linux/drivers/rapidio/rio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RapidIO interconnect services
   4 * (RapidIO Interconnect Specification, http://www.rapidio.org)
   5 *
   6 * Copyright 2005 MontaVista Software, Inc.
   7 * Matt Porter <mporter@kernel.crashing.org>
   8 *
   9 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
  10 * Alex Bounine <alexandre.bounine@idt.com>
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/kernel.h>
  15
  16#include <linux/delay.h>
  17#include <linux/init.h>
  18#include <linux/rio.h>
  19#include <linux/rio_drv.h>
  20#include <linux/rio_ids.h>
  21#include <linux/rio_regs.h>
  22#include <linux/module.h>
  23#include <linux/spinlock.h>
  24#include <linux/slab.h>
  25#include <linux/interrupt.h>
  26
  27#include "rio.h"
  28
  29/*
  30 * struct rio_pwrite - RIO portwrite event
  31 * @node:    Node in list of doorbell events
  32 * @pwcback: Doorbell event callback
  33 * @context: Handler specific context to pass on event
  34 */
  35struct rio_pwrite {
  36        struct list_head node;
  37
  38        int (*pwcback)(struct rio_mport *mport, void *context,
  39                       union rio_pw_msg *msg, int step);
  40        void *context;
  41};
  42
  43MODULE_DESCRIPTION("RapidIO Subsystem Core");
  44MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
  45MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
  46MODULE_LICENSE("GPL");
  47
  48static int hdid[RIO_MAX_MPORTS];
  49static int ids_num;
  50module_param_array(hdid, int, &ids_num, 0);
  51MODULE_PARM_DESC(hdid,
  52        "Destination ID assignment to local RapidIO controllers");
  53
  54static LIST_HEAD(rio_devices);
  55static LIST_HEAD(rio_nets);
  56static DEFINE_SPINLOCK(rio_global_list_lock);
  57
  58static LIST_HEAD(rio_mports);
  59static LIST_HEAD(rio_scans);
  60static DEFINE_MUTEX(rio_mport_list_lock);
  61static unsigned char next_portid;
  62static DEFINE_SPINLOCK(rio_mmap_lock);
  63
  64/**
  65 * rio_local_get_device_id - Get the base/extended device id for a port
  66 * @port: RIO master port from which to get the deviceid
  67 *
  68 * Reads the base/extended device id from the local device
  69 * implementing the master port. Returns the 8/16-bit device
  70 * id.
  71 */
  72u16 rio_local_get_device_id(struct rio_mport *port)
  73{
  74        u32 result;
  75
  76        rio_local_read_config_32(port, RIO_DID_CSR, &result);
  77
  78        return (RIO_GET_DID(port->sys_size, result));
  79}
  80EXPORT_SYMBOL_GPL(rio_local_get_device_id);
  81
  82/**
  83 * rio_query_mport - Query mport device attributes
  84 * @port: mport device to query
  85 * @mport_attr: mport attributes data structure
  86 *
  87 * Returns attributes of specified mport through the
  88 * pointer to attributes data structure.
  89 */
  90int rio_query_mport(struct rio_mport *port,
  91                    struct rio_mport_attr *mport_attr)
  92{
  93        if (!port->ops->query_mport)
  94                return -ENODATA;
  95        return port->ops->query_mport(port, mport_attr);
  96}
  97EXPORT_SYMBOL(rio_query_mport);
  98
  99/**
 100 * rio_alloc_net- Allocate and initialize a new RIO network data structure
 101 * @mport: Master port associated with the RIO network
 102 *
 103 * Allocates a RIO network structure, initializes per-network
 104 * list heads, and adds the associated master port to the
 105 * network list of associated master ports. Returns a
 106 * RIO network pointer on success or %NULL on failure.
 107 */
 108struct rio_net *rio_alloc_net(struct rio_mport *mport)
 109{
 110        struct rio_net *net = kzalloc(sizeof(*net), GFP_KERNEL);
 111
 112        if (net) {
 113                INIT_LIST_HEAD(&net->node);
 114                INIT_LIST_HEAD(&net->devices);
 115                INIT_LIST_HEAD(&net->switches);
 116                INIT_LIST_HEAD(&net->mports);
 117                mport->net = net;
 118        }
 119        return net;
 120}
 121EXPORT_SYMBOL_GPL(rio_alloc_net);
 122
 123int rio_add_net(struct rio_net *net)
 124{
 125        int err;
 126
 127        err = device_register(&net->dev);
 128        if (err)
 129                return err;
 130        spin_lock(&rio_global_list_lock);
 131        list_add_tail(&net->node, &rio_nets);
 132        spin_unlock(&rio_global_list_lock);
 133
 134        return 0;
 135}
 136EXPORT_SYMBOL_GPL(rio_add_net);
 137
 138void rio_free_net(struct rio_net *net)
 139{
 140        spin_lock(&rio_global_list_lock);
 141        if (!list_empty(&net->node))
 142                list_del(&net->node);
 143        spin_unlock(&rio_global_list_lock);
 144        if (net->release)
 145                net->release(net);
 146        device_unregister(&net->dev);
 147}
 148EXPORT_SYMBOL_GPL(rio_free_net);
 149
 150/**
 151 * rio_local_set_device_id - Set the base/extended device id for a port
 152 * @port: RIO master port
 153 * @did: Device ID value to be written
 154 *
 155 * Writes the base/extended device id from a device.
 156 */
 157void rio_local_set_device_id(struct rio_mport *port, u16 did)
 158{
 159        rio_local_write_config_32(port, RIO_DID_CSR,
 160                                  RIO_SET_DID(port->sys_size, did));
 161}
 162EXPORT_SYMBOL_GPL(rio_local_set_device_id);
 163
 164/**
 165 * rio_add_device- Adds a RIO device to the device model
 166 * @rdev: RIO device
 167 *
 168 * Adds the RIO device to the global device list and adds the RIO
 169 * device to the RIO device list.  Creates the generic sysfs nodes
 170 * for an RIO device.
 171 */
 172int rio_add_device(struct rio_dev *rdev)
 173{
 174        int err;
 175
 176        atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
 177        err = device_register(&rdev->dev);
 178        if (err)
 179                return err;
 180
 181        spin_lock(&rio_global_list_lock);
 182        list_add_tail(&rdev->global_list, &rio_devices);
 183        if (rdev->net) {
 184                list_add_tail(&rdev->net_list, &rdev->net->devices);
 185                if (rdev->pef & RIO_PEF_SWITCH)
 186                        list_add_tail(&rdev->rswitch->node,
 187                                      &rdev->net->switches);
 188        }
 189        spin_unlock(&rio_global_list_lock);
 190
 191        return 0;
 192}
 193EXPORT_SYMBOL_GPL(rio_add_device);
 194
 195/*
 196 * rio_del_device - removes a RIO device from the device model
 197 * @rdev: RIO device
 198 * @state: device state to set during removal process
 199 *
 200 * Removes the RIO device to the kernel device list and subsystem's device list.
 201 * Clears sysfs entries for the removed device.
 202 */
 203void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
 204{
 205        pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
 206        atomic_set(&rdev->state, state);
 207        spin_lock(&rio_global_list_lock);
 208        list_del(&rdev->global_list);
 209        if (rdev->net) {
 210                list_del(&rdev->net_list);
 211                if (rdev->pef & RIO_PEF_SWITCH) {
 212                        list_del(&rdev->rswitch->node);
 213                        kfree(rdev->rswitch->route_table);
 214                }
 215        }
 216        spin_unlock(&rio_global_list_lock);
 217        device_unregister(&rdev->dev);
 218}
 219EXPORT_SYMBOL_GPL(rio_del_device);
 220
 221/**
 222 * rio_request_inb_mbox - request inbound mailbox service
 223 * @mport: RIO master port from which to allocate the mailbox resource
 224 * @dev_id: Device specific pointer to pass on event
 225 * @mbox: Mailbox number to claim
 226 * @entries: Number of entries in inbound mailbox queue
 227 * @minb: Callback to execute when inbound message is received
 228 *
 229 * Requests ownership of an inbound mailbox resource and binds
 230 * a callback function to the resource. Returns %0 on success.
 231 */
 232int rio_request_inb_mbox(struct rio_mport *mport,
 233                         void *dev_id,
 234                         int mbox,
 235                         int entries,
 236                         void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
 237                                       int slot))
 238{
 239        int rc = -ENOSYS;
 240        struct resource *res;
 241
 242        if (!mport->ops->open_inb_mbox)
 243                goto out;
 244
 245        res = kzalloc(sizeof(*res), GFP_KERNEL);
 246        if (res) {
 247                rio_init_mbox_res(res, mbox, mbox);
 248
 249                /* Make sure this mailbox isn't in use */
 250                rc = request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
 251                                      res);
 252                if (rc < 0) {
 253                        kfree(res);
 254                        goto out;
 255                }
 256
 257                mport->inb_msg[mbox].res = res;
 258
 259                /* Hook the inbound message callback */
 260                mport->inb_msg[mbox].mcback = minb;
 261
 262                rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
 263                if (rc) {
 264                        mport->inb_msg[mbox].mcback = NULL;
 265                        mport->inb_msg[mbox].res = NULL;
 266                        release_resource(res);
 267                        kfree(res);
 268                }
 269        } else
 270                rc = -ENOMEM;
 271
 272      out:
 273        return rc;
 274}
 275EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
 276
 277/**
 278 * rio_release_inb_mbox - release inbound mailbox message service
 279 * @mport: RIO master port from which to release the mailbox resource
 280 * @mbox: Mailbox number to release
 281 *
 282 * Releases ownership of an inbound mailbox resource. Returns 0
 283 * if the request has been satisfied.
