linux/drivers/platform/chrome/cros_ec_sensorhub_ring.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Chrome OS EC Sensor hub FIFO.
   4 *
   5 * Copyright 2020 Google LLC
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/device.h>
  10#include <linux/iio/iio.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/platform_data/cros_ec_commands.h>
  14#include <linux/platform_data/cros_ec_proto.h>
  15#include <linux/platform_data/cros_ec_sensorhub.h>
  16#include <linux/platform_device.h>
  17#include <linux/sort.h>
  18#include <linux/slab.h>
  19
  20#include "cros_ec_trace.h"
  21
  22/* Precision of fixed point for the m values from the filter */
  23#define M_PRECISION BIT(23)
  24
  25/* Only activate the filter once we have at least this many elements. */
  26#define TS_HISTORY_THRESHOLD 8
  27
  28/*
  29 * If we don't have any history entries for this long, empty the filter to
  30 * make sure there are no big discontinuities.
  31 */
  32#define TS_HISTORY_BORED_US 500000
  33
  34/* To measure by how much the filter is overshooting, if it happens. */
  35#define FUTURE_TS_ANALYTICS_COUNT_MAX 100
  36
  37static inline int
  38cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
  39                           struct cros_ec_sensors_ring_sample *sample)
  40{
  41        cros_ec_sensorhub_push_data_cb_t cb;
  42        int id = sample->sensor_id;
  43        struct iio_dev *indio_dev;
  44
  45        if (id >= sensorhub->sensor_num)
  46                return -EINVAL;
  47
  48        cb = sensorhub->push_data[id].push_data_cb;
  49        if (!cb)
  50                return 0;
  51
  52        indio_dev = sensorhub->push_data[id].indio_dev;
  53
  54        if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
  55                return 0;
  56
  57        return cb(indio_dev, sample->vector, sample->timestamp);
  58}
  59
  60/**
  61 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
  62 *
  63 * @sensorhub : Sensor Hub object
  64 * @sensor_num : The sensor the caller is interested in.
  65 * @indio_dev : The iio device to use when a sample arrives.
  66 * @cb : The callback to call when a sample arrives.
  67 *
  68 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
  69 * from the EC.
  70 *
  71 * Return: 0 when callback is registered.
  72 *         EINVAL is the sensor number is invalid or the slot already used.
  73 */
  74int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
  75                                         u8 sensor_num,
  76                                         struct iio_dev *indio_dev,
  77                                         cros_ec_sensorhub_push_data_cb_t cb)
  78{
  79        if (sensor_num >= sensorhub->sensor_num)
  80                return -EINVAL;
  81        if (sensorhub->push_data[sensor_num].indio_dev)
  82                return -EINVAL;
  83
  84        sensorhub->push_data[sensor_num].indio_dev = indio_dev;
  85        sensorhub->push_data[sensor_num].push_data_cb = cb;
  86
  87        return 0;
  88}
  89EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
  90
  91void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
  92                                            u8 sensor_num)
  93{
  94        sensorhub->push_data[sensor_num].indio_dev = NULL;
  95        sensorhub->push_data[sensor_num].push_data_cb = NULL;
  96}
  97EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
  98
  99/**
 100 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
 101 *                                        for FIFO events.
 102 * @sensorhub: Sensor Hub object
 103 * @on: true when events are requested.
 104 *
 105 * To be called before sleeping or when noone is listening.
 106 * Return: 0 on success, or an error when we can not communicate with the EC.
 107 *
 108 */
 109int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
 110                                       bool on)
 111{
 112        int ret, i;
 113
 114        mutex_lock(&sensorhub->cmd_lock);
 115        if (sensorhub->tight_timestamps)
 116                for (i = 0; i < sensorhub->sensor_num; i++)
 117                        sensorhub->batch_state[i].last_len = 0;
 118
 119        sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
 120        sensorhub->params->fifo_int_enable.enable = on;
 121
 122        sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
 123        sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
 124
 125        ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
 126        mutex_unlock(&sensorhub->cmd_lock);
 127
 128        /* We expect to receive a payload of 4 bytes, ignore. */
 129        if (ret > 0)
 130                ret = 0;
 131
 132        return ret;
 133}
 134
 135static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
 136{
 137        s64 v1 = *(s64 *)pv1;
 138        s64 v2 = *(s64 *)pv2;
 139
 140        if (v1 > v2)
 141                return 1;
 142        else if (v1 < v2)
 143                return -1;
 144        else
 145                return 0;
 146}
 147
 148/*
 149 * cros_ec_sensor_ring_median: Gets median of an array of numbers
 150 *
 151 * For now it's implemented using an inefficient > O(n) sort then return
 152 * the middle element. A more optimal method would be something like
 153 * quickselect, but given that n = 64 we can probably live with it in the
 154 * name of clarity.
