
 783
 784        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 785        if (ret) {
 786                if (pinctrl_ready_for_gpio_range(gpio))
 787                        ret = 0;
 788                return ret;
 789        }
 790
 791        mutex_lock(&pctldev->mutex);
 792
 793        /* Convert to the pin controllers number space */
 794        pin = gpio_to_pin(range, gpio);
 795
 796        ret = pinmux_request_gpio(pctldev, range, pin, gpio);
 797
 798        mutex_unlock(&pctldev->mutex);
 799
 800        return ret;
 801}
 802EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
 803
 804/**
 805 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
 806 * @gpio: the GPIO pin number from the GPIO subsystem number space
 807 *
 808 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 809 * as part of their gpio_free() semantics, platforms and individual drivers
 810 * shall *NOT* request GPIO pins to be muxed out.
 811 */
 812void pinctrl_gpio_free(unsigned gpio)
 813{
 814        struct pinctrl_dev *pctldev;
 815        struct pinctrl_gpio_range *range;
 816        int ret;
 817        int pin;
 818
 819        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 820        if (ret) {
 821                return;
 822        }
 823        mutex_lock(&pctldev->mutex);
 824
 825        /* Convert to the pin controllers number space */
 826        pin = gpio_to_pin(range, gpio);
 827
 828        pinmux_free_gpio(pctldev, pin, range);
 829
 830        mutex_unlock(&pctldev->mutex);
 831}
 832EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
 833
 834static int pinctrl_gpio_direction(unsigned gpio, bool input)
 835{
 836        struct pinctrl_dev *pctldev;
 837        struct pinctrl_gpio_range *range;
 838        int ret;
 839        int pin;
 840
 841        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 842        if (ret) {
 843                return ret;
 844        }
 845
 846        mutex_lock(&pctldev->mutex);
 847
 848        /* Convert to the pin controllers number space */
 849        pin = gpio_to_pin(range, gpio);
 850        ret = pinmux_gpio_direction(pctldev, range, pin, input);
 851
 852        mutex_unlock(&pctldev->mutex);
 853
 854        return ret;
 855}
 856
 857/**
 858 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 859 * @gpio: the GPIO pin number from the GPIO subsystem number space
 860 *
 861 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 862 * as part of their gpio_direction_input() semantics, platforms and individual
 863 * drivers shall *NOT* touch pin control GPIO calls.
 864 */
 865int pinctrl_gpio_direction_input(unsigned gpio)
 866{
 867        return pinctrl_gpio_direction(gpio, true);
 868}
 869EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
 870
 871/**
 872 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 873 * @gpio: the GPIO pin number from the GPIO subsystem number space
 874 *
 875 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 876 * as part of their gpio_direction_output() semantics, platforms and individual
 877 * drivers shall *NOT* touch pin control GPIO calls.
 878 */
 879int pinctrl_gpio_direction_output(unsigned gpio)
 880{
 881        return pinctrl_gpio_direction(gpio, false);
 882}
 883EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
 884
 885/**
 886 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
 887 * @gpio: the GPIO pin number from the GPIO subsystem number space
 888 * @config: the configuration to apply to the GPIO
 889 *
 890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
 891 * they need to call the underlying pin controller to change GPIO config
 892 * (for example set debounce time).
 893 */
 894int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
 895{
 896        unsigned long configs[] = { config };
 897        struct pinctrl_gpio_range *range;
 898        struct pinctrl_dev *pctldev;
 899        int ret, pin;
 900
 901        ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
 902        if (ret)
 903                return ret;
 904
 905        mutex_lock(&pctldev->mutex);
 906        pin = gpio_to_pin(range, gpio);
 907        ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
 908        mutex_unlock(&pctldev->mutex);
 909
 910        return ret;
 911}
 912EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
 913
 914static struct pinctrl_state *find_state(struct pinctrl *p,
 915                                        const char *name)
 916{
 917        struct pinctrl_state *state;
 918
 919        list_for_each_entry(state, &p->states, node)
 920                if (!strcmp(state->name, name))
 921                        return state;
 922
 923        return NULL;
 924}
 925
 926static struct pinctrl_state *create_state(struct pinctrl *p,
 927                                          const char *name)
 928{
 929        struct pinctrl_state *state;
 930
 931        state = kzalloc(sizeof(*state), GFP_KERNEL);
 932        if (!state)
 933                return ERR_PTR(-ENOMEM);
 934
 935        state->name = name;
 936        INIT_LIST_HEAD(&state->settings);
 937
 938        list_add_tail(&state->node, &p->states);
 939
 940        return state;
 941}
 942
 943static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
 944                       const struct pinctrl_map *map)
 945{
 946        struct pinctrl_state *state;
 947        struct pinctrl_setting *setting;
 948        int ret;
 949
 950        state = find_state(p, map->name);
 951        if (!state)
 952                state = create_state(p, map->name);
 953        if (IS_ERR(state))
 954                return PTR_ERR(state);
 955
 956        if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
 957                return 0;
 958
 959        setting = kzalloc(sizeof(*setting), GFP_KERNEL);
 960        if (!setting)
 961                return -ENOMEM;
 962
 963        setting->type = map->type;
 964
 965        if (pctldev)
 966                setting->pctldev = pctldev;
 967        else
 968                setting->pctldev =
 969                        get_pinctrl_dev_from_devname(map->ctrl_dev_name);
 970        if (!setting->pctldev) {
 971                kfree(setting);
 972                /* Do not defer probing of hogs (circular loop) */
 973                if (!strcmp(map->ctrl_dev_name, map->dev_name))
 974                        return -ENODEV;
 975                /*
 976                 * OK let us guess that the driver is not there yet, and
 977                 * let's defer obtaining this pinctrl handle to later...