 284 */
 285int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
 286{
 287        int rc;
 288
 289        if (!mport->ops->close_inb_mbox || !mport->inb_msg[mbox].res)
 290                return -EINVAL;
 291
 292        mport->ops->close_inb_mbox(mport, mbox);
 293        mport->inb_msg[mbox].mcback = NULL;
 294
 295        rc = release_resource(mport->inb_msg[mbox].res);
 296        if (rc)
 297                return rc;
 298
 299        kfree(mport->inb_msg[mbox].res);
 300        mport->inb_msg[mbox].res = NULL;
 301
 302        return 0;
 303}
 304EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
 305
 306/**
 307 * rio_request_outb_mbox - request outbound mailbox service
 308 * @mport: RIO master port from which to allocate the mailbox resource
 309 * @dev_id: Device specific pointer to pass on event
 310 * @mbox: Mailbox number to claim
 311 * @entries: Number of entries in outbound mailbox queue
 312 * @moutb: Callback to execute when outbound message is sent
 313 *
 314 * Requests ownership of an outbound mailbox resource and binds
 315 * a callback function to the resource. Returns 0 on success.
 316 */
 317int rio_request_outb_mbox(struct rio_mport *mport,
 318                          void *dev_id,
 319                          int mbox,
 320                          int entries,
 321                          void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
 322{
 323        int rc = -ENOSYS;
 324        struct resource *res;
 325
 326        if (!mport->ops->open_outb_mbox)
 327                goto out;
 328
 329        res = kzalloc(sizeof(*res), GFP_KERNEL);
 330        if (res) {
 331                rio_init_mbox_res(res, mbox, mbox);
 332
 333                /* Make sure this outbound mailbox isn't in use */
 334                rc = request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
 335                                      res);
 336                if (rc < 0) {
 337                        kfree(res);
 338                        goto out;
 339                }
 340
 341                mport->outb_msg[mbox].res = res;
 342
 343                /* Hook the inbound message callback */
 344                mport->outb_msg[mbox].mcback = moutb;
 345
 346                rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
 347                if (rc) {
 348                        mport->outb_msg[mbox].mcback = NULL;
 349                        mport->outb_msg[mbox].res = NULL;
 350                        release_resource(res);
 351                        kfree(res);
 352                }
 353        } else
 354                rc = -ENOMEM;
 355
 356      out:
 357        return rc;
 358}
 359EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
 360
 361/**
 362 * rio_release_outb_mbox - release outbound mailbox message service
 363 * @mport: RIO master port from which to release the mailbox resource
 364 * @mbox: Mailbox number to release
 365 *
 366 * Releases ownership of an inbound mailbox resource. Returns 0
 367 * if the request has been satisfied.
 368 */
 369int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
 370{
 371        int rc;
 372
 373        if (!mport->ops->close_outb_mbox || !mport->outb_msg[mbox].res)
 374                return -EINVAL;
 375
 376        mport->ops->close_outb_mbox(mport, mbox);
 377        mport->outb_msg[mbox].mcback = NULL;
 378
 379        rc = release_resource(mport->outb_msg[mbox].res);
 380        if (rc)
 381                return rc;
 382
 383        kfree(mport->outb_msg[mbox].res);
 384        mport->outb_msg[mbox].res = NULL;
 385
 386        return 0;
 387}
 388EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
 389
 390/**
 391 * rio_setup_inb_dbell - bind inbound doorbell callback
 392 * @mport: RIO master port to bind the doorbell callback
 393 * @dev_id: Device specific pointer to pass on event
 394 * @res: Doorbell message resource
 395 * @dinb: Callback to execute when doorbell is received
 396 *
 397 * Adds a doorbell resource/callback pair into a port's
 398 * doorbell event list. Returns 0 if the request has been
 399 * satisfied.
 400 */
 401static int
 402rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
 403                    void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
 404                                  u16 info))
 405{
 406        struct rio_dbell *dbell = kmalloc(sizeof(*dbell), GFP_KERNEL);
 407
 408        if (!dbell)
 409                return -ENOMEM;
 410
 411        dbell->res = res;
 412        dbell->dinb = dinb;
 413        dbell->dev_id = dev_id;
 414
 415        mutex_lock(&mport->lock);
 416        list_add_tail(&dbell->node, &mport->dbells);
 417        mutex_unlock(&mport->lock);
 418        return 0;
 419}
 420
 421/**
 422 * rio_request_inb_dbell - request inbound doorbell message service
 423 * @mport: RIO master port from which to allocate the doorbell resource
 424 * @dev_id: Device specific pointer to pass on event
 425 * @start: Doorbell info range start
 426 * @end: Doorbell info range end
 427 * @dinb: Callback to execute when doorbell is received
 428 *
 429 * Requests ownership of an inbound doorbell resource and binds
 430 * a callback function to the resource. Returns 0 if the request
 431 * has been satisfied.
 432 */
 433int rio_request_inb_dbell(struct rio_mport *mport,
 434                          void *dev_id,
 435                          u16 start,
 436                          u16 end,
 437                          void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
 438                                        u16 dst, u16 info))
 439{
 440        int rc;
 441        struct resource *res = kzalloc(sizeof(*res), GFP_KERNEL);
 442
 443        if (res) {
 444                rio_init_dbell_res(res, start, end);
 445
 446                /* Make sure these doorbells aren't in use */
 447                rc = request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
 448                                      res);
 449                if (rc < 0) {
 450                        kfree(res);
 451                        goto out;
 452                }
 453
 454                /* Hook the doorbell callback */
 455                rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
 456        } else
 457                rc = -ENOMEM;
 458
 459      out:
 460        return rc;
 461}
 462EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
 463
 464/**
 465 * rio_release_inb_dbell - release inbound doorbell message service
 466 * @mport: RIO master port from which to release the doorbell resource
 467 * @start: Doorbell info range start
 468 * @end: Doorbell info range end
 469 *
 470 * Releases ownership of an inbound doorbell resource and removes
 471 * callback from the doorbell event list. Returns 0 if the request
 472 * has been satisfied.
 473 */
 474int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
 475{
 476        int rc = 0, found = 0;
 477        struct rio_dbell *dbell;
 478
 479        mutex_lock(&mport->lock);
 480        list_for_each_entry(dbell, &mport->dbells, node) {
 481                if ((dbell->res->start == start) && (dbell->res->end == end)) {
 482                        list_del(&dbell->node);
 483                        found = 1;
 484                        break;
 485                }
 486        }
 487        mutex_unlock(&mport->lock);
 488
 489        /* If we can't find an exact match, fail */
 490        if (!found) {
 491                rc = -EINVAL;
 492                goto out;
 493        }
 494
 495        /* Release the doorbell resource */
 496        rc = release_resource(dbell->res);
 497
 498        /* Free the doorbell event */
 499        kfree(dbell);
 500
 501      out:
 502        return rc;
 503}
 504EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
 505
 506/**
 507 * rio_request_outb_dbell - request outbound doorbell message range
 508 * @rdev: RIO device from which to allocate the doorbell resource
 509 * @start: Doorbell message range start
 510 * @end: Doorbell message range end
 511 *
 512 * Requests ownership of a doorbell message range. Returns a resource
 513 * if the request has been satisfied or %NULL on failure.
 514 */
 515struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
 516                                        u16 end)
 517{
 518        struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
 519
 520        if (res) {
 521                rio_init_dbell_res(res, start, end);
 522
 523                /* Make sure these doorbells aren't in use */
 524                if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
 525                    < 0) {
 526                        kfree(res);
 527                        res = NULL;
 528                }
 529        }
 530
 531        return res;
 532}
 533EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
 534
 535/**
 536 * rio_release_outb_dbell - release outbound doorbell message range
 537 * @rdev: RIO device from which to release the doorbell resource
 538 * @res: Doorbell resource to be freed
 539 *
 540 * Releases ownership of a doorbell message range. Returns 0 if the
 541 * request has been satisfied.
 542 */
 543int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
 544{
 545        int rc = release_resource(res);
 546
 547        kfree(res);
 548
 549        return rc;
 550}
 551EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
 552
 553/**
 554 * rio_add_mport_pw_handler - add port-write message handler into the list
 555 *                            of mport specific pw handlers
 556 * @mport:   RIO master port to bind the portwrite callback
 557 * @context: Handler specific context to pass on event
 558 * @pwcback: Callback to execute when portwrite is received
 559 *
 560 * Returns 0 if the request has been satisfied.
