linux/drivers/powercap/dtpm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2020 Linaro Limited
   4 *
   5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
   6 *
   7 * The powercap based Dynamic Thermal Power Management framework
   8 * provides to the userspace a consistent API to set the power limit
   9 * on some devices.
  10 *
  11 * DTPM defines the functions to create a tree of constraints. Each
  12 * parent node is a virtual description of the aggregation of the
  13 * children. It propagates the constraints set at its level to its
  14 * children and collect the children power information. The leaves of
  15 * the tree are the real devices which have the ability to get their
  16 * current power consumption and set their power limit.
  17 */
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/dtpm.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/powercap.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
  26
  27#define DTPM_POWER_LIMIT_FLAG 0
  28
  29static const char *constraint_name[] = {
  30        "Instantaneous",
  31};
  32
  33static DEFINE_MUTEX(dtpm_lock);
  34static struct powercap_control_type *pct;
  35static struct dtpm *root;
  36
  37static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
  38{
  39        return -ENOSYS;
  40}
  41
  42static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
  43{
  44        return -ENOSYS;
  45}
  46
  47static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
  48{
  49        struct dtpm *dtpm = to_dtpm(pcz);
  50
  51        mutex_lock(&dtpm_lock);
  52        *max_power_uw = dtpm->power_max - dtpm->power_min;
  53        mutex_unlock(&dtpm_lock);
  54
  55        return 0;
  56}
  57
  58static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
  59{
  60        struct dtpm *child;
  61        u64 power;
  62        int ret = 0;
  63
  64        if (dtpm->ops) {
  65                *power_uw = dtpm->ops->get_power_uw(dtpm);
  66                return 0;
  67        }
  68
  69        *power_uw = 0;
  70
  71        list_for_each_entry(child, &dtpm->children, sibling) {
  72                ret = __get_power_uw(child, &power);
  73                if (ret)
  74                        break;
  75                *power_uw += power;
  76        }
  77
  78        return ret;
  79}
  80
  81static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
  82{
  83        struct dtpm *dtpm = to_dtpm(pcz);
  84        int ret;
  85
  86        mutex_lock(&dtpm_lock);
  87        ret = __get_power_uw(dtpm, power_uw);
  88        mutex_unlock(&dtpm_lock);
  89
  90        return ret;
  91}
  92
  93static void __dtpm_rebalance_weight(struct dtpm *dtpm)
  94{
  95        struct dtpm *child;
  96
  97        list_for_each_entry(child, &dtpm->children, sibling) {
  98
  99                pr_debug("Setting weight '%d' for '%s'\n",
 100                         child->weight, child->zone.name);
 101
 102                child->weight = DIV64_U64_ROUND_CLOSEST(
 103                        child->power_max * 1024, dtpm->power_max);
 104
 105                __dtpm_rebalance_weight(child);
 106        }
 107}
 108
 109static void __dtpm_sub_power(struct dtpm *dtpm)
 110{
 111        struct dtpm *parent = dtpm->parent;
 112
 113        while (parent) {
 114                parent->power_min -= dtpm->power_min;
 115                parent->power_max -= dtpm->power_max;
 116                parent->power_limit -= dtpm->power_limit;
 117                parent = parent->parent;
 118        }
 119
 120        __dtpm_rebalance_weight(root);
 121}
 122
 123static void __dtpm_add_power(struct dtpm *dtpm)
 124{
 125        struct dtpm *parent = dtpm->parent;
 126
 127        while (parent) {
 128                parent->power_min += dtpm->power_min;
 129                parent->power_max += dtpm->power_max;
 130                parent->power_limit += dtpm->power_limit;
 131                parent = parent->parent;
 132        }
 133
 134        __dtpm_rebalance_weight(root);
 135}
 136
 137/**
 138 * dtpm_update_power - Update the power on the dtpm
 139 * @dtpm: a pointer to a dtpm structure to update
 140 * @power_min: a u64 representing the new power_min value
 141 * @power_max: a u64 representing the new power_max value
 142 *
 143 * Function to update the power values of the dtpm node specified in
 144 * parameter. These new values will be propagated to the tree.
 145 *
 146 * Return: zero on success, -EINVAL if the values are inconsistent
 147 */
 148int dtpm_update_power(struct dtpm *dtpm, u64 power_min, u64 power_max)
 149{
 150        int ret = 0;
 151
 152        mutex_lock(&dtpm_lock);
 153
 154        if (power_min == dtpm->power_min && power_max == dtpm->power_max)
 155                goto unlock;
 156
 157        if (power_max < power_min) {
 158                ret = -EINVAL;
 159                goto unlock;
 160        }
 161
 162        __dtpm_sub_power(dtpm);
 163
 164        dtpm->power_min = power_min;
 165        dtpm->power_max = power_max;
 166        if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
 167                dtpm->power_limit = power_max;
 168
 169        __dtpm_add_power(dtpm);
 170
 171unlock:
 172        mutex_unlock(&dtpm_lock);
 173
 174        return ret;
 175}
 176
 177/**
 178 * dtpm_release_zone - Cleanup when the node is released
 179 * @pcz: a pointer to a powercap_zone structure
 180 *
 181 * Do some housecleaning and update the weight on the tree. The
 182 * release will be denied if the node has children. This function must
 183 * be called by the specific release callback of the different
 184 * backends.
