linux/drivers/remoteproc/pru_rproc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * PRU-ICSS remoteproc driver for various TI SoCs
   4 *
   5 * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/
   6 *
   7 * Author(s):
   8 *      Suman Anna <s-anna@ti.com>
   9 *      Andrew F. Davis <afd@ti.com>
  10 *      Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
  11 */
  12
  13#include <linux/bitops.h>
  14#include <linux/debugfs.h>
  15#include <linux/irqdomain.h>
  16#include <linux/module.h>
  17#include <linux/of_device.h>
  18#include <linux/of_irq.h>
  19#include <linux/pruss_driver.h>
  20#include <linux/remoteproc.h>
  21
  22#include "remoteproc_internal.h"
  23#include "remoteproc_elf_helpers.h"
  24#include "pru_rproc.h"
  25
  26/* PRU_ICSS_PRU_CTRL registers */
  27#define PRU_CTRL_CTRL           0x0000
  28#define PRU_CTRL_STS            0x0004
  29#define PRU_CTRL_WAKEUP_EN      0x0008
  30#define PRU_CTRL_CYCLE          0x000C
  31#define PRU_CTRL_STALL          0x0010
  32#define PRU_CTRL_CTBIR0         0x0020
  33#define PRU_CTRL_CTBIR1         0x0024
  34#define PRU_CTRL_CTPPR0         0x0028
  35#define PRU_CTRL_CTPPR1         0x002C
  36
  37/* CTRL register bit-fields */
  38#define CTRL_CTRL_SOFT_RST_N    BIT(0)
  39#define CTRL_CTRL_EN            BIT(1)
  40#define CTRL_CTRL_SLEEPING      BIT(2)
  41#define CTRL_CTRL_CTR_EN        BIT(3)
  42#define CTRL_CTRL_SINGLE_STEP   BIT(8)
  43#define CTRL_CTRL_RUNSTATE      BIT(15)
  44
  45/* PRU_ICSS_PRU_DEBUG registers */
  46#define PRU_DEBUG_GPREG(x)      (0x0000 + (x) * 4)
  47#define PRU_DEBUG_CT_REG(x)     (0x0080 + (x) * 4)
  48
  49/* PRU/RTU/Tx_PRU Core IRAM address masks */
  50#define PRU_IRAM_ADDR_MASK      0x3ffff
  51#define PRU0_IRAM_ADDR_MASK     0x34000
  52#define PRU1_IRAM_ADDR_MASK     0x38000
  53#define RTU0_IRAM_ADDR_MASK     0x4000
  54#define RTU1_IRAM_ADDR_MASK     0x6000
  55#define TX_PRU0_IRAM_ADDR_MASK  0xa000
  56#define TX_PRU1_IRAM_ADDR_MASK  0xc000
  57
  58/* PRU device addresses for various type of PRU RAMs */
  59#define PRU_IRAM_DA     0       /* Instruction RAM */
  60#define PRU_PDRAM_DA    0       /* Primary Data RAM */
  61#define PRU_SDRAM_DA    0x2000  /* Secondary Data RAM */
  62#define PRU_SHRDRAM_DA  0x10000 /* Shared Data RAM */
  63
  64#define MAX_PRU_SYS_EVENTS 160
  65
  66/**
  67 * enum pru_iomem - PRU core memory/register range identifiers
  68 *
  69 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
  70 * @PRU_IOMEM_CTRL: PRU Control register range
  71 * @PRU_IOMEM_DEBUG: PRU Debug register range
  72 * @PRU_IOMEM_MAX: just keep this one at the end
  73 */
  74enum pru_iomem {
  75        PRU_IOMEM_IRAM = 0,
  76        PRU_IOMEM_CTRL,
  77        PRU_IOMEM_DEBUG,
  78        PRU_IOMEM_MAX,
  79};
  80
  81/**
  82 * enum pru_type - PRU core type identifier
  83 *
  84 * @PRU_TYPE_PRU: Programmable Real-time Unit
  85 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
  86 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
  87 * @PRU_TYPE_MAX: just keep this one at the end
  88 */
  89enum pru_type {
  90        PRU_TYPE_PRU = 0,
  91        PRU_TYPE_RTU,
  92        PRU_TYPE_TX_PRU,
  93        PRU_TYPE_MAX,
  94};
  95
  96/**
  97 * struct pru_private_data - device data for a PRU core
  98 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
  99 * @is_k3: flag used to identify the need for special load handling
 100 */
 101struct pru_private_data {
 102        enum pru_type type;
 103        unsigned int is_k3 : 1;
 104};
 105
 106/**
 107 * struct pru_rproc - PRU remoteproc structure
 108 * @id: id of the PRU core within the PRUSS
 109 * @dev: PRU core device pointer
 110 * @pruss: back-reference to parent PRUSS structure
 111 * @rproc: remoteproc pointer for this PRU core
 112 * @data: PRU core specific data
 113 * @mem_regions: data for each of the PRU memory regions