 561 */
 562int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
 563                             int (*pwcback)(struct rio_mport *mport,
 564                             void *context, union rio_pw_msg *msg, int step))
 565{
 566        struct rio_pwrite *pwrite = kzalloc(sizeof(*pwrite), GFP_KERNEL);
 567
 568        if (!pwrite)
 569                return -ENOMEM;
 570
 571        pwrite->pwcback = pwcback;
 572        pwrite->context = context;
 573        mutex_lock(&mport->lock);
 574        list_add_tail(&pwrite->node, &mport->pwrites);
 575        mutex_unlock(&mport->lock);
 576        return 0;
 577}
 578EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
 579
 580/**
 581 * rio_del_mport_pw_handler - remove port-write message handler from the list
 582 *                            of mport specific pw handlers
 583 * @mport:   RIO master port to bind the portwrite callback
 584 * @context: Registered handler specific context to pass on event
 585 * @pwcback: Registered callback function
 586 *
 587 * Returns 0 if the request has been satisfied.
 588 */
 589int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
 590                             int (*pwcback)(struct rio_mport *mport,
 591                             void *context, union rio_pw_msg *msg, int step))
 592{
 593        int rc = -EINVAL;
 594        struct rio_pwrite *pwrite;
 595
 596        mutex_lock(&mport->lock);
 597        list_for_each_entry(pwrite, &mport->pwrites, node) {
 598                if (pwrite->pwcback == pwcback && pwrite->context == context) {
 599                        list_del(&pwrite->node);
 600                        kfree(pwrite);
 601                        rc = 0;
 602                        break;
 603                }
 604        }
 605        mutex_unlock(&mport->lock);
 606
 607        return rc;
 608}
 609EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
 610
 611/**
 612 * rio_request_inb_pwrite - request inbound port-write message service for
 613 *                          specific RapidIO device
 614 * @rdev: RIO device to which register inbound port-write callback routine
 615 * @pwcback: Callback routine to execute when port-write is received
 616 *
 617 * Binds a port-write callback function to the RapidIO device.
 618 * Returns 0 if the request has been satisfied.
 619 */
 620int rio_request_inb_pwrite(struct rio_dev *rdev,
 621        int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
 622{
 623        int rc = 0;
 624
 625        spin_lock(&rio_global_list_lock);
 626        if (rdev->pwcback)
 627                rc = -ENOMEM;
 628        else
 629                rdev->pwcback = pwcback;
 630
 631        spin_unlock(&rio_global_list_lock);
 632        return rc;
 633}
 634EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
 635
 636/**
 637 * rio_release_inb_pwrite - release inbound port-write message service
 638 *                          associated with specific RapidIO device
 639 * @rdev: RIO device which registered for inbound port-write callback
 640 *
 641 * Removes callback from the rio_dev structure. Returns 0 if the request
 642 * has been satisfied.
 643 */
 644int rio_release_inb_pwrite(struct rio_dev *rdev)
 645{
 646        int rc = -ENOMEM;
 647
 648        spin_lock(&rio_global_list_lock);
 649        if (rdev->pwcback) {
 650                rdev->pwcback = NULL;
 651                rc = 0;
 652        }
 653
 654        spin_unlock(&rio_global_list_lock);
 655        return rc;
 656}
 657EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
 658
 659/**
 660 * rio_pw_enable - Enables/disables port-write handling by a master port
 661 * @mport: Master port associated with port-write handling
 662 * @enable:  1=enable,  0=disable
 663 */
 664void rio_pw_enable(struct rio_mport *mport, int enable)
 665{
 666        if (mport->ops->pwenable) {
 667                mutex_lock(&mport->lock);
 668
 669                if ((enable && ++mport->pwe_refcnt == 1) ||
 670                    (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
 671                        mport->ops->pwenable(mport, enable);
 672                mutex_unlock(&mport->lock);
 673        }
 674}
 675EXPORT_SYMBOL_GPL(rio_pw_enable);
 676
 677/**
 678 * rio_map_inb_region -- Map inbound memory region.
 679 * @mport: Master port.
 680 * @local: physical address of memory region to be mapped
 681 * @rbase: RIO base address assigned to this window
 682 * @size: Size of the memory region
 683 * @rflags: Flags for mapping.
 684 *
 685 * Return: 0 -- Success.
 686 *
 687 * This function will create the mapping from RIO space to local memory.
 688 */
 689int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
 690                        u64 rbase, u32 size, u32 rflags)
 691{
 692        int rc;
 693        unsigned long flags;
 694
 695        if (!mport->ops->map_inb)
 696                return -1;
 697        spin_lock_irqsave(&rio_mmap_lock, flags);
 698        rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
 699        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 700        return rc;
 701}
 702EXPORT_SYMBOL_GPL(rio_map_inb_region);
 703
 704/**
 705 * rio_unmap_inb_region -- Unmap the inbound memory region
 706 * @mport: Master port
 707 * @lstart: physical address of memory region to be unmapped
 708 */
 709void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
 710{
 711        unsigned long flags;
 712        if (!mport->ops->unmap_inb)
 713                return;
 714        spin_lock_irqsave(&rio_mmap_lock, flags);
 715        mport->ops->unmap_inb(mport, lstart);
 716        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 717}
 718EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
 719
 720/**
 721 * rio_map_outb_region -- Map outbound memory region.
 722 * @mport: Master port.
 723 * @destid: destination id window points to
 724 * @rbase: RIO base address window translates to
 725 * @size: Size of the memory region
 726 * @rflags: Flags for mapping.
 727 * @local: physical address of memory region mapped
 728 *
 729 * Return: 0 -- Success.
 730 *
 731 * This function will create the mapping from RIO space to local memory.
 732 */
 733int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
 734                        u32 size, u32 rflags, dma_addr_t *local)
 735{
 736        int rc;
 737        unsigned long flags;
 738
 739        if (!mport->ops->map_outb)
 740                return -ENODEV;
 741
 742        spin_lock_irqsave(&rio_mmap_lock, flags);
 743        rc = mport->ops->map_outb(mport, destid, rbase, size,
 744                rflags, local);
 745        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 746
 747        return rc;
 748}
 749EXPORT_SYMBOL_GPL(rio_map_outb_region);
 750
 751/**
 752 * rio_unmap_outb_region -- Unmap the inbound memory region
 753 * @mport: Master port
 754 * @destid: destination id mapping points to
 755 * @rstart: RIO base address window translates to
 756 */
 757void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
 758{
 759        unsigned long flags;
 760
 761        if (!mport->ops->unmap_outb)
 762                return;
 763
 764        spin_lock_irqsave(&rio_mmap_lock, flags);
 765        mport->ops->unmap_outb(mport, destid, rstart);
 766        spin_unlock_irqrestore(&rio_mmap_lock, flags);
 767}
 768EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
 769
 770/**
 771 * rio_mport_get_physefb - Helper function that returns register offset
 772 *                      for Physical Layer Extended Features Block.
 773 * @port: Master port to issue transaction
 774 * @local: Indicate a local master port or remote device access
 775 * @destid: Destination ID of the device
 776 * @hopcount: Number of switch hops to the device
 777 * @rmap: pointer to location to store register map type info
 778 */
 779u32
 780rio_mport_get_physefb(struct rio_mport *port, int local,
 781                      u16 destid, u8 hopcount, u32 *rmap)
 782{
 783        u32 ext_ftr_ptr;
 784        u32 ftr_header;
 785
 786        ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
 787
 788        while (ext_ftr_ptr)  {
 789                if (local)
 790                        rio_local_read_config_32(port, ext_ftr_ptr,
 791                                                 &ftr_header);
 792                else
 793                        rio_mport_read_config_32(port, destid, hopcount,
 794                                                 ext_ftr_ptr, &ftr_header);
 795
 796                ftr_header = RIO_GET_BLOCK_ID(ftr_header);
 797                switch (ftr_header) {
 798
 799                case RIO_EFB_SER_EP_ID:
 800                case RIO_EFB_SER_EP_REC_ID:
 801                case RIO_EFB_SER_EP_FREE_ID:
 802                case RIO_EFB_SER_EP_M1_ID:
 803                case RIO_EFB_SER_EP_SW_M1_ID:
 804                case RIO_EFB_SER_EPF_M1_ID:
 805                case RIO_EFB_SER_EPF_SW_M1_ID:
 806                        *rmap = 1;
 807                        return ext_ftr_ptr;
 808
 809                case RIO_EFB_SER_EP_M2_ID:
 810                case RIO_EFB_SER_EP_SW_M2_ID:
 811                case RIO_EFB_SER_EPF_M2_ID:
 812                case RIO_EFB_SER_EPF_SW_M2_ID:
 813                        *rmap = 2;
 814                        return ext_ftr_ptr;
 815
 816                default:
 817                        break;
 818                }
 819
 820                ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
 821                                                hopcount, ext_ftr_ptr);
 822        }
 823
 824        return ext_ftr_ptr;
 825}
 826EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
 827
 828/**
 829 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
 830 * @comp_tag: RIO component tag to match
 831 * @from: Previous RIO device found in search, or %NULL for new search
 832 *
 833 * Iterates through the list of known RIO devices. If a RIO device is
 834 * found with a matching @comp_tag, a pointer to its device
 835 * structure is returned. Otherwise, %NULL is returned. A new search
 836 * is initiated by passing %NULL to the @from argument. Otherwise, if
 837 * @from is not %NULL, searches continue from next device on the global
 838 * list.