 155 *
 156 * Warning: the input array gets modified (sorted)!
 157 */
 158static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
 159{
 160        sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
 161        return array[length / 2];
 162}
 163
 164/*
 165 * IRQ Timestamp Filtering
 166 *
 167 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
 168 * we have to calculate it's timestamp in the AP timebase. There are 3 time
 169 * points:
 170 *   a - EC timebase, sensor event
 171 *   b - EC timebase, IRQ
 172 *   c - AP timebase, IRQ
 173 *   a' - what we want: sensor even in AP timebase
 174 *
 175 * While a and b are recorded at accurate times (due to the EC real time
 176 * nature); c is pretty untrustworthy, even though it's recorded the
 177 * first thing in ec_irq_handler(). There is a very good change we'll get
 178 * added lantency due to:
 179 *   other irqs
 180 *   ddrfreq
 181 *   cpuidle
 182 *
 183 * Normally a' = c - b + a, but if we do that naive math any jitter in c
 184 * will get coupled in a', which we don't want. We want a function
 185 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
 186 *
 187 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
 188 * The slope of the line won't be exactly 1, there will be some clock drift
 189 * between the 2 chips for various reasons (mechanical stress, temperature,
 190 * voltage). We need to extrapolate values for a future x, without trusting
 191 * recent y values too much.
 192 *
 193 * We use a median filter for the slope, then another median filter for the
 194 * y-intercept to calculate this function:
 195 *   dx[n] = x[n-1] - x[n]
 196 *   dy[n] = x[n-1] - x[n]
 197 *   m[n] = dy[n] / dx[n]
 198 *   median_m = median(m[n-k:n])
 199 *   error[i] = y[n-i] - median_m * x[n-i]
 200 *   median_error = median(error[:k])
 201 *   predicted_y = median_m * x + median_error
 202 *
 203 * Implementation differences from above:
 204 * - Redefined y to be actually c - b, this gives us a lot more precision
 205 * to do the math. (c-b)/b variations are more obvious than c/b variations.
 206 * - Since we don't have floating point, any operations involving slope are
 207 * done using fixed point math (*M_PRECISION)
 208 * - Since x and y grow with time, we keep zeroing the graph (relative to
 209 * the last sample), this way math involving *x[n-i] will not overflow
 210 * - EC timestamps are kept in us, it improves the slope calculation precision
 211 */
 212
 213/**
 214 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
 215 *
 216 * @state: Filter information.
 217 * @b: IRQ timestamp, EC timebase (us)
 218 * @c: IRQ timestamp, AP timebase (ns)
 219 *
 220 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
 221 * history.
 222 */
 223static void
 224cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
 225                                     *state,
 226                                     s64 b, s64 c)
 227{
 228        s64 x, y;
 229        s64 dx, dy;
 230        s64 m; /* stored as *M_PRECISION */
 231        s64 *m_history_copy = state->temp_buf;
 232        s64 *error = state->temp_buf;
 233        int i;
 234
 235        /* we trust b the most, that'll be our independent variable */
 236        x = b;
 237        /* y is the offset between AP and EC times, in ns */
 238        y = c - b * 1000;
 239
 240        dx = (state->x_history[0] + state->x_offset) - x;
 241        if (dx == 0)
 242                return; /* we already have this irq in the history */
 243        dy = (state->y_history[0] + state->y_offset) - y;
 244        m = div64_s64(dy * M_PRECISION, dx);
 245
 246        /* Empty filter if we haven't seen any action in a while. */
 247        if (-dx > TS_HISTORY_BORED_US)
 248                state->history_len = 0;
 249
 250        /* Move everything over, also update offset to all absolute coords .*/
 251        for (i = state->history_len - 1; i >= 1; i--) {
 252                state->x_history[i] = state->x_history[i - 1] + dx;
 253                state->y_history[i] = state->y_history[i - 1] + dy;
 254
 255                state->m_history[i] = state->m_history[i - 1];
 256                /*
 257                 * Also use the same loop to copy m_history for future
 258                 * median extraction.
