linux/drivers/remoteproc/remoteproc_core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Remote Processor Framework
   4 *
   5 * Copyright (C) 2011 Texas Instruments, Inc.
   6 * Copyright (C) 2011 Google, Inc.
   7 *
   8 * Ohad Ben-Cohen <ohad@wizery.com>
   9 * Brian Swetland <swetland@google.com>
  10 * Mark Grosen <mgrosen@ti.com>
  11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
  12 * Suman Anna <s-anna@ti.com>
  13 * Robert Tivy <rtivy@ti.com>
  14 * Armando Uribe De Leon <x0095078@ti.com>
  15 */
  16
  17#define pr_fmt(fmt)    "%s: " fmt, __func__
  18
  19#include <linux/delay.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/device.h>
  23#include <linux/panic_notifier.h>
  24#include <linux/slab.h>
  25#include <linux/mutex.h>
  26#include <linux/dma-map-ops.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
  29#include <linux/firmware.h>
  30#include <linux/string.h>
  31#include <linux/debugfs.h>
  32#include <linux/rculist.h>
  33#include <linux/remoteproc.h>
  34#include <linux/iommu.h>
  35#include <linux/idr.h>
  36#include <linux/elf.h>
  37#include <linux/crc32.h>
  38#include <linux/of_reserved_mem.h>
  39#include <linux/virtio_ids.h>
  40#include <linux/virtio_ring.h>
  41#include <asm/byteorder.h>
  42#include <linux/platform_device.h>
  43
  44#include "remoteproc_internal.h"
  45
  46#define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
  47
  48static DEFINE_MUTEX(rproc_list_mutex);
  49static LIST_HEAD(rproc_list);
  50static struct notifier_block rproc_panic_nb;
  51
  52typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
  53                                 void *, int offset, int avail);
  54
  55static int rproc_alloc_carveout(struct rproc *rproc,
  56                                struct rproc_mem_entry *mem);
  57static int rproc_release_carveout(struct rproc *rproc,
  58                                  struct rproc_mem_entry *mem);
  59
  60/* Unique indices for remoteproc devices */
  61static DEFINE_IDA(rproc_dev_index);
  62
  63static const char * const rproc_crash_names[] = {
  64        [RPROC_MMUFAULT]        = "mmufault",
  65        [RPROC_WATCHDOG]        = "watchdog",
  66        [RPROC_FATAL_ERROR]     = "fatal error",
  67};
  68
  69/* translate rproc_crash_type to string */
  70static const char *rproc_crash_to_string(enum rproc_crash_type type)
  71{
  72        if (type < ARRAY_SIZE(rproc_crash_names))
  73                return rproc_crash_names[type];
  74        return "unknown";
  75}
  76
  77/*
  78 * This is the IOMMU fault handler we register with the IOMMU API
  79 * (when relevant; not all remote processors access memory through
  80 * an IOMMU).
  81 *
  82 * IOMMU core will invoke this handler whenever the remote processor
  83 * will try to access an unmapped device address.
  84 */
  85static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
  86                             unsigned long iova, int flags, void *token)
  87{
  88        struct rproc *rproc = token;
  89
  90        dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
  91
  92        rproc_report_crash(rproc, RPROC_MMUFAULT);
  93
  94        /*
  95         * Let the iommu core know we're not really handling this fault;
  96         * we just used it as a recovery trigger.
  97         */
  98        return -ENOSYS;
  99}
 100
 101static int rproc_enable_iommu(struct rproc *rproc)
 102{
 103        struct iommu_domain *domain;
 104        struct device *dev = rproc->dev.parent;
 105        int ret;
 106
 107        if (!rproc->has_iommu) {
 108                dev_dbg(dev, "iommu not present\n");
 109                return 0;
 110        }
 111
 112        domain = iommu_domain_alloc(dev->bus);
 113        if (!domain) {
 114                dev_err(dev, "can't alloc iommu domain\n");
 115                return -ENOMEM;
 116        }
 117
 118        iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
 119
 120        ret = iommu_attach_device(domain, dev);
 121        if (ret) {
 122                dev_err(dev, "can't attach iommu device: %d\n", ret);
 123                goto free_domain;
 124        }
 125
 126        rproc->domain = domain;
 127
 128        return 0;
 129
 130free_domain:
 131        iommu_domain_free(domain);
 132        return ret;
 133}
 134
 135static void rproc_disable_iommu(struct rproc *rproc)
 136{
 137        struct iommu_domain *domain = rproc->domain;
 138        struct device *dev = rproc->dev.parent;
 139
 140        if (!domain)
 141                return;
 142
 143        iommu_detach_device(domain, dev);
 144        iommu_domain_free(domain);
 145}
 146
 147phys_addr_t rproc_va_to_pa(void *cpu_addr)
 148{
 149        /*
 150         * Return physical address according to virtual address location
 151         * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
 152         * - in kernel: if region allocated in generic dma memory pool
 153         */
 154        if (is_vmalloc_addr(cpu_addr)) {
 155                return page_to_phys(vmalloc_to_page(cpu_addr)) +
 156                                    offset_in_page(cpu_addr);
 157        }
 158
 159        WARN_ON(!virt_addr_valid(cpu_addr));
 160        return virt_to_phys(cpu_addr);
 161}
 162EXPORT_SYMBOL(rproc_va_to_pa);
 163
 164/**
 165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 166 * @rproc: handle of a remote processor
 167 * @da: remoteproc device address to translate
 168 * @len: length of the memory region @da is pointing to
 169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
 170 *
 171 * Some remote processors will ask us to allocate them physically contiguous
 172 * memory regions (which we call "carveouts"), and map them to specific
 173 * device addresses (which are hardcoded in the firmware). They may also have
 174 * dedicated memory regions internal to the processors, and use them either
 175 * exclusively or alongside carveouts.
 176 *
 177 * They may then ask us to copy objects into specific device addresses (e.g.
 178 * code/data sections) or expose us certain symbols in other device address
 179 * (e.g. their trace buffer).
 180 *
 181 * This function is a helper function with which we can go over the allocated
 182 * carveouts and translate specific device addresses to kernel virtual addresses
 183 * so we can access the referenced memory. This function also allows to perform
 184 * translations on the internal remoteproc memory regions through a platform
 185 * implementation specific da_to_va ops, if present.
 186 *
 187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 188 * but only on kernel direct mapped RAM memory. Instead, we're just using
 189 * here the output of the DMA API for the carveouts, which should be more
 190 * correct.
 191 *
 192 * Return: a valid kernel address on success or NULL on failure
 193 */
 194void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
 195{
 196        struct rproc_mem_entry *carveout;
 197        void *ptr = NULL;
 198
 199        if (rproc->ops->da_to_va) {
 200                ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
 201                if (ptr)
 202                        goto out;
 203        }
 204
 205        list_for_each_entry(carveout, &rproc->carveouts, node) {
 206                int offset = da - carveout->da;
 207
 208                /*  Verify that carveout is allocated */
 209                if (!carveout->va)
 210                        continue;
 211
 212                /* try next carveout if da is too small */
 213                if (offset < 0)
 214                        continue;
 215
 216                /* try next carveout if da is too large */
 217                if (offset + len > carveout->len)
 218                        continue;
 219
 220                ptr = carveout->va + offset;
 221
 222                if (is_iomem)
 223                        *is_iomem = carveout->is_iomem;
 224
 225                break;
 226        }
 227
 228out:
 229        return ptr;
 230}
 231EXPORT_SYMBOL(rproc_da_to_va);
 232
 233/**
 234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
 235 * @rproc: handle of a remote processor
 236 * @name: carveout name to find (format string)
 237 * @...: optional parameters matching @name string
 238 *
 239 * Platform driver has the capability to register some pre-allacoted carveout
 240 * (physically contiguous memory regions) before rproc firmware loading and
 241 * associated resource table analysis. These regions may be dedicated memory
 242 * regions internal to the coprocessor or specified DDR region with specific
 243 * attributes
 244 *
 245 * This function is a helper function with which we can go over the
 246 * allocated carveouts and return associated region characteristics like
 247 * coprocessor address, length or processor virtual address.
 248 *
 249 * Return: a valid pointer on carveout entry on success or NULL on failure.