 978                 */
 979                dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
 980                        map->ctrl_dev_name);
 981                return -EPROBE_DEFER;
 982        }
 983
 984        setting->dev_name = map->dev_name;
 985
 986        switch (map->type) {
 987        case PIN_MAP_TYPE_MUX_GROUP:
 988                ret = pinmux_map_to_setting(map, setting);
 989                break;
 990        case PIN_MAP_TYPE_CONFIGS_PIN:
 991        case PIN_MAP_TYPE_CONFIGS_GROUP:
 992                ret = pinconf_map_to_setting(map, setting);
 993                break;
 994        default:
 995                ret = -EINVAL;
 996                break;
 997        }
 998        if (ret < 0) {
 999                kfree(setting);
1000                return ret;
1001        }
1002
1003        list_add_tail(&setting->node, &state->settings);
1004
1005        return 0;
1006}
1007
1008static struct pinctrl *find_pinctrl(struct device *dev)
1009{
1010        struct pinctrl *p;
1011
1012        mutex_lock(&pinctrl_list_mutex);
1013        list_for_each_entry(p, &pinctrl_list, node)
1014                if (p->dev == dev) {
1015                        mutex_unlock(&pinctrl_list_mutex);
1016                        return p;
1017                }
1018
1019        mutex_unlock(&pinctrl_list_mutex);
1020        return NULL;
1021}
1022
1023static void pinctrl_free(struct pinctrl *p, bool inlist);
1024
1025static struct pinctrl *create_pinctrl(struct device *dev,
1026                                      struct pinctrl_dev *pctldev)
1027{
1028        struct pinctrl *p;
1029        const char *devname;
1030        struct pinctrl_maps *maps_node;
1031        int i;
1032        const struct pinctrl_map *map;
1033        int ret;
1034
1035        /*
1036         * create the state cookie holder struct pinctrl for each
1037         * mapping, this is what consumers will get when requesting
1038         * a pin control handle with pinctrl_get()
1039         */
1040        p = kzalloc(sizeof(*p), GFP_KERNEL);
1041        if (!p)
1042                return ERR_PTR(-ENOMEM);
1043        p->dev = dev;
1044        INIT_LIST_HEAD(&p->states);
1045        INIT_LIST_HEAD(&p->dt_maps);
1046
1047        ret = pinctrl_dt_to_map(p, pctldev);
1048        if (ret < 0) {
1049                kfree(p);
1050                return ERR_PTR(ret);
1051        }
1052
1053        devname = dev_name(dev);
1054
1055        mutex_lock(&pinctrl_maps_mutex);
1056        /* Iterate over the pin control maps to locate the right ones */
1057        for_each_maps(maps_node, i, map) {
1058                /* Map must be for this device */
1059                if (strcmp(map->dev_name, devname))
1060                        continue;
1061                /*
1062                 * If pctldev is not null, we are claiming hog for it,
1063                 * that means, setting that is served by pctldev by itself.
1064                 *
1065                 * Thus we must skip map that is for this device but is served
1066                 * by other device.
1067                 */
1068                if (pctldev &&
1069                    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1070                        continue;
1071
1072                ret = add_setting(p, pctldev, map);
1073                /*
1074                 * At this point the adding of a setting may:
1075                 *
1076                 * - Defer, if the pinctrl device is not yet available
1077                 * - Fail, if the pinctrl device is not yet available,
1078                 *   AND the setting is a hog. We cannot defer that, since
1079                 *   the hog will kick in immediately after the device
1080                 *   is registered.
1081                 *
1082                 * If the error returned was not -EPROBE_DEFER then we
1083                 * accumulate the errors to see if we end up with
1084                 * an -EPROBE_DEFER later, as that is the worst case.
1085                 */
1086                if (ret == -EPROBE_DEFER) {
1087                        pinctrl_free(p, false);
1088                        mutex_unlock(&pinctrl_maps_mutex);
1089                        return ERR_PTR(ret);
1090                }
1091        }
1092        mutex_unlock(&pinctrl_maps_mutex);
1093
1094        if (ret < 0) {
1095                /* If some other error than deferral occurred, return here */
1096                pinctrl_free(p, false);
1097                return ERR_PTR(ret);
1098        }
1099
1100        kref_init(&p->users);
1101
1102        /* Add the pinctrl handle to the global list */
1103        mutex_lock(&pinctrl_list_mutex);
1104        list_add_tail(&p->node, &pinctrl_list);
1105        mutex_unlock(&pinctrl_list_mutex);
1106
1107        return p;
1108}
1109
1110/**
1111 * pinctrl_get() - retrieves the pinctrl handle for a device
1112 * @dev: the device to obtain the handle for
1113 */
1114struct pinctrl *pinctrl_get(struct device *dev)
1115{
1116        struct pinctrl *p;
1117
1118        if (WARN_ON(!dev))
1119                return ERR_PTR(-EINVAL);
1120
1121        /*
1122         * See if somebody else (such as the device core) has already
1123         * obtained a handle to the pinctrl for this device. In that case,
1124         * return another pointer to it.
