linux/drivers/powercap/intel_rapl_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/list.h>
  11#include <linux/types.h>
  12#include <linux/device.h>
  13#include <linux/slab.h>
  14#include <linux/log2.h>
  15#include <linux/bitmap.h>
  16#include <linux/delay.h>
  17#include <linux/sysfs.h>
  18#include <linux/cpu.h>
  19#include <linux/powercap.h>
  20#include <linux/suspend.h>
  21#include <linux/intel_rapl.h>
  22#include <linux/processor.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/iosf_mbi.h>
  26#include <asm/cpu_device_id.h>
  27#include <asm/intel-family.h>
  28
  29/* bitmasks for RAPL MSRs, used by primitive access functions */
  30#define ENERGY_STATUS_MASK      0xffffffff
  31
  32#define POWER_LIMIT1_MASK       0x7FFF
  33#define POWER_LIMIT1_ENABLE     BIT(15)
  34#define POWER_LIMIT1_CLAMP      BIT(16)
  35
  36#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  37#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  38#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  39#define POWER_HIGH_LOCK         BIT_ULL(63)
  40#define POWER_LOW_LOCK          BIT(31)
  41
  42#define POWER_LIMIT4_MASK               0x1FFF
  43
  44#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  45#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  46
  47#define POWER_UNIT_OFFSET       0
  48#define POWER_UNIT_MASK         0x0F
  49
  50#define ENERGY_UNIT_OFFSET      0x08
  51#define ENERGY_UNIT_MASK        0x1F00
  52
  53#define TIME_UNIT_OFFSET        0x10
  54#define TIME_UNIT_MASK          0xF0000
  55
  56#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  57#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  58#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  59#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  60
  61#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  62#define PP_POLICY_MASK         0x1F
  63
  64/* Non HW constants */
  65#define RAPL_PRIMITIVE_DERIVED       BIT(1)     /* not from raw data */
  66#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  67
  68#define TIME_WINDOW_MAX_MSEC 40000
  69#define TIME_WINDOW_MIN_MSEC 250
  70#define ENERGY_UNIT_SCALE    1000       /* scale from driver unit to powercap unit */
  71enum unit_type {
  72        ARBITRARY_UNIT,         /* no translation */
  73        POWER_UNIT,
  74        ENERGY_UNIT,
  75        TIME_UNIT,
  76};
  77
  78/* per domain data, some are optional */
  79#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
  80
  81#define DOMAIN_STATE_INACTIVE           BIT(0)
  82#define DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
  83#define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
  84
  85static const char pl1_name[] = "long_term";
  86static const char pl2_name[] = "short_term";
  87static const char pl4_name[] = "peak_power";
  88
  89#define power_zone_to_rapl_domain(_zone) \
  90        container_of(_zone, struct rapl_domain, power_zone)
  91
  92struct rapl_defaults {
  93        u8 floor_freq_reg_addr;
  94        int (*check_unit)(struct rapl_package *rp, int cpu);
  95        void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
  96        u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
  97                                    bool to_raw);
  98        unsigned int dram_domain_energy_unit;
  99        unsigned int psys_domain_energy_unit;
 100};
 101static struct rapl_defaults *rapl_defaults;
 102
 103/* Sideband MBI registers */
 104#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 105#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 106
 107#define PACKAGE_PLN_INT_SAVED   BIT(0)
 108#define MAX_PRIM_NAME (32)
 109
 110/* per domain data. used to describe individual knobs such that access function
 111 * can be consolidated into one instead of many inline functions.
 112 */
 113struct rapl_primitive_info {
 114        const char *name;
 115        u64 mask;
 116        int shift;
 117        enum rapl_domain_reg_id id;
 118        enum unit_type unit;
 119        u32 flag;
 120};
 121
 122#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
 123                .name = #p,                     \
 124                .mask = m,                      \
 125                .shift = s,                     \
 126                .id = i,                        \
 127                .unit = u,                      \
 128                .flag = f                       \
 129        }
 130
 131static void rapl_init_domains(struct rapl_package *rp);
 132static int rapl_read_data_raw(struct rapl_domain *rd,
 133                              enum rapl_primitives prim,
 134                              bool xlate, u64 *data);
 135static int rapl_write_data_raw(struct rapl_domain *rd,
 136                               enum rapl_primitives prim,
 137                               unsigned long long value);
 138static u64 rapl_unit_xlate(struct rapl_domain *rd,
 139                           enum unit_type type, u64 value, int to_raw);
 140static void package_power_limit_irq_save(struct rapl_package *rp);
 141
 142static LIST_HEAD(rapl_packages);        /* guarded by CPU hotplug lock */
 143
 144static const char *const rapl_domain_names[] = {
 145        "package",
 146        "core",
 147        "uncore",
 148        "dram",
 149        "psys",
 150};
 151
 152static int get_energy_counter(struct powercap_zone *power_zone,
 153                              u64 *energy_raw)
 154{
 155        struct rapl_domain *rd;
 156        u64 energy_now;
 157
 158        /* prevent CPU hotplug, make sure the RAPL domain does not go
 159         * away while reading the counter.
 160         */
 161        cpus_read_lock();
 162        rd = power_zone_to_rapl_domain(power_zone);
 163
 164        if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 165                *energy_raw = energy_now;
 166                cpus_read_unlock();
 167
 168                return 0;
 169        }
 170        cpus_read_unlock();
 171
 172        return -EIO;
 173}
 174
 175static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 176{
 177        struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 178
 179        *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 180        return 0;
 181}
 182
 183static int release_zone(struct powercap_zone *power_zone)
 184{
 185        struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 186        struct rapl_package *rp = rd->rp;
 187
 188        /* package zone is the last zone of a package, we can free
 189         * memory here since all children has been unregistered.