 114 * @fw_name: name of firmware image used during loading
 115 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
 116 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
 117 * @pru_interrupt_map_sz: pru_interrupt_map size
 118 * @dbg_single_step: debug state variable to set PRU into single step mode
 119 * @dbg_continuous: debug state variable to restore PRU execution mode
 120 * @evt_count: number of mapped events
 121 */
 122struct pru_rproc {
 123        int id;
 124        struct device *dev;
 125        struct pruss *pruss;
 126        struct rproc *rproc;
 127        const struct pru_private_data *data;
 128        struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
 129        const char *fw_name;
 130        unsigned int *mapped_irq;
 131        struct pru_irq_rsc *pru_interrupt_map;
 132        size_t pru_interrupt_map_sz;
 133        u32 dbg_single_step;
 134        u32 dbg_continuous;
 135        u8 evt_count;
 136};
 137
 138static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
 139{
 140        return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
 141}
 142
 143static inline
 144void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
 145{
 146        writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
 147}
 148
 149static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
 150{
 151        return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
 152}
 153
 154static int regs_show(struct seq_file *s, void *data)
 155{
 156        struct rproc *rproc = s->private;
 157        struct pru_rproc *pru = rproc->priv;
 158        int i, nregs = 32;
 159        u32 pru_sts;
 160        int pru_is_running;
 161
 162        seq_puts(s, "============== Control Registers ==============\n");
 163        seq_printf(s, "CTRL      := 0x%08x\n",
 164                   pru_control_read_reg(pru, PRU_CTRL_CTRL));
 165        pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
 166        seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
 167        seq_printf(s, "WAKEUP_EN := 0x%08x\n",
 168                   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
 169        seq_printf(s, "CYCLE     := 0x%08x\n",
 170                   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
 171        seq_printf(s, "STALL     := 0x%08x\n",
 172                   pru_control_read_reg(pru, PRU_CTRL_STALL));
 173        seq_printf(s, "CTBIR0    := 0x%08x\n",
 174                   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
 175        seq_printf(s, "CTBIR1    := 0x%08x\n",
 176                   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
 177        seq_printf(s, "CTPPR0    := 0x%08x\n",
 178                   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
 179        seq_printf(s, "CTPPR1    := 0x%08x\n",
 180                   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
 181
 182        seq_puts(s, "=============== Debug Registers ===============\n");
 183        pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
 184                                CTRL_CTRL_RUNSTATE;
 185        if (pru_is_running) {
 186                seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
 187                return 0;
 188        }
 189
 190        for (i = 0; i < nregs; i++) {
 191                seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
 192                           i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
 193                           i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
 194        }
 195
 196        return 0;
 197}
 198DEFINE_SHOW_ATTRIBUTE(regs);
 199
 200/*
 201 * Control PRU single-step mode
 202 *
 203 * This is a debug helper function used for controlling the single-step
 204 * mode of the PRU. The PRU Debug registers are not accessible when the
 205 * PRU is in RUNNING state.