1125         */
1126        p = find_pinctrl(dev);
1127        if (p) {
1128                dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1129                kref_get(&p->users);
1130                return p;
1131        }
1132
1133        return create_pinctrl(dev, NULL);
1134}
1135EXPORT_SYMBOL_GPL(pinctrl_get);
1136
1137static void pinctrl_free_setting(bool disable_setting,
1138                                 struct pinctrl_setting *setting)
1139{
1140        switch (setting->type) {
1141        case PIN_MAP_TYPE_MUX_GROUP:
1142                if (disable_setting)
1143                        pinmux_disable_setting(setting);
1144                pinmux_free_setting(setting);
1145                break;
1146        case PIN_MAP_TYPE_CONFIGS_PIN:
1147        case PIN_MAP_TYPE_CONFIGS_GROUP:
1148                pinconf_free_setting(setting);
1149                break;
1150        default:
1151                break;
1152        }
1153}
1154
1155static void pinctrl_free(struct pinctrl *p, bool inlist)
1156{
1157        struct pinctrl_state *state, *n1;
1158        struct pinctrl_setting *setting, *n2;
1159
1160        mutex_lock(&pinctrl_list_mutex);
1161        list_for_each_entry_safe(state, n1, &p->states, node) {
1162                list_for_each_entry_safe(setting, n2, &state->settings, node) {
1163                        pinctrl_free_setting(state == p->state, setting);
1164                        list_del(&setting->node);
1165                        kfree(setting);
1166                }
1167                list_del(&state->node);
1168                kfree(state);
1169        }
1170
1171        pinctrl_dt_free_maps(p);
1172
1173        if (inlist)
1174                list_del(&p->node);
1175        kfree(p);
1176        mutex_unlock(&pinctrl_list_mutex);
1177}
1178
1179/**
1180 * pinctrl_release() - release the pinctrl handle
1181 * @kref: the kref in the pinctrl being released
1182 */
1183static void pinctrl_release(struct kref *kref)
1184{
1185        struct pinctrl *p = container_of(kref, struct pinctrl, users);
1186
1187        pinctrl_free(p, true);
1188}
1189
1190/**
1191 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1192 * @p: the pinctrl handle to release
1193 */
1194void pinctrl_put(struct pinctrl *p)
1195{
1196        kref_put(&p->users, pinctrl_release);
1197}
1198EXPORT_SYMBOL_GPL(pinctrl_put);
1199
1200/**
1201 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1202 * @p: the pinctrl handle to retrieve the state from
1203 * @name: the state name to retrieve
1204 */
1205struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1206                                                 const char *name)
1207{
1208        struct pinctrl_state *state;
1209
1210        state = find_state(p, name);
1211        if (!state) {
1212                if (pinctrl_dummy_state) {
1213                        /* create dummy state */
1214                        dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1215                                name);
1216                        state = create_state(p, name);
1217                } else
1218                        state = ERR_PTR(-ENODEV);
1219        }
1220
1221        return state;
1222}
1223EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1224
1225static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1226                             struct device *consumer)
1227{
1228        if (pctldev->desc->link_consumers)
1229                device_link_add(consumer, pctldev->dev,
1230                                DL_FLAG_PM_RUNTIME |
1231                                DL_FLAG_AUTOREMOVE_CONSUMER);
1232}
1233
1234/**
1235 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1236 * @p: the pinctrl handle for the device that requests configuration
1237 * @state: the state handle to select/activate/program
1238 */
1239static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1240{
1241        struct pinctrl_setting *setting, *setting2;
1242        struct pinctrl_state *old_state = p->state;
1243        int ret;
1244
1245        if (p->state) {
1246                /*
1247                 * For each pinmux setting in the old state, forget SW's record
1248                 * of mux owner for that pingroup. Any pingroups which are
1249                 * still owned by the new state will be re-acquired by the call
1250                 * to pinmux_enable_setting() in the loop below.
1251                 */
1252                list_for_each_entry(setting, &p->state->settings, node) {
1253                        if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1254                                continue;
1255                        pinmux_disable_setting(setting);
1256                }
1257        }
1258
1259        p->state = NULL;
1260
1261        /* Apply all the settings for the new state - pinmux first */
1262        list_for_each_entry(setting, &state->settings, node) {
1263                switch (setting->type) {
1264                case PIN_MAP_TYPE_MUX_GROUP:
1265                        ret = pinmux_enable_setting(setting);
1266                        break;
1267                case PIN_MAP_TYPE_CONFIGS_PIN:
1268                case PIN_MAP_TYPE_CONFIGS_GROUP:
1269                        ret = 0;
1270                        break;
1271                default:
1272                        ret = -EINVAL;
1273                        break;
1274                }
1275
1276                if (ret < 0)
1277                        goto unapply_new_state;
1278
1279                /* Do not link hogs (circular dependency) */
1280                if (p != setting->pctldev->p)
1281                        pinctrl_link_add(setting->pctldev, p->dev);
1282        }
1283
1284        /* Apply all the settings for the new state - pinconf after */
1285        list_for_each_entry(setting, &state->settings, node) {
1286                switch (setting->type) {
1287                case PIN_MAP_TYPE_MUX_GROUP:
1288                        ret = 0;
1289                        break;
1290                case PIN_MAP_TYPE_CONFIGS_PIN:
1291                case PIN_MAP_TYPE_CONFIGS_GROUP:
1292                        ret = pinconf_apply_setting(setting);
1293                        break;
1294                default:
1295                        ret = -EINVAL;
1296                        break;
1297                }
1298
1299                if (ret < 0) {
1300                        goto unapply_new_state;
1301                }
1302
1303                /* Do not link hogs (circular dependency) */
1304                if (p != setting->pctldev->p)
1305                        pinctrl_link_add(setting->pctldev, p->dev);
1306        }
1307
1308        p->state = state;
1309
1310        return 0;
1311
1312unapply_new_state:
1313        dev_err(p->dev, "Error applying setting, reverse things back\n");
1314
1315        list_for_each_entry(setting2, &state->settings, node) {
1316                if (&setting2->node == &setting->node)
1317                        break;
1318                /*
1319                 * All we can do here is pinmux_disable_setting.
1320                 * That means that some pins are muxed differently now
1321                 * than they were before applying the setting (We can't
1322                 * "unmux a pin"!), but it's not a big deal since the pins
1323                 * are free to be muxed by another apply_setting.