 259                 */
 260                m_history_copy[i] = state->m_history[i - 1];
 261        }
 262
 263        /* Store the x and y, but remember offset is actually last sample. */
 264        state->x_offset = x;
 265        state->y_offset = y;
 266        state->x_history[0] = 0;
 267        state->y_history[0] = 0;
 268
 269        state->m_history[0] = m;
 270        m_history_copy[0] = m;
 271
 272        if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
 273                state->history_len++;
 274
 275        /* Precalculate things for the filter. */
 276        if (state->history_len > TS_HISTORY_THRESHOLD) {
 277                state->median_m =
 278                    cros_ec_sensor_ring_median(m_history_copy,
 279                                               state->history_len - 1);
 280
 281                /*
 282                 * Calculate y-intercepts as if m_median is the slope and
 283                 * points in the history are on the line. median_error will
 284                 * still be in the offset coordinate system.
 285                 */
 286                for (i = 0; i < state->history_len; i++)
 287                        error[i] = state->y_history[i] -
 288                                div_s64(state->median_m * state->x_history[i],
 289                                        M_PRECISION);
 290                state->median_error =
 291                        cros_ec_sensor_ring_median(error, state->history_len);
 292        } else {
 293                state->median_m = 0;
 294                state->median_error = 0;
 295        }
 296        trace_cros_ec_sensorhub_filter(state, dx, dy);
 297}
 298
 299/**
 300 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
 301 *                                   timebase
 302 *
 303 * @state: filter information.
 304 * @x: any ec timestamp (us):
 305 *
 306 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
 307 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
 308 *                           should have happened on the AP, with low jitter
 309 *
 310 * Note: The filter will only activate once state->history_len goes
 311 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
 312 * transform.
 313 *
 314 * How to derive the formula, starting from:
 315 *   f(x) = median_m * x + median_error
 316 * That's the calculated AP - EC offset (at the x point in time)
 317 * Undo the coordinate system transform:
 318 *   f(x) = median_m * (x - x_offset) + median_error + y_offset
 319 * Remember to undo the "y = c - b * 1000" modification:
 320 *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
 321 *
 322 * Return: timestamp in AP timebase (ns)
 323 */
 324static s64
 325cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
 326                              s64 x)
 327{
 328        return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
 329               + state->median_error + state->y_offset + x * 1000;
 330}
 331
 332/*
 333 * Since a and b were originally 32 bit values from the EC,
 334 * they overflow relatively often, casting is not enough, so we need to
 335 * add an offset.
 336 */
 337static void
 338cros_ec_sensor_ring_fix_overflow(s64 *ts,
 339                                 const s64 overflow_period,
 340                                 struct cros_ec_sensors_ec_overflow_state
 341                                 *state)
 342{
 343        s64 adjust;
 344
 345        *ts += state->offset;
 346        if (abs(state->last - *ts) > (overflow_period / 2)) {
 347                adjust = state->last > *ts ? overflow_period : -overflow_period;
 348                state->offset += adjust;
 349                *ts += adjust;
 350        }
 351        state->last = *ts;
 352}
 353
 354static void
 355cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
 356                                             *sensorhub,
 357                                             struct cros_ec_sensors_ring_sample
 358                                             *sample)
 359{
 360        const u8 sensor_id = sample->sensor_id;
 361
 362        /* If this event is earlier than one we saw before... */
 363        if (sensorhub->batch_state[sensor_id].newest_sensor_event >
 364            sample->timestamp)
 365                /* mark it for spreading. */
 366                sample->timestamp =
 367                        sensorhub->batch_state[sensor_id].last_ts;
 368        else
 369                sensorhub->batch_state[sensor_id].newest_sensor_event =
 370                        sample->timestamp;
 371}
 372
 373/**
 374 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
 375 *
 376 * @sensorhub: Sensor Hub object.
 377 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
 378 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
 379 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
 380 * @in: incoming FIFO event from EC (includes a point, EC timebase).
 381 * @out: outgoing event to user space (includes a').
 382 *
 383 * Process one EC event, add it in the ring if necessary.
 384 *
 385 * Return: true if out event has been populated.