 839 */
 840struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
 841{
 842        struct list_head *n;
 843        struct rio_dev *rdev;
 844
 845        spin_lock(&rio_global_list_lock);
 846        n = from ? from->global_list.next : rio_devices.next;
 847
 848        while (n && (n != &rio_devices)) {
 849                rdev = rio_dev_g(n);
 850                if (rdev->comp_tag == comp_tag)
 851                        goto exit;
 852                n = n->next;
 853        }
 854        rdev = NULL;
 855exit:
 856        spin_unlock(&rio_global_list_lock);
 857        return rdev;
 858}
 859EXPORT_SYMBOL_GPL(rio_get_comptag);
 860
 861/**
 862 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
 863 * @rdev: Pointer to RIO device control structure
 864 * @pnum: Switch port number to set LOCKOUT bit
 865 * @lock: Operation : set (=1) or clear (=0)
 866 */
 867int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
 868{
 869        u32 regval;
 870
 871        rio_read_config_32(rdev,
 872                RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 873                &regval);
 874        if (lock)
 875                regval |= RIO_PORT_N_CTL_LOCKOUT;
 876        else
 877                regval &= ~RIO_PORT_N_CTL_LOCKOUT;
 878
 879        rio_write_config_32(rdev,
 880                RIO_DEV_PORT_N_CTL_CSR(rdev, pnum),
 881                regval);
 882        return 0;
 883}
 884EXPORT_SYMBOL_GPL(rio_set_port_lockout);
 885
 886/**
 887 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
 888 * given port
 889 * @port: Master port associated with the RIO network
 890 * @local: local=1 select local port otherwise a far device is reached
 891 * @destid: Destination ID of the device to check host bit
 892 * @hopcount: Number of hops to reach the target
 893 * @port_num: Port (-number on switch) to enable on a far end device
 894 *
 895 * Returns 0 or 1 from on General Control Command and Status Register
 896 * (EXT_PTR+0x3C)
 897 */
 898int rio_enable_rx_tx_port(struct rio_mport *port,
 899                          int local, u16 destid,
 900                          u8 hopcount, u8 port_num)
 901{
 902#ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
 903        u32 regval;
 904        u32 ext_ftr_ptr;
 905        u32 rmap;
 906
 907        /*
 908        * enable rx input tx output port
 909        */
 910        pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
 911                 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
 912
 913        ext_ftr_ptr = rio_mport_get_physefb(port, local, destid,
 914                                            hopcount, &rmap);
 915
 916        if (local) {
 917                rio_local_read_config_32(port,
 918                                ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap),
 919                                &regval);
 920        } else {
 921                if (rio_mport_read_config_32(port, destid, hopcount,
 922                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 923                                &regval) < 0)
 924                        return -EIO;
 925        }
 926
 927        regval = regval | RIO_PORT_N_CTL_EN_RX | RIO_PORT_N_CTL_EN_TX;
 928
 929        if (local) {
 930                rio_local_write_config_32(port,
 931                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(0, rmap), regval);
 932        } else {
 933                if (rio_mport_write_config_32(port, destid, hopcount,
 934                        ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num, rmap),
 935                                regval) < 0)
 936                        return -EIO;
 937        }
 938#endif
 939        return 0;
 940}
 941EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
 942
 943
 944/**
 945 * rio_chk_dev_route - Validate route to the specified device.
 946 * @rdev:  RIO device failed to respond
 947 * @nrdev: Last active device on the route to rdev
 948 * @npnum: nrdev's port number on the route to rdev
 949 *
 950 * Follows a route to the specified RIO device to determine the last available
 951 * device (and corresponding RIO port) on the route.
 952 */
 953static int
 954rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
 955{
 956        u32 result;
 957        int p_port, rc = -EIO;
 958        struct rio_dev *prev = NULL;
 959
 960        /* Find switch with failed RIO link */
 961        while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
 962                if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
 963                        prev = rdev->prev;
 964                        break;
 965                }
 966                rdev = rdev->prev;
 967        }
 968
 969        if (!prev)
 970                goto err_out;
 971
 972        p_port = prev->rswitch->route_table[rdev->destid];
 973
 974        if (p_port != RIO_INVALID_ROUTE) {
 975                pr_debug("RIO: link failed on [%s]-P%d\n",
 976                         rio_name(prev), p_port);
 977                *nrdev = prev;
 978                *npnum = p_port;
 979                rc = 0;
 980        } else
 981                pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
 982err_out:
 983        return rc;
 984}
 985
 986/**
 987 * rio_mport_chk_dev_access - Validate access to the specified device.
 988 * @mport: Master port to send transactions
 989 * @destid: Device destination ID in network
 990 * @hopcount: Number of hops into the network
 991 */
 992int
 993rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
 994{
 995        int i = 0;
 996        u32 tmp;
 997
 998        while (rio_mport_read_config_32(mport, destid, hopcount,
 999                                        RIO_DEV_ID_CAR, &tmp)) {
1000                i++;
1001                if (i == RIO_MAX_CHK_RETRY)
1002                        return -EIO;
1003                mdelay(1);
1004        }
1005
1006        return 0;
1007}
1008EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
1009
1010/**
1011 * rio_chk_dev_access - Validate access to the specified device.
1012 * @rdev: Pointer to RIO device control structure
1013 */
1014static int rio_chk_dev_access(struct rio_dev *rdev)
1015{
1016        return rio_mport_chk_dev_access(rdev->net->hport,
1017                                        rdev->destid, rdev->hopcount);
1018}
1019
1020/**
1021 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1022 *                        returns link-response (if requested).
1023 * @rdev: RIO devive to issue Input-status command
1024 * @pnum: Device port number to issue the command
1025 * @lnkresp: Response from a link partner
1026 */
1027static int
1028rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1029{
1030        u32 regval;
1031        int checkcount;
1032
1033        if (lnkresp) {
1034                /* Read from link maintenance response register
1035                 * to clear valid bit */
1036                rio_read_config_32(rdev,
1037                        RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1038                        &regval);
1039                udelay(50);
1040        }
1041
1042        /* Issue Input-status command */
1043        rio_write_config_32(rdev,
1044                RIO_DEV_PORT_N_MNT_REQ_CSR(rdev, pnum),
1045                RIO_MNT_REQ_CMD_IS);
1046
1047        /* Exit if the response is not expected */
1048        if (!lnkresp)
1049                return 0;
1050
1051        checkcount = 3;
1052        while (checkcount--) {
1053                udelay(50);
1054                rio_read_config_32(rdev,
1055                        RIO_DEV_PORT_N_MNT_RSP_CSR(rdev, pnum),
1056                        &regval);
1057                if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1058                        *lnkresp = regval;
1059                        return 0;
1060                }
1061        }
1062
1063        return -EIO;
1064}
1065
1066/**
1067 * rio_clr_err_stopped - Clears port Error-stopped states.
1068 * @rdev: Pointer to RIO device control structure
1069 * @pnum: Switch port number to clear errors
1070 * @err_status: port error status (if 0 reads register from device)
1071 *
1072 * TODO: Currently this routine is not compatible with recovery process
1073 * specified for idt_gen3 RapidIO switch devices. It has to be reviewed
1074 * to implement universal recovery process that is compatible full range
1075 * off available devices.
1076 * IDT gen3 switch driver now implements HW-specific error handler that
1077 * issues soft port reset to the port to reset ERR_STOP bits and ackIDs.
1078 */
1079static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1080{
1081        struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1082        u32 regval;
1083        u32 far_ackid, far_linkstat, near_ackid;
1084
1085        if (err_status == 0)
1086                rio_read_config_32(rdev,
1087                        RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1088                        &err_status);
1089
1090        if (err_status & RIO_PORT_N_ERR_STS_OUT_ES) {
1091                pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1092                /*
1093                 * Send a Link-Request/Input-Status control symbol
1094                 */
1095                if (rio_get_input_status(rdev, pnum, &regval)) {
1096                        pr_debug("RIO_EM: Input-status response timeout\n");
1097                        goto rd_err;
1098                }
1099
1100                pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1101                         pnum, regval);
1102                far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1103                far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1104                rio_read_config_32(rdev,
1105                        RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1106                        &regval);
1107                pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1108                near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1109                pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1110                         " near_ackID=0x%02x\n",
1111                        pnum, far_ackid, far_linkstat, near_ackid);
1112
1113                /*
1114                 * If required, synchronize ackIDs of near and
1115                 * far sides.
1116                 */
1117                if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1118                    (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1119                        /* Align near outstanding/outbound ackIDs with
1120                         * far inbound.
1121                         */
1122                        rio_write_config_32(rdev,
1123                                RIO_DEV_PORT_N_ACK_STS_CSR(rdev, pnum),
1124                                (near_ackid << 24) |
1125                                        (far_ackid << 8) | far_ackid);
1126                        /* Align far outstanding/outbound ackIDs with
1127                         * near inbound.