1324                 */
1325                if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1326                        pinmux_disable_setting(setting2);
1327        }
1328
1329        /* There's no infinite recursive loop here because p->state is NULL */
1330        if (old_state)
1331                pinctrl_select_state(p, old_state);
1332
1333        return ret;
1334}
1335
1336/**
1337 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1338 * @p: the pinctrl handle for the device that requests configuration
1339 * @state: the state handle to select/activate/program
1340 */
1341int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1342{
1343        if (p->state == state)
1344                return 0;
1345
1346        return pinctrl_commit_state(p, state);
1347}
1348EXPORT_SYMBOL_GPL(pinctrl_select_state);
1349
1350static void devm_pinctrl_release(struct device *dev, void *res)
1351{
1352        pinctrl_put(*(struct pinctrl **)res);
1353}
1354
1355/**
1356 * devm_pinctrl_get() - Resource managed pinctrl_get()
1357 * @dev: the device to obtain the handle for
1358 *
1359 * If there is a need to explicitly destroy the returned struct pinctrl,
1360 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1361 */
1362struct pinctrl *devm_pinctrl_get(struct device *dev)
1363{
1364        struct pinctrl **ptr, *p;
1365
1366        ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1367        if (!ptr)
1368                return ERR_PTR(-ENOMEM);
1369
1370        p = pinctrl_get(dev);
1371        if (!IS_ERR(p)) {
1372                *ptr = p;
1373                devres_add(dev, ptr);
1374        } else {
1375                devres_free(ptr);
1376        }
1377
1378        return p;
1379}
1380EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1381
1382static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1383{
1384        struct pinctrl **p = res;
1385
1386        return *p == data;
1387}
1388
1389/**
1390 * devm_pinctrl_put() - Resource managed pinctrl_put()
1391 * @p: the pinctrl handle to release
1392 *
1393 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1394 * this function will not need to be called and the resource management
1395 * code will ensure that the resource is freed.
1396 */
1397void devm_pinctrl_put(struct pinctrl *p)
1398{
1399        WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1400                               devm_pinctrl_match, p));
1401}
1402EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1403
1404/**
1405 * pinctrl_register_mappings() - register a set of pin controller mappings
1406 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1407 *      keeps a reference to the passed in maps, so they should _not_ be
1408 *      marked with __initdata.
1409 * @num_maps: the number of maps in the mapping table
1410 */
1411int pinctrl_register_mappings(const struct pinctrl_map *maps,
1412                              unsigned num_maps)
1413{
1414        int i, ret;
1415        struct pinctrl_maps *maps_node;
1416
1417        pr_debug("add %u pinctrl maps\n", num_maps);
1418
1419        /* First sanity check the new mapping */
1420        for (i = 0; i < num_maps; i++) {
1421                if (!maps[i].dev_name) {
1422                        pr_err("failed to register map %s (%d): no device given\n",
1423                               maps[i].name, i);
1424                        return -EINVAL;
1425                }
1426
1427                if (!maps[i].name) {
1428                        pr_err("failed to register map %d: no map name given\n",
1429                               i);
1430                        return -EINVAL;
1431                }
1432
1433                if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1434                                !maps[i].ctrl_dev_name) {
1435                        pr_err("failed to register map %s (%d): no pin control device given\n",
1436                               maps[i].name, i);
1437                        return -EINVAL;
1438                }
1439
1440                switch (maps[i].type) {
1441                case PIN_MAP_TYPE_DUMMY_STATE:
1442                        break;
1443                case PIN_MAP_TYPE_MUX_GROUP:
1444                        ret = pinmux_validate_map(&maps[i], i);
1445                        if (ret < 0)
1446                                return ret;
1447                        break;
1448                case PIN_MAP_TYPE_CONFIGS_PIN:
1449                case PIN_MAP_TYPE_CONFIGS_GROUP:
1450                        ret = pinconf_validate_map(&maps[i], i);
1451                        if (ret < 0)
1452                                return ret;
1453                        break;
1454                default:
1455                        pr_err("failed to register map %s (%d): invalid type given\n",
1456                               maps[i].name, i);
1457                        return -EINVAL;
1458                }
1459        }
1460
1461        maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1462        if (!maps_node)
1463                return -ENOMEM;
1464
1465        maps_node->maps = maps;
1466        maps_node->num_maps = num_maps;
1467
1468        mutex_lock(&pinctrl_maps_mutex);
1469        list_add_tail(&maps_node->node, &pinctrl_maps);
1470        mutex_unlock(&pinctrl_maps_mutex);
1471
1472        return 0;
1473}
1474EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1475
1476/**
1477 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1478 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1479 *      when registering the mappings.
1480 */
1481void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1482{
1483        struct pinctrl_maps *maps_node;
1484
1485        mutex_lock(&pinctrl_maps_mutex);
1486        list_for_each_entry(maps_node, &pinctrl_maps, node) {
1487                if (maps_node->maps == map) {
1488                        list_del(&maps_node->node);
1489                        kfree(maps_node);
1490                        mutex_unlock(&pinctrl_maps_mutex);
1491                        return;
1492                }
1493        }
1494        mutex_unlock(&pinctrl_maps_mutex);
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1497
1498/**
1499 * pinctrl_force_sleep() - turn a given controller device into sleep state
1500 * @pctldev: pin controller device
1501 */
1502int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1503{
1504        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1505                return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1506        return 0;
1507}
1508EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1509
1510/**
1511 * pinctrl_force_default() - turn a given controller device into default state
1512 * @pctldev: pin controller device
1513 */
1514int pinctrl_force_default(struct pinctrl_dev *pctldev)
1515{
1516        if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1517                return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1518        return 0;
1519}
1520EXPORT_SYMBOL_GPL(pinctrl_force_default);
1521
1522/**
1523 * pinctrl_init_done() - tell pinctrl probe is done
1524 *
1525 * We'll use this time to switch the pins from "init" to "default" unless the
1526 * driver selected some other state.
