linux/drivers/pwm/pwm-tegra.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * drivers/pwm/pwm-tegra.c
   4 *
   5 * Tegra pulse-width-modulation controller driver
   6 *
   7 * Copyright (c) 2010-2020, NVIDIA Corporation.
   8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
   9 *
  10 * Overview of Tegra Pulse Width Modulator Register:
  11 * 1. 13-bit: Frequency division (SCALE)
  12 * 2. 8-bit : Pulse division (DUTY)
  13 * 3. 1-bit : Enable bit
  14 *
  15 * The PWM clock frequency is divided by 256 before subdividing it based
  16 * on the programmable frequency division value to generate the required
  17 * frequency for PWM output. The maximum output frequency that can be
  18 * achieved is (max rate of source clock) / 256.
  19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
  20 * 408 MHz/256 = 1.6 MHz.
  21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
  22 *
  23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
  24 * To achieve 100% duty cycle, program Bit [24] of this register to
  25 * 1’b1. In which case the other bits [23:16] are set to don't care.
  26 *
  27 * Limitations:
  28 * -    When PWM is disabled, the output is driven to inactive.
  29 * -    It does not allow the current PWM period to complete and
  30 *      stops abruptly.
  31 *
  32 * -    If the register is reconfigured while PWM is running,
  33 *      it does not complete the currently running period.
  34 *
  35 * -    If the user input duty is beyond acceptible limits,
  36 *      -EINVAL is returned.
  37 */
  38
  39#include <linux/clk.h>
  40#include <linux/err.h>
  41#include <linux/io.h>
  42#include <linux/module.h>
  43#include <linux/of.h>
  44#include <linux/of_device.h>
  45#include <linux/pwm.h>
  46#include <linux/platform_device.h>
  47#include <linux/pinctrl/consumer.h>
  48#include <linux/slab.h>
  49#include <linux/reset.h>
  50
  51#define PWM_ENABLE      (1 << 31)
  52#define PWM_DUTY_WIDTH  8
  53#define PWM_DUTY_SHIFT  16
  54#define PWM_SCALE_WIDTH 13
  55#define PWM_SCALE_SHIFT 0
  56
  57struct tegra_pwm_soc {
  58        unsigned int num_channels;
  59
  60        /* Maximum IP frequency for given SoCs */
  61        unsigned long max_frequency;
  62};
  63
  64struct tegra_pwm_chip {
  65        struct pwm_chip chip;
  66        struct device *dev;
  67
  68        struct clk *clk;
  69        struct reset_control*rst;
  70
  71        unsigned long clk_rate;
  72        unsigned long min_period_ns;
  73
  74        void __iomem *regs;
  75
  76        const struct tegra_pwm_soc *soc;
  77};
  78
  79static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
  80{
  81        return container_of(chip, struct tegra_pwm_chip, chip);
  82}
  83
  84static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
  85{
  86        return readl(chip->regs + (num << 4));
  87}
  88
  89static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
  90                             unsigned long val)
  91{
  92        writel(val, chip->regs + (num << 4));
  93}
  94
  95static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
  96                            int duty_ns, int period_ns)
  97{
  98        struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
  99        unsigned long long c = duty_ns, hz;
 100        unsigned long rate, required_clk_rate;
 101        u32 val = 0;
 102        int err;
 103
 104        /*
 105         * Convert from duty_ns / period_ns to a fixed number of duty ticks
 106         * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
 107         * nearest integer during division.
 108         */
 109        c *= (1 << PWM_DUTY_WIDTH);
 110        c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
 111
 112        val = (u32)c << PWM_DUTY_SHIFT;
 113
 114        /*
 115         *  min period = max clock limit >> PWM_DUTY_WIDTH
 116         */
 117        if (period_ns < pc->min_period_ns)
 118                return -EINVAL;
 119
 120        /*
 121         * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
 122         * cycles at the PWM clock rate will take period_ns nanoseconds.
