linux/drivers/pwm/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30static DEFINE_MUTEX(pwm_lock);
  31static LIST_HEAD(pwm_chips);
  32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  33static RADIX_TREE(pwm_tree, GFP_KERNEL);
  34
  35static struct pwm_device *pwm_to_device(unsigned int pwm)
  36{
  37        return radix_tree_lookup(&pwm_tree, pwm);
  38}
  39
  40static int alloc_pwms(unsigned int count)
  41{
  42        unsigned int start;
  43
  44        start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
  45                                           count, 0);
  46
  47        if (start + count > MAX_PWMS)
  48                return -ENOSPC;
  49
  50        return start;
  51}
  52
  53static void free_pwms(struct pwm_chip *chip)
  54{
  55        unsigned int i;
  56
  57        for (i = 0; i < chip->npwm; i++) {
  58                struct pwm_device *pwm = &chip->pwms[i];
  59
  60                radix_tree_delete(&pwm_tree, pwm->pwm);
  61        }
  62
  63        bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  64
  65        kfree(chip->pwms);
  66        chip->pwms = NULL;
  67}
  68
  69static struct pwm_chip *pwmchip_find_by_name(const char *name)
  70{
  71        struct pwm_chip *chip;
  72
  73        if (!name)
  74                return NULL;
  75
  76        mutex_lock(&pwm_lock);
  77
  78        list_for_each_entry(chip, &pwm_chips, list) {
  79                const char *chip_name = dev_name(chip->dev);
  80
  81                if (chip_name && strcmp(chip_name, name) == 0) {
  82                        mutex_unlock(&pwm_lock);
  83                        return chip;
  84                }
  85        }
  86
  87        mutex_unlock(&pwm_lock);
  88
  89        return NULL;
  90}
  91
  92static int pwm_device_request(struct pwm_device *pwm, const char *label)
  93{
  94        int err;
  95
  96        if (test_bit(PWMF_REQUESTED, &pwm->flags))
  97                return -EBUSY;
  98
  99        if (!try_module_get(pwm->chip->ops->owner))
 100                return -ENODEV;
 101
 102        if (pwm->chip->ops->request) {
 103                err = pwm->chip->ops->request(pwm->chip, pwm);
 104                if (err) {
 105                        module_put(pwm->chip->ops->owner);
 106                        return err;
 107                }
 108        }
 109
 110        if (pwm->chip->ops->get_state) {
 111                pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
 112                trace_pwm_get(pwm, &pwm->state);
 113
 114                if (IS_ENABLED(CONFIG_PWM_DEBUG))
 115                        pwm->last = pwm->state;
 116        }
 117
 118        set_bit(PWMF_REQUESTED, &pwm->flags);
 119        pwm->label = label;
 120
 121        return 0;
 122}
 123
 124struct pwm_device *
 125of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 126{
 127        struct pwm_device *pwm;
 128
 129        if (pc->of_pwm_n_cells < 2)
 130                return ERR_PTR(-EINVAL);
 131
 132        /* flags in the third cell are optional */
 133        if (args->args_count < 2)
 134                return ERR_PTR(-EINVAL);
 135
 136        if (args->args[0] >= pc->npwm)
 137                return ERR_PTR(-EINVAL);
 138
 139        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140        if (IS_ERR(pwm))
 141                return pwm;
 142
 143        pwm->args.period = args->args[1];
 144        pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146        if (pc->of_pwm_n_cells >= 3) {
 147                if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 148                        pwm->args.polarity = PWM_POLARITY_INVERSED;
 149        }
 150
 151        return pwm;
 152}
 153EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 154
 155static void of_pwmchip_add(struct pwm_chip *chip)
 156{
 157        if (!chip->dev || !chip->dev->of_node)
 158                return;
 159
 160        if (!chip->of_xlate) {
 161                u32 pwm_cells;
 162
 163                if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 164                                         &pwm_cells))
 165                        pwm_cells = 2;
 166
 167                chip->of_xlate = of_pwm_xlate_with_flags;
 168                chip->of_pwm_n_cells = pwm_cells;
 169        }
 170
 171        of_node_get(chip->dev->of_node);
 172}
 173
 174static void of_pwmchip_remove(struct pwm_chip *chip)
 175{
 176        if (chip->dev)
 177                of_node_put(chip->dev->of_node);
 178}
 179
 180/**
 181 * pwm_set_chip_data() - set private chip data for a PWM
 182 * @pwm: PWM device
 183 * @data: pointer to chip-specific data
 184 *
 185 * Returns: 0 on success or a negative error code on failure.