1527 *
1528 * @dev: device to that's done probing
1529 */
1530int pinctrl_init_done(struct device *dev)
1531{
1532        struct dev_pin_info *pins = dev->pins;
1533        int ret;
1534
1535        if (!pins)
1536                return 0;
1537
1538        if (IS_ERR(pins->init_state))
1539                return 0; /* No such state */
1540
1541        if (pins->p->state != pins->init_state)
1542                return 0; /* Not at init anyway */
1543
1544        if (IS_ERR(pins->default_state))
1545                return 0; /* No default state */
1546
1547        ret = pinctrl_select_state(pins->p, pins->default_state);
1548        if (ret)
1549                dev_err(dev, "failed to activate default pinctrl state\n");
1550
1551        return ret;
1552}
1553
1554static int pinctrl_select_bound_state(struct device *dev,
1555                                      struct pinctrl_state *state)
1556{
1557        struct dev_pin_info *pins = dev->pins;
1558        int ret;
1559
1560        if (IS_ERR(state))
1561                return 0; /* No such state */
1562        ret = pinctrl_select_state(pins->p, state);
1563        if (ret)
1564                dev_err(dev, "failed to activate pinctrl state %s\n",
1565                        state->name);
1566        return ret;
1567}
1568
1569/**
1570 * pinctrl_select_default_state() - select default pinctrl state
1571 * @dev: device to select default state for
1572 */
1573int pinctrl_select_default_state(struct device *dev)
1574{
1575        if (!dev->pins)
1576                return 0;
1577
1578        return pinctrl_select_bound_state(dev, dev->pins->default_state);
1579}
1580EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1581
1582#ifdef CONFIG_PM
1583
1584/**
1585 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1586 * @dev: device to select default state for
1587 */
1588int pinctrl_pm_select_default_state(struct device *dev)
1589{
1590        return pinctrl_select_default_state(dev);
1591}
1592EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1593
1594/**
1595 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1596 * @dev: device to select sleep state for
1597 */
1598int pinctrl_pm_select_sleep_state(struct device *dev)
1599{
1600        if (!dev->pins)
1601                return 0;
1602
1603        return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1604}
1605EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1606
1607/**
1608 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1609 * @dev: device to select idle state for
1610 */
1611int pinctrl_pm_select_idle_state(struct device *dev)
1612{
1613        if (!dev->pins)
1614                return 0;
1615
1616        return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1617}
1618EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1619#endif
1620
1621#ifdef CONFIG_DEBUG_FS
1622
1623static int pinctrl_pins_show(struct seq_file *s, void *what)
1624{
1625        struct pinctrl_dev *pctldev = s->private;
1626        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1627        unsigned i, pin;
1628#ifdef CONFIG_GPIOLIB
1629        struct pinctrl_gpio_range *range;
1630        struct gpio_chip *chip;
1631        int gpio_num;
1632#endif
1633
1634        seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1635
1636        mutex_lock(&pctldev->mutex);
1637
1638        /* The pin number can be retrived from the pin controller descriptor */
1639        for (i = 0; i < pctldev->desc->npins; i++) {
1640                struct pin_desc *desc;
1641
1642                pin = pctldev->desc->pins[i].number;
1643                desc = pin_desc_get(pctldev, pin);
1644                /* Pin space may be sparse */
1645                if (!desc)
1646                        continue;
1647
1648                seq_printf(s, "pin %d (%s) ", pin, desc->name);
1649
1650#ifdef CONFIG_GPIOLIB
1651                gpio_num = -1;
1652                list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1653                        if ((pin >= range->pin_base) &&
1654                            (pin < (range->pin_base + range->npins))) {
1655                                gpio_num = range->base + (pin - range->pin_base);
1656                                break;
1657                        }
1658                }
1659                if (gpio_num >= 0)
1660                        chip = gpio_to_chip(gpio_num);
1661                else
1662                        chip = NULL;
1663                if (chip)
1664                        seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1665                else
1666                        seq_puts(s, "0:? ");
1667#endif
1668
1669                /* Driver-specific info per pin */
1670                if (ops->pin_dbg_show)
1671                        ops->pin_dbg_show(pctldev, s, pin);
1672
1673                seq_puts(s, "\n");
1674        }
1675
1676        mutex_unlock(&pctldev->mutex);
1677
1678        return 0;
1679}
1680DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1681
1682static int pinctrl_groups_show(struct seq_file *s, void *what)
1683{
1684        struct pinctrl_dev *pctldev = s->private;
1685        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1686        unsigned ngroups, selector = 0;
1687
1688        mutex_lock(&pctldev->mutex);
1689
1690        ngroups = ops->get_groups_count(pctldev);
1691
1692        seq_puts(s, "registered pin groups:\n");
1693        while (selector < ngroups) {
1694                const unsigned *pins = NULL;
1695                unsigned num_pins = 0;
1696                const char *gname = ops->get_group_name(pctldev, selector);
1697                const char *pname;
1698                int ret = 0;
1699                int i;
1700
1701                if (ops->get_group_pins)
1702                        ret = ops->get_group_pins(pctldev, selector,
1703                                                  &pins, &num_pins);
1704                if (ret)
1705                        seq_printf(s, "%s [ERROR GETTING PINS]\n",
1706                                   gname);
1707                else {
1708                        seq_printf(s, "group: %s\n", gname);
1709                        for (i = 0; i < num_pins; i++) {
1710                                pname = pin_get_name(pctldev, pins[i]);
1711                                if (WARN_ON(!pname)) {
1712                                        mutex_unlock(&pctldev->mutex);
1713                                        return -EINVAL;
1714                                }
1715                                seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1716                        }
1717                        seq_puts(s, "\n");
1718                }
1719                selector++;
1720        }
1721
1722        mutex_unlock(&pctldev->mutex);
1723
1724        return 0;
1725}
1726DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1727
1728static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1729{
1730        struct pinctrl_dev *pctldev = s->private;
1731        struct pinctrl_gpio_range *range;
1732
1733        seq_puts(s, "GPIO ranges handled:\n");
1734
1735        mutex_lock(&pctldev->mutex);
1736
1737        /* Loop over the ranges */