 386 */
 387static bool
 388cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
 389                                const struct ec_response_motion_sense_fifo_info
 390                                *fifo_info,
 391                                const ktime_t fifo_timestamp,
 392                                ktime_t *current_timestamp,
 393                                struct ec_response_motion_sensor_data *in,
 394                                struct cros_ec_sensors_ring_sample *out)
 395{
 396        const s64 now = cros_ec_get_time_ns();
 397        int axis, async_flags;
 398
 399        /* Do not populate the filter based on asynchronous events. */
 400        async_flags = in->flags &
 401                (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
 402
 403        if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
 404                s64 a = in->timestamp;
 405                s64 b = fifo_info->timestamp;
 406                s64 c = fifo_timestamp;
 407
 408                cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
 409                                          &sensorhub->overflow_a);
 410                cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
 411                                          &sensorhub->overflow_b);
 412
 413                if (sensorhub->tight_timestamps) {
 414                        cros_ec_sensor_ring_ts_filter_update(
 415                                        &sensorhub->filter, b, c);
 416                        *current_timestamp = cros_ec_sensor_ring_ts_filter(
 417                                        &sensorhub->filter, a);
 418                } else {
 419                        s64 new_timestamp;
 420
 421                        /*
 422                         * Disable filtering since we might add more jitter
 423                         * if b is in a random point in time.
 424                         */
 425                        new_timestamp = c - b * 1000 + a * 1000;
 426                        /*
 427                         * The timestamp can be stale if we had to use the fifo
 428                         * info timestamp.
 429                         */
 430                        if (new_timestamp - *current_timestamp > 0)
 431                                *current_timestamp = new_timestamp;
 432                }
 433                trace_cros_ec_sensorhub_timestamp(in->timestamp,
 434                                                  fifo_info->timestamp,
 435                                                  fifo_timestamp,
 436                                                  *current_timestamp,
 437                                                  now);
 438        }
 439
 440        if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
 441                if (sensorhub->tight_timestamps) {
 442                        sensorhub->batch_state[in->sensor_num].last_len = 0;
 443                        sensorhub->batch_state[in->sensor_num].penul_len = 0;
 444                }
 445                /*
 446                 * ODR change is only useful for the sensor_ring, it does not
 447                 * convey information to clients.
 448                 */
 449                return false;
 450        }
 451
 452        if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
 453                out->sensor_id = in->sensor_num;
 454                out->timestamp = *current_timestamp;
 455                out->flag = in->flags;
 456                if (sensorhub->tight_timestamps)
 457                        sensorhub->batch_state[out->sensor_id].last_len = 0;
 458                /*
 459                 * No other payload information provided with
 460                 * flush ack.
 461                 */
 462                return true;
 463        }
 464
 465        if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
 466                /* If we just have a timestamp, skip this entry. */
 467                return false;
 468
 469        /* Regular sample */
 470        out->sensor_id = in->sensor_num;
 471        trace_cros_ec_sensorhub_data(in->sensor_num,
 472                                     fifo_info->timestamp,
 473                                     fifo_timestamp,
 474                                     *current_timestamp,
 475                                     now);
 476
 477        if (*current_timestamp - now > 0) {
 478                /*
 479                 * This fix is needed to overcome the timestamp filter putting
 480                 * events in the future.
 481                 */
 482                sensorhub->future_timestamp_total_ns +=
 483                        *current_timestamp - now;
 484                if (++sensorhub->future_timestamp_count ==
 485                                FUTURE_TS_ANALYTICS_COUNT_MAX) {
 486                        s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
 487                                        sensorhub->future_timestamp_count);
 488                        dev_warn_ratelimited(sensorhub->dev,
 489                                             "100 timestamps in the future, %lldns shaved on average\n",
 490                                             avg);
 491                        sensorhub->future_timestamp_count = 0;
 492                        sensorhub->future_timestamp_total_ns = 0;
 493                }
 494                out->timestamp = now;
 495        } else {
 496                out->timestamp = *current_timestamp;
 497        }
 498
 499        out->flag = in->flags;
 500        for (axis = 0; axis < 3; axis++)
 501                out->vector[axis] = in->data[axis];
 502
 503        if (sensorhub->tight_timestamps)
 504                cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
 505        return true;
 506}
 507
 508/*
 509 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
 510 *                                 ringbuffer.
 511 *
 512 * This is the new spreading code, assumes every sample's timestamp
 513 * preceeds the sample. Run if tight_timestamps == true.
 514 *
 515 * Sometimes the EC receives only one interrupt (hence timestamp) for
 516 * a batch of samples. Only the first sample will have the correct
 517 * timestamp. So we must interpolate the other samples.
 518 * We use the previous batch timestamp and our current batch timestamp
 519 * as a way to calculate period, then spread the samples evenly.
