linux/drivers/ptp/ptp_clock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PTP 1588 clock support
   4 *
   5 * Copyright (C) 2010 OMICRON electronics GmbH
   6 */
   7#include <linux/idr.h>
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/posix-clock.h>
  14#include <linux/pps_kernel.h>
  15#include <linux/slab.h>
  16#include <linux/syscalls.h>
  17#include <linux/uaccess.h>
  18#include <uapi/linux/sched/types.h>
  19
  20#include "ptp_private.h"
  21
  22#define PTP_MAX_ALARMS 4
  23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
  24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
  25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
  26
  27struct class *ptp_class;
  28
  29/* private globals */
  30
  31static dev_t ptp_devt;
  32
  33static DEFINE_IDA(ptp_clocks_map);
  34
  35/* time stamp event queue operations */
  36
  37static inline int queue_free(struct timestamp_event_queue *q)
  38{
  39        return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
  40}
  41
  42static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
  43                                       struct ptp_clock_event *src)
  44{
  45        struct ptp_extts_event *dst;
  46        unsigned long flags;
  47        s64 seconds;
  48        u32 remainder;
  49
  50        seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
  51
  52        spin_lock_irqsave(&queue->lock, flags);
  53
  54        dst = &queue->buf[queue->tail];
  55        dst->index = src->index;
  56        dst->t.sec = seconds;
  57        dst->t.nsec = remainder;
  58
  59        if (!queue_free(queue))
  60                queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
  61
  62        queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
  63
  64        spin_unlock_irqrestore(&queue->lock, flags);
  65}
  66
  67/* posix clock implementation */
  68
  69static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
  70{
  71        tp->tv_sec = 0;
  72        tp->tv_nsec = 1;
  73        return 0;
  74}
  75
  76static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
  77{
  78        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  79
  80        if (ptp_vclock_in_use(ptp)) {
  81                pr_err("ptp: virtual clock in use\n");
  82                return -EBUSY;
  83        }
  84
  85        return  ptp->info->settime64(ptp->info, tp);
  86}
  87
  88static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
  89{
  90        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  91        int err;
  92
  93        if (ptp->info->gettimex64)
  94                err = ptp->info->gettimex64(ptp->info, tp, NULL);
  95        else
  96                err = ptp->info->gettime64(ptp->info, tp);
  97        return err;
  98}
  99
 100static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
 101{
 102        struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 103        struct ptp_clock_info *ops;
 104        int err = -EOPNOTSUPP;
 105
 106        if (ptp_vclock_in_use(ptp)) {
 107                pr_err("ptp: virtual clock in use\n");
 108                return -EBUSY;
 109        }
 110
 111        ops = ptp->info;
 112
 113        if (tx->modes & ADJ_SETOFFSET) {
 114                struct timespec64 ts;
 115                ktime_t kt;
 116                s64 delta;
 117
 118                ts.tv_sec  = tx->time.tv_sec;
 119                ts.tv_nsec = tx->time.tv_usec;
 120
 121                if (!(tx->modes & ADJ_NANO))
 122                        ts.tv_nsec *= 1000;
 123
 124                if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
 125                        return -EINVAL;
 126
 127                kt = timespec64_to_ktime(ts);
 128                delta = ktime_to_ns(kt);
 129                err = ops->adjtime(ops, delta);
 130        } else if (tx->modes & ADJ_FREQUENCY) {
 131                long ppb = scaled_ppm_to_ppb(tx->freq);
 132                if (ppb > ops->max_adj || ppb < -ops->max_adj)
 133                        return -ERANGE;
 134                if (ops->adjfine)
 135                        err = ops->adjfine(ops, tx->freq);
 136                else
 137                        err = ops->adjfreq(ops, ppb);
 138                ptp->dialed_frequency = tx->freq;
 139        } else if (tx->modes & ADJ_OFFSET) {
 140                if (ops->adjphase) {
 141                        s32 offset = tx->offset;
 142
 143                        if (!(tx->modes & ADJ_NANO))
 144                                offset *= NSEC_PER_USEC;
 145
 146                        err = ops->adjphase(ops, offset);
 147                }
 148        } else if (tx->modes == 0) {
 149                tx->freq = ptp->dialed_frequency;
 150                err = 0;
 151        }
 152
 153        return err;
 154}
 155
 156static struct posix_clock_operations ptp_clock_ops = {
 157        .owner          = THIS_MODULE,
 158        .clock_adjtime  = ptp_clock_adjtime,
 159        .clock_gettime  = ptp_clock_gettime,
 160        .clock_getres   = ptp_clock_getres,