 190         */
 191        if (rd->id == RAPL_DOMAIN_PACKAGE) {
 192                kfree(rd);
 193                rp->domains = NULL;
 194        }
 195
 196        return 0;
 197
 198}
 199
 200static int find_nr_power_limit(struct rapl_domain *rd)
 201{
 202        int i, nr_pl = 0;
 203
 204        for (i = 0; i < NR_POWER_LIMITS; i++) {
 205                if (rd->rpl[i].name)
 206                        nr_pl++;
 207        }
 208
 209        return nr_pl;
 210}
 211
 212static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 213{
 214        struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 215
 216        if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
 217                return -EACCES;
 218
 219        cpus_read_lock();
 220        rapl_write_data_raw(rd, PL1_ENABLE, mode);
 221        if (rapl_defaults->set_floor_freq)
 222                rapl_defaults->set_floor_freq(rd, mode);
 223        cpus_read_unlock();
 224
 225        return 0;
 226}
 227
 228static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 229{
 230        struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 231        u64 val;
 232
 233        if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 234                *mode = false;
 235                return 0;
 236        }
 237        cpus_read_lock();
 238        if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
 239                cpus_read_unlock();
 240                return -EIO;
 241        }
 242        *mode = val;
 243        cpus_read_unlock();
 244
 245        return 0;
 246}
 247
 248/* per RAPL domain ops, in the order of rapl_domain_type */
 249static const struct powercap_zone_ops zone_ops[] = {
 250        /* RAPL_DOMAIN_PACKAGE */
 251        {
 252         .get_energy_uj = get_energy_counter,
 253         .get_max_energy_range_uj = get_max_energy_counter,
 254         .release = release_zone,
 255         .set_enable = set_domain_enable,
 256         .get_enable = get_domain_enable,
 257         },
 258        /* RAPL_DOMAIN_PP0 */
 259        {
 260         .get_energy_uj = get_energy_counter,
 261         .get_max_energy_range_uj = get_max_energy_counter,
 262         .release = release_zone,
 263         .set_enable = set_domain_enable,
 264         .get_enable = get_domain_enable,
 265         },
 266        /* RAPL_DOMAIN_PP1 */
 267        {
 268         .get_energy_uj = get_energy_counter,
 269         .get_max_energy_range_uj = get_max_energy_counter,
 270         .release = release_zone,
 271         .set_enable = set_domain_enable,
 272         .get_enable = get_domain_enable,
 273         },
 274        /* RAPL_DOMAIN_DRAM */
 275        {
 276         .get_energy_uj = get_energy_counter,
 277         .get_max_energy_range_uj = get_max_energy_counter,
 278         .release = release_zone,
 279         .set_enable = set_domain_enable,
 280         .get_enable = get_domain_enable,
 281         },
 282        /* RAPL_DOMAIN_PLATFORM */
 283        {
 284         .get_energy_uj = get_energy_counter,
 285         .get_max_energy_range_uj = get_max_energy_counter,
 286         .release = release_zone,
 287         .set_enable = set_domain_enable,
 288         .get_enable = get_domain_enable,
 289         },
 290};
 291
 292/*
 293 * Constraint index used by powercap can be different than power limit (PL)
 294 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 295 * need to convert here by finding the valid PLs only (name populated).
 296 */
 297static int contraint_to_pl(struct rapl_domain *rd, int cid)
 298{
 299        int i, j;
 300
 301        for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
 302                if ((rd->rpl[i].name) && j++ == cid) {
 303                        pr_debug("%s: index %d\n", __func__, i);
 304                        return i;
 305                }
 306        }
 307        pr_err("Cannot find matching power limit for constraint %d\n", cid);
 308
 309        return -EINVAL;
 310}
 311
 312static int set_power_limit(struct powercap_zone *power_zone, int cid,
 313                           u64 power_limit)
 314{
 315        struct rapl_domain *rd;
 316        struct rapl_package *rp;
 317        int ret = 0;
 318        int id;
 319
 320        cpus_read_lock();
 321        rd = power_zone_to_rapl_domain(power_zone);
 322        id = contraint_to_pl(rd, cid);
 323        if (id < 0) {
 324                ret = id;
 325                goto set_exit;
 326        }
 327
 328        rp = rd->rp;
 329
 330        if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 331                dev_warn(&power_zone->dev,
 332                         "%s locked by BIOS, monitoring only\n", rd->name);
 333                ret = -EACCES;
 334                goto set_exit;
 335        }
 336
 337        switch (rd->rpl[id].prim_id) {
 338        case PL1_ENABLE:
 339                rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
 340                break;
 341        case PL2_ENABLE:
 342                rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
 343                break;
 344        case PL4_ENABLE:
 345                rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
 346                break;
 347        default:
 348                ret = -EINVAL;
 349        }
 350        if (!ret)
 351                package_power_limit_irq_save(rp);
 352set_exit:
 353        cpus_read_unlock();
 354        return ret;
 355}
 356
 357static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 358                                   u64 *data)
 359{
 360        struct rapl_domain *rd;
 361        u64 val;
 362        int prim;
 363        int ret = 0;
 364        int id;
 365
 366        cpus_read_lock();
 367        rd = power_zone_to_rapl_domain(power_zone);
 368        id = contraint_to_pl(rd, cid);
 369        if (id < 0) {
 370                ret = id;
 371                goto get_exit;
 372        }
 373
 374        switch (rd->rpl[id].prim_id) {
 375        case PL1_ENABLE:
 376                prim = POWER_LIMIT1;
 377                break;
 378        case PL2_ENABLE:
 379                prim = POWER_LIMIT2;
 380                break;
 381        case PL4_ENABLE:
 382                prim = POWER_LIMIT4;
 383                break;
 384        default:
 385                cpus_read_unlock();
 386                return -EINVAL;
 387        }
 388        if (rapl_read_data_raw(rd, prim, true, &val))
 389                ret = -EIO;
 390        else
 391                *data = val;
 392
 393get_exit:
 394        cpus_read_unlock();
 395
 396        return ret;
 397}
 398
 399static int set_time_window(struct powercap_zone *power_zone, int cid,
 400                           u64 window)
 401{
 402        struct rapl_domain *rd;
 403        int ret = 0;
 404        int id;
 405
 406        cpus_read_lock();
 407        rd = power_zone_to_rapl_domain(power_zone);
 408        id = contraint_to_pl(rd, cid);
 409        if (id < 0) {
 410                ret = id;
 411                goto set_time_exit;