 520 *
 521 * s0 int, 0ms
 522 * s1 int, 10ms
 523 * s2 int, 20ms
 524 * 30ms point goes by, no interrupt, previous one is still asserted
 525 * downloading s2 and s3
 526 * s3 sample, 20ms (incorrect timestamp)
 527 * s4 int, 40ms
 528 *
 529 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
 530 * has 2 samples in them, we adjust the timestamp of s3.
 531 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
 532 * been part of a bigger batch things would have gotten a little
 533 * more complicated.
 534 *
 535 * Note: we also assume another sensor sample doesn't break up a batch
 536 * in 2 or more partitions. Example, there can't ever be a sync sensor
 537 * in between S2 and S3. This simplifies the following code.
 538 */
 539static void
 540cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
 541                               unsigned long sensor_mask,
 542                               struct cros_ec_sensors_ring_sample *last_out)
 543{
 544        struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
 545        int id;
 546
 547        for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
 548                for (batch_start = sensorhub->ring; batch_start < last_out;
 549                     batch_start = next_batch_start) {
 550                        /*
 551                         * For each batch (where all samples have the same
 552                         * timestamp).
 553                         */
 554                        int batch_len, sample_idx;
 555                        struct cros_ec_sensors_ring_sample *batch_end =
 556                                batch_start;
 557                        struct cros_ec_sensors_ring_sample *s;
 558                        s64 batch_timestamp = batch_start->timestamp;
 559                        s64 sample_period;
 560
 561                        /*
 562                         * Skip over batches that start with the sensor types
 563                         * we're not looking at right now.
 564                         */
 565                        if (batch_start->sensor_id != id) {
 566                                next_batch_start = batch_start + 1;
 567                                continue;
 568                        }
 569
 570                        /*
 571                         * Do not start a batch
 572                         * from a flush, as it happens asynchronously to the
 573                         * regular flow of events.
 574                         */
 575                        if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
 576                                cros_sensorhub_send_sample(sensorhub,
 577                                                           batch_start);
 578                                next_batch_start = batch_start + 1;
 579                                continue;
 580                        }
 581
 582                        if (batch_start->timestamp <=
 583                            sensorhub->batch_state[id].last_ts) {
 584                                batch_timestamp =
 585                                        sensorhub->batch_state[id].last_ts;
 586                                batch_len = sensorhub->batch_state[id].last_len;
 587
 588                                sample_idx = batch_len;
 589
 590                                sensorhub->batch_state[id].last_ts =
 591                                  sensorhub->batch_state[id].penul_ts;
 592                                sensorhub->batch_state[id].last_len =
 593                                  sensorhub->batch_state[id].penul_len;
 594                        } else {
 595                                /*
 596                                 * Push first sample in the batch to the,
 597                                 * kifo, it's guaranteed to be correct, the
 598                                 * rest will follow later on.
 599                                 */
 600                                sample_idx = 1;
 601                                batch_len = 1;
 602                                cros_sensorhub_send_sample(sensorhub,
 603                                                           batch_start);
 604                                batch_start++;
 605                        }
 606
 607                        /* Find all samples have the same timestamp. */
 608                        for (s = batch_start; s < last_out; s++) {
 609                                if (s->sensor_id != id)
 610                                        /*
 611                                         * Skip over other sensor types that
 612                                         * are interleaved, don't count them.
 613                                         */
 614                                        continue;
 615                                if (s->timestamp != batch_timestamp)
 616                                        /* we discovered the next batch */
 617                                        break;
 618                                if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
 619                                        /* break on flush packets */
 620                                        break;
 621                                batch_end = s;
 622                                batch_len++;
 623                        }
 624
 625                        if (batch_len == 1)
 626                                goto done_with_this_batch;
 627
 628                        /* Can we calculate period? */
 629                        if (sensorhub->batch_state[id].last_len == 0) {
 630                                dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
 631                                         id, batch_len - 1);
 632                                goto done_with_this_batch;
 633                                /*
 634                                 * Note: we're dropping the rest of the samples
 635                                 * in this batch since we have no idea where
 636                                 * they're supposed to go without a period
 637                                 * calculation.
 638                                 */
 639                        }
 640
 641                        sample_period = div_s64(batch_timestamp -
 642                                sensorhub->batch_state[id].last_ts,
 643                                sensorhub->batch_state[id].last_len);
 644                        dev_dbg(sensorhub->dev,
 645                                "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
 646                                batch_len, id,
 647                                sensorhub->batch_state[id].last_ts,
 648                                sensorhub->batch_state[id].last_len,
 649                                batch_timestamp,
 650                                sample_period);
 651
 652                        /*
 653                         * Adjust timestamps of the samples then push them to
 654                         * kfifo.