 123         *
 124         * num_channels: If single instance of PWM controller has multiple
 125         * channels (e.g. Tegra210 or older) then it is not possible to
 126         * configure separate clock rates to each of the channels, in such
 127         * case the value stored during probe will be referred.
 128         *
 129         * If every PWM controller instance has one channel respectively, i.e.
 130         * nums_channels == 1 then only the clock rate can be modified
 131         * dynamically (e.g. Tegra186 or Tegra194).
 132         */
 133        if (pc->soc->num_channels == 1) {
 134                /*
 135                 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
 136                 * with the maximum possible rate that the controller can
 137                 * provide. Any further lower value can be derived by setting
 138                 * PFM bits[0:12].
 139                 *
 140                 * required_clk_rate is a reference rate for source clock and
 141                 * it is derived based on user requested period. By setting the
 142                 * source clock rate as required_clk_rate, PWM controller will
 143                 * be able to configure the requested period.
 144                 */
 145                required_clk_rate =
 146                        (NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
 147
 148                err = clk_set_rate(pc->clk, required_clk_rate);
 149                if (err < 0)
 150                        return -EINVAL;
 151
 152                /* Store the new rate for further references */
 153                pc->clk_rate = clk_get_rate(pc->clk);
 154        }
 155
 156        rate = pc->clk_rate >> PWM_DUTY_WIDTH;
 157
 158        /* Consider precision in PWM_SCALE_WIDTH rate calculation */
 159        hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
 160        rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
 161
 162        /*
 163         * Since the actual PWM divider is the register's frequency divider
 164         * field plus 1, we need to decrement to get the correct value to
 165         * write to the register.
 166         */
 167        if (rate > 0)
 168                rate--;
 169
 170        /*
 171         * Make sure that the rate will fit in the register's frequency
 172         * divider field.
 173         */
 174        if (rate >> PWM_SCALE_WIDTH)
 175                return -EINVAL;
 176
 177        val |= rate << PWM_SCALE_SHIFT;
 178
 179        /*
 180         * If the PWM channel is disabled, make sure to turn on the clock
 181         * before writing the register. Otherwise, keep it enabled.
 182         */
 183        if (!pwm_is_enabled(pwm)) {
 184                err = clk_prepare_enable(pc->clk);
 185                if (err < 0)
 186                        return err;
 187        } else
 188                val |= PWM_ENABLE;
 189
 190        pwm_writel(pc, pwm->hwpwm, val);
 191
 192        /*
 193         * If the PWM is not enabled, turn the clock off again to save power.
 194         */
 195        if (!pwm_is_enabled(pwm))
 196                clk_disable_unprepare(pc->clk);
 197
 198        return 0;
 199}
 200
 201static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
 202{
 203        struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
 204        int rc = 0;
 205        u32 val;
 206
 207        rc = clk_prepare_enable(pc->clk);
 208        if (rc < 0)
 209                return rc;
 210
 211        val = pwm_readl(pc, pwm->hwpwm);
 212        val |= PWM_ENABLE;
 213        pwm_writel(pc, pwm->hwpwm, val);
 214
 215        return 0;
 216}
 217
 218static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
 219{
 220        struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
 221        u32 val;
 222
 223        val = pwm_readl(pc, pwm->hwpwm);
 224        val &= ~PWM_ENABLE;
 225        pwm_writel(pc, pwm->hwpwm, val);
 226
 227        clk_disable_unprepare(pc->clk);
 228}
 229
 230static const struct pwm_ops tegra_pwm_ops = {
 231        .config = tegra_pwm_config,
 232        .enable = tegra_pwm_enable,
 233        .disable = tegra_pwm_disable,
 234        .owner = THIS_MODULE,
 235};
 236
 237static int tegra_pwm_probe(struct platform_device *pdev)
 238{
 239        struct tegra_pwm_chip *pwm;
 240        int ret;
 241
 242        pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
 243        if (!pwm)
 244                return -ENOMEM;
 245
 246        pwm->soc = of_device_get_match_data(&pdev->dev);
 247        pwm->dev = &pdev->dev;
 248
 249        pwm->regs = devm_platform_ioremap_resource(pdev, 0);
 250        if (IS_ERR(pwm->regs))
 251                return PTR_ERR(pwm->regs);
 252
 253        platform_set_drvdata(pdev, pwm);
 254
 255        pwm->clk = devm_clk_get(&pdev->dev, NULL);
 256        if (IS_ERR(pwm->clk))
 257                return PTR_ERR(pwm->clk);
 258
 259        /* Set maximum frequency of the IP */
 260        ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
 261        if (ret < 0) {
 262                dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
 263                return ret;
 264        }
 265
 266        /*
 267         * The requested and configured frequency may differ due to
 268         * clock register resolutions. Get the configured frequency
 269         * so that PWM period can be calculated more accurately.