 412        }
 413
 414        switch (rd->rpl[id].prim_id) {
 415        case PL1_ENABLE:
 416                rapl_write_data_raw(rd, TIME_WINDOW1, window);
 417                break;
 418        case PL2_ENABLE:
 419                rapl_write_data_raw(rd, TIME_WINDOW2, window);
 420                break;
 421        default:
 422                ret = -EINVAL;
 423        }
 424
 425set_time_exit:
 426        cpus_read_unlock();
 427        return ret;
 428}
 429
 430static int get_time_window(struct powercap_zone *power_zone, int cid,
 431                           u64 *data)
 432{
 433        struct rapl_domain *rd;
 434        u64 val;
 435        int ret = 0;
 436        int id;
 437
 438        cpus_read_lock();
 439        rd = power_zone_to_rapl_domain(power_zone);
 440        id = contraint_to_pl(rd, cid);
 441        if (id < 0) {
 442                ret = id;
 443                goto get_time_exit;
 444        }
 445
 446        switch (rd->rpl[id].prim_id) {
 447        case PL1_ENABLE:
 448                ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
 449                break;
 450        case PL2_ENABLE:
 451                ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
 452                break;
 453        case PL4_ENABLE:
 454                /*
 455                 * Time window parameter is not applicable for PL4 entry
 456                 * so assigining '0' as default value.
 457                 */
 458                val = 0;
 459                break;
 460        default:
 461                cpus_read_unlock();
 462                return -EINVAL;
 463        }
 464        if (!ret)
 465                *data = val;
 466
 467get_time_exit:
 468        cpus_read_unlock();
 469
 470        return ret;
 471}
 472
 473static const char *get_constraint_name(struct powercap_zone *power_zone,
 474                                       int cid)
 475{
 476        struct rapl_domain *rd;
 477        int id;
 478
 479        rd = power_zone_to_rapl_domain(power_zone);
 480        id = contraint_to_pl(rd, cid);
 481        if (id >= 0)
 482                return rd->rpl[id].name;
 483
 484        return NULL;
 485}
 486
 487static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
 488{
 489        struct rapl_domain *rd;
 490        u64 val;
 491        int prim;
 492        int ret = 0;
 493
 494        cpus_read_lock();
 495        rd = power_zone_to_rapl_domain(power_zone);
 496        switch (rd->rpl[id].prim_id) {
 497        case PL1_ENABLE:
 498                prim = THERMAL_SPEC_POWER;
 499                break;
 500        case PL2_ENABLE:
 501                prim = MAX_POWER;
 502                break;
 503        case PL4_ENABLE:
 504                prim = MAX_POWER;
 505                break;
 506        default:
 507                cpus_read_unlock();
 508                return -EINVAL;
 509        }
 510        if (rapl_read_data_raw(rd, prim, true, &val))
 511                ret = -EIO;
 512        else
 513                *data = val;
 514
 515        /* As a generalization rule, PL4 would be around two times PL2. */
 516        if (rd->rpl[id].prim_id == PL4_ENABLE)
 517                *data = *data * 2;
 518
 519        cpus_read_unlock();
 520
 521        return ret;
 522}
 523
 524static const struct powercap_zone_constraint_ops constraint_ops = {
 525        .set_power_limit_uw = set_power_limit,
 526        .get_power_limit_uw = get_current_power_limit,
 527        .set_time_window_us = set_time_window,
 528        .get_time_window_us = get_time_window,
 529        .get_max_power_uw = get_max_power,
 530        .get_name = get_constraint_name,
 531};
 532
 533/* called after domain detection and package level data are set */
 534static void rapl_init_domains(struct rapl_package *rp)
 535{
 536        enum rapl_domain_type i;
 537        enum rapl_domain_reg_id j;
 538        struct rapl_domain *rd = rp->domains;
 539
 540        for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 541                unsigned int mask = rp->domain_map & (1 << i);
 542
 543                if (!mask)
 544                        continue;
 545
 546                rd->rp = rp;
 547
 548                if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
 549                        snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
 550                                topology_physical_package_id(rp->lead_cpu));
 551                } else
 552                        snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
 553                                rapl_domain_names[i]);
 554
 555                rd->id = i;
 556                rd->rpl[0].prim_id = PL1_ENABLE;
 557                rd->rpl[0].name = pl1_name;
 558
 559                /*
 560                 * The PL2 power domain is applicable for limits two
 561                 * and limits three
 562                 */
 563                if (rp->priv->limits[i] >= 2) {
 564                        rd->rpl[1].prim_id = PL2_ENABLE;
 565                        rd->rpl[1].name = pl2_name;
 566                }
 567
 568                /* Enable PL4 domain if the total power limits are three */
 569                if (rp->priv->limits[i] == 3) {
 570                        rd->rpl[2].prim_id = PL4_ENABLE;
 571                        rd->rpl[2].name = pl4_name;
 572                }
 573
 574                for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 575                        rd->regs[j] = rp->priv->regs[i][j];
 576
 577                switch (i) {
 578                case RAPL_DOMAIN_DRAM:
 579                        rd->domain_energy_unit =
 580                            rapl_defaults->dram_domain_energy_unit;
 581                        if (rd->domain_energy_unit)
 582                                pr_info("DRAM domain energy unit %dpj\n",
 583                                        rd->domain_energy_unit);
 584                        break;
 585                case RAPL_DOMAIN_PLATFORM:
 586                        rd->domain_energy_unit =
 587                            rapl_defaults->psys_domain_energy_unit;
 588                        if (rd->domain_energy_unit)
 589                                pr_info("Platform domain energy unit %dpj\n",
 590                                        rd->domain_energy_unit);
 591                        break;
 592                default:
 593                        break;
 594                }
 595                rd++;
 596        }
 597}
 598
 599static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 600                           u64 value, int to_raw)
 601{
 602        u64 units = 1;
 603        struct rapl_package *rp = rd->rp;
 604        u64 scale = 1;
 605
 606        switch (type) {
 607        case POWER_UNIT:
 608                units = rp->power_unit;
 609                break;
 610        case ENERGY_UNIT:
 611                scale = ENERGY_UNIT_SCALE;
 612                /* per domain unit takes precedence */
 613                if (rd->domain_energy_unit)