1738        list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1739                if (range->pins) {
1740                        int a;
1741                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1742                                range->id, range->name,
1743                                range->base, (range->base + range->npins - 1));
1744                        for (a = 0; a < range->npins - 1; a++)
1745                                seq_printf(s, "%u, ", range->pins[a]);
1746                        seq_printf(s, "%u}\n", range->pins[a]);
1747                }
1748                else
1749                        seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1750                                range->id, range->name,
1751                                range->base, (range->base + range->npins - 1),
1752                                range->pin_base,
1753                                (range->pin_base + range->npins - 1));
1754        }
1755
1756        mutex_unlock(&pctldev->mutex);
1757
1758        return 0;
1759}
1760DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1761
1762static int pinctrl_devices_show(struct seq_file *s, void *what)
1763{
1764        struct pinctrl_dev *pctldev;
1765
1766        seq_puts(s, "name [pinmux] [pinconf]\n");
1767
1768        mutex_lock(&pinctrldev_list_mutex);
1769
1770        list_for_each_entry(pctldev, &pinctrldev_list, node) {
1771                seq_printf(s, "%s ", pctldev->desc->name);
1772                if (pctldev->desc->pmxops)
1773                        seq_puts(s, "yes ");
1774                else
1775                        seq_puts(s, "no ");
1776                if (pctldev->desc->confops)
1777                        seq_puts(s, "yes");
1778                else
1779                        seq_puts(s, "no");
1780                seq_puts(s, "\n");
1781        }
1782
1783        mutex_unlock(&pinctrldev_list_mutex);
1784
1785        return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1788
1789static inline const char *map_type(enum pinctrl_map_type type)
1790{
1791        static const char * const names[] = {
1792                "INVALID",
1793                "DUMMY_STATE",
1794                "MUX_GROUP",
1795                "CONFIGS_PIN",
1796                "CONFIGS_GROUP",
1797        };
1798
1799        if (type >= ARRAY_SIZE(names))
1800                return "UNKNOWN";
1801
1802        return names[type];
1803}
1804
1805static int pinctrl_maps_show(struct seq_file *s, void *what)
1806{
1807        struct pinctrl_maps *maps_node;
1808        int i;
1809        const struct pinctrl_map *map;
1810
1811        seq_puts(s, "Pinctrl maps:\n");
1812
1813        mutex_lock(&pinctrl_maps_mutex);
1814        for_each_maps(maps_node, i, map) {
1815                seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1816                           map->dev_name, map->name, map_type(map->type),
1817                           map->type);
1818
1819                if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1820                        seq_printf(s, "controlling device %s\n",
1821                                   map->ctrl_dev_name);
1822
1823                switch (map->type) {
1824                case PIN_MAP_TYPE_MUX_GROUP:
1825                        pinmux_show_map(s, map);
1826                        break;
1827                case PIN_MAP_TYPE_CONFIGS_PIN:
1828                case PIN_MAP_TYPE_CONFIGS_GROUP:
1829                        pinconf_show_map(s, map);
1830                        break;
1831                default:
1832                        break;
1833                }
1834
1835                seq_putc(s, '\n');
1836        }
1837        mutex_unlock(&pinctrl_maps_mutex);
1838
1839        return 0;
1840}
1841DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1842
1843static int pinctrl_show(struct seq_file *s, void *what)
1844{
1845        struct pinctrl *p;
1846        struct pinctrl_state *state;
1847        struct pinctrl_setting *setting;
1848
1849        seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1850
1851        mutex_lock(&pinctrl_list_mutex);
1852
1853        list_for_each_entry(p, &pinctrl_list, node) {
1854                seq_printf(s, "device: %s current state: %s\n",
1855                           dev_name(p->dev),
1856                           p->state ? p->state->name : "none");
1857
1858                list_for_each_entry(state, &p->states, node) {
1859                        seq_printf(s, "  state: %s\n", state->name);
1860
1861                        list_for_each_entry(setting, &state->settings, node) {
1862                                struct pinctrl_dev *pctldev = setting->pctldev;
1863
1864                                seq_printf(s, "    type: %s controller %s ",
1865                                           map_type(setting->type),
1866                                           pinctrl_dev_get_name(pctldev));
1867
1868                                switch (setting->type) {
1869                                case PIN_MAP_TYPE_MUX_GROUP:
1870                                        pinmux_show_setting(s, setting);
1871                                        break;
1872                                case PIN_MAP_TYPE_CONFIGS_PIN:
1873                                case PIN_MAP_TYPE_CONFIGS_GROUP:
1874                                        pinconf_show_setting(s, setting);
1875                                        break;
1876                                default:
1877                                        break;
1878                                }
1879                        }
1880                }
1881        }
1882
1883        mutex_unlock(&pinctrl_list_mutex);
1884
1885        return 0;
1886}
1887DEFINE_SHOW_ATTRIBUTE(pinctrl);
1888
1889static struct dentry *debugfs_root;
1890
1891static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1892{
1893        struct dentry *device_root;
1894        const char *debugfs_name;
1895
1896        if (pctldev->desc->name &&
1897                        strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1898                debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1899                                "%s-%s", dev_name(pctldev->dev),
1900                                pctldev->desc->name);
1901                if (!debugfs_name) {
1902                        pr_warn("failed to determine debugfs dir name for %s\n",
1903                                dev_name(pctldev->dev));
1904                        return;
1905                }
1906        } else {
1907                debugfs_name = dev_name(pctldev->dev);
1908        }
1909
1910        device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1911        pctldev->device_root = device_root;
1912
1913        if (IS_ERR(device_root) || !device_root) {
1914                pr_warn("failed to create debugfs directory for %s\n",
1915                        dev_name(pctldev->dev));
1916                return;
1917        }
1918        debugfs_create_file("pins", 0444,
1919                            device_root, pctldev, &pinctrl_pins_fops);
1920        debugfs_create_file("pingroups", 0444,
1921                            device_root, pctldev, &pinctrl_groups_fops);
1922        debugfs_create_file("gpio-ranges", 0444,