 206 *
 207 * Writing a non-zero value sets the PRU into single-step mode irrespective
 208 * of its previous state. The PRU mode is saved only on the first set into
 209 * a single-step mode. Writing a zero value will restore the PRU into its
 210 * original mode.
 211 */
 212static int pru_rproc_debug_ss_set(void *data, u64 val)
 213{
 214        struct rproc *rproc = data;
 215        struct pru_rproc *pru = rproc->priv;
 216        u32 reg_val;
 217
 218        val = val ? 1 : 0;
 219        if (!val && !pru->dbg_single_step)
 220                return 0;
 221
 222        reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
 223
 224        if (val && !pru->dbg_single_step)
 225                pru->dbg_continuous = reg_val;
 226
 227        if (val)
 228                reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
 229        else
 230                reg_val = pru->dbg_continuous;
 231
 232        pru->dbg_single_step = val;
 233        pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
 234
 235        return 0;
 236}
 237
 238static int pru_rproc_debug_ss_get(void *data, u64 *val)
 239{
 240        struct rproc *rproc = data;
 241        struct pru_rproc *pru = rproc->priv;
 242
 243        *val = pru->dbg_single_step;
 244
 245        return 0;
 246}
 247DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
 248                         pru_rproc_debug_ss_set, "%llu\n");
 249
 250/*
 251 * Create PRU-specific debugfs entries
 252 *
 253 * The entries are created only if the parent remoteproc debugfs directory
 254 * exists, and will be cleaned up by the remoteproc core.
 255 */
 256static void pru_rproc_create_debug_entries(struct rproc *rproc)
 257{
 258        if (!rproc->dbg_dir)
 259                return;
 260
 261        debugfs_create_file("regs", 0400, rproc->dbg_dir,
 262                            rproc, &regs_fops);
 263        debugfs_create_file("single_step", 0600, rproc->dbg_dir,
 264                            rproc, &pru_rproc_debug_ss_fops);
 265}
 266
 267static void pru_dispose_irq_mapping(struct pru_rproc *pru)
 268{
 269        if (!pru->mapped_irq)
 270                return;
 271
 272        while (pru->evt_count) {
 273                pru->evt_count--;
 274                if (pru->mapped_irq[pru->evt_count] > 0)
 275                        irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
 276        }
 277
 278        kfree(pru->mapped_irq);
 279        pru->mapped_irq = NULL;
 280}
 281
 282/*
 283 * Parse the custom PRU interrupt map resource and configure the INTC
 284 * appropriately.
 285 */
 286static int pru_handle_intrmap(struct rproc *rproc)
 287{
 288        struct device *dev = rproc->dev.parent;
 289        struct pru_rproc *pru = rproc->priv;
 290        struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
 291        struct irq_fwspec fwspec;
 292        struct device_node *parent, *irq_parent;
 293        int i, ret = 0;
 294
 295        /* not having pru_interrupt_map is not an error */
 296        if (!rsc)
 297                return 0;
 298
 299        /* currently supporting only type 0 */
 300        if (rsc->type != 0) {
 301                dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
 302                return -EINVAL;
 303        }
 304
 305        if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
 306                return -EINVAL;
 307
 308        if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
 309            pru->pru_interrupt_map_sz)
 310                return -EINVAL;
 311
 312        pru->evt_count = rsc->num_evts;
 313        pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
 314                                  GFP_KERNEL);
 315        if (!pru->mapped_irq) {
 316                pru->evt_count = 0;
 317                return -ENOMEM;
 318        }
 319
 320        /*
 321         * parse and fill in system event to interrupt channel and
 322         * channel-to-host mapping. The interrupt controller to be used
 323         * for these mappings for a given PRU remoteproc is always its
 324         * corresponding sibling PRUSS INTC node.