1128                         */
1129                        far_ackid++;
1130                        if (!nextdev) {
1131                                pr_debug("RIO_EM: nextdev pointer == NULL\n");
1132                                goto rd_err;
1133                        }
1134
1135                        rio_write_config_32(nextdev,
1136                                RIO_DEV_PORT_N_ACK_STS_CSR(nextdev,
1137                                        RIO_GET_PORT_NUM(nextdev->swpinfo)),
1138                                (far_ackid << 24) |
1139                                (near_ackid << 8) | near_ackid);
1140                }
1141rd_err:
1142                rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1143                                   &err_status);
1144                pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1145        }
1146
1147        if ((err_status & RIO_PORT_N_ERR_STS_INP_ES) && nextdev) {
1148                pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1149                rio_get_input_status(nextdev,
1150                                     RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1151                udelay(50);
1152
1153                rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, pnum),
1154                                   &err_status);
1155                pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1156        }
1157
1158        return (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1159                              RIO_PORT_N_ERR_STS_INP_ES)) ? 1 : 0;
1160}
1161
1162/**
1163 * rio_inb_pwrite_handler - inbound port-write message handler
1164 * @mport:  mport device associated with port-write
1165 * @pw_msg: pointer to inbound port-write message
1166 *
1167 * Processes an inbound port-write message. Returns 0 if the request
1168 * has been satisfied.
1169 */
1170int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1171{
1172        struct rio_dev *rdev;
1173        u32 err_status, em_perrdet, em_ltlerrdet;
1174        int rc, portnum;
1175        struct rio_pwrite *pwrite;
1176
1177#ifdef DEBUG_PW
1178        {
1179                u32 i;
1180
1181                pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1182                for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1183                        pr_debug("0x%02x: %08x %08x %08x %08x\n",
1184                                i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1185                                pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1186                }
1187        }
1188#endif
1189
1190        rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1191        if (rdev) {
1192                pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1193        } else {
1194                pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1195                        __func__, pw_msg->em.comptag);
1196        }
1197
1198        /* Call a device-specific handler (if it is registered for the device).
1199         * This may be the service for endpoints that send device-specific
1200         * port-write messages. End-point messages expected to be handled
1201         * completely by EP specific device driver.
1202         * For switches rc==0 signals that no standard processing required.
1203         */
1204        if (rdev && rdev->pwcback) {
1205                rc = rdev->pwcback(rdev, pw_msg, 0);
1206                if (rc == 0)
1207                        return 0;
1208        }
1209
1210        mutex_lock(&mport->lock);
1211        list_for_each_entry(pwrite, &mport->pwrites, node)
1212                pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1213        mutex_unlock(&mport->lock);
1214
1215        if (!rdev)
1216                return 0;
1217
1218        /*
1219         * FIXME: The code below stays as it was before for now until we decide
1220         * how to do default PW handling in combination with per-mport callbacks
1221         */
1222
1223        portnum = pw_msg->em.is_port & 0xFF;
1224
1225        /* Check if device and route to it are functional:
1226         * Sometimes devices may send PW message(s) just before being
1227         * powered down (or link being lost).
1228         */
1229        if (rio_chk_dev_access(rdev)) {
1230                pr_debug("RIO: device access failed - get link partner\n");
1231                /* Scan route to the device and identify failed link.
1232                 * This will replace device and port reported in PW message.
1233                 * PW message should not be used after this point.
1234                 */
1235                if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1236                        pr_err("RIO: Route trace for %s failed\n",
1237                                rio_name(rdev));
1238                        return -EIO;
1239                }
1240                pw_msg = NULL;
1241        }
1242
1243        /* For End-point devices processing stops here */
1244        if (!(rdev->pef & RIO_PEF_SWITCH))
1245                return 0;
1246
1247        if (rdev->phys_efptr == 0) {
1248                pr_err("RIO_PW: Bad switch initialization for %s\n",
1249                        rio_name(rdev));
1250                return 0;
1251        }
1252
1253        /*
1254         * Process the port-write notification from switch
1255         */
1256        if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1257                rdev->rswitch->ops->em_handle(rdev, portnum);
1258
1259        rio_read_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1260                           &err_status);
1261        pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1262
1263        if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1264
1265                if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1266                        rdev->rswitch->port_ok |= (1 << portnum);
1267                        rio_set_port_lockout(rdev, portnum, 0);
1268                        /* Schedule Insertion Service */
1269                        pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1270                               rio_name(rdev), portnum);
1271                }
1272
1273                /* Clear error-stopped states (if reported).
1274                 * Depending on the link partner state, two attempts
1275                 * may be needed for successful recovery.
1276                 */
1277                if (err_status & (RIO_PORT_N_ERR_STS_OUT_ES |
1278                                  RIO_PORT_N_ERR_STS_INP_ES)) {
1279                        if (rio_clr_err_stopped(rdev, portnum, err_status))
1280                                rio_clr_err_stopped(rdev, portnum, 0);
1281                }
1282        }  else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1283
1284                if (rdev->rswitch->port_ok & (1 << portnum)) {
1285                        rdev->rswitch->port_ok &= ~(1 << portnum);
1286                        rio_set_port_lockout(rdev, portnum, 1);
1287
1288                        if (rdev->phys_rmap == 1) {
1289                        rio_write_config_32(rdev,
1290                                RIO_DEV_PORT_N_ACK_STS_CSR(rdev, portnum),
1291                                RIO_PORT_N_ACK_CLEAR);
1292                        } else {
1293                                rio_write_config_32(rdev,
1294                                        RIO_DEV_PORT_N_OB_ACK_CSR(rdev, portnum),
1295                                        RIO_PORT_N_OB_ACK_CLEAR);
1296                                rio_write_config_32(rdev,
1297                                        RIO_DEV_PORT_N_IB_ACK_CSR(rdev, portnum),
1298                                        0);
1299                        }
1300
1301                        /* Schedule Extraction Service */
1302                        pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1303                               rio_name(rdev), portnum);
1304                }
1305        }
1306
1307        rio_read_config_32(rdev,
1308                rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1309        if (em_perrdet) {
1310                pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1311                         portnum, em_perrdet);
1312                /* Clear EM Port N Error Detect CSR */
1313                rio_write_config_32(rdev,
1314                        rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1315        }
1316
1317        rio_read_config_32(rdev,
1318                rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1319        if (em_ltlerrdet) {
1320                pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1321                         em_ltlerrdet);
1322                /* Clear EM L/T Layer Error Detect CSR */
1323                rio_write_config_32(rdev,
1324                        rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1325        }
1326
1327        /* Clear remaining error bits and Port-Write Pending bit */
1328        rio_write_config_32(rdev, RIO_DEV_PORT_N_ERR_STS_CSR(rdev, portnum),
1329                            err_status);
1330
1331        return 0;
1332}
1333EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1334
1335/**
1336 * rio_mport_get_efb - get pointer to next extended features block
1337 * @port: Master port to issue transaction
1338 * @local: Indicate a local master port or remote device access
1339 * @destid: Destination ID of the device
1340 * @hopcount: Number of switch hops to the device
1341 * @from: Offset of  current Extended Feature block header (if 0 starts
1342 * from ExtFeaturePtr)
1343 */
1344u32
1345rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1346                      u8 hopcount, u32 from)
1347{
1348        u32 reg_val;
1349
1350        if (from == 0) {
1351                if (local)
1352                        rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1353                                                 &reg_val);
1354                else
1355                        rio_mport_read_config_32(port, destid, hopcount,
1356                                                 RIO_ASM_INFO_CAR, &reg_val);
1357                return reg_val & RIO_EXT_FTR_PTR_MASK;
1358        } else {
1359                if (local)
1360                        rio_local_read_config_32(port, from, &reg_val);
1361                else
1362                        rio_mport_read_config_32(port, destid, hopcount,
1363                                                 from, &reg_val);
1364                return RIO_GET_BLOCK_ID(reg_val);
1365        }
1366}
1367EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1368
1369/**
1370 * rio_mport_get_feature - query for devices' extended features
1371 * @port: Master port to issue transaction
1372 * @local: Indicate a local master port or remote device access
1373 * @destid: Destination ID of the device
1374 * @hopcount: Number of switch hops to the device
1375 * @ftr: Extended feature code
1376 *
1377 * Tell if a device supports a given RapidIO capability.
1378 * Returns the offset of the requested extended feature
1379 * block within the device's RIO configuration space or
1380 * 0 in case the device does not support it.