 614                        units = rd->domain_energy_unit;
 615                else
 616                        units = rp->energy_unit;
 617                break;
 618        case TIME_UNIT:
 619                return rapl_defaults->compute_time_window(rp, value, to_raw);
 620        case ARBITRARY_UNIT:
 621        default:
 622                return value;
 623        }
 624
 625        if (to_raw)
 626                return div64_u64(value, units) * scale;
 627
 628        value *= units;
 629
 630        return div64_u64(value, scale);
 631}
 632
 633/* in the order of enum rapl_primitives */
 634static struct rapl_primitive_info rpi[] = {
 635        /* name, mask, shift, msr index, unit divisor */
 636        PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 637                            RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 638        PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 639                            RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 640        PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 641                            RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 642        PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
 643                                RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 644        PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 645                            RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 646        PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 647                            RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 648        PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 649                            RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 650        PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 651                            RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 652        PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 653                            RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 654        PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
 655                                RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 656        PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 657                            RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 658        PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 659                            RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 660        PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 661                            0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 662        PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 663                            RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 664        PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 665                            RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 666        PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 667                            RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 668        PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 669                            RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 670        PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 671                            RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 672        /* non-hardware */
 673        PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 674                            RAPL_PRIMITIVE_DERIVED),
 675        {NULL, 0, 0, 0},
 676};
 677
 678/* Read primitive data based on its related struct rapl_primitive_info.
 679 * if xlate flag is set, return translated data based on data units, i.e.
 680 * time, energy, and power.
 681 * RAPL MSRs are non-architectual and are laid out not consistently across
 682 * domains. Here we use primitive info to allow writing consolidated access
 683 * functions.
 684 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 685 * is pre-assigned based on RAPL unit MSRs read at init time.
 686 * 63-------------------------- 31--------------------------- 0
 687 * |                           xxxxx (mask)                   |
 688 * |                                |<- shift ----------------|
 689 * 63-------------------------- 31--------------------------- 0
 690 */
 691static int rapl_read_data_raw(struct rapl_domain *rd,
 692                              enum rapl_primitives prim, bool xlate, u64 *data)
 693{
 694        u64 value;
 695        struct rapl_primitive_info *rp = &rpi[prim];
 696        struct reg_action ra;
 697        int cpu;
 698
 699        if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
 700                return -EINVAL;
 701
 702        ra.reg = rd->regs[rp->id];
 703        if (!ra.reg)
 704                return -EINVAL;
 705
 706        cpu = rd->rp->lead_cpu;
 707
 708        /* domain with 2 limits has different bit */
 709        if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
 710                rp->mask = POWER_HIGH_LOCK;
 711                rp->shift = 63;
 712        }
 713        /* non-hardware data are collected by the polling thread */
 714        if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
 715                *data = rd->rdd.primitives[prim];
 716                return 0;
 717        }
 718
 719        ra.mask = rp->mask;
 720
 721        if (rd->rp->priv->read_raw(cpu, &ra)) {
 722                pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
 723                return -EIO;
 724        }
 725
 726        value = ra.value >> rp->shift;
 727
 728        if (xlate)
 729                *data = rapl_unit_xlate(rd, rp->unit, value, 0);
 730        else
 731                *data = value;
 732
 733        return 0;
 734}
 735
 736/* Similar use of primitive info in the read counterpart */
 737static int rapl_write_data_raw(struct rapl_domain *rd,
 738                               enum rapl_primitives prim,
 739                               unsigned long long value)
 740{
 741        struct rapl_primitive_info *rp = &rpi[prim];
 742        int cpu;
 743        u64 bits;
 744        struct reg_action ra;
 745        int ret;
 746
 747        cpu = rd->rp->lead_cpu;
 748        bits = rapl_unit_xlate(rd, rp->unit, value, 1);
 749        bits <<= rp->shift;
 750        bits &= rp->mask;
 751
 752        memset(&ra, 0, sizeof(ra));
 753
 754        ra.reg = rd->regs[rp->id];
 755        ra.mask = rp->mask;
 756        ra.value = bits;
 757
 758        ret = rd->rp->priv->write_raw(cpu, &ra);
 759
 760        return ret;
 761}
 762
 763/*
 764 * Raw RAPL data stored in MSRs are in certain scales. We need to
 765 * convert them into standard units based on the units reported in
 766 * the RAPL unit MSRs. This is specific to CPUs as the method to
 767 * calculate units differ on different CPUs.
 768 * We convert the units to below format based on CPUs.
 769 * i.e.