 325         */
 326        parent = of_get_parent(dev_of_node(pru->dev));
 327        if (!parent) {
 328                kfree(pru->mapped_irq);
 329                pru->mapped_irq = NULL;
 330                pru->evt_count = 0;
 331                return -ENODEV;
 332        }
 333
 334        irq_parent = of_get_child_by_name(parent, "interrupt-controller");
 335        of_node_put(parent);
 336        if (!irq_parent) {
 337                kfree(pru->mapped_irq);
 338                pru->mapped_irq = NULL;
 339                pru->evt_count = 0;
 340                return -ENODEV;
 341        }
 342
 343        fwspec.fwnode = of_node_to_fwnode(irq_parent);
 344        fwspec.param_count = 3;
 345        for (i = 0; i < pru->evt_count; i++) {
 346                fwspec.param[0] = rsc->pru_intc_map[i].event;
 347                fwspec.param[1] = rsc->pru_intc_map[i].chnl;
 348                fwspec.param[2] = rsc->pru_intc_map[i].host;
 349
 350                dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
 351                        i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
 352
 353                pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
 354                if (!pru->mapped_irq[i]) {
 355                        dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
 356                                i, fwspec.param[0], fwspec.param[1],
 357                                fwspec.param[2]);
 358                        ret = -EINVAL;
 359                        goto map_fail;
 360                }
 361        }
 362        of_node_put(irq_parent);
 363
 364        return ret;
 365
 366map_fail:
 367        pru_dispose_irq_mapping(pru);
 368        of_node_put(irq_parent);
 369
 370        return ret;
 371}
 372
 373static int pru_rproc_start(struct rproc *rproc)
 374{
 375        struct device *dev = &rproc->dev;
 376        struct pru_rproc *pru = rproc->priv;
 377        const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
 378        u32 val;
 379        int ret;
 380
 381        dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
 382                names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
 383
 384        ret = pru_handle_intrmap(rproc);
 385        /*
 386         * reset references to pru interrupt map - they will stop being valid
 387         * after rproc_start returns
 388         */
 389        pru->pru_interrupt_map = NULL;
 390        pru->pru_interrupt_map_sz = 0;
 391        if (ret)
 392                return ret;
 393
 394        val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
 395        pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
 396
 397        return 0;
 398}
 399
 400static int pru_rproc_stop(struct rproc *rproc)
 401{
 402        struct device *dev = &rproc->dev;
 403        struct pru_rproc *pru = rproc->priv;
 404        const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
 405        u32 val;
 406
 407        dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
 408
 409        val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
 410        val &= ~CTRL_CTRL_EN;
 411        pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
 412
 413        /* dispose irq mapping - new firmware can provide new mapping */
 414        pru_dispose_irq_mapping(pru);
 415
 416        return 0;
 417}
 418
 419/*
 420 * Convert PRU device address (data spaces only) to kernel virtual address.
 421 *
 422 * Each PRU has access to all data memories within the PRUSS, accessible at
 423 * different ranges. So, look through both its primary and secondary Data
 424 * RAMs as well as any shared Data RAM to convert a PRU device address to
 425 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
 426 * RAM1 is primary Data RAM for PRU1.
 427 */
 428static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
 429{
 430        struct pruss_mem_region dram0, dram1, shrd_ram;
 431        struct pruss *pruss = pru->pruss;
 432        u32 offset;
 433        void *va = NULL;
 434
 435        if (len == 0)
 436                return NULL;
 437
 438        dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
 439        dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
 440        /* PRU1 has its local RAM addresses reversed */
 441        if (pru->id == 1)
 442                swap(dram0, dram1);
 443        shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
 444
 445        if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
 446                offset = da - PRU_PDRAM_DA;
 447                va = (__force void *)(dram0.va + offset);
 448        } else if (da >= PRU_SDRAM_DA &&
 449                   da + len <= PRU_SDRAM_DA + dram1.size) {
 450                offset = da - PRU_SDRAM_DA;
 451                va = (__force void *)(dram1.va + offset);
 452        } else if (da >= PRU_SHRDRAM_DA &&
 453                   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
 454                offset = da - PRU_SHRDRAM_DA;
 455                va = (__force void *)(shrd_ram.va + offset);
 456        }
 457
 458        return va;
 459}
 460
 461/*
 462 * Convert PRU device address (instruction space) to kernel virtual address.