 185 *
 186 * Return: 0 on success, -EBUSY if there are children
 187 */
 188int dtpm_release_zone(struct powercap_zone *pcz)
 189{
 190        struct dtpm *dtpm = to_dtpm(pcz);
 191        struct dtpm *parent = dtpm->parent;
 192
 193        mutex_lock(&dtpm_lock);
 194
 195        if (!list_empty(&dtpm->children)) {
 196                mutex_unlock(&dtpm_lock);
 197                return -EBUSY;
 198        }
 199
 200        if (parent)
 201                list_del(&dtpm->sibling);
 202
 203        __dtpm_sub_power(dtpm);
 204
 205        mutex_unlock(&dtpm_lock);
 206
 207        if (dtpm->ops)
 208                dtpm->ops->release(dtpm);
 209
 210        if (root == dtpm)
 211                root = NULL;
 212
 213        kfree(dtpm);
 214
 215        return 0;
 216}
 217
 218static int __get_power_limit_uw(struct dtpm *dtpm, int cid, u64 *power_limit)
 219{
 220        *power_limit = dtpm->power_limit;
 221        return 0;
 222}
 223
 224static int get_power_limit_uw(struct powercap_zone *pcz,
 225                              int cid, u64 *power_limit)
 226{
 227        struct dtpm *dtpm = to_dtpm(pcz);
 228        int ret;
 229
 230        mutex_lock(&dtpm_lock);
 231        ret = __get_power_limit_uw(dtpm, cid, power_limit);
 232        mutex_unlock(&dtpm_lock);
 233
 234        return ret;
 235}
 236
 237/*
 238 * Set the power limit on the nodes, the power limit is distributed
 239 * given the weight of the children.
 240 *
 241 * The dtpm node lock must be held when calling this function.
 242 */
 243static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
 244{
 245        struct dtpm *child;
 246        int ret = 0;
 247        u64 power;
 248
 249        /*
 250         * A max power limitation means we remove the power limit,
 251         * otherwise we set a constraint and flag the dtpm node.
 252         */
 253        if (power_limit == dtpm->power_max) {
 254                clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
 255        } else {
 256                set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
 257        }
 258
 259        pr_debug("Setting power limit for '%s': %llu uW\n",
 260                 dtpm->zone.name, power_limit);
 261
 262        /*
 263         * Only leaves of the dtpm tree has ops to get/set the power
 264         */
 265        if (dtpm->ops) {
 266                dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
 267        } else {
 268                dtpm->power_limit = 0;
 269
 270                list_for_each_entry(child, &dtpm->children, sibling) {
 271
 272                        /*
 273                         * Integer division rounding will inevitably
 274                         * lead to a different min or max value when
 275                         * set several times. In order to restore the
 276                         * initial value, we force the child's min or
 277                         * max power every time if the constraint is
 278                         * at the boundaries.
 279                         */
 280                        if (power_limit == dtpm->power_max) {
 281                                power = child->power_max;
 282                        } else if (power_limit == dtpm->power_min) {
 283                                power = child->power_min;
 284                        } else {
 285                                power = DIV_ROUND_CLOSEST_ULL(
 286                                        power_limit * child->weight, 1024);
 287                        }
 288
 289                        pr_debug("Setting power limit for '%s': %llu uW\n",
 290                                 child->zone.name, power);
 291
 292                        ret = __set_power_limit_uw(child, cid, power);
 293                        if (!ret)
 294                                ret = __get_power_limit_uw(child, cid, &power);
 295
 296                        if (ret)
 297                                break;
 298
 299                        dtpm->power_limit += power;
 300                }
 301        }
 302
 303        return ret;
 304}
 305
 306static int set_power_limit_uw(struct powercap_zone *pcz,
 307                              int cid, u64 power_limit)
 308{
 309        struct dtpm *dtpm = to_dtpm(pcz);
 310        int ret;
 311
 312        mutex_lock(&dtpm_lock);
 313
 314        /*
 315         * Don't allow values outside of the power range previously
 316         * set when initializing the power numbers.