 161        .clock_settime  = ptp_clock_settime,
 162        .ioctl          = ptp_ioctl,
 163        .open           = ptp_open,
 164        .poll           = ptp_poll,
 165        .read           = ptp_read,
 166};
 167
 168static void ptp_clock_release(struct device *dev)
 169{
 170        struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
 171
 172        ptp_cleanup_pin_groups(ptp);
 173        kfree(ptp->vclock_index);
 174        mutex_destroy(&ptp->tsevq_mux);
 175        mutex_destroy(&ptp->pincfg_mux);
 176        mutex_destroy(&ptp->n_vclocks_mux);
 177        ida_simple_remove(&ptp_clocks_map, ptp->index);
 178        kfree(ptp);
 179}
 180
 181static void ptp_aux_kworker(struct kthread_work *work)
 182{
 183        struct ptp_clock *ptp = container_of(work, struct ptp_clock,
 184                                             aux_work.work);
 185        struct ptp_clock_info *info = ptp->info;
 186        long delay;
 187
 188        delay = info->do_aux_work(info);
 189
 190        if (delay >= 0)
 191                kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
 192}
 193
 194/* public interface */
 195
 196struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
 197                                     struct device *parent)
 198{
 199        struct ptp_clock *ptp;
 200        int err = 0, index, major = MAJOR(ptp_devt);
 201        size_t size;
 202
 203        if (info->n_alarm > PTP_MAX_ALARMS)
 204                return ERR_PTR(-EINVAL);
 205
 206        /* Initialize a clock structure. */
 207        err = -ENOMEM;
 208        ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
 209        if (ptp == NULL)
 210                goto no_memory;
 211
 212        index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
 213        if (index < 0) {
 214                err = index;
 215                goto no_slot;
 216        }
 217
 218        ptp->clock.ops = ptp_clock_ops;
 219        ptp->info = info;
 220        ptp->devid = MKDEV(major, index);
 221        ptp->index = index;
 222        spin_lock_init(&ptp->tsevq.lock);
 223        mutex_init(&ptp->tsevq_mux);
 224        mutex_init(&ptp->pincfg_mux);
 225        mutex_init(&ptp->n_vclocks_mux);
 226        init_waitqueue_head(&ptp->tsev_wq);
 227
 228        if (ptp->info->do_aux_work) {
 229                kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
 230                ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
 231                if (IS_ERR(ptp->kworker)) {
 232                        err = PTR_ERR(ptp->kworker);
 233                        pr_err("failed to create ptp aux_worker %d\n", err);
 234                        goto kworker_err;
 235                }
 236        }
 237
 238        /* PTP virtual clock is being registered under physical clock */
 239        if (parent && parent->class && parent->class->name &&
 240            strcmp(parent->class->name, "ptp") == 0)
 241                ptp->is_virtual_clock = true;
 242
 243        if (!ptp->is_virtual_clock) {
 244                ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
 245
 246                size = sizeof(int) * ptp->max_vclocks;
 247                ptp->vclock_index = kzalloc(size, GFP_KERNEL);
 248                if (!ptp->vclock_index) {
 249                        err = -ENOMEM;
 250                        goto no_mem_for_vclocks;
 251                }
 252        }
 253
 254        err = ptp_populate_pin_groups(ptp);
 255        if (err)
 256                goto no_pin_groups;
 257
 258        /* Register a new PPS source. */
 259        if (info->pps) {
 260                struct pps_source_info pps;
 261                memset(&pps, 0, sizeof(pps));
 262                snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
 263                pps.mode = PTP_PPS_MODE;
 264                pps.owner = info->owner;
 265                ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
 266                if (IS_ERR(ptp->pps_source)) {
 267                        err = PTR_ERR(ptp->pps_source);
 268                        pr_err("failed to register pps source\n");
 269                        goto no_pps;
 270                }
 271                ptp->pps_source->lookup_cookie = ptp;
 272        }
 273
 274        /* Initialize a new device of our class in our clock structure. */
 275        device_initialize(&ptp->dev);
 276        ptp->dev.devt = ptp->devid;
 277        ptp->dev.class = ptp_class;
 278        ptp->dev.parent = parent;
 279        ptp->dev.groups = ptp->pin_attr_groups;
 280        ptp->dev.release = ptp_clock_release;
 281        dev_set_drvdata(&ptp->dev, ptp);
 282        dev_set_name(&ptp->dev, "ptp%d", ptp->index);
 283
 284        /* Create a posix clock and link it to the device. */
 285        err = posix_clock_register(&ptp->clock, &ptp->dev);
 286        if (err) {
 287                if (ptp->pps_source)
 288                        pps_unregister_source(ptp->pps_source);
 289
 290                if (ptp->kworker)