 463 *
 464 * A PRU does not have an unified address space. Each PRU has its very own
 465 * private Instruction RAM, and its device address is identical to that of
 466 * its primary Data RAM device address.
 467 */
 468static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
 469{
 470        u32 offset;
 471        void *va = NULL;
 472
 473        if (len == 0)
 474                return NULL;
 475
 476        /*
 477         * GNU binutils do not support multiple address spaces. The GNU
 478         * linker's default linker script places IRAM at an arbitrary high
 479         * offset, in order to differentiate it from DRAM. Hence we need to
 480         * strip the artificial offset in the IRAM addresses coming from the
 481         * ELF file.
 482         *
 483         * The TI proprietary linker would never set those higher IRAM address
 484         * bits anyway. PRU architecture limits the program counter to 16-bit
 485         * word-address range. This in turn corresponds to 18-bit IRAM
 486         * byte-address range for ELF.
 487         *
 488         * Two more bits are added just in case to make the final 20-bit mask.
 489         * Idea is to have a safeguard in case TI decides to add banking
 490         * in future SoCs.
 491         */
 492        da &= 0xfffff;
 493
 494        if (da >= PRU_IRAM_DA &&
 495            da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
 496                offset = da - PRU_IRAM_DA;
 497                va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
 498                                      offset);
 499        }
 500
 501        return va;
 502}
 503
 504/*
 505 * Provide address translations for only PRU Data RAMs through the remoteproc
 506 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
 507 * only to the PRU loader code.
 508 */
 509static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 510{
 511        struct pru_rproc *pru = rproc->priv;
 512
 513        return pru_d_da_to_va(pru, da, len);
 514}
 515
 516/* PRU-specific address translator used by PRU loader. */
 517static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
 518{
 519        struct pru_rproc *pru = rproc->priv;
 520        void *va;
 521
 522        if (is_iram)
 523                va = pru_i_da_to_va(pru, da, len);
 524        else
 525                va = pru_d_da_to_va(pru, da, len);
 526
 527        return va;
 528}
 529
 530static struct rproc_ops pru_rproc_ops = {
 531        .start          = pru_rproc_start,
 532        .stop           = pru_rproc_stop,
 533        .da_to_va       = pru_rproc_da_to_va,
 534};
 535
 536/*
 537 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
 538 *
 539 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
 540 * memories, that is not seen on previous generation SoCs. The data is reflected
 541 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
 542 * copies result in all the other pre-existing bytes zeroed out within that
 543 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
 544 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
 545 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
 546 * ports do not show this behavior.