 250 */
 251__printf(2, 3)
 252struct rproc_mem_entry *
 253rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
 254{
 255        va_list args;
 256        char _name[32];
 257        struct rproc_mem_entry *carveout, *mem = NULL;
 258
 259        if (!name)
 260                return NULL;
 261
 262        va_start(args, name);
 263        vsnprintf(_name, sizeof(_name), name, args);
 264        va_end(args);
 265
 266        list_for_each_entry(carveout, &rproc->carveouts, node) {
 267                /* Compare carveout and requested names */
 268                if (!strcmp(carveout->name, _name)) {
 269                        mem = carveout;
 270                        break;
 271                }
 272        }
 273
 274        return mem;
 275}
 276
 277/**
 278 * rproc_check_carveout_da() - Check specified carveout da configuration
 279 * @rproc: handle of a remote processor
 280 * @mem: pointer on carveout to check
 281 * @da: area device address
 282 * @len: associated area size
 283 *
 284 * This function is a helper function to verify requested device area (couple
 285 * da, len) is part of specified carveout.
 286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
 287 * checked.
 288 *
 289 * Return: 0 if carveout matches request else error
 290 */
 291static int rproc_check_carveout_da(struct rproc *rproc,
 292                                   struct rproc_mem_entry *mem, u32 da, u32 len)
 293{
 294        struct device *dev = &rproc->dev;
 295        int delta;
 296
 297        /* Check requested resource length */
 298        if (len > mem->len) {
 299                dev_err(dev, "Registered carveout doesn't fit len request\n");
 300                return -EINVAL;
 301        }
 302
 303        if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
 304                /* Address doesn't match registered carveout configuration */
 305                return -EINVAL;
 306        } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
 307                delta = da - mem->da;
 308
 309                /* Check requested resource belongs to registered carveout */
 310                if (delta < 0) {
 311                        dev_err(dev,
 312                                "Registered carveout doesn't fit da request\n");
 313                        return -EINVAL;
 314                }
 315
 316                if (delta + len > mem->len) {
 317                        dev_err(dev,
 318                                "Registered carveout doesn't fit len request\n");
 319                        return -EINVAL;
 320                }
 321        }
 322
 323        return 0;
 324}
 325
 326int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
 327{
 328        struct rproc *rproc = rvdev->rproc;
 329        struct device *dev = &rproc->dev;
 330        struct rproc_vring *rvring = &rvdev->vring[i];
 331        struct fw_rsc_vdev *rsc;
 332        int ret, notifyid;
 333        struct rproc_mem_entry *mem;
 334        size_t size;
 335
 336        /* actual size of vring (in bytes) */
 337        size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
 338
 339        rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
 340
 341        /* Search for pre-registered carveout */
 342        mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
 343                                          i);
 344        if (mem) {
 345                if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
 346                        return -ENOMEM;
 347        } else {
 348                /* Register carveout in in list */
 349                mem = rproc_mem_entry_init(dev, NULL, 0,
 350                                           size, rsc->vring[i].da,
 351                                           rproc_alloc_carveout,
 352                                           rproc_release_carveout,
 353                                           "vdev%dvring%d",
 354                                           rvdev->index, i);
 355                if (!mem) {
 356                        dev_err(dev, "Can't allocate memory entry structure\n");
 357                        return -ENOMEM;
 358                }
 359
 360                rproc_add_carveout(rproc, mem);
 361        }
 362
 363        /*
 364         * Assign an rproc-wide unique index for this vring
 365         * TODO: assign a notifyid for rvdev updates as well
 366         * TODO: support predefined notifyids (via resource table)
 367         */
 368        ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
 369        if (ret < 0) {
 370                dev_err(dev, "idr_alloc failed: %d\n", ret);
 371                return ret;
 372        }
 373        notifyid = ret;
 374
 375        /* Potentially bump max_notifyid */
 376        if (notifyid > rproc->max_notifyid)
 377                rproc->max_notifyid = notifyid;
 378
 379        rvring->notifyid = notifyid;
 380
 381        /* Let the rproc know the notifyid of this vring.*/
 382        rsc->vring[i].notifyid = notifyid;
 383        return 0;
 384}
 385
 386static int
 387rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
 388{
 389        struct rproc *rproc = rvdev->rproc;
 390        struct device *dev = &rproc->dev;
 391        struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
 392        struct rproc_vring *rvring = &rvdev->vring[i];
 393
 394        dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
 395                i, vring->da, vring->num, vring->align);
 396
 397        /* verify queue size and vring alignment are sane */
 398        if (!vring->num || !vring->align) {
 399                dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
 400                        vring->num, vring->align);
 401                return -EINVAL;
 402        }
 403
 404        rvring->len = vring->num;
 405        rvring->align = vring->align;
 406        rvring->rvdev = rvdev;
 407
 408        return 0;
 409}
 410
 411void rproc_free_vring(struct rproc_vring *rvring)
 412{
 413        struct rproc *rproc = rvring->rvdev->rproc;
 414        int idx = rvring - rvring->rvdev->vring;
 415        struct fw_rsc_vdev *rsc;
 416
 417        idr_remove(&rproc->notifyids, rvring->notifyid);
 418
 419        /*
 420         * At this point rproc_stop() has been called and the installed resource
 421         * table in the remote processor memory may no longer be accessible. As
 422         * such and as per rproc_stop(), rproc->table_ptr points to the cached
 423         * resource table (rproc->cached_table).  The cached resource table is
 424         * only available when a remote processor has been booted by the
 425         * remoteproc core, otherwise it is NULL.
 426         *
 427         * Based on the above, reset the virtio device section in the cached
 428         * resource table only if there is one to work with.
 429         */
 430        if (rproc->table_ptr) {
 431                rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
 432                rsc->vring[idx].da = 0;
 433                rsc->vring[idx].notifyid = -1;
 434        }
 435}
 436
 437static int rproc_vdev_do_start(struct rproc_subdev *subdev)
 438{
 439        struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 440
 441        return rproc_add_virtio_dev(rvdev, rvdev->id);
 442}
 443
 444static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
 445{
 446        struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
 447        int ret;
 448
 449        ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
 450        if (ret)
 451                dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
 452}
 453
 454/**
 455 * rproc_rvdev_release() - release the existence of a rvdev
 456 *
 457 * @dev: the subdevice's dev
 458 */
 459static void rproc_rvdev_release(struct device *dev)
 460{
 461        struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
 462
 463        of_reserved_mem_device_release(dev);
 464
 465        kfree(rvdev);
 466}
 467
 468static int copy_dma_range_map(struct device *to, struct device *from)
 469{
 470        const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
 471        int num_ranges = 0;
 472
 473        if (!map)
 474                return 0;
 475
 476        for (r = map; r->size; r++)
 477                num_ranges++;
 478
 479        new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
 480                          GFP_KERNEL);
 481        if (!new_map)
 482                return -ENOMEM;
 483        to->dma_range_map = new_map;
 484        return 0;
 485}
 486
 487/**
 488 * rproc_handle_vdev() - handle a vdev fw resource
 489 * @rproc: the remote processor
 490 * @ptr: the vring resource descriptor
 491 * @offset: offset of the resource entry
 492 * @avail: size of available data (for sanity checking the image)
 493 *
 494 * This resource entry requests the host to statically register a virtio
 495 * device (vdev), and setup everything needed to support it. It contains
 496 * everything needed to make it possible: the virtio device id, virtio
 497 * device features, vrings information, virtio config space, etc...
 498 *
 499 * Before registering the vdev, the vrings are allocated from non-cacheable
 500 * physically contiguous memory. Currently we only support two vrings per
 501 * remote processor (temporary limitation). We might also want to consider
 502 * doing the vring allocation only later when ->find_vqs() is invoked, and
 503 * then release them upon ->del_vqs().
 504 *
 505 * Note: @da is currently not really handled correctly: we dynamically
 506 * allocate it using the DMA API, ignoring requested hard coded addresses,
 507 * and we don't take care of any required IOMMU programming. This is all
 508 * going to be taken care of when the generic iommu-based DMA API will be
 509 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 510 * use RSC_DEVMEM resource entries to map their required @da to the physical
 511 * address of their base CMA region (ouch, hacky!).