1923                            device_root, pctldev, &pinctrl_gpioranges_fops);
1924        if (pctldev->desc->pmxops)
1925                pinmux_init_device_debugfs(device_root, pctldev);
1926        if (pctldev->desc->confops)
1927                pinconf_init_device_debugfs(device_root, pctldev);
1928}
1929
1930static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1931{
1932        debugfs_remove_recursive(pctldev->device_root);
1933}
1934
1935static void pinctrl_init_debugfs(void)
1936{
1937        debugfs_root = debugfs_create_dir("pinctrl", NULL);
1938        if (IS_ERR(debugfs_root) || !debugfs_root) {
1939                pr_warn("failed to create debugfs directory\n");
1940                debugfs_root = NULL;
1941                return;
1942        }
1943
1944        debugfs_create_file("pinctrl-devices", 0444,
1945                            debugfs_root, NULL, &pinctrl_devices_fops);
1946        debugfs_create_file("pinctrl-maps", 0444,
1947                            debugfs_root, NULL, &pinctrl_maps_fops);
1948        debugfs_create_file("pinctrl-handles", 0444,
1949                            debugfs_root, NULL, &pinctrl_fops);
1950}
1951
1952#else /* CONFIG_DEBUG_FS */
1953
1954static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1955{
1956}
1957
1958static void pinctrl_init_debugfs(void)
1959{
1960}
1961
1962static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1963{
1964}
1965
1966#endif
1967
1968static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1969{
1970        const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1971
1972        if (!ops ||
1973            !ops->get_groups_count ||
1974            !ops->get_group_name)
1975                return -EINVAL;
1976
1977        return 0;
1978}
1979
1980/**
1981 * pinctrl_init_controller() - init a pin controller device
1982 * @pctldesc: descriptor for this pin controller
1983 * @dev: parent device for this pin controller
1984 * @driver_data: private pin controller data for this pin controller
1985 */
1986static struct pinctrl_dev *
1987pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1988                        void *driver_data)
1989{
1990        struct pinctrl_dev *pctldev;
1991        int ret;
1992
1993        if (!pctldesc)
1994                return ERR_PTR(-EINVAL);
1995        if (!pctldesc->name)
1996                return ERR_PTR(-EINVAL);
1997
1998        pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1999        if (!pctldev)
2000                return ERR_PTR(-ENOMEM);
2001
2002        /* Initialize pin control device struct */
2003        pctldev->owner = pctldesc->owner;
2004        pctldev->desc = pctldesc;
2005        pctldev->driver_data = driver_data;
2006        INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2007#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2008        INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2009#endif
2010#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2011        INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2012#endif
2013        INIT_LIST_HEAD(&pctldev->gpio_ranges);
2014        INIT_LIST_HEAD(&pctldev->node);
2015        pctldev->dev = dev;
2016        mutex_init(&pctldev->mutex);
2017
2018        /* check core ops for sanity */
2019        ret = pinctrl_check_ops(pctldev);
2020        if (ret) {
2021                dev_err(dev, "pinctrl ops lacks necessary functions\n");
2022                goto out_err;
2023        }
2024
2025        /* If we're implementing pinmuxing, check the ops for sanity */
2026        if (pctldesc->pmxops) {
2027                ret = pinmux_check_ops(pctldev);
2028                if (ret)
2029                        goto out_err;
2030        }
2031
2032        /* If we're implementing pinconfig, check the ops for sanity */
2033        if (pctldesc->confops) {
2034                ret = pinconf_check_ops(pctldev);
2035                if (ret)
2036                        goto out_err;
2037        }
2038
2039        /* Register all the pins */
2040        dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2041        ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2042        if (ret) {
2043                dev_err(dev, "error during pin registration\n");
2044                pinctrl_free_pindescs(pctldev, pctldesc->pins,
2045                                      pctldesc->npins);
2046                goto out_err;
2047        }
2048
2049        return pctldev;
2050
2051out_err:
2052        mutex_destroy(&pctldev->mutex);
2053        kfree(pctldev);
2054        return ERR_PTR(ret);
2055}
2056
2057static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2058{
2059        pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2060        if (PTR_ERR(pctldev->p) == -ENODEV) {
2061                dev_dbg(pctldev->dev, "no hogs found\n");
2062
2063                return 0;
2064        }
2065
2066        if (IS_ERR(pctldev->p)) {
2067                dev_err(pctldev->dev, "error claiming hogs: %li\n",
2068                        PTR_ERR(pctldev->p));
2069
2070                return PTR_ERR(pctldev->p);
2071        }
2072
2073        pctldev->hog_default =
2074                pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2075        if (IS_ERR(pctldev->hog_default)) {
2076                dev_dbg(pctldev->dev,
2077                        "failed to lookup the default state\n");
2078        } else {
2079                if (pinctrl_select_state(pctldev->p,
2080                                         pctldev->hog_default))
2081                        dev_err(pctldev->dev,
2082                                "failed to select default state\n");
2083        }
2084
2085        pctldev->hog_sleep =
2086                pinctrl_lookup_state(pctldev->p,
2087                                     PINCTRL_STATE_SLEEP);
2088        if (IS_ERR(pctldev->hog_sleep))
2089                dev_dbg(pctldev->dev,
2090                        "failed to lookup the sleep state\n");
2091
2092        return 0;
2093}
2094
2095int pinctrl_enable(struct pinctrl_dev *pctldev)
2096{
2097        int error;
2098
2099        error = pinctrl_claim_hogs(pctldev);
2100        if (error) {
2101                dev_err(pctldev->dev, "could not claim hogs: %i\n",
2102                        error);
2103                mutex_destroy(&pctldev->mutex);
2104                kfree(pctldev);
2105
2106                return error;
2107        }
2108
2109        mutex_lock(&pinctrldev_list_mutex);
2110        list_add_tail(&pctldev->node, &pinctrldev_list);
2111        mutex_unlock(&pinctrldev_list_mutex);
2112
2113        pinctrl_init_device_debugfs(pctldev);
2114
2115        return 0;
2116}
2117EXPORT_SYMBOL_GPL(pinctrl_enable);
2118
2119/**
2120 * pinctrl_register() - register a pin controller device
2121 * @pctldesc: descriptor for this pin controller
2122 * @dev: parent device for this pin controller
2123 * @driver_data: private pin controller data for this pin controller
2124 *
2125 * Note that pinctrl_register() is known to have problems as the pin
2126 * controller driver functions are called before the driver has a
2127 * struct pinctrl_dev handle. To avoid issues later on, please use the
2128 * new pinctrl_register_and_init() below instead.