 770 * energy unit: picoJoules  : Represented in picoJoules by default
 771 * power unit : microWatts  : Represented in milliWatts by default
 772 * time unit  : microseconds: Represented in seconds by default
 773 */
 774static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
 775{
 776        struct reg_action ra;
 777        u32 value;
 778
 779        ra.reg = rp->priv->reg_unit;
 780        ra.mask = ~0;
 781        if (rp->priv->read_raw(cpu, &ra)) {
 782                pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 783                       rp->priv->reg_unit, cpu);
 784                return -ENODEV;
 785        }
 786
 787        value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 788        rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 789
 790        value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 791        rp->power_unit = 1000000 / (1 << value);
 792
 793        value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 794        rp->time_unit = 1000000 / (1 << value);
 795
 796        pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
 797                 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 798
 799        return 0;
 800}
 801
 802static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
 803{
 804        struct reg_action ra;
 805        u32 value;
 806
 807        ra.reg = rp->priv->reg_unit;
 808        ra.mask = ~0;
 809        if (rp->priv->read_raw(cpu, &ra)) {
 810                pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 811                       rp->priv->reg_unit, cpu);
 812                return -ENODEV;
 813        }
 814
 815        value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 816        rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 817
 818        value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 819        rp->power_unit = (1 << value) * 1000;
 820
 821        value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 822        rp->time_unit = 1000000 / (1 << value);
 823
 824        pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
 825                 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 826
 827        return 0;
 828}
 829
 830static void power_limit_irq_save_cpu(void *info)
 831{
 832        u32 l, h = 0;
 833        struct rapl_package *rp = (struct rapl_package *)info;
 834
 835        /* save the state of PLN irq mask bit before disabling it */
 836        rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 837        if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 838                rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 839                rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 840        }
 841        l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 842        wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 843}
 844
 845/* REVISIT:
 846 * When package power limit is set artificially low by RAPL, LVT
 847 * thermal interrupt for package power limit should be ignored
 848 * since we are not really exceeding the real limit. The intention
 849 * is to avoid excessive interrupts while we are trying to save power.
 850 * A useful feature might be routing the package_power_limit interrupt
 851 * to userspace via eventfd. once we have a usecase, this is simple
 852 * to do by adding an atomic notifier.
 853 */
 854
 855static void package_power_limit_irq_save(struct rapl_package *rp)
 856{
 857        if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 858                return;
 859
 860        smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
 861}
 862
 863/*
 864 * Restore per package power limit interrupt enable state. Called from cpu
 865 * hotplug code on package removal.
 866 */
 867static void package_power_limit_irq_restore(struct rapl_package *rp)
 868{
 869        u32 l, h;
 870
 871        if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 872                return;
 873
 874        /* irq enable state not saved, nothing to restore */
 875        if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
 876                return;
 877
 878        rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 879
 880        if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
 881                l |= PACKAGE_THERM_INT_PLN_ENABLE;
 882        else
 883                l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 884
 885        wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 886}
 887
 888static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
 889{
 890        int nr_powerlimit = find_nr_power_limit(rd);
 891
 892        /* always enable clamp such that p-state can go below OS requested
 893         * range. power capping priority over guranteed frequency.
 894         */
 895        rapl_write_data_raw(rd, PL1_CLAMP, mode);
 896
 897        /* some domains have pl2 */
 898        if (nr_powerlimit > 1) {
 899                rapl_write_data_raw(rd, PL2_ENABLE, mode);
 900                rapl_write_data_raw(rd, PL2_CLAMP, mode);
 901        }
 902}
 903
 904static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
 905{
 906        static u32 power_ctrl_orig_val;
 907        u32 mdata;
 908
 909        if (!rapl_defaults->floor_freq_reg_addr) {
 910                pr_err("Invalid floor frequency config register\n");
 911                return;
 912        }
 913
 914        if (!power_ctrl_orig_val)
 915                iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
 916                              rapl_defaults->floor_freq_reg_addr,
 917                              &power_ctrl_orig_val);
 918        mdata = power_ctrl_orig_val;
 919        if (enable) {
 920                mdata &= ~(0x7f << 8);
 921                mdata |= 1 << 8;
 922        }
 923        iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
 924                       rapl_defaults->floor_freq_reg_addr, mdata);
 925}
 926
 927static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
 928                                         bool to_raw)
 929{
 930        u64 f, y;               /* fraction and exp. used for time unit */
 931
 932        /*
 933         * Special processing based on 2^Y*(1+F/4), refer
 934         * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
 935         */
 936        if (!to_raw) {
 937                f = (value & 0x60) >> 5;
 938                y = value & 0x1f;
 939                value = (1 << y) * (4 + f) * rp->time_unit / 4;
 940        } else {
 941                do_div(value, rp->time_unit);
 942                y = ilog2(value);
 943                f = div64_u64(4 * (value - (1 << y)), 1 << y);
 944                value = (y & 0x1f) | ((f & 0x3) << 5);
 945        }
 946        return value;
 947}
 948
 949static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
 950                                         bool to_raw)
 951{
 952        /*
 953         * Atom time unit encoding is straight forward val * time_unit,
 954         * where time_unit is default to 1 sec. Never 0.