 512 *
 513 * Return: 0 on success, or an appropriate error code otherwise
 514 */
 515static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
 516                             int offset, int avail)
 517{
 518        struct fw_rsc_vdev *rsc = ptr;
 519        struct device *dev = &rproc->dev;
 520        struct rproc_vdev *rvdev;
 521        int i, ret;
 522        char name[16];
 523
 524        /* make sure resource isn't truncated */
 525        if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
 526                        avail) {
 527                dev_err(dev, "vdev rsc is truncated\n");
 528                return -EINVAL;
 529        }
 530
 531        /* make sure reserved bytes are zeroes */
 532        if (rsc->reserved[0] || rsc->reserved[1]) {
 533                dev_err(dev, "vdev rsc has non zero reserved bytes\n");
 534                return -EINVAL;
 535        }
 536
 537        dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
 538                rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
 539
 540        /* we currently support only two vrings per rvdev */
 541        if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
 542                dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
 543                return -EINVAL;
 544        }
 545
 546        rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
 547        if (!rvdev)
 548                return -ENOMEM;
 549
 550        kref_init(&rvdev->refcount);
 551
 552        rvdev->id = rsc->id;
 553        rvdev->rproc = rproc;
 554        rvdev->index = rproc->nb_vdev++;
 555
 556        /* Initialise vdev subdevice */
 557        snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
 558        rvdev->dev.parent = &rproc->dev;
 559        ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
 560        if (ret)
 561                return ret;
 562        rvdev->dev.release = rproc_rvdev_release;
 563        dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
 564        dev_set_drvdata(&rvdev->dev, rvdev);
 565
 566        ret = device_register(&rvdev->dev);
 567        if (ret) {
 568                put_device(&rvdev->dev);
 569                return ret;
 570        }
 571        /* Make device dma capable by inheriting from parent's capabilities */
 572        set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
 573
 574        ret = dma_coerce_mask_and_coherent(&rvdev->dev,
 575                                           dma_get_mask(rproc->dev.parent));
 576        if (ret) {
 577                dev_warn(dev,
 578                         "Failed to set DMA mask %llx. Trying to continue... %x\n",
 579                         dma_get_mask(rproc->dev.parent), ret);
 580        }
 581
 582        /* parse the vrings */
 583        for (i = 0; i < rsc->num_of_vrings; i++) {
 584                ret = rproc_parse_vring(rvdev, rsc, i);
 585                if (ret)
 586                        goto free_rvdev;
 587        }
 588
 589        /* remember the resource offset*/
 590        rvdev->rsc_offset = offset;
 591
 592        /* allocate the vring resources */
 593        for (i = 0; i < rsc->num_of_vrings; i++) {
 594                ret = rproc_alloc_vring(rvdev, i);
 595                if (ret)
 596                        goto unwind_vring_allocations;
 597        }
 598
 599        list_add_tail(&rvdev->node, &rproc->rvdevs);
 600
 601        rvdev->subdev.start = rproc_vdev_do_start;
 602        rvdev->subdev.stop = rproc_vdev_do_stop;
 603
 604        rproc_add_subdev(rproc, &rvdev->subdev);
 605
 606        return 0;
 607
 608unwind_vring_allocations:
 609        for (i--; i >= 0; i--)
 610                rproc_free_vring(&rvdev->vring[i]);
 611free_rvdev:
 612        device_unregister(&rvdev->dev);
 613        return ret;
 614}
 615
 616void rproc_vdev_release(struct kref *ref)
 617{
 618        struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
 619        struct rproc_vring *rvring;
 620        struct rproc *rproc = rvdev->rproc;
 621        int id;
 622
 623        for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
 624                rvring = &rvdev->vring[id];
 625                rproc_free_vring(rvring);
 626        }
 627
 628        rproc_remove_subdev(rproc, &rvdev->subdev);
 629        list_del(&rvdev->node);
 630        device_unregister(&rvdev->dev);
 631}
 632
 633/**
 634 * rproc_handle_trace() - handle a shared trace buffer resource
 635 * @rproc: the remote processor
 636 * @ptr: the trace resource descriptor
 637 * @offset: offset of the resource entry
 638 * @avail: size of available data (for sanity checking the image)
 639 *
 640 * In case the remote processor dumps trace logs into memory,
 641 * export it via debugfs.
 642 *
 643 * Currently, the 'da' member of @rsc should contain the device address
 644 * where the remote processor is dumping the traces. Later we could also
 645 * support dynamically allocating this address using the generic
 646 * DMA API (but currently there isn't a use case for that).
 647 *
 648 * Return: 0 on success, or an appropriate error code otherwise
 649 */
 650static int rproc_handle_trace(struct rproc *rproc, void *ptr,
 651                              int offset, int avail)
 652{
 653        struct fw_rsc_trace *rsc = ptr;
 654        struct rproc_debug_trace *trace;
 655        struct device *dev = &rproc->dev;
 656        char name[15];
 657
 658        if (sizeof(*rsc) > avail) {
 659                dev_err(dev, "trace rsc is truncated\n");
 660                return -EINVAL;
 661        }
 662
 663        /* make sure reserved bytes are zeroes */
 664        if (rsc->reserved) {
 665                dev_err(dev, "trace rsc has non zero reserved bytes\n");
 666                return -EINVAL;
 667        }
 668
 669        trace = kzalloc(sizeof(*trace), GFP_KERNEL);
 670        if (!trace)
 671                return -ENOMEM;
 672
 673        /* set the trace buffer dma properties */
 674        trace->trace_mem.len = rsc->len;
 675        trace->trace_mem.da = rsc->da;
 676
 677        /* set pointer on rproc device */
 678        trace->rproc = rproc;
 679
 680        /* make sure snprintf always null terminates, even if truncating */
 681        snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
 682
 683        /* create the debugfs entry */
 684        trace->tfile = rproc_create_trace_file(name, rproc, trace);
 685        if (!trace->tfile) {
 686                kfree(trace);
 687                return -EINVAL;
 688        }
 689
 690        list_add_tail(&trace->node, &rproc->traces);
 691
 692        rproc->num_traces++;
 693
 694        dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
 695                name, rsc->da, rsc->len);
 696
 697        return 0;
 698}
 699
 700/**
 701 * rproc_handle_devmem() - handle devmem resource entry
 702 * @rproc: remote processor handle
 703 * @ptr: the devmem resource entry
 704 * @offset: offset of the resource entry
 705 * @avail: size of available data (for sanity checking the image)
 706 *
 707 * Remote processors commonly need to access certain on-chip peripherals.
 708 *
 709 * Some of these remote processors access memory via an iommu device,
 710 * and might require us to configure their iommu before they can access
 711 * the on-chip peripherals they need.
 712 *
 713 * This resource entry is a request to map such a peripheral device.
 714 *
 715 * These devmem entries will contain the physical address of the device in
 716 * the 'pa' member. If a specific device address is expected, then 'da' will
 717 * contain it (currently this is the only use case supported). 'len' will
 718 * contain the size of the physical region we need to map.
 719 *
 720 * Currently we just "trust" those devmem entries to contain valid physical
 721 * addresses, but this is going to change: we want the implementations to
 722 * tell us ranges of physical addresses the firmware is allowed to request,
 723 * and not allow firmwares to request access to physical addresses that
 724 * are outside those ranges.
 725 *
 726 * Return: 0 on success, or an appropriate error code otherwise
 727 */
 728static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
 729                               int offset, int avail)
 730{
 731        struct fw_rsc_devmem *rsc = ptr;
 732        struct rproc_mem_entry *mapping;
 733        struct device *dev = &rproc->dev;
 734        int ret;
 735
 736        /* no point in handling this resource without a valid iommu domain */
 737        if (!rproc->domain)
 738                return -EINVAL;
 739
 740        if (sizeof(*rsc) > avail) {
 741                dev_err(dev, "devmem rsc is truncated\n");
 742                return -EINVAL;
 743        }
 744
 745        /* make sure reserved bytes are zeroes */
 746        if (rsc->reserved) {
 747                dev_err(dev, "devmem rsc has non zero reserved bytes\n");
 748                return -EINVAL;
 749        }
 750
 751        mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 752        if (!mapping)
 753                return -ENOMEM;
 754
 755        ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
 756        if (ret) {
 757                dev_err(dev, "failed to map devmem: %d\n", ret);
 758                goto out;
 759        }
 760
 761        /*
 762         * We'll need this info later when we'll want to unmap everything
 763         * (e.g. on shutdown).
 764         *
 765         * We can't trust the remote processor not to change the resource
 766         * table, so we must maintain this info independently.