 186 */
 187int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 188{
 189        if (!pwm)
 190                return -EINVAL;
 191
 192        pwm->chip_data = data;
 193
 194        return 0;
 195}
 196EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 197
 198/**
 199 * pwm_get_chip_data() - get private chip data for a PWM
 200 * @pwm: PWM device
 201 *
 202 * Returns: A pointer to the chip-private data for the PWM device.
 203 */
 204void *pwm_get_chip_data(struct pwm_device *pwm)
 205{
 206        return pwm ? pwm->chip_data : NULL;
 207}
 208EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 209
 210static bool pwm_ops_check(const struct pwm_chip *chip)
 211{
 212
 213        const struct pwm_ops *ops = chip->ops;
 214
 215        /* driver supports legacy, non-atomic operation */
 216        if (ops->config && ops->enable && ops->disable) {
 217                if (IS_ENABLED(CONFIG_PWM_DEBUG))
 218                        dev_warn(chip->dev,
 219                                 "Driver needs updating to atomic API\n");
 220
 221                return true;
 222        }
 223
 224        if (!ops->apply)
 225                return false;
 226
 227        if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 228                dev_warn(chip->dev,
 229                         "Please implement the .get_state() callback\n");
 230
 231        return true;
 232}
 233
 234/**
 235 * pwmchip_add() - register a new PWM chip
 236 * @chip: the PWM chip to add
 237 *
 238 * Register a new PWM chip.
 239 *
 240 * Returns: 0 on success or a negative error code on failure.
 241 */
 242int pwmchip_add(struct pwm_chip *chip)
 243{
 244        struct pwm_device *pwm;
 245        unsigned int i;
 246        int ret;
 247
 248        if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 249                return -EINVAL;
 250
 251        if (!pwm_ops_check(chip))
 252                return -EINVAL;
 253
 254        mutex_lock(&pwm_lock);
 255
 256        ret = alloc_pwms(chip->npwm);
 257        if (ret < 0)
 258                goto out;
 259
 260        chip->base = ret;
 261
 262        chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 263        if (!chip->pwms) {
 264                ret = -ENOMEM;
 265                goto out;
 266        }
 267
 268        for (i = 0; i < chip->npwm; i++) {
 269                pwm = &chip->pwms[i];
 270
 271                pwm->chip = chip;
 272                pwm->pwm = chip->base + i;
 273                pwm->hwpwm = i;
 274
 275                radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 276        }
 277
 278        bitmap_set(allocated_pwms, chip->base, chip->npwm);
 279
 280        INIT_LIST_HEAD(&chip->list);
 281        list_add(&chip->list, &pwm_chips);
 282
 283        ret = 0;
 284
 285        if (IS_ENABLED(CONFIG_OF))
 286                of_pwmchip_add(chip);
 287
 288out:
 289        mutex_unlock(&pwm_lock);
 290
 291        if (!ret)
 292                pwmchip_sysfs_export(chip);
 293
 294        return ret;
 295}
 296EXPORT_SYMBOL_GPL(pwmchip_add);
 297
 298/**
 299 * pwmchip_remove() - remove a PWM chip
 300 * @chip: the PWM chip to remove
 301 *
 302 * Removes a PWM chip. This function may return busy if the PWM chip provides
 303 * a PWM device that is still requested.
 304 *
 305 * Returns: 0 on success or a negative error code on failure.
 306 */
 307void pwmchip_remove(struct pwm_chip *chip)
 308{
 309        pwmchip_sysfs_unexport(chip);
 310
 311        mutex_lock(&pwm_lock);
 312
 313        list_del_init(&chip->list);
 314
 315        if (IS_ENABLED(CONFIG_OF))
 316                of_pwmchip_remove(chip);
 317
 318        free_pwms(chip);
 319
 320        mutex_unlock(&pwm_lock);
 321}
 322EXPORT_SYMBOL_GPL(pwmchip_remove);
 323
 324static void devm_pwmchip_remove(void *data)
 325{
 326        struct pwm_chip *chip = data;
 327
 328        pwmchip_remove(chip);
 329}
 330
 331int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 332{
 333        int ret;
 334
 335        ret = pwmchip_add(chip);
 336        if (ret)
 337                return ret;
 338
 339        return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 340}
 341EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 342
 343/**
 344 * pwm_request() - request a PWM device
 345 * @pwm: global PWM device index
 346 * @label: PWM device label
 347 *
 348 * This function is deprecated, use pwm_get() instead.
 349 *
 350 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 351 * failure.