 270         */
 271        pwm->clk_rate = clk_get_rate(pwm->clk);
 272
 273        /* Set minimum limit of PWM period for the IP */
 274        pwm->min_period_ns =
 275            (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
 276
 277        pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
 278        if (IS_ERR(pwm->rst)) {
 279                ret = PTR_ERR(pwm->rst);
 280                dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
 281                return ret;
 282        }
 283
 284        reset_control_deassert(pwm->rst);
 285
 286        pwm->chip.dev = &pdev->dev;
 287        pwm->chip.ops = &tegra_pwm_ops;
 288        pwm->chip.npwm = pwm->soc->num_channels;
 289
 290        ret = pwmchip_add(&pwm->chip);
 291        if (ret < 0) {
 292                dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
 293                reset_control_assert(pwm->rst);
 294                return ret;
 295        }
 296
 297        return 0;
 298}
 299
 300static int tegra_pwm_remove(struct platform_device *pdev)
 301{
 302        struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
 303
 304        pwmchip_remove(&pc->chip);
 305
 306        reset_control_assert(pc->rst);
 307
 308        return 0;
 309}
 310
 311#ifdef CONFIG_PM_SLEEP
 312static int tegra_pwm_suspend(struct device *dev)
 313{
 314        return pinctrl_pm_select_sleep_state(dev);
 315}
 316
 317static int tegra_pwm_resume(struct device *dev)
 318{
 319        return pinctrl_pm_select_default_state(dev);
 320}
 321#endif
 322
 323static const struct tegra_pwm_soc tegra20_pwm_soc = {
 324        .num_channels = 4,
 325        .max_frequency = 48000000UL,
 326};
 327
 328static const struct tegra_pwm_soc tegra186_pwm_soc = {
 329        .num_channels = 1,
 330        .max_frequency = 102000000UL,
 331};
 332
 333static const struct tegra_pwm_soc tegra194_pwm_soc = {
 334        .num_channels = 1,
 335        .max_frequency = 408000000UL,
 336};
 337
 338static const struct of_device_id tegra_pwm_of_match[] = {
 339        { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
 340        { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
 341        { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
 342        { }
 343};
 344MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
 345
 346static const struct dev_pm_ops tegra_pwm_pm_ops = {
 347        SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
 348};
 349
 350static struct platform_driver tegra_pwm_driver = {
 351        .driver = {
 352                .name = "tegra-pwm",
 353                .of_match_table = tegra_pwm_of_match,
 354                .pm = &tegra_pwm_pm_ops,
 355        },
 356        .probe = tegra_pwm_probe,
 357        .remove = tegra_pwm_remove,
 358};
 359
 360module_platform_driver(tegra_pwm_driver);
 361
 362MODULE_LICENSE("GPL");
 363MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
 364MODULE_DESCRIPTION("Tegra PWM controller driver");
 365MODULE_ALIAS("platform:tegra-pwm");
 366