 767         */
 768        mapping->da = rsc->da;
 769        mapping->len = rsc->len;
 770        list_add_tail(&mapping->node, &rproc->mappings);
 771
 772        dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
 773                rsc->pa, rsc->da, rsc->len);
 774
 775        return 0;
 776
 777out:
 778        kfree(mapping);
 779        return ret;
 780}
 781
 782/**
 783 * rproc_alloc_carveout() - allocated specified carveout
 784 * @rproc: rproc handle
 785 * @mem: the memory entry to allocate
 786 *
 787 * This function allocate specified memory entry @mem using
 788 * dma_alloc_coherent() as default allocator
 789 *
 790 * Return: 0 on success, or an appropriate error code otherwise
 791 */
 792static int rproc_alloc_carveout(struct rproc *rproc,
 793                                struct rproc_mem_entry *mem)
 794{
 795        struct rproc_mem_entry *mapping = NULL;
 796        struct device *dev = &rproc->dev;
 797        dma_addr_t dma;
 798        void *va;
 799        int ret;
 800
 801        va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
 802        if (!va) {
 803                dev_err(dev->parent,
 804                        "failed to allocate dma memory: len 0x%zx\n",
 805                        mem->len);
 806                return -ENOMEM;
 807        }
 808
 809        dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
 810                va, &dma, mem->len);
 811
 812        if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
 813                /*
 814                 * Check requested da is equal to dma address
 815                 * and print a warn message in case of missalignment.
 816                 * Don't stop rproc_start sequence as coprocessor may
 817                 * build pa to da translation on its side.
 818                 */
 819                if (mem->da != (u32)dma)
 820                        dev_warn(dev->parent,
 821                                 "Allocated carveout doesn't fit device address request\n");
 822        }
 823
 824        /*
 825         * Ok, this is non-standard.
 826         *
 827         * Sometimes we can't rely on the generic iommu-based DMA API
 828         * to dynamically allocate the device address and then set the IOMMU
 829         * tables accordingly, because some remote processors might
 830         * _require_ us to use hard coded device addresses that their
 831         * firmware was compiled with.
 832         *
 833         * In this case, we must use the IOMMU API directly and map
 834         * the memory to the device address as expected by the remote
 835         * processor.
 836         *
 837         * Obviously such remote processor devices should not be configured
 838         * to use the iommu-based DMA API: we expect 'dma' to contain the
 839         * physical address in this case.
 840         */
 841        if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
 842                mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
 843                if (!mapping) {
 844                        ret = -ENOMEM;
 845                        goto dma_free;
 846                }
 847
 848                ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
 849                                mem->flags);
 850                if (ret) {
 851                        dev_err(dev, "iommu_map failed: %d\n", ret);
 852                        goto free_mapping;
 853                }
 854
 855                /*
 856                 * We'll need this info later when we'll want to unmap
 857                 * everything (e.g. on shutdown).
 858                 *
 859                 * We can't trust the remote processor not to change the
 860                 * resource table, so we must maintain this info independently.
 861                 */
 862                mapping->da = mem->da;
 863                mapping->len = mem->len;
 864                list_add_tail(&mapping->node, &rproc->mappings);
 865
 866                dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
 867                        mem->da, &dma);
 868        }
 869
 870        if (mem->da == FW_RSC_ADDR_ANY) {
 871                /* Update device address as undefined by requester */
 872                if ((u64)dma & HIGH_BITS_MASK)
 873                        dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
 874
 875                mem->da = (u32)dma;
 876        }
 877
 878        mem->dma = dma;
 879        mem->va = va;
 880
 881        return 0;
 882
 883free_mapping:
 884        kfree(mapping);
 885dma_free:
 886        dma_free_coherent(dev->parent, mem->len, va, dma);
 887        return ret;
 888}
 889
 890/**
 891 * rproc_release_carveout() - release acquired carveout
 892 * @rproc: rproc handle
 893 * @mem: the memory entry to release
 894 *
 895 * This function releases specified memory entry @mem allocated via
 896 * rproc_alloc_carveout() function by @rproc.
 897 *
 898 * Return: 0 on success, or an appropriate error code otherwise
 899 */
 900static int rproc_release_carveout(struct rproc *rproc,
 901                                  struct rproc_mem_entry *mem)
 902{
 903        struct device *dev = &rproc->dev;
 904
 905        /* clean up carveout allocations */
 906        dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
 907        return 0;
 908}
 909
 910/**
 911 * rproc_handle_carveout() - handle phys contig memory allocation requests
 912 * @rproc: rproc handle
 913 * @ptr: the resource entry
 914 * @offset: offset of the resource entry
 915 * @avail: size of available data (for image validation)
 916 *
 917 * This function will handle firmware requests for allocation of physically
 918 * contiguous memory regions.
 919 *
 920 * These request entries should come first in the firmware's resource table,
 921 * as other firmware entries might request placing other data objects inside
 922 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 923 *
 924 * Allocating memory this way helps utilizing the reserved physical memory
 925 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 926 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 927 * pressure is important; it may have a substantial impact on performance.
 928 *
 929 * Return: 0 on success, or an appropriate error code otherwise
 930 */
 931static int rproc_handle_carveout(struct rproc *rproc,
 932                                 void *ptr, int offset, int avail)
 933{
 934        struct fw_rsc_carveout *rsc = ptr;
 935        struct rproc_mem_entry *carveout;
 936        struct device *dev = &rproc->dev;
 937
 938        if (sizeof(*rsc) > avail) {
 939                dev_err(dev, "carveout rsc is truncated\n");
 940                return -EINVAL;
 941        }
 942
 943        /* make sure reserved bytes are zeroes */
 944        if (rsc->reserved) {
 945                dev_err(dev, "carveout rsc has non zero reserved bytes\n");
 946                return -EINVAL;
 947        }
 948
 949        dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
 950                rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
 951
 952        /*
 953         * Check carveout rsc already part of a registered carveout,
 954         * Search by name, then check the da and length
 955         */
 956        carveout = rproc_find_carveout_by_name(rproc, rsc->name);
 957
 958        if (carveout) {
 959                if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
 960                        dev_err(dev,
 961                                "Carveout already associated to resource table\n");
 962                        return -ENOMEM;
 963                }
 964
 965                if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
 966                        return -ENOMEM;
 967
 968                /* Update memory carveout with resource table info */
 969                carveout->rsc_offset = offset;
 970                carveout->flags = rsc->flags;
 971
 972                return 0;
 973        }
 974
 975        /* Register carveout in in list */
 976        carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
 977                                        rproc_alloc_carveout,
 978                                        rproc_release_carveout, rsc->name);
 979        if (!carveout) {
 980                dev_err(dev, "Can't allocate memory entry structure\n");
 981                return -ENOMEM;
 982        }
 983
 984        carveout->flags = rsc->flags;
 985        carveout->rsc_offset = offset;
 986        rproc_add_carveout(rproc, carveout);
 987
 988        return 0;
 989}
 990
 991/**
 992 * rproc_add_carveout() - register an allocated carveout region
 993 * @rproc: rproc handle
 994 * @mem: memory entry to register
 995 *
 996 * This function registers specified memory entry in @rproc carveouts list.
 997 * Specified carveout should have been allocated before registering.
 998 */
 999void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1000{
1001        list_add_tail(&mem->node, &rproc->carveouts);
1002}
1003EXPORT_SYMBOL(rproc_add_carveout);
1004
1005/**
1006 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1007 * @dev: pointer on device struct
1008 * @va: virtual address
1009 * @dma: dma address
1010 * @len: memory carveout length
1011 * @da: device address
1012 * @alloc: memory carveout allocation function
1013 * @release: memory carveout release function
1014 * @name: carveout name
1015 *
1016 * This function allocates a rproc_mem_entry struct and fill it with parameters
1017 * provided by client.
1018 *
1019 * Return: a valid pointer on success, or NULL on failure
1020 */
1021__printf(8, 9)
1022struct rproc_mem_entry *
1023rproc_mem_entry_init(struct device *dev,
1024                     void *va, dma_addr_t dma, size_t len, u32 da,
1025                     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1026                     int (*release)(struct rproc *, struct rproc_mem_entry *),
1027                     const char *name, ...)
1028{
1029        struct rproc_mem_entry *mem;
1030        va_list args;
1031
1032        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1033        if (!mem)
1034                return mem;
1035
1036        mem->va = va;
1037        mem->dma = dma;
1038        mem->da = da;
1039        mem->len = len;
1040        mem->alloc = alloc;
1041        mem->release = release;
1042        mem->rsc_offset = FW_RSC_ADDR_ANY;
1043        mem->of_resm_idx = -1;
1044
1045        va_start(args, name);
1046        vsnprintf(mem->name, sizeof(mem->name), name, args);
1047        va_end(args);
1048
1049        return mem;
1050}
1051EXPORT_SYMBOL(rproc_mem_entry_init);
1052
1053/**
1054 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1055 * from a reserved memory phandle
1056 * @dev: pointer on device struct
1057 * @of_resm_idx: reserved memory phandle index in "memory-region"
1058 * @len: memory carveout length
1059 * @da: device address
1060 * @name: carveout name
1061 *
1062 * This function allocates a rproc_mem_entry struct and fill it with parameters
1063 * provided by client.