 955         */
 956        if (!to_raw)
 957                return (value) ? value *= rp->time_unit : rp->time_unit;
 958
 959        value = div64_u64(value, rp->time_unit);
 960
 961        return value;
 962}
 963
 964static const struct rapl_defaults rapl_defaults_core = {
 965        .floor_freq_reg_addr = 0,
 966        .check_unit = rapl_check_unit_core,
 967        .set_floor_freq = set_floor_freq_default,
 968        .compute_time_window = rapl_compute_time_window_core,
 969};
 970
 971static const struct rapl_defaults rapl_defaults_hsw_server = {
 972        .check_unit = rapl_check_unit_core,
 973        .set_floor_freq = set_floor_freq_default,
 974        .compute_time_window = rapl_compute_time_window_core,
 975        .dram_domain_energy_unit = 15300,
 976};
 977
 978static const struct rapl_defaults rapl_defaults_spr_server = {
 979        .check_unit = rapl_check_unit_core,
 980        .set_floor_freq = set_floor_freq_default,
 981        .compute_time_window = rapl_compute_time_window_core,
 982        .dram_domain_energy_unit = 15300,
 983        .psys_domain_energy_unit = 1000000000,
 984};
 985
 986static const struct rapl_defaults rapl_defaults_byt = {
 987        .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
 988        .check_unit = rapl_check_unit_atom,
 989        .set_floor_freq = set_floor_freq_atom,
 990        .compute_time_window = rapl_compute_time_window_atom,
 991};
 992
 993static const struct rapl_defaults rapl_defaults_tng = {
 994        .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
 995        .check_unit = rapl_check_unit_atom,
 996        .set_floor_freq = set_floor_freq_atom,
 997        .compute_time_window = rapl_compute_time_window_atom,
 998};
 999
1000static const struct rapl_defaults rapl_defaults_ann = {
1001        .floor_freq_reg_addr = 0,
1002        .check_unit = rapl_check_unit_atom,
1003        .set_floor_freq = NULL,
1004        .compute_time_window = rapl_compute_time_window_atom,
1005};
1006
1007static const struct rapl_defaults rapl_defaults_cht = {
1008        .floor_freq_reg_addr = 0,
1009        .check_unit = rapl_check_unit_atom,
1010        .set_floor_freq = NULL,
1011        .compute_time_window = rapl_compute_time_window_atom,
1012};
1013
1014static const struct rapl_defaults rapl_defaults_amd = {
1015        .check_unit = rapl_check_unit_core,
1016};
1017
1018static const struct x86_cpu_id rapl_ids[] __initconst = {
1019        X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,         &rapl_defaults_core),
1020        X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,       &rapl_defaults_core),
1021
1022        X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,           &rapl_defaults_core),
1023        X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,         &rapl_defaults_core),
1024
1025        X86_MATCH_INTEL_FAM6_MODEL(HASWELL,             &rapl_defaults_core),
1026        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,           &rapl_defaults_core),
1027        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,           &rapl_defaults_core),
1028        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,           &rapl_defaults_hsw_server),
1029
1030        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,           &rapl_defaults_core),
1031        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,         &rapl_defaults_core),
1032        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,         &rapl_defaults_core),
1033        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,         &rapl_defaults_hsw_server),
1034
1035        X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,             &rapl_defaults_core),
1036        X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,           &rapl_defaults_core),
1037        X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,           &rapl_defaults_hsw_server),
1038        X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,          &rapl_defaults_core),
1039        X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,            &rapl_defaults_core),
1040        X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L,        &rapl_defaults_core),
1041        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,           &rapl_defaults_core),
1042        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE,             &rapl_defaults_core),
1043        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI,        &rapl_defaults_core),
1044        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,           &rapl_defaults_hsw_server),
1045        X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,           &rapl_defaults_hsw_server),
1046        X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L,         &rapl_defaults_core),
1047        X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE,           &rapl_defaults_core),
1048        X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,         &rapl_defaults_core),
1049        X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,           &rapl_defaults_core),
1050        X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE,          &rapl_defaults_core),
1051        X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,           &rapl_defaults_core),
1052        X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,         &rapl_defaults_core),
1053        X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,    &rapl_defaults_spr_server),
1054        X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD,           &rapl_defaults_core),
1055
1056        X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     &rapl_defaults_byt),
1057        X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        &rapl_defaults_cht),
1058        X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1059        X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,    &rapl_defaults_ann),
1060        X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,       &rapl_defaults_core),
1061        X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,  &rapl_defaults_core),
1062        X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,     &rapl_defaults_core),
1063        X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,        &rapl_defaults_core),
1064        X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,      &rapl_defaults_core),
1065        X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,      &rapl_defaults_core),
1066
1067        X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,        &rapl_defaults_hsw_server),
1068        X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,        &rapl_defaults_hsw_server),
1069
1070        X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1071        X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1072        X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1073        {}
1074};
1075MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1076
1077/* Read once for all raw primitive data for domains */
1078static void rapl_update_domain_data(struct rapl_package *rp)
1079{
1080        int dmn, prim;
1081        u64 val;
1082
1083        for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1084                pr_debug("update %s domain %s data\n", rp->name,
1085                         rp->domains[dmn].name);
1086                /* exclude non-raw primitives */
1087                for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1088                        if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1089                                                rpi[prim].unit, &val))
1090                                rp->domains[dmn].rdd.primitives[prim] = val;
1091                }
1092        }
1093
1094}
1095
1096static int rapl_package_register_powercap(struct rapl_package *rp)
1097{
1098        struct rapl_domain *rd;
1099        struct powercap_zone *power_zone = NULL;
1100        int nr_pl, ret;
1101
1102        /* Update the domain data of the new package */
1103        rapl_update_domain_data(rp);
1104
1105        /* first we register package domain as the parent zone */
1106        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1107                if (rd->id == RAPL_DOMAIN_PACKAGE) {
1108                        nr_pl = find_nr_power_limit(rd);
1109                        pr_debug("register package domain %s\n", rp->name);
1110                        power_zone = powercap_register_zone(&rd->power_zone,
1111                                            rp->priv->control_type, rp->name,
1112                                            NULL, &zone_ops[rd->id], nr_pl,
1113                                            &constraint_ops);
1114                        if (IS_ERR(power_zone)) {
1115                                pr_debug("failed to register power zone %s\n",
1116                                         rp->name);
1117                                return PTR_ERR(power_zone);
1118                        }
1119                        /* track parent zone in per package/socket data */
1120                        rp->power_zone = power_zone;
1121                        /* done, only one package domain per socket */
1122                        break;
1123                }
1124        }
1125        if (!power_zone) {
1126                pr_err("no package domain found, unknown topology!\n");
1127                return -ENODEV;
1128        }
1129        /* now register domains as children of the socket/package */
1130        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1131                struct powercap_zone *parent = rp->power_zone;
1132
1133                if (rd->id == RAPL_DOMAIN_PACKAGE)
1134                        continue;
1135                if (rd->id == RAPL_DOMAIN_PLATFORM)
1136                        parent = NULL;
1137                /* number of power limits per domain varies */
1138                nr_pl = find_nr_power_limit(rd);
1139                power_zone = powercap_register_zone(&rd->power_zone,
1140                                                    rp->priv->control_type,
1141                                                    rd->name, parent,
1142                                                    &zone_ops[rd->id], nr_pl,
1143                                                    &constraint_ops);
1144
1145                if (IS_ERR(power_zone)) {
1146                        pr_debug("failed to register power_zone, %s:%s\n",
1147                                 rp->name, rd->name);
1148                        ret = PTR_ERR(power_zone);
1149                        goto err_cleanup;
1150                }
1151        }
1152        return 0;
1153
1154err_cleanup:
1155        /*
1156         * Clean up previously initialized domains within the package if we
1157         * failed after the first domain setup.