 352 */
 353struct pwm_device *pwm_request(int pwm, const char *label)
 354{
 355        struct pwm_device *dev;
 356        int err;
 357
 358        if (pwm < 0 || pwm >= MAX_PWMS)
 359                return ERR_PTR(-EINVAL);
 360
 361        mutex_lock(&pwm_lock);
 362
 363        dev = pwm_to_device(pwm);
 364        if (!dev) {
 365                dev = ERR_PTR(-EPROBE_DEFER);
 366                goto out;
 367        }
 368
 369        err = pwm_device_request(dev, label);
 370        if (err < 0)
 371                dev = ERR_PTR(err);
 372
 373out:
 374        mutex_unlock(&pwm_lock);
 375
 376        return dev;
 377}
 378EXPORT_SYMBOL_GPL(pwm_request);
 379
 380/**
 381 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 382 * @chip: PWM chip
 383 * @index: per-chip index of the PWM to request
 384 * @label: a literal description string of this PWM
 385 *
 386 * Returns: A pointer to the PWM device at the given index of the given PWM
 387 * chip. A negative error code is returned if the index is not valid for the
 388 * specified PWM chip or if the PWM device cannot be requested.
 389 */
 390struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 391                                         unsigned int index,
 392                                         const char *label)
 393{
 394        struct pwm_device *pwm;
 395        int err;
 396
 397        if (!chip || index >= chip->npwm)
 398                return ERR_PTR(-EINVAL);
 399
 400        mutex_lock(&pwm_lock);
 401        pwm = &chip->pwms[index];
 402
 403        err = pwm_device_request(pwm, label);
 404        if (err < 0)
 405                pwm = ERR_PTR(err);
 406
 407        mutex_unlock(&pwm_lock);
 408        return pwm;
 409}
 410EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 411
 412/**
 413 * pwm_free() - free a PWM device
 414 * @pwm: PWM device
 415 *
 416 * This function is deprecated, use pwm_put() instead.
 417 */
 418void pwm_free(struct pwm_device *pwm)
 419{
 420        pwm_put(pwm);
 421}
 422EXPORT_SYMBOL_GPL(pwm_free);
 423
 424static void pwm_apply_state_debug(struct pwm_device *pwm,
 425                                  const struct pwm_state *state)
 426{
 427        struct pwm_state *last = &pwm->last;
 428        struct pwm_chip *chip = pwm->chip;
 429        struct pwm_state s1, s2;
 430        int err;
 431
 432        if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 433                return;
 434
 435        /* No reasonable diagnosis possible without .get_state() */
 436        if (!chip->ops->get_state)
 437                return;
 438
 439        /*
 440         * *state was just applied. Read out the hardware state and do some
 441         * checks.
 442         */
 443
 444        chip->ops->get_state(chip, pwm, &s1);
 445        trace_pwm_get(pwm, &s1);
 446
 447        /*
 448         * The lowlevel driver either ignored .polarity (which is a bug) or as
 449         * best effort inverted .polarity and fixed .duty_cycle respectively.
 450         * Undo this inversion and fixup for further tests.
 451         */
 452        if (s1.enabled && s1.polarity != state->polarity) {
 453                s2.polarity = state->polarity;
 454                s2.duty_cycle = s1.period - s1.duty_cycle;
 455                s2.period = s1.period;
 456                s2.enabled = s1.enabled;
 457        } else {
 458                s2 = s1;
 459        }
 460
 461        if (s2.polarity != state->polarity &&
 462            state->duty_cycle < state->period)
 463                dev_warn(chip->dev, ".apply ignored .polarity\n");
 464
 465        if (state->enabled &&
 466            last->polarity == state->polarity &&
 467            last->period > s2.period &&
 468            last->period <= state->period)
 469                dev_warn(chip->dev,
 470                         ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 471                         state->period, s2.period, last->period);
 472
 473        if (state->enabled && state->period < s2.period)
 474                dev_warn(chip->dev,
 475                         ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 476                         state->period, s2.period);
 477
 478        if (state->enabled &&
 479            last->polarity == state->polarity &&
 480            last->period == s2.period &&
 481            last->duty_cycle > s2.duty_cycle &&
 482            last->duty_cycle <= state->duty_cycle)
 483                dev_warn(chip->dev,
 484                         ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 485                         state->duty_cycle, state->period,
 486                         s2.duty_cycle, s2.period,
 487                         last->duty_cycle, last->period);
 488
 489        if (state->enabled && state->duty_cycle < s2.duty_cycle)
 490                dev_warn(chip->dev,
 491                         ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 492                         state->duty_cycle, state->period,
 493                         s2.duty_cycle, s2.period);
 494
 495        if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 496                dev_warn(chip->dev,