 655                         */
 656                        for (s = batch_start; s <= batch_end; s++) {
 657                                if (s->sensor_id != id)
 658                                        /*
 659                                         * Skip over other sensor types that
 660                                         * are interleaved, don't change them.
 661                                         */
 662                                        continue;
 663
 664                                s->timestamp = batch_timestamp +
 665                                        sample_period * sample_idx;
 666                                sample_idx++;
 667
 668                                cros_sensorhub_send_sample(sensorhub, s);
 669                        }
 670
 671done_with_this_batch:
 672                        sensorhub->batch_state[id].penul_ts =
 673                                sensorhub->batch_state[id].last_ts;
 674                        sensorhub->batch_state[id].penul_len =
 675                                sensorhub->batch_state[id].last_len;
 676
 677                        sensorhub->batch_state[id].last_ts =
 678                                batch_timestamp;
 679                        sensorhub->batch_state[id].last_len = batch_len;
 680
 681                        next_batch_start = batch_end + 1;
 682                }
 683        }
 684}
 685
 686/*
 687 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
 688 * add to ringbuffer (legacy).
 689 *
 690 * Note: This assumes we're running old firmware, where timestamp
 691 * is inserted after its sample(s)e. There can be several samples between
 692 * timestamps, so several samples can have the same timestamp.
 693 *
 694 *                        timestamp | count
 695 *                        -----------------
 696 *          1st sample --> TS1      | 1
 697 *                         TS2      | 2
 698 *                         TS2      | 3
 699 *                         TS3      | 4
 700 *           last_out -->
 701 *
 702 *
 703 * We spread time for the samples using perod p = (current - TS1)/4.
 704 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
 705 *
 706 */
 707static void
 708cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
 709                                      unsigned long sensor_mask,
 710                                      s64 current_timestamp,
 711                                      struct cros_ec_sensors_ring_sample
 712                                      *last_out)
 713{
 714        struct cros_ec_sensors_ring_sample *out;
 715        int i;
 716
 717        for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
 718                s64 timestamp;
 719                int count = 0;
 720                s64 time_period;
 721
 722                for (out = sensorhub->ring; out < last_out; out++) {
 723                        if (out->sensor_id != i)
 724                                continue;
 725
 726                        /* Timestamp to start with */
 727                        timestamp = out->timestamp;
 728                        out++;
 729                        count = 1;
 730                        break;
 731                }
 732                for (; out < last_out; out++) {
 733                        /* Find last sample. */
 734                        if (out->sensor_id != i)
 735                                continue;
 736                        count++;
 737                }
 738                if (count == 0)
 739                        continue;
 740
 741                /* Spread uniformly between the first and last samples. */
 742                time_period = div_s64(current_timestamp - timestamp, count);
 743
 744                for (out = sensorhub->ring; out < last_out; out++) {
 745                        if (out->sensor_id != i)
 746                                continue;
 747                        timestamp += time_period;
 748                        out->timestamp = timestamp;
 749                }
 750        }
 751
 752        /* Push the event into the kfifo */
 753        for (out = sensorhub->ring; out < last_out; out++)
 754                cros_sensorhub_send_sample(sensorhub, out);
 755}
 756
 757/**
 758 * cros_ec_sensorhub_ring_handler() - The trigger handler function
 759 *
 760 * @sensorhub: Sensor Hub object.
 761 *
 762 * Called by the notifier, process the EC sensor FIFO queue.
 763 */
 764static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
 765{
 766        struct ec_response_motion_sense_fifo_info *fifo_info =
 767                sensorhub->fifo_info;
 768        struct cros_ec_dev *ec = sensorhub->ec;
 769        ktime_t fifo_timestamp, current_timestamp;
 770        int i, j, number_data, ret;
 771        unsigned long sensor_mask = 0;
 772        struct ec_response_motion_sensor_data *in;
 773        struct cros_ec_sensors_ring_sample *out, *last_out;
 774
 775        mutex_lock(&sensorhub->cmd_lock);
 776
 777        /* Get FIFO information if there are lost vectors. */
 778        if (fifo_info->total_lost) {
 779                int fifo_info_length =
 780                        sizeof(struct ec_response_motion_sense_fifo_info) +
 781                        sizeof(u16) * sensorhub->sensor_num;
 782
 783                /* Need to retrieve the number of lost vectors per sensor */
 784                sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
 785                sensorhub->msg->outsize = 1;
 786                sensorhub->msg->insize = fifo_info_length;
 787
 788                if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
 789                        goto error;
 790
 791                memcpy(fifo_info, &sensorhub->resp->fifo_info,
 792                       fifo_info_length);
 793
 794                /*
 795                 * Update collection time, will not be as precise as the
 796                 * non-error case.