 291                        kthread_destroy_worker(ptp->kworker);
 292
 293                put_device(&ptp->dev);
 294
 295                pr_err("failed to create posix clock\n");
 296                return ERR_PTR(err);
 297        }
 298
 299        return ptp;
 300
 301no_pps:
 302        ptp_cleanup_pin_groups(ptp);
 303no_pin_groups:
 304        kfree(ptp->vclock_index);
 305no_mem_for_vclocks:
 306        if (ptp->kworker)
 307                kthread_destroy_worker(ptp->kworker);
 308kworker_err:
 309        mutex_destroy(&ptp->tsevq_mux);
 310        mutex_destroy(&ptp->pincfg_mux);
 311        mutex_destroy(&ptp->n_vclocks_mux);
 312        ida_simple_remove(&ptp_clocks_map, index);
 313no_slot:
 314        kfree(ptp);
 315no_memory:
 316        return ERR_PTR(err);
 317}
 318EXPORT_SYMBOL(ptp_clock_register);
 319
 320int ptp_clock_unregister(struct ptp_clock *ptp)
 321{
 322        if (ptp_vclock_in_use(ptp)) {
 323                pr_err("ptp: virtual clock in use\n");
 324                return -EBUSY;
 325        }
 326
 327        ptp->defunct = 1;
 328        wake_up_interruptible(&ptp->tsev_wq);
 329
 330        if (ptp->kworker) {
 331                kthread_cancel_delayed_work_sync(&ptp->aux_work);
 332                kthread_destroy_worker(ptp->kworker);
 333        }
 334
 335        /* Release the clock's resources. */
 336        if (ptp->pps_source)
 337                pps_unregister_source(ptp->pps_source);
 338
 339        posix_clock_unregister(&ptp->clock);
 340
 341        return 0;
 342}
 343EXPORT_SYMBOL(ptp_clock_unregister);
 344
 345void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
 346{
 347        struct pps_event_time evt;
 348
 349        switch (event->type) {
 350
 351        case PTP_CLOCK_ALARM:
 352                break;
 353
 354        case PTP_CLOCK_EXTTS:
 355                enqueue_external_timestamp(&ptp->tsevq, event);
 356                wake_up_interruptible(&ptp->tsev_wq);
 357                break;
 358
 359        case PTP_CLOCK_PPS:
 360                pps_get_ts(&evt);
 361                pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
 362                break;
 363
 364        case PTP_CLOCK_PPSUSR:
 365                pps_event(ptp->pps_source, &event->pps_times,
 366                          PTP_PPS_EVENT, NULL);
 367                break;
 368        }
 369}
 370EXPORT_SYMBOL(ptp_clock_event);
 371
 372int ptp_clock_index(struct ptp_clock *ptp)
 373{
 374        return ptp->index;
 375}
 376EXPORT_SYMBOL(ptp_clock_index);
 377
 378int ptp_find_pin(struct ptp_clock *ptp,
 379                 enum ptp_pin_function func, unsigned int chan)
 380{
 381        struct ptp_pin_desc *pin = NULL;
 382        int i;
 383
 384        for (i = 0; i < ptp->info->n_pins; i++) {
 385                if (ptp->info->pin_config[i].func == func &&
 386                    ptp->info->pin_config[i].chan == chan) {
 387                        pin = &ptp->info->pin_config[i];
 388                        break;
 389                }
 390        }
 391
 392        return pin ? i : -1;
 393}
 394EXPORT_SYMBOL(ptp_find_pin);
 395
 396int ptp_find_pin_unlocked(struct ptp_clock *ptp,
 397                          enum ptp_pin_function func, unsigned int chan)
 398{
 399        int result;
 400
 401        mutex_lock(&ptp->pincfg_mux);
 402
 403        result = ptp_find_pin(ptp, func, chan);
 404
 405        mutex_unlock(&ptp->pincfg_mux);
 406
 407        return result;
 408}
 409EXPORT_SYMBOL(ptp_find_pin_unlocked);
 410
 411int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
 412{
 413        return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
 414}
 415EXPORT_SYMBOL(ptp_schedule_worker);
 416
 417void ptp_cancel_worker_sync(struct ptp_clock *ptp)
 418{
 419        kthread_cancel_delayed_work_sync(&ptp->aux_work);
 420}
 421EXPORT_SYMBOL(ptp_cancel_worker_sync);
 422
 423/* module operations */
 424
 425static void __exit ptp_exit(void)
 426{
 427        class_destroy(ptp_class);
 428        unregister_chrdev_region(ptp_devt, MINORMASK + 1);
 429        ida_destroy(&ptp_clocks_map);
 430}
 431
 432static int __init ptp_init(void)
 433{
 434        int err;
 435
 436        ptp_class = class_create(THIS_MODULE, "ptp");
 437        if (IS_ERR(ptp_class)) {
 438                pr_err("ptp: failed to allocate class\n");
 439                return PTR_ERR(ptp_class);
 440        }
 441
 442        err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
 443        if (err < 0) {
 444                pr_err("ptp: failed to allocate device region\n");
 445                goto no_region;
 446        }
 447
 448        ptp_class->dev_groups = ptp_groups;
 449        pr_info("PTP clock support registered\n");
 450        return 0;
 451
 452no_region:
 453        class_destroy(ptp_class);
 454        return err;
 455}
 456
 457subsys_initcall(ptp_init);
 458module_exit(ptp_exit);
 459
 460MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
 461MODULE_DESCRIPTION("PTP clocks support");
 462MODULE_LICENSE("GPL");
 463