 317         */
 318        power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
 319
 320        ret = __set_power_limit_uw(dtpm, cid, power_limit);
 321
 322        pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
 323                 dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
 324
 325        mutex_unlock(&dtpm_lock);
 326
 327        return ret;
 328}
 329
 330static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
 331{
 332        return constraint_name[cid];
 333}
 334
 335static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
 336{
 337        struct dtpm *dtpm = to_dtpm(pcz);
 338
 339        mutex_lock(&dtpm_lock);
 340        *max_power = dtpm->power_max;
 341        mutex_unlock(&dtpm_lock);
 342
 343        return 0;
 344}
 345
 346static struct powercap_zone_constraint_ops constraint_ops = {
 347        .set_power_limit_uw = set_power_limit_uw,
 348        .get_power_limit_uw = get_power_limit_uw,
 349        .set_time_window_us = set_time_window_us,
 350        .get_time_window_us = get_time_window_us,
 351        .get_max_power_uw = get_max_power_uw,
 352        .get_name = get_constraint_name,
 353};
 354
 355static struct powercap_zone_ops zone_ops = {
 356        .get_max_power_range_uw = get_max_power_range_uw,
 357        .get_power_uw = get_power_uw,
 358        .release = dtpm_release_zone,
 359};
 360
 361/**
 362 * dtpm_alloc - Allocate and initialize a dtpm struct
 363 * @name: a string specifying the name of the node
 364 *
 365 * Return: a struct dtpm pointer, NULL in case of error
 366 */
 367struct dtpm *dtpm_alloc(struct dtpm_ops *ops)
 368{
 369        struct dtpm *dtpm;
 370
 371        dtpm = kzalloc(sizeof(*dtpm), GFP_KERNEL);
 372        if (dtpm) {
 373                INIT_LIST_HEAD(&dtpm->children);
 374                INIT_LIST_HEAD(&dtpm->sibling);
 375                dtpm->weight = 1024;
 376                dtpm->ops = ops;
 377        }
 378
 379        return dtpm;
 380}
 381
 382/**
 383 * dtpm_unregister - Unregister a dtpm node from the hierarchy tree
 384 * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
 385 *
 386 * Call the underlying powercap unregister function. That will call
 387 * the release callback of the powercap zone.
 388 */
 389void dtpm_unregister(struct dtpm *dtpm)
 390{
 391        powercap_unregister_zone(pct, &dtpm->zone);
 392
 393        pr_info("Unregistered dtpm node '%s'\n", dtpm->zone.name);
 394}
 395
 396/**
 397 * dtpm_register - Register a dtpm node in the hierarchy tree
 398 * @name: a string specifying the name of the node
 399 * @dtpm: a pointer to a dtpm structure corresponding to the new node
 400 * @parent: a pointer to a dtpm structure corresponding to the parent node
 401 *
 402 * Create a dtpm node in the tree. If no parent is specified, the node
 403 * is the root node of the hierarchy. If the root node already exists,
 404 * then the registration will fail. The powercap controller must be
 405 * initialized before calling this function.
 406 *
 407 * The dtpm structure must be initialized with the power numbers
 408 * before calling this function.
 409 *
 410 * Return: zero on success, a negative value in case of error:
 411 *  -EAGAIN: the function is called before the framework is initialized.
 412 *  -EBUSY: the root node is already inserted
 413 *  -EINVAL: * there is no root node yet and @parent is specified
 414 *           * no all ops are defined
 415 *           * parent have ops which are reserved for leaves
 416 *   Other negative values are reported back from the powercap framework
 417 */
 418int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
 419{
 420        struct powercap_zone *pcz;
 421
 422        if (!pct)
 423                return -EAGAIN;
 424
 425        if (root && !parent)
 426                return -EBUSY;
 427
 428        if (!root && parent)
 429                return -EINVAL;
 430
 431        if (parent && parent->ops)
 432                return -EINVAL;
 433
 434        if (!dtpm)
 435                return -EINVAL;
 436
 437        if (dtpm->ops && !(dtpm->ops->set_power_uw &&
 438                           dtpm->ops->get_power_uw &&
 439                           dtpm->ops->release))
 440                return -EINVAL;
 441
 442        pcz = powercap_register_zone(&dtpm->zone, pct, name,
 443                                     parent ? &parent->zone : NULL,
 444                                     &zone_ops, MAX_DTPM_CONSTRAINTS,
 445                                     &constraint_ops);
 446        if (IS_ERR(pcz))
 447                return PTR_ERR(pcz);
 448
 449        mutex_lock(&dtpm_lock);
 450
 451        if (parent) {
 452                list_add_tail(&dtpm->sibling, &parent->children);
 453                dtpm->parent = parent;
 454        } else {
 455                root = dtpm;
 456        }
 457
 458        __dtpm_add_power(dtpm);
 459
 460        pr_info("Registered dtpm node '%s' / %llu-%llu uW, \n",
 461                dtpm->zone.name, dtpm->power_min, dtpm->power_max);
 462
 463        mutex_unlock(&dtpm_lock);
 464
 465        return 0;
 466}
 467
 468static int __init dtpm_init(void)
 469{
 470        struct dtpm_descr **dtpm_descr;
 471
 472        pct = powercap_register_control_type(NULL, "dtpm", NULL);
 473        if (IS_ERR(pct)) {
 474                pr_err("Failed to register control type\n");
 475                return PTR_ERR(pct);
 476        }
 477
 478        for_each_dtpm_table(dtpm_descr)
 479                (*dtpm_descr)->init(*dtpm_descr);
 480
 481        return 0;
 482}
 483late_initcall(dtpm_init);
 484