 797                 */
 798                fifo_timestamp = cros_ec_get_time_ns();
 799        } else {
 800                fifo_timestamp = sensorhub->fifo_timestamp[
 801                        CROS_EC_SENSOR_NEW_TS];
 802        }
 803
 804        if (fifo_info->count > sensorhub->fifo_size ||
 805            fifo_info->size != sensorhub->fifo_size) {
 806                dev_warn(sensorhub->dev,
 807                         "Mismatch EC data: count %d, size %d - expected %d\n",
 808                         fifo_info->count, fifo_info->size,
 809                         sensorhub->fifo_size);
 810                goto error;
 811        }
 812
 813        /* Copy elements in the main fifo */
 814        current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
 815        out = sensorhub->ring;
 816        for (i = 0; i < fifo_info->count; i += number_data) {
 817                sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
 818                sensorhub->params->fifo_read.max_data_vector =
 819                        fifo_info->count - i;
 820                sensorhub->msg->outsize =
 821                        sizeof(struct ec_params_motion_sense);
 822                sensorhub->msg->insize =
 823                        sizeof(sensorhub->resp->fifo_read) +
 824                        sensorhub->params->fifo_read.max_data_vector *
 825                          sizeof(struct ec_response_motion_sensor_data);
 826                ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
 827                if (ret < 0) {
 828                        dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
 829                        break;
 830                }
 831                number_data = sensorhub->resp->fifo_read.number_data;
 832                if (number_data == 0) {
 833                        dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
 834                        break;
 835                }
 836                if (number_data > fifo_info->count - i) {
 837                        dev_warn(sensorhub->dev,
 838                                 "Invalid EC data: too many entry received: %d, expected %d\n",
 839                                 number_data, fifo_info->count - i);
 840                        break;
 841                }
 842                if (out + number_data >
 843                    sensorhub->ring + fifo_info->count) {
 844                        dev_warn(sensorhub->dev,
 845                                 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
 846                                 i, out - sensorhub->ring, i + number_data,
 847                                 fifo_info->count);
 848                        break;
 849                }
 850
 851                for (in = sensorhub->resp->fifo_read.data, j = 0;
 852                     j < number_data; j++, in++) {
 853                        if (cros_ec_sensor_ring_process_event(
 854                                                sensorhub, fifo_info,
 855                                                fifo_timestamp,
 856                                                &current_timestamp,
 857                                                in, out)) {
 858                                sensor_mask |= BIT(in->sensor_num);
 859                                out++;
 860                        }
 861                }
 862        }
 863        mutex_unlock(&sensorhub->cmd_lock);
 864        last_out = out;
 865
 866        if (out == sensorhub->ring)
 867                /* Unexpected empty FIFO. */
 868                goto ring_handler_end;
 869
 870        /*
 871         * Check if current_timestamp is ahead of the last sample. Normally,
 872         * the EC appends a timestamp after the last sample, but if the AP
 873         * is slow to respond to the IRQ, the EC may have added new samples.
 874         * Use the FIFO info timestamp as last timestamp then.
 875         */
 876        if (!sensorhub->tight_timestamps &&
 877            (last_out - 1)->timestamp == current_timestamp)
 878                current_timestamp = fifo_timestamp;
 879
 880        /* Warn on lost samples. */
 881        if (fifo_info->total_lost)
 882                for (i = 0; i < sensorhub->sensor_num; i++) {
 883                        if (fifo_info->lost[i]) {
 884                                dev_warn_ratelimited(sensorhub->dev,
 885                                                     "Sensor %d: lost: %d out of %d\n",
 886                                                     i, fifo_info->lost[i],
 887                                                     fifo_info->total_lost);
 888                                if (sensorhub->tight_timestamps)
 889                                        sensorhub->batch_state[i].last_len = 0;
 890                        }
 891                }
 892
 893        /*
 894         * Spread samples in case of batching, then add them to the
 895         * ringbuffer.