 547 */
 548static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
 549{
 550        const u32 *s = src;
 551        u32 *d = dest;
 552        size_t size = count / 4;
 553        u32 *tmp_src = NULL;
 554
 555        /*
 556         * TODO: relax limitation of 4-byte aligned dest addresses and copy
 557         * sizes
 558         */
 559        if ((long)dest % 4 || count % 4)
 560                return -EINVAL;
 561
 562        /* src offsets in ELF firmware image can be non-aligned */
 563        if ((long)src % 4) {
 564                tmp_src = kmemdup(src, count, GFP_KERNEL);
 565                if (!tmp_src)
 566                        return -ENOMEM;
 567                s = tmp_src;
 568        }
 569
 570        while (size--)
 571                *d++ = *s++;
 572
 573        kfree(tmp_src);
 574
 575        return 0;
 576}
 577
 578static int
 579pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
 580{
 581        struct pru_rproc *pru = rproc->priv;
 582        struct device *dev = &rproc->dev;
 583        struct elf32_hdr *ehdr;
 584        struct elf32_phdr *phdr;
 585        int i, ret = 0;
 586        const u8 *elf_data = fw->data;
 587
 588        ehdr = (struct elf32_hdr *)elf_data;
 589        phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
 590
 591        /* go through the available ELF segments */
 592        for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
 593                u32 da = phdr->p_paddr;
 594                u32 memsz = phdr->p_memsz;
 595                u32 filesz = phdr->p_filesz;
 596                u32 offset = phdr->p_offset;
 597                bool is_iram;
 598                void *ptr;
 599
 600                if (phdr->p_type != PT_LOAD || !filesz)
 601                        continue;
 602
 603                dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
 604                        phdr->p_type, da, memsz, filesz);
 605
 606                if (filesz > memsz) {
 607                        dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
 608                                filesz, memsz);
 609                        ret = -EINVAL;
 610                        break;
 611                }
 612
 613                if (offset + filesz > fw->size) {
 614                        dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
 615                                offset + filesz, fw->size);
 616                        ret = -EINVAL;
 617                        break;
 618                }
 619
 620                /* grab the kernel address for this device address */
 621                is_iram = phdr->p_flags & PF_X;
 622                ptr = pru_da_to_va(rproc, da, memsz, is_iram);
 623                if (!ptr) {
 624                        dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
 625                        ret = -EINVAL;
 626                        break;
 627                }
 628
 629                if (pru->data->is_k3) {
 630                        ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
 631                                               filesz);
 632                        if (ret) {
 633                                dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
 634                                        da, memsz);
 635                                break;
 636                        }
 637                } else {
 638                        memcpy(ptr, elf_data + phdr->p_offset, filesz);
 639                }
 640
 641                /* skip the memzero logic performed by remoteproc ELF loader */
 642        }
 643
 644        return ret;
 645}
 646
 647static const void *
 648pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
 649{
 650        struct elf32_shdr *shdr, *name_table_shdr;
 651        const char *name_table;
 652        const u8 *elf_data = fw->data;
 653        struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
 654        u16 shnum = ehdr->e_shnum;
 655        u16 shstrndx = ehdr->e_shstrndx;
 656        int i;
 657
 658        /* first, get the section header */
 659        shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
 660        /* compute name table section header entry in shdr array */
 661        name_table_shdr = shdr + shstrndx;
 662        /* finally, compute the name table section address in elf */
 663        name_table = elf_data + name_table_shdr->sh_offset;
 664
 665        for (i = 0; i < shnum; i++, shdr++) {
 666                u32 size = shdr->sh_size;
 667                u32 offset = shdr->sh_offset;
 668                u32 name = shdr->sh_name;
 669
 670                if (strcmp(name_table + name, ".pru_irq_map"))
 671                        continue;
 672
 673                /* make sure we have the entire irq map */
 674                if (offset + size > fw->size || offset + size < size) {
 675                        dev_err(dev, ".pru_irq_map section truncated\n");
 676                        return ERR_PTR(-EINVAL);
 677                }
 678
 679                /* make sure irq map has at least the header */
 680                if (sizeof(struct pru_irq_rsc) > size) {
 681                        dev_err(dev, "header-less .pru_irq_map section\n");
 682                        return ERR_PTR(-EINVAL);
 683                }
 684
 685                return shdr;
 686        }
 687
 688        dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
 689
 690        return NULL;
 691}
 692
 693/*
 694 * Use a custom parse_fw callback function for dealing with PRU firmware
 695 * specific sections.
 696 *
 697 * The firmware blob can contain optional ELF sections: .resource_table section
 698 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
 699 * description, which needs to be setup before powering on the PRU core. To
 700 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
 701 * firmware linker) and therefore is not loaded to PRU memory.