 497                         "requested disabled, but yielded enabled with duty > 0\n");
 498
 499        /* reapply the state that the driver reported being configured. */
 500        err = chip->ops->apply(chip, pwm, &s1);
 501        if (err) {
 502                *last = s1;
 503                dev_err(chip->dev, "failed to reapply current setting\n");
 504                return;
 505        }
 506
 507        trace_pwm_apply(pwm, &s1);
 508
 509        chip->ops->get_state(chip, pwm, last);
 510        trace_pwm_get(pwm, last);
 511
 512        /* reapplication of the current state should give an exact match */
 513        if (s1.enabled != last->enabled ||
 514            s1.polarity != last->polarity ||
 515            (s1.enabled && s1.period != last->period) ||
 516            (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 517                dev_err(chip->dev,
 518                        ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 519                        s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 520                        last->enabled, last->polarity, last->duty_cycle,
 521                        last->period);
 522        }
 523}
 524
 525/**
 526 * pwm_apply_state() - atomically apply a new state to a PWM device
 527 * @pwm: PWM device
 528 * @state: new state to apply
 529 */
 530int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 531{
 532        struct pwm_chip *chip;
 533        int err;
 534
 535        if (!pwm || !state || !state->period ||
 536            state->duty_cycle > state->period)
 537                return -EINVAL;
 538
 539        chip = pwm->chip;
 540
 541        if (state->period == pwm->state.period &&
 542            state->duty_cycle == pwm->state.duty_cycle &&
 543            state->polarity == pwm->state.polarity &&
 544            state->enabled == pwm->state.enabled &&
 545            state->usage_power == pwm->state.usage_power)
 546                return 0;
 547
 548        if (chip->ops->apply) {
 549                err = chip->ops->apply(chip, pwm, state);
 550                if (err)
 551                        return err;
 552
 553                trace_pwm_apply(pwm, state);
 554
 555                pwm->state = *state;
 556
 557                /*
 558                 * only do this after pwm->state was applied as some
 559                 * implementations of .get_state depend on this
 560                 */
 561                pwm_apply_state_debug(pwm, state);
 562        } else {
 563                /*
 564                 * FIXME: restore the initial state in case of error.
 565                 */
 566                if (state->polarity != pwm->state.polarity) {
 567                        if (!chip->ops->set_polarity)
 568                                return -EINVAL;
 569
 570                        /*
 571                         * Changing the polarity of a running PWM is
 572                         * only allowed when the PWM driver implements
 573                         * ->apply().
 574                         */
 575                        if (pwm->state.enabled) {
 576                                chip->ops->disable(chip, pwm);
 577                                pwm->state.enabled = false;
 578                        }
 579
 580                        err = chip->ops->set_polarity(chip, pwm,
 581                                                      state->polarity);
 582                        if (err)
 583                                return err;
 584
 585                        pwm->state.polarity = state->polarity;
 586                }
 587
 588                if (state->period != pwm->state.period ||
 589                    state->duty_cycle != pwm->state.duty_cycle) {
 590                        err = chip->ops->config(pwm->chip, pwm,
 591                                                state->duty_cycle,
 592                                                state->period);
 593                        if (err)
 594                                return err;
 595
 596                        pwm->state.duty_cycle = state->duty_cycle;
 597                        pwm->state.period = state->period;
 598                }
 599
 600                if (state->enabled != pwm->state.enabled) {
 601                        if (state->enabled) {
 602                                err = chip->ops->enable(chip, pwm);
 603                                if (err)
 604                                        return err;
 605                        } else {
 606                                chip->ops->disable(chip, pwm);
 607                        }
 608
 609                        pwm->state.enabled = state->enabled;
 610                }
 611        }
 612
 613        return 0;
 614}
 615EXPORT_SYMBOL_GPL(pwm_apply_state);
 616
 617/**
 618 * pwm_capture() - capture and report a PWM signal
 619 * @pwm: PWM device
 620 * @result: structure to fill with capture result
 621 * @timeout: time to wait, in milliseconds, before giving up on capture
 622 *
 623 * Returns: 0 on success or a negative error code on failure.