 896         */
 897        if (sensorhub->tight_timestamps)
 898                cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
 899                                               last_out);
 900        else
 901                cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
 902                                                      current_timestamp,
 903                                                      last_out);
 904
 905ring_handler_end:
 906        sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
 907        return;
 908
 909error:
 910        mutex_unlock(&sensorhub->cmd_lock);
 911}
 912
 913static int cros_ec_sensorhub_event(struct notifier_block *nb,
 914                                   unsigned long queued_during_suspend,
 915                                   void *_notify)
 916{
 917        struct cros_ec_sensorhub *sensorhub;
 918        struct cros_ec_device *ec_dev;
 919
 920        sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
 921        ec_dev = sensorhub->ec->ec_dev;
 922
 923        if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
 924                return NOTIFY_DONE;
 925
 926        if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
 927                dev_warn(ec_dev->dev, "Invalid fifo info size\n");
 928                return NOTIFY_DONE;
 929        }
 930
 931        if (queued_during_suspend)
 932                return NOTIFY_OK;
 933
 934        memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
 935               sizeof(*sensorhub->fifo_info));
 936        sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
 937                ec_dev->last_event_time;
 938        cros_ec_sensorhub_ring_handler(sensorhub);
 939
 940        return NOTIFY_OK;
 941}
 942
 943/**
 944 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
 945 *                                     supports it.
 946 *
 947 * @sensorhub : Sensor Hub object.
 948 *
 949 * Return: 0 on success.
 950 */
 951int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
 952{
 953        int fifo_info_length =
 954                sizeof(struct ec_response_motion_sense_fifo_info) +
 955                sizeof(u16) * sensorhub->sensor_num;
 956
 957        /* Allocate the array for lost events. */
 958        sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
 959                                            GFP_KERNEL);
 960        if (!sensorhub->fifo_info)
 961                return -ENOMEM;
 962
 963        /*
 964         * Allocate the callback area based on the number of sensors.
 965         * Add one for the sensor ring.
 966         */
 967        sensorhub->push_data = devm_kcalloc(sensorhub->dev,
 968                        sensorhub->sensor_num,
 969                        sizeof(*sensorhub->push_data),
 970                        GFP_KERNEL);
 971        if (!sensorhub->push_data)
 972                return -ENOMEM;
 973
 974        sensorhub->tight_timestamps = cros_ec_check_features(
 975                        sensorhub->ec,
 976                        EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
 977
 978        if (sensorhub->tight_timestamps) {
 979                sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
 980                                sensorhub->sensor_num,
 981                                sizeof(*sensorhub->batch_state),
 982                                GFP_KERNEL);
 983                if (!sensorhub->batch_state)
 984                        return -ENOMEM;
 985        }
 986
 987        return 0;
 988}
 989
 990/**
 991 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
 992 *                                supports it.
 993 *
 994 * @sensorhub : Sensor Hub object.
 995 *
 996 * Return: 0 on success.
 997 */
 998int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
 999{
1000        struct cros_ec_dev *ec = sensorhub->ec;
1001        int ret;
1002        int fifo_info_length =
1003                sizeof(struct ec_response_motion_sense_fifo_info) +
1004                sizeof(u16) * sensorhub->sensor_num;
1005
1006        /* Retrieve FIFO information */
1007        sensorhub->msg->version = 2;
1008        sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1009        sensorhub->msg->outsize = 1;
1010        sensorhub->msg->insize = fifo_info_length;
1011
1012        ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1013        if (ret < 0)
1014                return ret;
1015
1016        /*
1017         * Allocate the full fifo. We need to copy the whole FIFO to set
1018         * timestamps properly.
1019         */
1020        sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1021        sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1022                                       sizeof(*sensorhub->ring), GFP_KERNEL);
1023        if (!sensorhub->ring)
1024                return -ENOMEM;
1025
1026        sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1027                cros_ec_get_time_ns();
1028
1029        /* Register the notifier that will act as a top half interrupt. */
1030        sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1031        ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1032                                               &sensorhub->notifier);
1033        if (ret < 0)
1034                return ret;
1035
1036        /* Start collection samples. */
1037        return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1038}
1039
1040void cros_ec_sensorhub_ring_remove(void *arg)
1041{
1042        struct cros_ec_sensorhub *sensorhub = arg;
1043        struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1044
1045        /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1046        cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1047        blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1048                                           &sensorhub->notifier);
1049}
1050