 702 */
 703static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
 704{
 705        struct device *dev = &rproc->dev;
 706        struct pru_rproc *pru = rproc->priv;
 707        const u8 *elf_data = fw->data;
 708        const void *shdr;
 709        u8 class = fw_elf_get_class(fw);
 710        u64 sh_offset;
 711        int ret;
 712
 713        /* load optional rsc table */
 714        ret = rproc_elf_load_rsc_table(rproc, fw);
 715        if (ret == -EINVAL)
 716                dev_dbg(&rproc->dev, "no resource table found for this fw\n");
 717        else if (ret)
 718                return ret;
 719
 720        /* find .pru_interrupt_map section, not having it is not an error */
 721        shdr = pru_rproc_find_interrupt_map(dev, fw);
 722        if (IS_ERR(shdr))
 723                return PTR_ERR(shdr);
 724
 725        if (!shdr)
 726                return 0;
 727
 728        /* preserve pointer to PRU interrupt map together with it size */
 729        sh_offset = elf_shdr_get_sh_offset(class, shdr);
 730        pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
 731        pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
 732
 733        return 0;
 734}
 735
 736/*
 737 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
 738 * always at a particular offset within the PRUSS address space.
 739 */
 740static int pru_rproc_set_id(struct pru_rproc *pru)
 741{
 742        int ret = 0;
 743
 744        switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
 745        case TX_PRU0_IRAM_ADDR_MASK:
 746                fallthrough;
 747        case RTU0_IRAM_ADDR_MASK:
 748                fallthrough;
 749        case PRU0_IRAM_ADDR_MASK:
 750                pru->id = 0;
 751                break;
 752        case TX_PRU1_IRAM_ADDR_MASK:
 753                fallthrough;
 754        case RTU1_IRAM_ADDR_MASK:
 755                fallthrough;
 756        case PRU1_IRAM_ADDR_MASK:
 757                pru->id = 1;
 758                break;
 759        default:
 760                ret = -EINVAL;
 761        }
 762
 763        return ret;
 764}
 765
 766static int pru_rproc_probe(struct platform_device *pdev)
 767{
 768        struct device *dev = &pdev->dev;
 769        struct device_node *np = dev->of_node;
 770        struct platform_device *ppdev = to_platform_device(dev->parent);
 771        struct pru_rproc *pru;
 772        const char *fw_name;
 773        struct rproc *rproc = NULL;
 774        struct resource *res;
 775        int i, ret;
 776        const struct pru_private_data *data;
 777        const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
 778
 779        data = of_device_get_match_data(&pdev->dev);
 780        if (!data)
 781                return -ENODEV;
 782
 783        ret = of_property_read_string(np, "firmware-name", &fw_name);
 784        if (ret) {
 785                dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
 786                return ret;
 787        }
 788
 789        rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
 790                                 sizeof(*pru));
 791        if (!rproc) {
 792                dev_err(dev, "rproc_alloc failed\n");
 793                return -ENOMEM;
 794        }
 795        /* use a custom load function to deal with PRU-specific quirks */
 796        rproc->ops->load = pru_rproc_load_elf_segments;
 797
 798        /* use a custom parse function to deal with PRU-specific resources */
 799        rproc->ops->parse_fw = pru_rproc_parse_fw;
 800
 801        /* error recovery is not supported for PRUs */
 802        rproc->recovery_disabled = true;
 803
 804        /*
 805         * rproc_add will auto-boot the processor normally, but this is not
 806         * desired with PRU client driven boot-flow methodology. A PRU
 807         * application/client driver will boot the corresponding PRU
 808         * remote-processor as part of its state machine either through the
 809         * remoteproc sysfs interface or through the equivalent kernel API.