 624 */
 625int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 626                unsigned long timeout)
 627{
 628        int err;
 629
 630        if (!pwm || !pwm->chip->ops)
 631                return -EINVAL;
 632
 633        if (!pwm->chip->ops->capture)
 634                return -ENOSYS;
 635
 636        mutex_lock(&pwm_lock);
 637        err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 638        mutex_unlock(&pwm_lock);
 639
 640        return err;
 641}
 642EXPORT_SYMBOL_GPL(pwm_capture);
 643
 644/**
 645 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 646 * @pwm: PWM device
 647 *
 648 * This function will adjust the PWM config to the PWM arguments provided
 649 * by the DT or PWM lookup table. This is particularly useful to adapt
 650 * the bootloader config to the Linux one.
 651 */
 652int pwm_adjust_config(struct pwm_device *pwm)
 653{
 654        struct pwm_state state;
 655        struct pwm_args pargs;
 656
 657        pwm_get_args(pwm, &pargs);
 658        pwm_get_state(pwm, &state);
 659
 660        /*
 661         * If the current period is zero it means that either the PWM driver
 662         * does not support initial state retrieval or the PWM has not yet
 663         * been configured.
 664         *
 665         * In either case, we setup the new period and polarity, and assign a
 666         * duty cycle of 0.
 667         */
 668        if (!state.period) {
 669                state.duty_cycle = 0;
 670                state.period = pargs.period;
 671                state.polarity = pargs.polarity;
 672
 673                return pwm_apply_state(pwm, &state);
 674        }
 675
 676        /*
 677         * Adjust the PWM duty cycle/period based on the period value provided
 678         * in PWM args.
 679         */
 680        if (pargs.period != state.period) {
 681                u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 682
 683                do_div(dutycycle, state.period);
 684                state.duty_cycle = dutycycle;
 685                state.period = pargs.period;
 686        }
 687
 688        /*
 689         * If the polarity changed, we should also change the duty cycle.
 690         */
 691        if (pargs.polarity != state.polarity) {
 692                state.polarity = pargs.polarity;
 693                state.duty_cycle = state.period - state.duty_cycle;
 694        }
 695
 696        return pwm_apply_state(pwm, &state);
 697}
 698EXPORT_SYMBOL_GPL(pwm_adjust_config);
 699
 700static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 701{
 702        struct pwm_chip *chip;
 703
 704        mutex_lock(&pwm_lock);
 705
 706        list_for_each_entry(chip, &pwm_chips, list)
 707                if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
 708                        mutex_unlock(&pwm_lock);
 709                        return chip;
 710                }
 711
 712        mutex_unlock(&pwm_lock);
 713
 714        return ERR_PTR(-EPROBE_DEFER);
 715}
 716
 717static struct device_link *pwm_device_link_add(struct device *dev,
 718                                               struct pwm_device *pwm)
 719{
 720        struct device_link *dl;
 721
 722        if (!dev) {
 723                /*
 724                 * No device for the PWM consumer has been provided. It may
 725                 * impact the PM sequence ordering: the PWM supplier may get
 726                 * suspended before the consumer.
 727                 */
 728                dev_warn(pwm->chip->dev,
 729                         "No consumer device specified to create a link to\n");
 730                return NULL;
 731        }
 732
 733        dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 734        if (!dl) {
 735                dev_err(dev, "failed to create device link to %s\n",
 736                        dev_name(pwm->chip->dev));
 737                return ERR_PTR(-EINVAL);
 738        }
 739
 740        return dl;
 741}
 742
 743/**
 744 * of_pwm_get() - request a PWM via the PWM framework
 745 * @dev: device for PWM consumer
 746 * @np: device node to get the PWM from
 747 * @con_id: consumer name
 748 *
 749 * Returns the PWM device parsed from the phandle and index specified in the
 750 * "pwms" property of a device tree node or a negative error-code on failure.
 751 * Values parsed from the device tree are stored in the returned PWM device
 752 * object.
 753 *
 754 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 755 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 756 * lookup of the PWM index. This also means that the "pwm-names" property
 757 * becomes mandatory for devices that look up the PWM device via the con_id
 758 * parameter.
 759 *
 760 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 761 * error code on failure.