2129 */
2130struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2131                                    struct device *dev, void *driver_data)
2132{
2133        struct pinctrl_dev *pctldev;
2134        int error;
2135
2136        pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2137        if (IS_ERR(pctldev))
2138                return pctldev;
2139
2140        error = pinctrl_enable(pctldev);
2141        if (error)
2142                return ERR_PTR(error);
2143
2144        return pctldev;
2145}
2146EXPORT_SYMBOL_GPL(pinctrl_register);
2147
2148/**
2149 * pinctrl_register_and_init() - register and init pin controller device
2150 * @pctldesc: descriptor for this pin controller
2151 * @dev: parent device for this pin controller
2152 * @driver_data: private pin controller data for this pin controller
2153 * @pctldev: pin controller device
2154 *
2155 * Note that pinctrl_enable() still needs to be manually called after
2156 * this once the driver is ready.
2157 */
2158int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2159                              struct device *dev, void *driver_data,
2160                              struct pinctrl_dev **pctldev)
2161{
2162        struct pinctrl_dev *p;
2163
2164        p = pinctrl_init_controller(pctldesc, dev, driver_data);
2165        if (IS_ERR(p))
2166                return PTR_ERR(p);
2167
2168        /*
2169         * We have pinctrl_start() call functions in the pin controller
2170         * driver with create_pinctrl() for at least dt_node_to_map(). So
2171         * let's make sure pctldev is properly initialized for the
2172         * pin controller driver before we do anything.
2173         */
2174        *pctldev = p;
2175
2176        return 0;
2177}
2178EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2179
2180/**
2181 * pinctrl_unregister() - unregister pinmux
2182 * @pctldev: pin controller to unregister
2183 *
2184 * Called by pinmux drivers to unregister a pinmux.
2185 */
2186void pinctrl_unregister(struct pinctrl_dev *pctldev)
2187{
2188        struct pinctrl_gpio_range *range, *n;
2189
2190        if (!pctldev)
2191                return;
2192
2193        mutex_lock(&pctldev->mutex);
2194        pinctrl_remove_device_debugfs(pctldev);
2195        mutex_unlock(&pctldev->mutex);
2196
2197        if (!IS_ERR_OR_NULL(pctldev->p))
2198                pinctrl_put(pctldev->p);
2199
2200        mutex_lock(&pinctrldev_list_mutex);
2201        mutex_lock(&pctldev->mutex);
2202        /* TODO: check that no pinmuxes are still active? */
2203        list_del(&pctldev->node);
2204        pinmux_generic_free_functions(pctldev);
2205        pinctrl_generic_free_groups(pctldev);
2206        /* Destroy descriptor tree */
2207        pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2208                              pctldev->desc->npins);
2209        /* remove gpio ranges map */
2210        list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2211                list_del(&range->node);
2212
2213        mutex_unlock(&pctldev->mutex);
2214        mutex_destroy(&pctldev->mutex);
2215        kfree(pctldev);
2216        mutex_unlock(&pinctrldev_list_mutex);
2217}
2218EXPORT_SYMBOL_GPL(pinctrl_unregister);
2219
2220static void devm_pinctrl_dev_release(struct device *dev, void *res)
2221{
2222        struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2223
2224        pinctrl_unregister(pctldev);
2225}
2226
2227static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2228{
2229        struct pctldev **r = res;
2230
2231        if (WARN_ON(!r || !*r))
2232                return 0;
2233
2234        return *r == data;
2235}
2236
2237/**
2238 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2239 * @dev: parent device for this pin controller
2240 * @pctldesc: descriptor for this pin controller
2241 * @driver_data: private pin controller data for this pin controller
2242 *
2243 * Returns an error pointer if pincontrol register failed. Otherwise
2244 * it returns valid pinctrl handle.
2245 *
2246 * The pinctrl device will be automatically released when the device is unbound.
2247 */
2248struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2249                                          struct pinctrl_desc *pctldesc,
2250                                          void *driver_data)
2251{
2252        struct pinctrl_dev **ptr, *pctldev;
2253
2254        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2255        if (!ptr)
2256                return ERR_PTR(-ENOMEM);
2257
2258        pctldev = pinctrl_register(pctldesc, dev, driver_data);
2259        if (IS_ERR(pctldev)) {
2260                devres_free(ptr);
2261                return pctldev;
2262        }
2263
2264        *ptr = pctldev;
2265        devres_add(dev, ptr);
2266
2267        return pctldev;
2268}
2269EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2270
2271/**
2272 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2273 * @dev: parent device for this pin controller
2274 * @pctldesc: descriptor for this pin controller
2275 * @driver_data: private pin controller data for this pin controller
2276 * @pctldev: pin controller device
2277 *
2278 * Returns zero on success or an error number on failure.
2279 *
2280 * The pinctrl device will be automatically released when the device is unbound.
2281 */
2282int devm_pinctrl_register_and_init(struct device *dev,
2283                                   struct pinctrl_desc *pctldesc,
2284                                   void *driver_data,
2285                                   struct pinctrl_dev **pctldev)
2286{
2287        struct pinctrl_dev **ptr;
2288        int error;
2289
2290        ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2291        if (!ptr)
2292                return -ENOMEM;
2293
2294        error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2295        if (error) {
2296                devres_free(ptr);
2297                return error;
2298        }
2299
2300        *ptr = *pctldev;
2301        devres_add(dev, ptr);
2302
2303        return 0;
2304}
2305EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2306
2307/**
2308 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2309 * @dev: device for which resource was allocated
2310 * @pctldev: the pinctrl device to unregister.
2311 */
2312void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2313{
2314        WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2315                               devm_pinctrl_dev_match, pctldev));
2316}
2317EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2318
2319static int __init pinctrl_init(void)
2320{
2321        pr_info("initialized pinctrl subsystem\n");
2322        pinctrl_init_debugfs();
2323        return 0;
2324}
2325
2326/* init early since many drivers really need to initialized pinmux early */
2327core_initcall(pinctrl_init);
2328