1158         */
1159        while (--rd >= rp->domains) {
1160                pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1161                powercap_unregister_zone(rp->priv->control_type,
1162                                         &rd->power_zone);
1163        }
1164
1165        return ret;
1166}
1167
1168static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1169{
1170        struct reg_action ra;
1171
1172        switch (domain) {
1173        case RAPL_DOMAIN_PACKAGE:
1174        case RAPL_DOMAIN_PP0:
1175        case RAPL_DOMAIN_PP1:
1176        case RAPL_DOMAIN_DRAM:
1177        case RAPL_DOMAIN_PLATFORM:
1178                ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1179                break;
1180        default:
1181                pr_err("invalid domain id %d\n", domain);
1182                return -EINVAL;
1183        }
1184        /* make sure domain counters are available and contains non-zero
1185         * values, otherwise skip it.
1186         */
1187
1188        ra.mask = ENERGY_STATUS_MASK;
1189        if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1190                return -ENODEV;
1191
1192        return 0;
1193}
1194
1195/*
1196 * Check if power limits are available. Two cases when they are not available:
1197 * 1. Locked by BIOS, in this case we still provide read-only access so that
1198 *    users can see what limit is set by the BIOS.
1199 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1200 *    exist at all. In this case, we do not show the constraints in powercap.
1201 *
1202 * Called after domains are detected and initialized.
1203 */
1204static void rapl_detect_powerlimit(struct rapl_domain *rd)
1205{
1206        u64 val64;
1207        int i;
1208
1209        /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1210        if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1211                if (val64) {
1212                        pr_info("RAPL %s domain %s locked by BIOS\n",
1213                                rd->rp->name, rd->name);
1214                        rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1215                }
1216        }
1217        /* check if power limit MSR exists, otherwise domain is monitoring only */
1218        for (i = 0; i < NR_POWER_LIMITS; i++) {
1219                int prim = rd->rpl[i].prim_id;
1220
1221                if (rapl_read_data_raw(rd, prim, false, &val64))
1222                        rd->rpl[i].name = NULL;
1223        }
1224}
1225
1226/* Detect active and valid domains for the given CPU, caller must
1227 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1228 */
1229static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1230{
1231        struct rapl_domain *rd;
1232        int i;
1233
1234        for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1235                /* use physical package id to read counters */
1236                if (!rapl_check_domain(cpu, i, rp)) {
1237                        rp->domain_map |= 1 << i;
1238                        pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1239                }
1240        }
1241        rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1242        if (!rp->nr_domains) {
1243                pr_debug("no valid rapl domains found in %s\n", rp->name);
1244                return -ENODEV;
1245        }
1246        pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1247
1248        rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1249                              GFP_KERNEL);
1250        if (!rp->domains)
1251                return -ENOMEM;
1252
1253        rapl_init_domains(rp);
1254
1255        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1256                rapl_detect_powerlimit(rd);
1257
1258        return 0;
1259}
1260
1261/* called from CPU hotplug notifier, hotplug lock held */
1262void rapl_remove_package(struct rapl_package *rp)
1263{
1264        struct rapl_domain *rd, *rd_package = NULL;
1265
1266        package_power_limit_irq_restore(rp);
1267
1268        for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1269                rapl_write_data_raw(rd, PL1_ENABLE, 0);
1270                rapl_write_data_raw(rd, PL1_CLAMP, 0);
1271                if (find_nr_power_limit(rd) > 1) {
1272                        rapl_write_data_raw(rd, PL2_ENABLE, 0);
1273                        rapl_write_data_raw(rd, PL2_CLAMP, 0);
1274                        rapl_write_data_raw(rd, PL4_ENABLE, 0);
1275                }
1276                if (rd->id == RAPL_DOMAIN_PACKAGE) {
1277                        rd_package = rd;
1278                        continue;
1279                }
1280                pr_debug("remove package, undo power limit on %s: %s\n",
1281                         rp->name, rd->name);
1282                powercap_unregister_zone(rp->priv->control_type,
1283                                         &rd->power_zone);
1284        }
1285        /* do parent zone last */
1286        powercap_unregister_zone(rp->priv->control_type,
1287                                 &rd_package->power_zone);
1288        list_del(&rp->plist);
1289        kfree(rp);
1290}
1291EXPORT_SYMBOL_GPL(rapl_remove_package);
1292
1293/* caller to ensure CPU hotplug lock is held */
1294struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1295{
1296        int id = topology_logical_die_id(cpu);
1297        struct rapl_package *rp;
1298
1299        list_for_each_entry(rp, &rapl_packages, plist) {
1300                if (rp->id == id
1301                    && rp->priv->control_type == priv->control_type)
1302                        return rp;
1303        }
1304
1305        return NULL;
1306}
1307EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1308
1309/* called from CPU hotplug notifier, hotplug lock held */
1310struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1311{
1312        int id = topology_logical_die_id(cpu);
1313        struct rapl_package *rp;
1314        int ret;
1315
1316        if (!rapl_defaults)
1317                return ERR_PTR(-ENODEV);
1318
1319        rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1320        if (!rp)
1321                return ERR_PTR(-ENOMEM);
1322
1323        /* add the new package to the list */
1324        rp->id = id;
1325        rp->lead_cpu = cpu;
1326        rp->priv = priv;
1327
1328        if (topology_max_die_per_package() > 1)
1329                snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1330                         "package-%d-die-%d",