 762 */
 763struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 764                              const char *con_id)
 765{
 766        struct pwm_device *pwm = NULL;
 767        struct of_phandle_args args;
 768        struct device_link *dl;
 769        struct pwm_chip *pc;
 770        int index = 0;
 771        int err;
 772
 773        if (con_id) {
 774                index = of_property_match_string(np, "pwm-names", con_id);
 775                if (index < 0)
 776                        return ERR_PTR(index);
 777        }
 778
 779        err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 780                                         &args);
 781        if (err) {
 782                pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 783                return ERR_PTR(err);
 784        }
 785
 786        pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 787        if (IS_ERR(pc)) {
 788                if (PTR_ERR(pc) != -EPROBE_DEFER)
 789                        pr_err("%s(): PWM chip not found\n", __func__);
 790
 791                pwm = ERR_CAST(pc);
 792                goto put;
 793        }
 794
 795        pwm = pc->of_xlate(pc, &args);
 796        if (IS_ERR(pwm))
 797                goto put;
 798
 799        dl = pwm_device_link_add(dev, pwm);
 800        if (IS_ERR(dl)) {
 801                /* of_xlate ended up calling pwm_request_from_chip() */
 802                pwm_free(pwm);
 803                pwm = ERR_CAST(dl);
 804                goto put;
 805        }
 806
 807        /*
 808         * If a consumer name was not given, try to look it up from the
 809         * "pwm-names" property if it exists. Otherwise use the name of
 810         * the user device node.
 811         */
 812        if (!con_id) {
 813                err = of_property_read_string_index(np, "pwm-names", index,
 814                                                    &con_id);
 815                if (err < 0)
 816                        con_id = np->name;
 817        }
 818
 819        pwm->label = con_id;
 820
 821put:
 822        of_node_put(args.np);
 823
 824        return pwm;
 825}
 826EXPORT_SYMBOL_GPL(of_pwm_get);
 827
 828/**
 829 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 830 * @fwnode: firmware node to get the "pwms" property from
 831 *
 832 * Returns the PWM device parsed from the fwnode and index specified in the
 833 * "pwms" property or a negative error-code on failure.
 834 * Values parsed from the device tree are stored in the returned PWM device
 835 * object.
 836 *
 837 * This is analogous to of_pwm_get() except con_id is not yet supported.
 838 * ACPI entries must look like
 839 * Package () {"pwms", Package ()
 840 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 841 *
 842 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 843 * error code on failure.
 844 */
 845static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 846{
 847        struct pwm_device *pwm;
 848        struct fwnode_reference_args args;
 849        struct pwm_chip *chip;
 850        int ret;
 851
 852        memset(&args, 0, sizeof(args));
 853
 854        ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 855        if (ret < 0)
 856                return ERR_PTR(ret);
 857
 858        if (args.nargs < 2)
 859                return ERR_PTR(-EPROTO);
 860
 861        chip = fwnode_to_pwmchip(args.fwnode);
 862        if (IS_ERR(chip))
 863                return ERR_CAST(chip);
 864
 865        pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 866        if (IS_ERR(pwm))
 867                return pwm;
 868
 869        pwm->args.period = args.args[1];
 870        pwm->args.polarity = PWM_POLARITY_NORMAL;
 871
 872        if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 873                pwm->args.polarity = PWM_POLARITY_INVERSED;
 874
 875        return pwm;
 876}
 877
 878/**
 879 * pwm_add_table() - register PWM device consumers
 880 * @table: array of consumers to register
 881 * @num: number of consumers in table
 882 */
 883void pwm_add_table(struct pwm_lookup *table, size_t num)
 884{
 885        mutex_lock(&pwm_lookup_lock);
 886
 887        while (num--) {
 888                list_add_tail(&table->list, &pwm_lookup_list);
 889                table++;
 890        }
 891
 892        mutex_unlock(&pwm_lookup_lock);
 893}
 894
 895/**
 896 * pwm_remove_table() - unregister PWM device consumers
 897 * @table: array of consumers to unregister
 898 * @num: number of consumers in table
 899 */
 900void pwm_remove_table(struct pwm_lookup *table, size_t num)
 901{
 902        mutex_lock(&pwm_lookup_lock);
 903
 904        while (num--) {
 905                list_del(&table->list);
 906                table++;
 907        }
 908
 909        mutex_unlock(&pwm_lookup_lock);
 910}
 911
 912/**
 913 * pwm_get() - look up and request a PWM device
 914 * @dev: device for PWM consumer
 915 * @con_id: consumer name
 916 *
 917 * Lookup is first attempted using DT. If the device was not instantiated from
 918 * a device tree, a PWM chip and a relative index is looked up via a table
 919 * supplied by board setup code (see pwm_add_table()).
 920 *
 921 * Once a PWM chip has been found the specified PWM device will be requested
 922 * and is ready to be used.
 923 *
 924 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 925 * error code on failure.