1064 *
1065 * Return: a valid pointer on success, or NULL on failure
1066 */
1067__printf(5, 6)
1068struct rproc_mem_entry *
1069rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1070                             u32 da, const char *name, ...)
1071{
1072        struct rproc_mem_entry *mem;
1073        va_list args;
1074
1075        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1076        if (!mem)
1077                return mem;
1078
1079        mem->da = da;
1080        mem->len = len;
1081        mem->rsc_offset = FW_RSC_ADDR_ANY;
1082        mem->of_resm_idx = of_resm_idx;
1083
1084        va_start(args, name);
1085        vsnprintf(mem->name, sizeof(mem->name), name, args);
1086        va_end(args);
1087
1088        return mem;
1089}
1090EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1091
1092/**
1093 * rproc_of_parse_firmware() - parse and return the firmware-name
1094 * @dev: pointer on device struct representing a rproc
1095 * @index: index to use for the firmware-name retrieval
1096 * @fw_name: pointer to a character string, in which the firmware
1097 *           name is returned on success and unmodified otherwise.
1098 *
1099 * This is an OF helper function that parses a device's DT node for
1100 * the "firmware-name" property and returns the firmware name pointer
1101 * in @fw_name on success.
1102 *
1103 * Return: 0 on success, or an appropriate failure.
1104 */
1105int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1106{
1107        int ret;
1108
1109        ret = of_property_read_string_index(dev->of_node, "firmware-name",
1110                                            index, fw_name);
1111        return ret ? ret : 0;
1112}
1113EXPORT_SYMBOL(rproc_of_parse_firmware);
1114
1115/*
1116 * A lookup table for resource handlers. The indices are defined in
1117 * enum fw_resource_type.
1118 */
1119static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1120        [RSC_CARVEOUT] = rproc_handle_carveout,
1121        [RSC_DEVMEM] = rproc_handle_devmem,
1122        [RSC_TRACE] = rproc_handle_trace,
1123        [RSC_VDEV] = rproc_handle_vdev,
1124};
1125
1126/* handle firmware resource entries before booting the remote processor */
1127static int rproc_handle_resources(struct rproc *rproc,
1128                                  rproc_handle_resource_t handlers[RSC_LAST])
1129{
1130        struct device *dev = &rproc->dev;
1131        rproc_handle_resource_t handler;
1132        int ret = 0, i;
1133
1134        if (!rproc->table_ptr)
1135                return 0;
1136
1137        for (i = 0; i < rproc->table_ptr->num; i++) {
1138                int offset = rproc->table_ptr->offset[i];
1139                struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1140                int avail = rproc->table_sz - offset - sizeof(*hdr);
1141                void *rsc = (void *)hdr + sizeof(*hdr);
1142
1143                /* make sure table isn't truncated */
1144                if (avail < 0) {
1145                        dev_err(dev, "rsc table is truncated\n");
1146                        return -EINVAL;
1147                }
1148
1149                dev_dbg(dev, "rsc: type %d\n", hdr->type);
1150
1151                if (hdr->type >= RSC_VENDOR_START &&
1152                    hdr->type <= RSC_VENDOR_END) {
1153                        ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1154                                               offset + sizeof(*hdr), avail);
1155                        if (ret == RSC_HANDLED)
1156                                continue;
1157                        else if (ret < 0)
1158                                break;
1159
1160                        dev_warn(dev, "unsupported vendor resource %d\n",
1161                                 hdr->type);
1162                        continue;
1163                }
1164
1165                if (hdr->type >= RSC_LAST) {
1166                        dev_warn(dev, "unsupported resource %d\n", hdr->type);
1167                        continue;
1168                }
1169
1170                handler = handlers[hdr->type];
1171                if (!handler)
1172                        continue;
1173
1174                ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1175                if (ret)
1176                        break;
1177        }
1178
1179        return ret;
1180}
1181
1182static int rproc_prepare_subdevices(struct rproc *rproc)
1183{
1184        struct rproc_subdev *subdev;
1185        int ret;
1186
1187        list_for_each_entry(subdev, &rproc->subdevs, node) {
1188                if (subdev->prepare) {
1189                        ret = subdev->prepare(subdev);
1190                        if (ret)
1191                                goto unroll_preparation;
1192                }
1193        }
1194
1195        return 0;
1196
1197unroll_preparation:
1198        list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1199                if (subdev->unprepare)
1200                        subdev->unprepare(subdev);
1201        }
1202
1203        return ret;
1204}
1205
1206static int rproc_start_subdevices(struct rproc *rproc)
1207{
1208        struct rproc_subdev *subdev;
1209        int ret;
1210
1211        list_for_each_entry(subdev, &rproc->subdevs, node) {
1212                if (subdev->start) {
1213                        ret = subdev->start(subdev);
1214                        if (ret)
1215                                goto unroll_registration;
1216                }
1217        }
1218
1219        return 0;
1220
1221unroll_registration:
1222        list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1223                if (subdev->stop)
1224                        subdev->stop(subdev, true);
1225        }
1226
1227        return ret;
1228}
1229
1230static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1231{
1232        struct rproc_subdev *subdev;
1233
1234        list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1235                if (subdev->stop)
1236                        subdev->stop(subdev, crashed);
1237        }
1238}
1239
1240static void rproc_unprepare_subdevices(struct rproc *rproc)
1241{
1242        struct rproc_subdev *subdev;
1243
1244        list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1245                if (subdev->unprepare)
1246                        subdev->unprepare(subdev);
1247        }
1248}
1249
1250/**
1251 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1252 * in the list
1253 * @rproc: the remote processor handle
1254 *
1255 * This function parses registered carveout list, performs allocation
1256 * if alloc() ops registered and updates resource table information
1257 * if rsc_offset set.
1258 *
1259 * Return: 0 on success
1260 */
1261static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1262{
1263        struct rproc_mem_entry *entry, *tmp;
1264        struct fw_rsc_carveout *rsc;
1265        struct device *dev = &rproc->dev;
1266        u64 pa;
1267        int ret;
1268
1269        list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1270                if (entry->alloc) {
1271                        ret = entry->alloc(rproc, entry);
1272                        if (ret) {
1273                                dev_err(dev, "Unable to allocate carveout %s: %d\n",
1274                                        entry->name, ret);
1275                                return -ENOMEM;
1276                        }
1277                }
1278
1279                if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1280                        /* update resource table */
1281                        rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1282
1283                        /*
1284                         * Some remote processors might need to know the pa
1285                         * even though they are behind an IOMMU. E.g., OMAP4's
1286                         * remote M3 processor needs this so it can control
1287                         * on-chip hardware accelerators that are not behind
1288                         * the IOMMU, and therefor must know the pa.
1289                         *
1290                         * Generally we don't want to expose physical addresses
1291                         * if we don't have to (remote processors are generally
1292                         * _not_ trusted), so we might want to do this only for
1293                         * remote processor that _must_ have this (e.g. OMAP4's
1294                         * dual M3 subsystem).
1295                         *
1296                         * Non-IOMMU processors might also want to have this info.
1297                         * In this case, the device address and the physical address
1298                         * are the same.
1299                         */
1300
1301                        /* Use va if defined else dma to generate pa */
1302                        if (entry->va)
1303                                pa = (u64)rproc_va_to_pa(entry->va);
1304                        else
1305                                pa = (u64)entry->dma;
1306
1307                        if (((u64)pa) & HIGH_BITS_MASK)
1308                                dev_warn(dev,
1309                                         "Physical address cast in 32bit to fit resource table format\n");
1310
1311                        rsc->pa = (u32)pa;
1312                        rsc->da = entry->da;
1313                        rsc->len = entry->len;
1314                }
1315        }
1316
1317        return 0;
1318}
1319
1320
1321/**
1322 * rproc_resource_cleanup() - clean up and free all acquired resources
1323 * @rproc: rproc handle
1324 *
1325 * This function will free all resources acquired for @rproc, and it
1326 * is called whenever @rproc either shuts down or fails to boot.