1381 */
1382u32
1383rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1384                      u8 hopcount, int ftr)
1385{
1386        u32 asm_info, ext_ftr_ptr, ftr_header;
1387
1388        if (local)
1389                rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1390        else
1391                rio_mport_read_config_32(port, destid, hopcount,
1392                                         RIO_ASM_INFO_CAR, &asm_info);
1393
1394        ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1395
1396        while (ext_ftr_ptr) {
1397                if (local)
1398                        rio_local_read_config_32(port, ext_ftr_ptr,
1399                                                 &ftr_header);
1400                else
1401                        rio_mport_read_config_32(port, destid, hopcount,
1402                                                 ext_ftr_ptr, &ftr_header);
1403                if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1404                        return ext_ftr_ptr;
1405
1406                ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header);
1407                if (!ext_ftr_ptr)
1408                        break;
1409        }
1410
1411        return 0;
1412}
1413EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1414
1415/**
1416 * rio_std_route_add_entry - Add switch route table entry using standard
1417 *   registers defined in RIO specification rev.1.3
1418 * @mport: Master port to issue transaction
1419 * @destid: Destination ID of the device
1420 * @hopcount: Number of switch hops to the device
1421 * @table: routing table ID (global or port-specific)
1422 * @route_destid: destID entry in the RT
1423 * @route_port: destination port for specified destID
1424 */
1425static int
1426rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1427                        u16 table, u16 route_destid, u8 route_port)
1428{
1429        if (table == RIO_GLOBAL_TABLE) {
1430                rio_mport_write_config_32(mport, destid, hopcount,
1431                                RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1432                                (u32)route_destid);
1433                rio_mport_write_config_32(mport, destid, hopcount,
1434                                RIO_STD_RTE_CONF_PORT_SEL_CSR,
1435                                (u32)route_port);
1436        }
1437
1438        udelay(10);
1439        return 0;
1440}
1441
1442/**
1443 * rio_std_route_get_entry - Read switch route table entry (port number)
1444 *   associated with specified destID using standard registers defined in RIO
1445 *   specification rev.1.3
1446 * @mport: Master port to issue transaction
1447 * @destid: Destination ID of the device
1448 * @hopcount: Number of switch hops to the device
1449 * @table: routing table ID (global or port-specific)
1450 * @route_destid: destID entry in the RT
1451 * @route_port: returned destination port for specified destID
1452 */
1453static int
1454rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1455                        u16 table, u16 route_destid, u8 *route_port)
1456{
1457        u32 result;
1458
1459        if (table == RIO_GLOBAL_TABLE) {
1460                rio_mport_write_config_32(mport, destid, hopcount,
1461                                RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1462                rio_mport_read_config_32(mport, destid, hopcount,
1463                                RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1464
1465                *route_port = (u8)result;
1466        }
1467
1468        return 0;
1469}
1470
1471/**
1472 * rio_std_route_clr_table - Clear swotch route table using standard registers
1473 *   defined in RIO specification rev.1.3.
1474 * @mport: Master port to issue transaction
1475 * @destid: Destination ID of the device
1476 * @hopcount: Number of switch hops to the device
1477 * @table: routing table ID (global or port-specific)
1478 */
1479static int
1480rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1481                        u16 table)
1482{
1483        u32 max_destid = 0xff;
1484        u32 i, pef, id_inc = 1, ext_cfg = 0;
1485        u32 port_sel = RIO_INVALID_ROUTE;
1486
1487        if (table == RIO_GLOBAL_TABLE) {
1488                rio_mport_read_config_32(mport, destid, hopcount,
1489                                         RIO_PEF_CAR, &pef);
1490
1491                if (mport->sys_size) {
1492                        rio_mport_read_config_32(mport, destid, hopcount,
1493                                                 RIO_SWITCH_RT_LIMIT,
1494                                                 &max_destid);
1495                        max_destid &= RIO_RT_MAX_DESTID;
1496                }
1497
1498                if (pef & RIO_PEF_EXT_RT) {
1499                        ext_cfg = 0x80000000;
1500                        id_inc = 4;
1501                        port_sel = (RIO_INVALID_ROUTE << 24) |
1502                                   (RIO_INVALID_ROUTE << 16) |
1503                                   (RIO_INVALID_ROUTE << 8) |
1504                                   RIO_INVALID_ROUTE;
1505                }
1506
1507                for (i = 0; i <= max_destid;) {
1508                        rio_mport_write_config_32(mport, destid, hopcount,
1509                                        RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1510                                        ext_cfg | i);
1511                        rio_mport_write_config_32(mport, destid, hopcount,
1512                                        RIO_STD_RTE_CONF_PORT_SEL_CSR,
1513                                        port_sel);
1514                        i += id_inc;
1515                }
1516        }
1517
1518        udelay(10);
1519        return 0;
1520}
1521
1522/**
1523 * rio_lock_device - Acquires host device lock for specified device
1524 * @port: Master port to send transaction
1525 * @destid: Destination ID for device/switch
1526 * @hopcount: Hopcount to reach switch
1527 * @wait_ms: Max wait time in msec (0 = no timeout)
1528 *
1529 * Attepts to acquire host device lock for specified device
1530 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1531 */
1532int rio_lock_device(struct rio_mport *port, u16 destid,
1533                    u8 hopcount, int wait_ms)
1534{
1535        u32 result;
1536        int tcnt = 0;
1537
1538        /* Attempt to acquire device lock */
1539        rio_mport_write_config_32(port, destid, hopcount,
1540                                  RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1541        rio_mport_read_config_32(port, destid, hopcount,
1542                                 RIO_HOST_DID_LOCK_CSR, &result);
1543
1544        while (result != port->host_deviceid) {
1545                if (wait_ms != 0 && tcnt == wait_ms) {
1546                        pr_debug("RIO: timeout when locking device %x:%x\n",
1547                                destid, hopcount);
1548                        return -EINVAL;
1549                }
1550
1551                /* Delay a bit */
1552                mdelay(1);
1553                tcnt++;
1554                /* Try to acquire device lock again */
1555                rio_mport_write_config_32(port, destid,
1556                        hopcount,
1557                        RIO_HOST_DID_LOCK_CSR,
1558                        port->host_deviceid);
1559                rio_mport_read_config_32(port, destid,
1560                        hopcount,
1561                        RIO_HOST_DID_LOCK_CSR, &result);
1562        }
1563
1564        return 0;
1565}
1566EXPORT_SYMBOL_GPL(rio_lock_device);
1567
1568/**
1569 * rio_unlock_device - Releases host device lock for specified device
1570 * @port: Master port to send transaction
1571 * @destid: Destination ID for device/switch
1572 * @hopcount: Hopcount to reach switch
1573 *
1574 * Returns 0 if device lock released or EINVAL if fails.
1575 */
1576int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1577{
1578        u32 result;
1579
1580        /* Release device lock */
1581        rio_mport_write_config_32(port, destid,
1582                                  hopcount,
1583                                  RIO_HOST_DID_LOCK_CSR,
1584                                  port->host_deviceid);
1585        rio_mport_read_config_32(port, destid, hopcount,
1586                RIO_HOST_DID_LOCK_CSR, &result);
1587        if ((result & 0xffff) != 0xffff) {
1588                pr_debug("RIO: badness when releasing device lock %x:%x\n",
1589                         destid, hopcount);
1590                return -EINVAL;
1591        }
1592
1593        return 0;
1594}
1595EXPORT_SYMBOL_GPL(rio_unlock_device);
1596
1597/**
1598 * rio_route_add_entry- Add a route entry to a switch routing table
1599 * @rdev: RIO device
1600 * @table: Routing table ID
1601 * @route_destid: Destination ID to be routed
1602 * @route_port: Port number to be routed
1603 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1604 *
1605 * If available calls the switch specific add_entry() method to add a route
1606 * entry into a switch routing table. Otherwise uses standard RT update method
1607 * as defined by RapidIO specification. A specific routing table can be selected
1608 * using the @table argument if a switch has per port routing tables or
1609 * the standard (or global) table may be used by passing
1610 * %RIO_GLOBAL_TABLE in @table.
1611 *
1612 * Returns %0 on success or %-EINVAL on failure.
1613 */
1614int rio_route_add_entry(struct rio_dev *rdev,
1615                        u16 table, u16 route_destid, u8 route_port, int lock)
1616{
1617        int rc = -EINVAL;
1618        struct rio_switch_ops *ops = rdev->rswitch->ops;
1619
1620        if (lock) {
1621                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1622                                     rdev->hopcount, 1000);
1623                if (rc)
1624                        return rc;
1625        }
1626
1627        spin_lock(&rdev->rswitch->lock);
1628
1629        if (!ops || !ops->add_entry) {
1630                rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1631                                             rdev->hopcount, table,
1632                                             route_destid, route_port);
1633        } else if (try_module_get(ops->owner)) {
1634                rc = ops->add_entry(rdev->net->hport, rdev->destid,
1635                                    rdev->hopcount, table, route_destid,
1636                                    route_port);
1637                module_put(ops->owner);
1638        }
1639
1640        spin_unlock(&rdev->rswitch->lock);
1641
1642        if (lock)
1643                rio_unlock_device(rdev->net->hport, rdev->destid,
1644                                  rdev->hopcount);
1645
1646        return rc;
1647}
1648EXPORT_SYMBOL_GPL(rio_route_add_entry);
1649
1650/**
1651 * rio_route_get_entry- Read an entry from a switch routing table
1652 * @rdev: RIO device
1653 * @table: Routing table ID
1654 * @route_destid: Destination ID to be routed
1655 * @route_port: Pointer to read port number into
1656 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1657 *
1658 * If available calls the switch specific get_entry() method to fetch a route
1659 * entry from a switch routing table. Otherwise uses standard RT read method
1660 * as defined by RapidIO specification. A specific routing table can be selected
1661 * using the @table argument if a switch has per port routing tables or
1662 * the standard (or global) table may be used by passing
1663 * %RIO_GLOBAL_TABLE in @table.
1664 *
1665 * Returns %0 on success or %-EINVAL on failure.