 926 */
 927struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 928{
 929        const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 930        const char *dev_id = dev ? dev_name(dev) : NULL;
 931        struct pwm_device *pwm;
 932        struct pwm_chip *chip;
 933        struct device_link *dl;
 934        unsigned int best = 0;
 935        struct pwm_lookup *p, *chosen = NULL;
 936        unsigned int match;
 937        int err;
 938
 939        /* look up via DT first */
 940        if (is_of_node(fwnode))
 941                return of_pwm_get(dev, to_of_node(fwnode), con_id);
 942
 943        /* then lookup via ACPI */
 944        if (is_acpi_node(fwnode)) {
 945                pwm = acpi_pwm_get(fwnode);
 946                if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 947                        return pwm;
 948        }
 949
 950        /*
 951         * We look up the provider in the static table typically provided by
 952         * board setup code. We first try to lookup the consumer device by
 953         * name. If the consumer device was passed in as NULL or if no match
 954         * was found, we try to find the consumer by directly looking it up
 955         * by name.
 956         *
 957         * If a match is found, the provider PWM chip is looked up by name
 958         * and a PWM device is requested using the PWM device per-chip index.
 959         *
 960         * The lookup algorithm was shamelessly taken from the clock
 961         * framework:
 962         *
 963         * We do slightly fuzzy matching here:
 964         *  An entry with a NULL ID is assumed to be a wildcard.
 965         *  If an entry has a device ID, it must match
 966         *  If an entry has a connection ID, it must match
 967         * Then we take the most specific entry - with the following order
 968         * of precedence: dev+con > dev only > con only.
 969         */
 970        mutex_lock(&pwm_lookup_lock);
 971
 972        list_for_each_entry(p, &pwm_lookup_list, list) {
 973                match = 0;
 974
 975                if (p->dev_id) {
 976                        if (!dev_id || strcmp(p->dev_id, dev_id))
 977                                continue;
 978
 979                        match += 2;
 980                }
 981
 982                if (p->con_id) {
 983                        if (!con_id || strcmp(p->con_id, con_id))
 984                                continue;
 985
 986                        match += 1;
 987                }
 988
 989                if (match > best) {
 990                        chosen = p;
 991
 992                        if (match != 3)
 993                                best = match;
 994                        else
 995                                break;
 996                }
 997        }
 998
 999        mutex_unlock(&pwm_lookup_lock);
1000
1001        if (!chosen)
1002                return ERR_PTR(-ENODEV);
1003
1004        chip = pwmchip_find_by_name(chosen->provider);
1005
1006        /*
1007         * If the lookup entry specifies a module, load the module and retry
1008         * the PWM chip lookup. This can be used to work around driver load
1009         * ordering issues if driver's can't be made to properly support the
1010         * deferred probe mechanism.
1011         */
1012        if (!chip && chosen->module) {
1013                err = request_module(chosen->module);
1014                if (err == 0)
1015                        chip = pwmchip_find_by_name(chosen->provider);
1016        }
1017
1018        if (!chip)
1019                return ERR_PTR(-EPROBE_DEFER);
1020
1021        pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1022        if (IS_ERR(pwm))
1023                return pwm;
1024
1025        dl = pwm_device_link_add(dev, pwm);
1026        if (IS_ERR(dl)) {
1027                pwm_free(pwm);
1028                return ERR_CAST(dl);
1029        }
1030
1031        pwm->args.period = chosen->period;
1032        pwm->args.polarity = chosen->polarity;
1033
1034        return pwm;
1035}
1036EXPORT_SYMBOL_GPL(pwm_get);
1037
1038/**
1039 * pwm_put() - release a PWM device
1040 * @pwm: PWM device
1041 */
1042void pwm_put(struct pwm_device *pwm)
1043{
1044        if (!pwm)
1045                return;
1046
1047        mutex_lock(&pwm_lock);
1048
1049        if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1050                pr_warn("PWM device already freed\n");
1051                goto out;
1052        }
1053
1054        if (pwm->chip->ops->free)
1055                pwm->chip->ops->free(pwm->chip, pwm);
1056
1057        pwm_set_chip_data(pwm, NULL);
1058        pwm->label = NULL;
1059
1060        module_put(pwm->chip->ops->owner);
1061out:
1062        mutex_unlock(&pwm_lock);
1063}
1064EXPORT_SYMBOL_GPL(pwm_put);
1065
1066static void devm_pwm_release(void *pwm)
1067{
1068        pwm_put(pwm);
1069}
1070
1071/**
1072 * devm_pwm_get() - resource managed pwm_get()
1073 * @dev: device for PWM consumer
1074 * @con_id: consumer name
1075 *
1076 * This function performs like pwm_get() but the acquired PWM device will
1077 * automatically be released on driver detach.