1327 */
1328void rproc_resource_cleanup(struct rproc *rproc)
1329{
1330        struct rproc_mem_entry *entry, *tmp;
1331        struct rproc_debug_trace *trace, *ttmp;
1332        struct rproc_vdev *rvdev, *rvtmp;
1333        struct device *dev = &rproc->dev;
1334
1335        /* clean up debugfs trace entries */
1336        list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1337                rproc_remove_trace_file(trace->tfile);
1338                rproc->num_traces--;
1339                list_del(&trace->node);
1340                kfree(trace);
1341        }
1342
1343        /* clean up iommu mapping entries */
1344        list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1345                size_t unmapped;
1346
1347                unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1348                if (unmapped != entry->len) {
1349                        /* nothing much to do besides complaining */
1350                        dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1351                                unmapped);
1352                }
1353
1354                list_del(&entry->node);
1355                kfree(entry);
1356        }
1357
1358        /* clean up carveout allocations */
1359        list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1360                if (entry->release)
1361                        entry->release(rproc, entry);
1362                list_del(&entry->node);
1363                kfree(entry);
1364        }
1365
1366        /* clean up remote vdev entries */
1367        list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1368                kref_put(&rvdev->refcount, rproc_vdev_release);
1369
1370        rproc_coredump_cleanup(rproc);
1371}
1372EXPORT_SYMBOL(rproc_resource_cleanup);
1373
1374static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1375{
1376        struct resource_table *loaded_table;
1377        struct device *dev = &rproc->dev;
1378        int ret;
1379
1380        /* load the ELF segments to memory */
1381        ret = rproc_load_segments(rproc, fw);
1382        if (ret) {
1383                dev_err(dev, "Failed to load program segments: %d\n", ret);
1384                return ret;
1385        }
1386
1387        /*
1388         * The starting device has been given the rproc->cached_table as the
1389         * resource table. The address of the vring along with the other
1390         * allocated resources (carveouts etc) is stored in cached_table.
1391         * In order to pass this information to the remote device we must copy
1392         * this information to device memory. We also update the table_ptr so
1393         * that any subsequent changes will be applied to the loaded version.
1394         */
1395        loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1396        if (loaded_table) {
1397                memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1398                rproc->table_ptr = loaded_table;
1399        }
1400
1401        ret = rproc_prepare_subdevices(rproc);
1402        if (ret) {
1403                dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1404                        rproc->name, ret);
1405                goto reset_table_ptr;
1406        }
1407
1408        /* power up the remote processor */
1409        ret = rproc->ops->start(rproc);
1410        if (ret) {
1411                dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1412                goto unprepare_subdevices;
1413        }
1414
1415        /* Start any subdevices for the remote processor */
1416        ret = rproc_start_subdevices(rproc);
1417        if (ret) {
1418                dev_err(dev, "failed to probe subdevices for %s: %d\n",
1419                        rproc->name, ret);
1420                goto stop_rproc;
1421        }
1422
1423        rproc->state = RPROC_RUNNING;
1424
1425        dev_info(dev, "remote processor %s is now up\n", rproc->name);
1426
1427        return 0;
1428
1429stop_rproc:
1430        rproc->ops->stop(rproc);
1431unprepare_subdevices:
1432        rproc_unprepare_subdevices(rproc);
1433reset_table_ptr:
1434        rproc->table_ptr = rproc->cached_table;
1435
1436        return ret;
1437}
1438
1439static int __rproc_attach(struct rproc *rproc)
1440{
1441        struct device *dev = &rproc->dev;
1442        int ret;
1443
1444        ret = rproc_prepare_subdevices(rproc);
1445        if (ret) {
1446                dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1447                        rproc->name, ret);
1448                goto out;
1449        }
1450
1451        /* Attach to the remote processor */
1452        ret = rproc_attach_device(rproc);
1453        if (ret) {
1454                dev_err(dev, "can't attach to rproc %s: %d\n",
1455                        rproc->name, ret);
1456                goto unprepare_subdevices;
1457        }
1458
1459        /* Start any subdevices for the remote processor */
1460        ret = rproc_start_subdevices(rproc);
1461        if (ret) {
1462                dev_err(dev, "failed to probe subdevices for %s: %d\n",
1463                        rproc->name, ret);
1464                goto stop_rproc;
1465        }
1466
1467        rproc->state = RPROC_ATTACHED;
1468
1469        dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1470
1471        return 0;
1472
1473stop_rproc:
1474        rproc->ops->stop(rproc);
1475unprepare_subdevices:
1476        rproc_unprepare_subdevices(rproc);
1477out:
1478        return ret;
1479}
1480
1481/*
1482 * take a firmware and boot a remote processor with it.
1483 */
1484static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1485{
1486        struct device *dev = &rproc->dev;
1487        const char *name = rproc->firmware;
1488        int ret;
1489
1490        ret = rproc_fw_sanity_check(rproc, fw);
1491        if (ret)
1492                return ret;
1493
1494        dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1495
1496        /*
1497         * if enabling an IOMMU isn't relevant for this rproc, this is
1498         * just a nop
1499         */
1500        ret = rproc_enable_iommu(rproc);
1501        if (ret) {
1502                dev_err(dev, "can't enable iommu: %d\n", ret);
1503                return ret;
1504        }
1505
1506        /* Prepare rproc for firmware loading if needed */
1507        ret = rproc_prepare_device(rproc);
1508        if (ret) {
1509                dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1510                goto disable_iommu;
1511        }
1512
1513        rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1514
1515        /* Load resource table, core dump segment list etc from the firmware */
1516        ret = rproc_parse_fw(rproc, fw);
1517        if (ret)
1518                goto unprepare_rproc;
1519
1520        /* reset max_notifyid */
1521        rproc->max_notifyid = -1;
1522
1523        /* reset handled vdev */
1524        rproc->nb_vdev = 0;
1525
1526        /* handle fw resources which are required to boot rproc */
1527        ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1528        if (ret) {
1529                dev_err(dev, "Failed to process resources: %d\n", ret);
1530                goto clean_up_resources;
1531        }
1532
1533        /* Allocate carveout resources associated to rproc */
1534        ret = rproc_alloc_registered_carveouts(rproc);
1535        if (ret) {
1536                dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1537                        ret);
1538                goto clean_up_resources;
1539        }
1540
1541        ret = rproc_start(rproc, fw);
1542        if (ret)
1543                goto clean_up_resources;
1544
1545        return 0;
1546
1547clean_up_resources:
1548        rproc_resource_cleanup(rproc);
1549        kfree(rproc->cached_table);
1550        rproc->cached_table = NULL;
1551        rproc->table_ptr = NULL;
1552unprepare_rproc:
1553        /* release HW resources if needed */
1554        rproc_unprepare_device(rproc);
1555disable_iommu:
1556        rproc_disable_iommu(rproc);
1557        return ret;
1558}
1559
1560static int rproc_set_rsc_table(struct rproc *rproc)
1561{
1562        struct resource_table *table_ptr;
1563        struct device *dev = &rproc->dev;
1564        size_t table_sz;
1565        int ret;
1566
1567        table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1568        if (!table_ptr) {
1569                /* Not having a resource table is acceptable */
1570                return 0;
1571        }
1572
1573        if (IS_ERR(table_ptr)) {
1574                ret = PTR_ERR(table_ptr);
1575                dev_err(dev, "can't load resource table: %d\n", ret);
1576                return ret;
1577        }
1578
1579        /*
1580         * If it is possible to detach the remote processor, keep an untouched
1581         * copy of the resource table.  That way we can start fresh again when
1582         * the remote processor is re-attached, that is:
1583         *
1584         *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1585         *
1586         * Free'd in rproc_reset_rsc_table_on_detach() and
1587         * rproc_reset_rsc_table_on_stop().
1588         */
1589        if (rproc->ops->detach) {
1590                rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1591                if (!rproc->clean_table)
1592                        return -ENOMEM;
1593        } else {
1594                rproc->clean_table = NULL;
1595        }
1596
1597        rproc->cached_table = NULL;
1598        rproc->table_ptr = table_ptr;
1599        rproc->table_sz = table_sz;
1600
1601        return 0;
1602}
1603
1604static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1605{
1606        struct resource_table *table_ptr;
1607
1608        /* A resource table was never retrieved, nothing to do here */
1609        if (!rproc->table_ptr)
1610                return 0;
1611
1612        /*
1613         * If we made it to this point a clean_table _must_ have been
1614         * allocated in rproc_set_rsc_table().  If one isn't present
1615         * something went really wrong and we must complain.
1616         */
1617        if (WARN_ON(!rproc->clean_table))
1618                return -EINVAL;
1619
1620        /* Remember where the external entity installed the resource table */
1621        table_ptr = rproc->table_ptr;
1622
1623        /*
1624         * If we made it here the remote processor was started by another
1625         * entity and a cache table doesn't exist.  As such make a copy of
1626         * the resource table currently used by the remote processor and
1627         * use that for the rest of the shutdown process.  The memory
1628         * allocated here is free'd in rproc_detach().