1666 */
1667int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1668                        u16 route_destid, u8 *route_port, int lock)
1669{
1670        int rc = -EINVAL;
1671        struct rio_switch_ops *ops = rdev->rswitch->ops;
1672
1673        if (lock) {
1674                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1675                                     rdev->hopcount, 1000);
1676                if (rc)
1677                        return rc;
1678        }
1679
1680        spin_lock(&rdev->rswitch->lock);
1681
1682        if (!ops || !ops->get_entry) {
1683                rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1684                                             rdev->hopcount, table,
1685                                             route_destid, route_port);
1686        } else if (try_module_get(ops->owner)) {
1687                rc = ops->get_entry(rdev->net->hport, rdev->destid,
1688                                    rdev->hopcount, table, route_destid,
1689                                    route_port);
1690                module_put(ops->owner);
1691        }
1692
1693        spin_unlock(&rdev->rswitch->lock);
1694
1695        if (lock)
1696                rio_unlock_device(rdev->net->hport, rdev->destid,
1697                                  rdev->hopcount);
1698        return rc;
1699}
1700EXPORT_SYMBOL_GPL(rio_route_get_entry);
1701
1702/**
1703 * rio_route_clr_table - Clear a switch routing table
1704 * @rdev: RIO device
1705 * @table: Routing table ID
1706 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1707 *
1708 * If available calls the switch specific clr_table() method to clear a switch
1709 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1710 * specification. A specific routing table can be selected using the @table
1711 * argument if a switch has per port routing tables or the standard (or global)
1712 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1713 *
1714 * Returns %0 on success or %-EINVAL on failure.
1715 */
1716int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1717{
1718        int rc = -EINVAL;
1719        struct rio_switch_ops *ops = rdev->rswitch->ops;
1720
1721        if (lock) {
1722                rc = rio_lock_device(rdev->net->hport, rdev->destid,
1723                                     rdev->hopcount, 1000);
1724                if (rc)
1725                        return rc;
1726        }
1727
1728        spin_lock(&rdev->rswitch->lock);
1729
1730        if (!ops || !ops->clr_table) {
1731                rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1732                                             rdev->hopcount, table);
1733        } else if (try_module_get(ops->owner)) {
1734                rc = ops->clr_table(rdev->net->hport, rdev->destid,
1735                                    rdev->hopcount, table);
1736
1737                module_put(ops->owner);
1738        }
1739
1740        spin_unlock(&rdev->rswitch->lock);
1741
1742        if (lock)
1743                rio_unlock_device(rdev->net->hport, rdev->destid,
1744                                  rdev->hopcount);
1745
1746        return rc;
1747}
1748EXPORT_SYMBOL_GPL(rio_route_clr_table);
1749
1750#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1751
1752static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1753{
1754        struct rio_mport *mport = arg;
1755
1756        /* Check that DMA device belongs to the right MPORT */
1757        return mport == container_of(chan->device, struct rio_mport, dma);
1758}
1759
1760/**
1761 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1762 *   with specified local RapidIO mport device.
1763 * @mport: RIO mport to perform DMA data transfers
1764 *
1765 * Returns pointer to allocated DMA channel or NULL if failed.
1766 */
1767struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1768{
1769        dma_cap_mask_t mask;
1770
1771        dma_cap_zero(mask);
1772        dma_cap_set(DMA_SLAVE, mask);
1773        return dma_request_channel(mask, rio_chan_filter, mport);
1774}
1775EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1776
1777/**
1778 * rio_request_dma - request RapidIO capable DMA channel that supports
1779 *   specified target RapidIO device.
1780 * @rdev: RIO device associated with DMA transfer
1781 *
1782 * Returns pointer to allocated DMA channel or NULL if failed.
1783 */
1784struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1785{
1786        return rio_request_mport_dma(rdev->net->hport);
1787}
1788EXPORT_SYMBOL_GPL(rio_request_dma);
1789
1790/**
1791 * rio_release_dma - release specified DMA channel
1792 * @dchan: DMA channel to release
1793 */
1794void rio_release_dma(struct dma_chan *dchan)
1795{
1796        dma_release_channel(dchan);
1797}
1798EXPORT_SYMBOL_GPL(rio_release_dma);
1799
1800/**
1801 * rio_dma_prep_xfer - RapidIO specific wrapper
1802 *   for device_prep_slave_sg callback defined by DMAENGINE.
1803 * @dchan: DMA channel to configure
1804 * @destid: target RapidIO device destination ID
1805 * @data: RIO specific data descriptor
1806 * @direction: DMA data transfer direction (TO or FROM the device)
1807 * @flags: dmaengine defined flags
1808 *
1809 * Initializes RapidIO capable DMA channel for the specified data transfer.
1810 * Uses DMA channel private extension to pass information related to remote
1811 * target RIO device.
1812 *
1813 * Returns: pointer to DMA transaction descriptor if successful,
1814 *          error-valued pointer or NULL if failed.
1815 */
1816struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1817        u16 destid, struct rio_dma_data *data,
1818        enum dma_transfer_direction direction, unsigned long flags)
1819{
1820        struct rio_dma_ext rio_ext;
1821
1822        if (!dchan->device->device_prep_slave_sg) {
1823                pr_err("%s: prep_rio_sg == NULL\n", __func__);
1824                return NULL;
1825        }
1826
1827        rio_ext.destid = destid;
1828        rio_ext.rio_addr_u = data->rio_addr_u;
1829        rio_ext.rio_addr = data->rio_addr;
1830        rio_ext.wr_type = data->wr_type;
1831
1832        return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1833                                     direction, flags, &rio_ext);
1834}
1835EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1836
1837/**
1838 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1839 *   for device_prep_slave_sg callback defined by DMAENGINE.
1840 * @rdev: RIO device control structure
1841 * @dchan: DMA channel to configure
1842 * @data: RIO specific data descriptor
1843 * @direction: DMA data transfer direction (TO or FROM the device)
1844 * @flags: dmaengine defined flags
1845 *
1846 * Initializes RapidIO capable DMA channel for the specified data transfer.
1847 * Uses DMA channel private extension to pass information related to remote
1848 * target RIO device.
1849 *
1850 * Returns: pointer to DMA transaction descriptor if successful,
1851 *          error-valued pointer or NULL if failed.
1852 */
1853struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1854        struct dma_chan *dchan, struct rio_dma_data *data,
1855        enum dma_transfer_direction direction, unsigned long flags)
1856{
1857        return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1858}
1859EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1860
1861#endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1862
1863/**
1864 * rio_find_mport - find RIO mport by its ID
1865 * @mport_id: number (ID) of mport device
1866 *
1867 * Given a RIO mport number, the desired mport is located
1868 * in the global list of mports. If the mport is found, a pointer to its
1869 * data structure is returned.  If no mport is found, %NULL is returned.
1870 */
1871struct rio_mport *rio_find_mport(int mport_id)
1872{
1873        struct rio_mport *port;
1874
1875        mutex_lock(&rio_mport_list_lock);
1876        list_for_each_entry(port, &rio_mports, node) {
1877                if (port->id == mport_id)
1878                        goto found;
1879        }
1880        port = NULL;
1881found:
1882        mutex_unlock(&rio_mport_list_lock);
1883
1884        return port;
1885}
1886
1887/**
1888 * rio_register_scan - enumeration/discovery method registration interface
1889 * @mport_id: mport device ID for which fabric scan routine has to be set
1890 *            (RIO_MPORT_ANY = set for all available mports)
1891 * @scan_ops: enumeration/discovery operations structure
1892 *
1893 * Registers enumeration/discovery operations with RapidIO subsystem and
1894 * attaches it to the specified mport device (or all available mports
1895 * if RIO_MPORT_ANY is specified).
1896 *
1897 * Returns error if the mport already has an enumerator attached to it.
1898 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1899 */
1900int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1901{
1902        struct rio_mport *port;
1903        struct rio_scan_node *scan;
1904        int rc = 0;
1905
1906        pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1907
1908        if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1909            !scan_ops)
1910                return -EINVAL;
1911
1912        mutex_lock(&rio_mport_list_lock);
1913
1914        /*
1915         * Check if there is another enumerator already registered for
1916         * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1917         * for the same mport ID are not supported.
1918         */
1919        list_for_each_entry(scan, &rio_scans, node) {
1920                if (scan->mport_id == mport_id) {
1921                        rc = -EBUSY;
1922                        goto err_out;
1923                }
1924        }
1925
1926        /*
1927         * Allocate and initialize new scan registration node.
1928         */
1929        scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1930        if (!scan) {
1931                rc = -ENOMEM;
1932                goto err_out;
1933        }
1934
1935        scan->mport_id = mport_id;
1936        scan->ops = scan_ops;
1937
1938        /*
1939         * Traverse the list of registered mports to attach this new scan.
1940         *
1941         * The new scan with matching mport ID overrides any previously attached
1942         * scan assuming that old scan (if any) is the default one (based on the
1943         * enumerator registration check above).
1944         * If the new scan is the global one, it will be attached only to mports
1945         * that do not have their own individual operations already attached.