1078 *
1079 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1080 * error code on failure.
1081 */
1082struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1083{
1084        struct pwm_device *pwm;
1085        int ret;
1086
1087        pwm = pwm_get(dev, con_id);
1088        if (IS_ERR(pwm))
1089                return pwm;
1090
1091        ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1092        if (ret)
1093                return ERR_PTR(ret);
1094
1095        return pwm;
1096}
1097EXPORT_SYMBOL_GPL(devm_pwm_get);
1098
1099/**
1100 * devm_of_pwm_get() - resource managed of_pwm_get()
1101 * @dev: device for PWM consumer
1102 * @np: device node to get the PWM from
1103 * @con_id: consumer name
1104 *
1105 * This function performs like of_pwm_get() but the acquired PWM device will
1106 * automatically be released on driver detach.
1107 *
1108 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1109 * error code on failure.
1110 */
1111struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1112                                   const char *con_id)
1113{
1114        struct pwm_device *pwm;
1115        int ret;
1116
1117        pwm = of_pwm_get(dev, np, con_id);
1118        if (IS_ERR(pwm))
1119                return pwm;
1120
1121        ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1122        if (ret)
1123                return ERR_PTR(ret);
1124
1125        return pwm;
1126}
1127EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1128
1129/**
1130 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1131 * @dev: device for PWM consumer
1132 * @fwnode: firmware node to get the PWM from
1133 * @con_id: consumer name
1134 *
1135 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1136 * acpi_pwm_get() for a detailed description.
1137 *
1138 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1139 * error code on failure.
1140 */
1141struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1142                                       struct fwnode_handle *fwnode,
1143                                       const char *con_id)
1144{
1145        struct pwm_device *pwm = ERR_PTR(-ENODEV);
1146        int ret;
1147
1148        if (is_of_node(fwnode))
1149                pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1150        else if (is_acpi_node(fwnode))
1151                pwm = acpi_pwm_get(fwnode);
1152        if (IS_ERR(pwm))
1153                return pwm;
1154
1155        ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1156        if (ret)
1157                return ERR_PTR(ret);
1158
1159        return pwm;
1160}
1161EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1162
1163#ifdef CONFIG_DEBUG_FS
1164static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1165{
1166        unsigned int i;
1167
1168        for (i = 0; i < chip->npwm; i++) {
1169                struct pwm_device *pwm = &chip->pwms[i];
1170                struct pwm_state state;
1171
1172                pwm_get_state(pwm, &state);
1173
1174                seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1175
1176                if (test_bit(PWMF_REQUESTED, &pwm->flags))
1177                        seq_puts(s, " requested");
1178
1179                if (state.enabled)
1180                        seq_puts(s, " enabled");
1181
1182                seq_printf(s, " period: %llu ns", state.period);
1183                seq_printf(s, " duty: %llu ns", state.duty_cycle);
1184                seq_printf(s, " polarity: %s",
1185                           state.polarity ? "inverse" : "normal");
1186
1187                if (state.usage_power)
1188                        seq_puts(s, " usage_power");
1189
1190                seq_puts(s, "\n");
1191        }
1192}
1193
1194static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1195{
1196        mutex_lock(&pwm_lock);
1197        s->private = "";
1198
1199        return seq_list_start(&pwm_chips, *pos);
1200}
1201
1202static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1203{
1204        s->private = "\n";
1205
1206        return seq_list_next(v, &pwm_chips, pos);
1207}
1208
1209static void pwm_seq_stop(struct seq_file *s, void *v)
1210{
1211        mutex_unlock(&pwm_lock);
1212}
1213
1214static int pwm_seq_show(struct seq_file *s, void *v)
1215{
1216        struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1217
1218        seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1219                   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1220                   dev_name(chip->dev), chip->npwm,
1221                   (chip->npwm != 1) ? "s" : "");
1222
1223        pwm_dbg_show(chip, s);
1224
1225        return 0;
1226}
1227
1228static const struct seq_operations pwm_debugfs_sops = {
1229        .start = pwm_seq_start,
1230        .next = pwm_seq_next,
1231        .stop = pwm_seq_stop,
1232        .show = pwm_seq_show,
1233};
1234
1235DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1236
1237static int __init pwm_debugfs_init(void)
1238{
1239        debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1240                            &pwm_debugfs_fops);
1241
1242        return 0;
1243}
1244subsys_initcall(pwm_debugfs_init);
1245#endif /* CONFIG_DEBUG_FS */
1246