1629         */
1630        rproc->cached_table = kmemdup(rproc->table_ptr,
1631                                      rproc->table_sz, GFP_KERNEL);
1632        if (!rproc->cached_table)
1633                return -ENOMEM;
1634
1635        /*
1636         * Use a copy of the resource table for the remainder of the
1637         * shutdown process.
1638         */
1639        rproc->table_ptr = rproc->cached_table;
1640
1641        /*
1642         * Reset the memory area where the firmware loaded the resource table
1643         * to its original value.  That way when we re-attach the remote
1644         * processor the resource table is clean and ready to be used again.
1645         */
1646        memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1647
1648        /*
1649         * The clean resource table is no longer needed.  Allocated in
1650         * rproc_set_rsc_table().
1651         */
1652        kfree(rproc->clean_table);
1653
1654        return 0;
1655}
1656
1657static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1658{
1659        /* A resource table was never retrieved, nothing to do here */
1660        if (!rproc->table_ptr)
1661                return 0;
1662
1663        /*
1664         * If a cache table exists the remote processor was started by
1665         * the remoteproc core.  That cache table should be used for
1666         * the rest of the shutdown process.
1667         */
1668        if (rproc->cached_table)
1669                goto out;
1670
1671        /*
1672         * If we made it here the remote processor was started by another
1673         * entity and a cache table doesn't exist.  As such make a copy of
1674         * the resource table currently used by the remote processor and
1675         * use that for the rest of the shutdown process.  The memory
1676         * allocated here is free'd in rproc_shutdown().
1677         */
1678        rproc->cached_table = kmemdup(rproc->table_ptr,
1679                                      rproc->table_sz, GFP_KERNEL);
1680        if (!rproc->cached_table)
1681                return -ENOMEM;
1682
1683        /*
1684         * Since the remote processor is being switched off the clean table
1685         * won't be needed.  Allocated in rproc_set_rsc_table().
1686         */
1687        kfree(rproc->clean_table);
1688
1689out:
1690        /*
1691         * Use a copy of the resource table for the remainder of the
1692         * shutdown process.
1693         */
1694        rproc->table_ptr = rproc->cached_table;
1695        return 0;
1696}
1697
1698/*
1699 * Attach to remote processor - similar to rproc_fw_boot() but without
1700 * the steps that deal with the firmware image.
1701 */
1702static int rproc_attach(struct rproc *rproc)
1703{
1704        struct device *dev = &rproc->dev;
1705        int ret;
1706
1707        /*
1708         * if enabling an IOMMU isn't relevant for this rproc, this is
1709         * just a nop
1710         */
1711        ret = rproc_enable_iommu(rproc);
1712        if (ret) {
1713                dev_err(dev, "can't enable iommu: %d\n", ret);
1714                return ret;
1715        }
1716
1717        /* Do anything that is needed to boot the remote processor */
1718        ret = rproc_prepare_device(rproc);
1719        if (ret) {
1720                dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1721                goto disable_iommu;
1722        }
1723
1724        ret = rproc_set_rsc_table(rproc);
1725        if (ret) {
1726                dev_err(dev, "can't load resource table: %d\n", ret);
1727                goto unprepare_device;
1728        }
1729
1730        /* reset max_notifyid */
1731        rproc->max_notifyid = -1;
1732
1733        /* reset handled vdev */
1734        rproc->nb_vdev = 0;
1735
1736        /*
1737         * Handle firmware resources required to attach to a remote processor.
1738         * Because we are attaching rather than booting the remote processor,
1739         * we expect the platform driver to properly set rproc->table_ptr.
1740         */
1741        ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1742        if (ret) {
1743                dev_err(dev, "Failed to process resources: %d\n", ret);
1744                goto unprepare_device;
1745        }
1746
1747        /* Allocate carveout resources associated to rproc */
1748        ret = rproc_alloc_registered_carveouts(rproc);
1749        if (ret) {
1750                dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1751                        ret);
1752                goto clean_up_resources;
1753        }
1754
1755        ret = __rproc_attach(rproc);
1756        if (ret)
1757                goto clean_up_resources;
1758
1759        return 0;
1760
1761clean_up_resources:
1762        rproc_resource_cleanup(rproc);
1763unprepare_device:
1764        /* release HW resources if needed */
1765        rproc_unprepare_device(rproc);
1766disable_iommu:
1767        rproc_disable_iommu(rproc);
1768        return ret;
1769}
1770
1771/*
1772 * take a firmware and boot it up.
1773 *
1774 * Note: this function is called asynchronously upon registration of the
1775 * remote processor (so we must wait until it completes before we try
1776 * to unregister the device. one other option is just to use kref here,
1777 * that might be cleaner).
1778 */
1779static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1780{
1781        struct rproc *rproc = context;
1782
1783        rproc_boot(rproc);
1784
1785        release_firmware(fw);
1786}
1787
1788static int rproc_trigger_auto_boot(struct rproc *rproc)
1789{
1790        int ret;
1791
1792        /*
1793         * Since the remote processor is in a detached state, it has already
1794         * been booted by another entity.  As such there is no point in waiting
1795         * for a firmware image to be loaded, we can simply initiate the process
1796         * of attaching to it immediately.
1797         */
1798        if (rproc->state == RPROC_DETACHED)
1799                return rproc_boot(rproc);
1800
1801        /*
1802         * We're initiating an asynchronous firmware loading, so we can
1803         * be built-in kernel code, without hanging the boot process.
1804         */
1805        ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1806                                      rproc->firmware, &rproc->dev, GFP_KERNEL,
1807                                      rproc, rproc_auto_boot_callback);
1808        if (ret < 0)
1809                dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1810
1811        return ret;
1812}
1813
1814static int rproc_stop(struct rproc *rproc, bool crashed)
1815{
1816        struct device *dev = &rproc->dev;
1817        int ret;
1818
1819        /* No need to continue if a stop() operation has not been provided */
1820        if (!rproc->ops->stop)
1821                return -EINVAL;
1822
1823        /* Stop any subdevices for the remote processor */
1824        rproc_stop_subdevices(rproc, crashed);
1825
1826        /* the installed resource table is no longer accessible */
1827        ret = rproc_reset_rsc_table_on_stop(rproc);
1828        if (ret) {
1829                dev_err(dev, "can't reset resource table: %d\n", ret);
1830                return ret;
1831        }
1832
1833
1834        /* power off the remote processor */
1835        ret = rproc->ops->stop(rproc);
1836        if (ret) {
1837                dev_err(dev, "can't stop rproc: %d\n", ret);
1838                return ret;
1839        }
1840
1841        rproc_unprepare_subdevices(rproc);
1842
1843        rproc->state = RPROC_OFFLINE;
1844
1845        dev_info(dev, "stopped remote processor %s\n", rproc->name);
1846
1847        return 0;
1848}
1849
1850/*
1851 * __rproc_detach(): Does the opposite of __rproc_attach()
1852 */
1853static int __rproc_detach(struct rproc *rproc)
1854{
1855        struct device *dev = &rproc->dev;
1856        int ret;
1857
1858        /* No need to continue if a detach() operation has not been provided */
1859        if (!rproc->ops->detach)
1860                return -EINVAL;
1861
1862        /* Stop any subdevices for the remote processor */
1863        rproc_stop_subdevices(rproc, false);
1864
1865        /* the installed resource table is no longer accessible */
1866        ret = rproc_reset_rsc_table_on_detach(rproc);
1867        if (ret) {
1868                dev_err(dev, "can't reset resource table: %d\n", ret);
1869                return ret;
1870        }
1871
1872        /* Tell the remote processor the core isn't available anymore */
1873        ret = rproc->ops->detach(rproc);
1874        if (ret) {
1875                dev_err(dev, "can't detach from rproc: %d\n", ret);
1876                return ret;
1877        }
1878
1879        rproc_unprepare_subdevices(rproc);
1880
1881        rproc->state = RPROC_DETACHED;
1882
1883        dev_info(dev, "detached remote processor %s\n", rproc->name);
1884
1885        return 0;
1886}
1887
1888/**
1889 * rproc_trigger_recovery() - recover a remoteproc
1890 * @rproc: the remote processor
1891 *
1892 * The recovery is done by resetting all the virtio devices, that way all the
1893 * rpmsg drivers will be reseted along with the remote processor making the
1894 * remoteproc functional again.
1895 *
1896 * This function can sleep, so it cannot be called from atomic context.