1331                         topology_physical_package_id(cpu), topology_die_id(cpu));
1332        else
1333                snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1334                         topology_physical_package_id(cpu));
1335
1336        /* check if the package contains valid domains */
1337        if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1338                ret = -ENODEV;
1339                goto err_free_package;
1340        }
1341        ret = rapl_package_register_powercap(rp);
1342        if (!ret) {
1343                INIT_LIST_HEAD(&rp->plist);
1344                list_add(&rp->plist, &rapl_packages);
1345                return rp;
1346        }
1347
1348err_free_package:
1349        kfree(rp->domains);
1350        kfree(rp);
1351        return ERR_PTR(ret);
1352}
1353EXPORT_SYMBOL_GPL(rapl_add_package);
1354
1355static void power_limit_state_save(void)
1356{
1357        struct rapl_package *rp;
1358        struct rapl_domain *rd;
1359        int nr_pl, ret, i;
1360
1361        cpus_read_lock();
1362        list_for_each_entry(rp, &rapl_packages, plist) {
1363                if (!rp->power_zone)
1364                        continue;
1365                rd = power_zone_to_rapl_domain(rp->power_zone);
1366                nr_pl = find_nr_power_limit(rd);
1367                for (i = 0; i < nr_pl; i++) {
1368                        switch (rd->rpl[i].prim_id) {
1369                        case PL1_ENABLE:
1370                                ret = rapl_read_data_raw(rd,
1371                                                 POWER_LIMIT1, true,
1372                                                 &rd->rpl[i].last_power_limit);
1373                                if (ret)
1374                                        rd->rpl[i].last_power_limit = 0;
1375                                break;
1376                        case PL2_ENABLE:
1377                                ret = rapl_read_data_raw(rd,
1378                                                 POWER_LIMIT2, true,
1379                                                 &rd->rpl[i].last_power_limit);
1380                                if (ret)
1381                                        rd->rpl[i].last_power_limit = 0;
1382                                break;
1383                        case PL4_ENABLE:
1384                                ret = rapl_read_data_raw(rd,
1385                                                 POWER_LIMIT4, true,
1386                                                 &rd->rpl[i].last_power_limit);
1387                                if (ret)
1388                                        rd->rpl[i].last_power_limit = 0;
1389                                break;
1390                        }
1391                }
1392        }
1393        cpus_read_unlock();
1394}
1395
1396static void power_limit_state_restore(void)
1397{
1398        struct rapl_package *rp;
1399        struct rapl_domain *rd;
1400        int nr_pl, i;
1401
1402        cpus_read_lock();
1403        list_for_each_entry(rp, &rapl_packages, plist) {
1404                if (!rp->power_zone)
1405                        continue;
1406                rd = power_zone_to_rapl_domain(rp->power_zone);
1407                nr_pl = find_nr_power_limit(rd);
1408                for (i = 0; i < nr_pl; i++) {
1409                        switch (rd->rpl[i].prim_id) {
1410                        case PL1_ENABLE:
1411                                if (rd->rpl[i].last_power_limit)
1412                                        rapl_write_data_raw(rd, POWER_LIMIT1,
1413                                            rd->rpl[i].last_power_limit);
1414                                break;
1415                        case PL2_ENABLE:
1416                                if (rd->rpl[i].last_power_limit)
1417                                        rapl_write_data_raw(rd, POWER_LIMIT2,
1418                                            rd->rpl[i].last_power_limit);
1419                                break;
1420                        case PL4_ENABLE:
1421                                if (rd->rpl[i].last_power_limit)
1422                                        rapl_write_data_raw(rd, POWER_LIMIT4,
1423                                            rd->rpl[i].last_power_limit);
1424                                break;
1425                        }
1426                }
1427        }
1428        cpus_read_unlock();
1429}
1430
1431static int rapl_pm_callback(struct notifier_block *nb,
1432                            unsigned long mode, void *_unused)
1433{
1434        switch (mode) {
1435        case PM_SUSPEND_PREPARE:
1436                power_limit_state_save();
1437                break;
1438        case PM_POST_SUSPEND:
1439                power_limit_state_restore();
1440                break;
1441        }
1442        return NOTIFY_OK;
1443}
1444
1445static struct notifier_block rapl_pm_notifier = {
1446        .notifier_call = rapl_pm_callback,
1447};
1448
1449static struct platform_device *rapl_msr_platdev;
1450
1451static int __init rapl_init(void)
1452{
1453        const struct x86_cpu_id *id;
1454        int ret;
1455
1456        id = x86_match_cpu(rapl_ids);
1457        if (!id) {
1458                pr_err("driver does not support CPU family %d model %d\n",
1459                       boot_cpu_data.x86, boot_cpu_data.x86_model);
1460
1461                return -ENODEV;
1462        }
1463
1464        rapl_defaults = (struct rapl_defaults *)id->driver_data;
1465
1466        ret = register_pm_notifier(&rapl_pm_notifier);
1467        if (ret)
1468                return ret;
1469
1470        rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1471        if (!rapl_msr_platdev) {
1472                ret = -ENOMEM;
1473                goto end;
1474        }
1475
1476        ret = platform_device_add(rapl_msr_platdev);
1477        if (ret)
1478                platform_device_put(rapl_msr_platdev);
1479
1480end:
1481        if (ret)
1482                unregister_pm_notifier(&rapl_pm_notifier);
1483
1484        return ret;
1485}
1486
1487static void __exit rapl_exit(void)
1488{
1489        platform_device_unregister(rapl_msr_platdev);
1490        unregister_pm_notifier(&rapl_pm_notifier);
1491}
1492
1493fs_initcall(rapl_init);
1494module_exit(rapl_exit);
1495
1496MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1497MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1498MODULE_LICENSE("GPL v2");
1499