1946         */
1947        list_for_each_entry(port, &rio_mports, node) {
1948                if (port->id == mport_id) {
1949                        port->nscan = scan_ops;
1950                        break;
1951                } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1952                        port->nscan = scan_ops;
1953        }
1954
1955        list_add_tail(&scan->node, &rio_scans);
1956
1957err_out:
1958        mutex_unlock(&rio_mport_list_lock);
1959
1960        return rc;
1961}
1962EXPORT_SYMBOL_GPL(rio_register_scan);
1963
1964/**
1965 * rio_unregister_scan - removes enumeration/discovery method from mport
1966 * @mport_id: mport device ID for which fabric scan routine has to be
1967 *            unregistered (RIO_MPORT_ANY = apply to all mports that use
1968 *            the specified scan_ops)
1969 * @scan_ops: enumeration/discovery operations structure
1970 *
1971 * Removes enumeration or discovery method assigned to the specified mport
1972 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
1973 * all mports that have them attached.
1974 */
1975int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
1976{
1977        struct rio_mport *port;
1978        struct rio_scan_node *scan;
1979
1980        pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1981
1982        if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
1983                return -EINVAL;
1984
1985        mutex_lock(&rio_mport_list_lock);
1986
1987        list_for_each_entry(port, &rio_mports, node)
1988                if (port->id == mport_id ||
1989                    (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
1990                        port->nscan = NULL;
1991
1992        list_for_each_entry(scan, &rio_scans, node) {
1993                if (scan->mport_id == mport_id) {
1994                        list_del(&scan->node);
1995                        kfree(scan);
1996                        break;
1997                }
1998        }
1999
2000        mutex_unlock(&rio_mport_list_lock);
2001
2002        return 0;
2003}
2004EXPORT_SYMBOL_GPL(rio_unregister_scan);
2005
2006/**
2007 * rio_mport_scan - execute enumeration/discovery on the specified mport
2008 * @mport_id: number (ID) of mport device
2009 */
2010int rio_mport_scan(int mport_id)
2011{
2012        struct rio_mport *port = NULL;
2013        int rc;
2014
2015        mutex_lock(&rio_mport_list_lock);
2016        list_for_each_entry(port, &rio_mports, node) {
2017                if (port->id == mport_id)
2018                        goto found;
2019        }
2020        mutex_unlock(&rio_mport_list_lock);
2021        return -ENODEV;
2022found:
2023        if (!port->nscan) {
2024                mutex_unlock(&rio_mport_list_lock);
2025                return -EINVAL;
2026        }
2027
2028        if (!try_module_get(port->nscan->owner)) {
2029                mutex_unlock(&rio_mport_list_lock);
2030                return -ENODEV;
2031        }
2032
2033        mutex_unlock(&rio_mport_list_lock);
2034
2035        if (port->host_deviceid >= 0)
2036                rc = port->nscan->enumerate(port, 0);
2037        else
2038                rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2039
2040        module_put(port->nscan->owner);
2041        return rc;
2042}
2043
2044static struct workqueue_struct *rio_wq;
2045
2046struct rio_disc_work {
2047        struct work_struct      work;
2048        struct rio_mport        *mport;
2049};
2050
2051static void disc_work_handler(struct work_struct *_work)
2052{
2053        struct rio_disc_work *work;
2054
2055        work = container_of(_work, struct rio_disc_work, work);
2056        pr_debug("RIO: discovery work for mport %d %s\n",
2057                 work->mport->id, work->mport->name);
2058        if (try_module_get(work->mport->nscan->owner)) {
2059                work->mport->nscan->discover(work->mport, 0);
2060                module_put(work->mport->nscan->owner);
2061        }
2062}
2063
2064int rio_init_mports(void)
2065{
2066        struct rio_mport *port;
2067        struct rio_disc_work *work;
2068        int n = 0;
2069
2070        if (!next_portid)
2071                return -ENODEV;
2072
2073        /*
2074         * First, run enumerations and check if we need to perform discovery
2075         * on any of the registered mports.
2076         */
2077        mutex_lock(&rio_mport_list_lock);
2078        list_for_each_entry(port, &rio_mports, node) {
2079                if (port->host_deviceid >= 0) {
2080                        if (port->nscan && try_module_get(port->nscan->owner)) {
2081                                port->nscan->enumerate(port, 0);
2082                                module_put(port->nscan->owner);
2083                        }
2084                } else
2085                        n++;
2086        }
2087        mutex_unlock(&rio_mport_list_lock);
2088
2089        if (!n)
2090                goto no_disc;
2091
2092        /*
2093         * If we have mports that require discovery schedule a discovery work
2094         * for each of them. If the code below fails to allocate needed
2095         * resources, exit without error to keep results of enumeration
2096         * process (if any).
2097         * TODO: Implement restart of discovery process for all or
2098         * individual discovering mports.
2099         */
2100        rio_wq = alloc_workqueue("riodisc", 0, 0);
2101        if (!rio_wq) {
2102                pr_err("RIO: unable allocate rio_wq\n");
2103                goto no_disc;
2104        }
2105
2106        work = kcalloc(n, sizeof *work, GFP_KERNEL);
2107        if (!work) {
2108                destroy_workqueue(rio_wq);
2109                goto no_disc;
2110        }
2111
2112        n = 0;
2113        mutex_lock(&rio_mport_list_lock);
2114        list_for_each_entry(port, &rio_mports, node) {
2115                if (port->host_deviceid < 0 && port->nscan) {
2116                        work[n].mport = port;
2117                        INIT_WORK(&work[n].work, disc_work_handler);
2118                        queue_work(rio_wq, &work[n].work);
2119                        n++;
2120                }
2121        }
2122
2123        flush_workqueue(rio_wq);
2124        mutex_unlock(&rio_mport_list_lock);
2125        pr_debug("RIO: destroy discovery workqueue\n");
2126        destroy_workqueue(rio_wq);
2127        kfree(work);
2128
2129no_disc:
2130        return 0;
2131}
2132EXPORT_SYMBOL_GPL(rio_init_mports);
2133
2134static int rio_get_hdid(int index)
2135{
2136        if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2137                return -1;
2138
2139        return hdid[index];
2140}
2141
2142int rio_mport_initialize(struct rio_mport *mport)
2143{
2144        if (next_portid >= RIO_MAX_MPORTS) {
2145                pr_err("RIO: reached specified max number of mports\n");
2146                return -ENODEV;
2147        }
2148
2149        atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2150        mport->id = next_portid++;
2151        mport->host_deviceid = rio_get_hdid(mport->id);
2152        mport->nscan = NULL;
2153        mutex_init(&mport->lock);
2154        mport->pwe_refcnt = 0;
2155        INIT_LIST_HEAD(&mport->pwrites);
2156
2157        return 0;
2158}
2159EXPORT_SYMBOL_GPL(rio_mport_initialize);
2160
2161int rio_register_mport(struct rio_mport *port)
2162{
2163        struct rio_scan_node *scan = NULL;
2164        int res = 0;
2165
2166        mutex_lock(&rio_mport_list_lock);
2167
2168        /*
2169         * Check if there are any registered enumeration/discovery operations
2170         * that have to be attached to the added mport.
2171         */
2172        list_for_each_entry(scan, &rio_scans, node) {
2173                if (port->id == scan->mport_id ||
2174                    scan->mport_id == RIO_MPORT_ANY) {
2175                        port->nscan = scan->ops;
2176                        if (port->id == scan->mport_id)
2177                                break;
2178                }
2179        }
2180
2181        list_add_tail(&port->node, &rio_mports);
2182        mutex_unlock(&rio_mport_list_lock);
2183
2184        dev_set_name(&port->dev, "rapidio%d", port->id);
2185        port->dev.class = &rio_mport_class;
2186        atomic_set(&port->state, RIO_DEVICE_RUNNING);
2187
2188        res = device_register(&port->dev);
2189        if (res)
2190                dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2191                        port->id, res);
2192        else
2193                dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2194
2195        return res;
2196}
2197EXPORT_SYMBOL_GPL(rio_register_mport);
2198
2199static int rio_mport_cleanup_callback(struct device *dev, void *data)
2200{
2201        struct rio_dev *rdev = to_rio_dev(dev);
2202
2203        if (dev->bus == &rio_bus_type)
2204                rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2205        return 0;
2206}
2207
2208static int rio_net_remove_children(struct rio_net *net)
2209{
2210        /*
2211         * Unregister all RapidIO devices residing on this net (this will
2212         * invoke notification of registered subsystem interfaces as well).
2213         */
2214        device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2215        return 0;
2216}
2217
2218int rio_unregister_mport(struct rio_mport *port)
2219{
2220        pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2221
2222        /* Transition mport to the SHUTDOWN state */
2223        if (atomic_cmpxchg(&port->state,
2224                           RIO_DEVICE_RUNNING,
2225                           RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2226                pr_err("RIO: %s unexpected state transition for mport %s\n",
2227                        __func__, port->name);
2228        }
2229
2230        if (port->net && port->net->hport == port) {
2231                rio_net_remove_children(port->net);
2232                rio_free_net(port->net);
2233        }
2234
2235        /*
2236         * Unregister all RapidIO devices attached to this mport (this will
2237         * invoke notification of registered subsystem interfaces as well).
2238         */
2239        mutex_lock(&rio_mport_list_lock);
2240        list_del(&port->node);
2241        mutex_unlock(&rio_mport_list_lock);
2242        device_unregister(&port->dev);
2243
2244        return 0;
2245}
2246EXPORT_SYMBOL_GPL(rio_unregister_mport);
2247