 810         */
 811        rproc->auto_boot = false;
 812
 813        pru = rproc->priv;
 814        pru->dev = dev;
 815        pru->data = data;
 816        pru->pruss = platform_get_drvdata(ppdev);
 817        pru->rproc = rproc;
 818        pru->fw_name = fw_name;
 819
 820        for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
 821                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 822                                                   mem_names[i]);
 823                pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
 824                if (IS_ERR(pru->mem_regions[i].va)) {
 825                        dev_err(dev, "failed to parse and map memory resource %d %s\n",
 826                                i, mem_names[i]);
 827                        ret = PTR_ERR(pru->mem_regions[i].va);
 828                        return ret;
 829                }
 830                pru->mem_regions[i].pa = res->start;
 831                pru->mem_regions[i].size = resource_size(res);
 832
 833                dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
 834                        mem_names[i], &pru->mem_regions[i].pa,
 835                        pru->mem_regions[i].size, pru->mem_regions[i].va);
 836        }
 837
 838        ret = pru_rproc_set_id(pru);
 839        if (ret < 0)
 840                return ret;
 841
 842        platform_set_drvdata(pdev, rproc);
 843
 844        ret = devm_rproc_add(dev, pru->rproc);
 845        if (ret) {
 846                dev_err(dev, "rproc_add failed: %d\n", ret);
 847                return ret;
 848        }
 849
 850        pru_rproc_create_debug_entries(rproc);
 851
 852        dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
 853
 854        return 0;
 855}
 856
 857static int pru_rproc_remove(struct platform_device *pdev)
 858{
 859        struct device *dev = &pdev->dev;
 860        struct rproc *rproc = platform_get_drvdata(pdev);
 861
 862        dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
 863
 864        return 0;
 865}
 866
 867static const struct pru_private_data pru_data = {
 868        .type = PRU_TYPE_PRU,
 869};
 870
 871static const struct pru_private_data k3_pru_data = {
 872        .type = PRU_TYPE_PRU,
 873        .is_k3 = 1,
 874};
 875
 876static const struct pru_private_data k3_rtu_data = {
 877        .type = PRU_TYPE_RTU,
 878        .is_k3 = 1,
 879};
 880
 881static const struct pru_private_data k3_tx_pru_data = {
 882        .type = PRU_TYPE_TX_PRU,
 883        .is_k3 = 1,
 884};
 885
 886static const struct of_device_id pru_rproc_match[] = {
 887        { .compatible = "ti,am3356-pru",        .data = &pru_data },
 888        { .compatible = "ti,am4376-pru",        .data = &pru_data },
 889        { .compatible = "ti,am5728-pru",        .data = &pru_data },
 890        { .compatible = "ti,am642-pru",         .data = &k3_pru_data },
 891        { .compatible = "ti,am642-rtu",         .data = &k3_rtu_data },
 892        { .compatible = "ti,am642-tx-pru",      .data = &k3_tx_pru_data },
 893        { .compatible = "ti,k2g-pru",           .data = &pru_data },
 894        { .compatible = "ti,am654-pru",         .data = &k3_pru_data },
 895        { .compatible = "ti,am654-rtu",         .data = &k3_rtu_data },
 896        { .compatible = "ti,am654-tx-pru",      .data = &k3_tx_pru_data },
 897        { .compatible = "ti,j721e-pru",         .data = &k3_pru_data },
 898        { .compatible = "ti,j721e-rtu",         .data = &k3_rtu_data },
 899        { .compatible = "ti,j721e-tx-pru",      .data = &k3_tx_pru_data },
 900        {},
 901};
 902MODULE_DEVICE_TABLE(of, pru_rproc_match);
 903
 904static struct platform_driver pru_rproc_driver = {
 905        .driver = {
 906                .name   = "pru-rproc",
 907                .of_match_table = pru_rproc_match,
 908                .suppress_bind_attrs = true,
 909        },
 910        .probe  = pru_rproc_probe,
 911        .remove = pru_rproc_remove,
 912};
 913module_platform_driver(pru_rproc_driver);
 914
 915MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
 916MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
 917MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
 918MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
 919MODULE_LICENSE("GPL v2");
 920