1897 *
1898 * Return: 0 on success or a negative value upon failure
1899 */
1900int rproc_trigger_recovery(struct rproc *rproc)
1901{
1902        const struct firmware *firmware_p;
1903        struct device *dev = &rproc->dev;
1904        int ret;
1905
1906        ret = mutex_lock_interruptible(&rproc->lock);
1907        if (ret)
1908                return ret;
1909
1910        /* State could have changed before we got the mutex */
1911        if (rproc->state != RPROC_CRASHED)
1912                goto unlock_mutex;
1913
1914        dev_err(dev, "recovering %s\n", rproc->name);
1915
1916        ret = rproc_stop(rproc, true);
1917        if (ret)
1918                goto unlock_mutex;
1919
1920        /* generate coredump */
1921        rproc->ops->coredump(rproc);
1922
1923        /* load firmware */
1924        ret = request_firmware(&firmware_p, rproc->firmware, dev);
1925        if (ret < 0) {
1926                dev_err(dev, "request_firmware failed: %d\n", ret);
1927                goto unlock_mutex;
1928        }
1929
1930        /* boot the remote processor up again */
1931        ret = rproc_start(rproc, firmware_p);
1932
1933        release_firmware(firmware_p);
1934
1935unlock_mutex:
1936        mutex_unlock(&rproc->lock);
1937        return ret;
1938}
1939
1940/**
1941 * rproc_crash_handler_work() - handle a crash
1942 * @work: work treating the crash
1943 *
1944 * This function needs to handle everything related to a crash, like cpu
1945 * registers and stack dump, information to help to debug the fatal error, etc.
1946 */
1947static void rproc_crash_handler_work(struct work_struct *work)
1948{
1949        struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1950        struct device *dev = &rproc->dev;
1951
1952        dev_dbg(dev, "enter %s\n", __func__);
1953
1954        mutex_lock(&rproc->lock);
1955
1956        if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1957                /* handle only the first crash detected */
1958                mutex_unlock(&rproc->lock);
1959                return;
1960        }
1961
1962        rproc->state = RPROC_CRASHED;
1963        dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1964                rproc->name);
1965
1966        mutex_unlock(&rproc->lock);
1967
1968        if (!rproc->recovery_disabled)
1969                rproc_trigger_recovery(rproc);
1970
1971        pm_relax(rproc->dev.parent);
1972}
1973
1974/**
1975 * rproc_boot() - boot a remote processor
1976 * @rproc: handle of a remote processor
1977 *
1978 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1979 *
1980 * If the remote processor is already powered on, this function immediately
1981 * returns (successfully).
1982 *
1983 * Return: 0 on success, and an appropriate error value otherwise
1984 */
1985int rproc_boot(struct rproc *rproc)
1986{
1987        const struct firmware *firmware_p;
1988        struct device *dev;
1989        int ret;
1990
1991        if (!rproc) {
1992                pr_err("invalid rproc handle\n");
1993                return -EINVAL;
1994        }
1995
1996        dev = &rproc->dev;
1997
1998        ret = mutex_lock_interruptible(&rproc->lock);
1999        if (ret) {
2000                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2001                return ret;
2002        }
2003
2004        if (rproc->state == RPROC_DELETED) {
2005                ret = -ENODEV;
2006                dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2007                goto unlock_mutex;
2008        }
2009
2010        /* skip the boot or attach process if rproc is already powered up */
2011        if (atomic_inc_return(&rproc->power) > 1) {
2012                ret = 0;
2013                goto unlock_mutex;
2014        }
2015
2016        if (rproc->state == RPROC_DETACHED) {
2017                dev_info(dev, "attaching to %s\n", rproc->name);
2018
2019                ret = rproc_attach(rproc);
2020        } else {
2021                dev_info(dev, "powering up %s\n", rproc->name);
2022
2023                /* load firmware */
2024                ret = request_firmware(&firmware_p, rproc->firmware, dev);
2025                if (ret < 0) {
2026                        dev_err(dev, "request_firmware failed: %d\n", ret);
2027                        goto downref_rproc;
2028                }
2029
2030                ret = rproc_fw_boot(rproc, firmware_p);
2031
2032                release_firmware(firmware_p);
2033        }
2034
2035downref_rproc:
2036        if (ret)
2037                atomic_dec(&rproc->power);
2038unlock_mutex:
2039        mutex_unlock(&rproc->lock);
2040        return ret;
2041}
2042EXPORT_SYMBOL(rproc_boot);
2043
2044/**
2045 * rproc_shutdown() - power off the remote processor
2046 * @rproc: the remote processor
2047 *
2048 * Power off a remote processor (previously booted with rproc_boot()).
2049 *
2050 * In case @rproc is still being used by an additional user(s), then
2051 * this function will just decrement the power refcount and exit,
2052 * without really powering off the device.
2053 *
2054 * Every call to rproc_boot() must (eventually) be accompanied by a call
2055 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2056 *
2057 * Notes:
2058 * - we're not decrementing the rproc's refcount, only the power refcount.
2059 *   which means that the @rproc handle stays valid even after rproc_shutdown()
2060 *   returns, and users can still use it with a subsequent rproc_boot(), if
2061 *   needed.
2062 */
2063void rproc_shutdown(struct rproc *rproc)
2064{
2065        struct device *dev = &rproc->dev;
2066        int ret;
2067
2068        ret = mutex_lock_interruptible(&rproc->lock);
2069        if (ret) {
2070                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2071                return;
2072        }
2073
2074        /* if the remote proc is still needed, bail out */
2075        if (!atomic_dec_and_test(&rproc->power))
2076                goto out;
2077
2078        ret = rproc_stop(rproc, false);
2079        if (ret) {
2080                atomic_inc(&rproc->power);
2081                goto out;
2082        }
2083
2084        /* clean up all acquired resources */
2085        rproc_resource_cleanup(rproc);
2086
2087        /* release HW resources if needed */
2088        rproc_unprepare_device(rproc);
2089
2090        rproc_disable_iommu(rproc);
2091
2092        /* Free the copy of the resource table */
2093        kfree(rproc->cached_table);
2094        rproc->cached_table = NULL;
2095        rproc->table_ptr = NULL;
2096out:
2097        mutex_unlock(&rproc->lock);
2098}
2099EXPORT_SYMBOL(rproc_shutdown);
2100
2101/**
2102 * rproc_detach() - Detach the remote processor from the
2103 * remoteproc core
2104 *
2105 * @rproc: the remote processor
2106 *
2107 * Detach a remote processor (previously attached to with rproc_attach()).
2108 *
2109 * In case @rproc is still being used by an additional user(s), then
2110 * this function will just decrement the power refcount and exit,
2111 * without disconnecting the device.
2112 *
2113 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2114 * processor know that services provided by the application processor are
2115 * no longer available.  From there it should be possible to remove the
2116 * platform driver and even power cycle the application processor (if the HW
2117 * supports it) without needing to switch off the remote processor.
2118 *
2119 * Return: 0 on success, and an appropriate error value otherwise
2120 */
2121int rproc_detach(struct rproc *rproc)
2122{
2123        struct device *dev = &rproc->dev;
2124        int ret;
2125
2126        ret = mutex_lock_interruptible(&rproc->lock);
2127        if (ret) {
2128                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2129                return ret;
2130        }
2131
2132        /* if the remote proc is still needed, bail out */
2133        if (!atomic_dec_and_test(&rproc->power)) {
2134                ret = 0;
2135                goto out;
2136        }
2137
2138        ret = __rproc_detach(rproc);
2139        if (ret) {
2140                atomic_inc(&rproc->power);
2141                goto out;
2142        }
2143
2144        /* clean up all acquired resources */
2145        rproc_resource_cleanup(rproc);
2146
2147        /* release HW resources if needed */
2148        rproc_unprepare_device(rproc);
2149
2150        rproc_disable_iommu(rproc);
2151
2152        /* Free the copy of the resource table */
2153        kfree(rproc->cached_table);
2154        rproc->cached_table = NULL;
2155        rproc->table_ptr = NULL;
2156out:
2157        mutex_unlock(&rproc->lock);
2158        return ret;
2159}
2160EXPORT_SYMBOL(rproc_detach);
2161
2162/**
2163 * rproc_get_by_phandle() - find a remote processor by phandle
2164 * @phandle: phandle to the rproc
2165 *
2166 * Finds an rproc handle using the remote processor's phandle, and then
2167 * return a handle to the rproc.
2168 *
2169 * This function increments the remote processor's refcount, so always
2170 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2171 *
2172 * Return: rproc handle on success, and NULL on failure
2173 */
2174#ifdef CONFIG_OF
2175struct rproc *rproc_get_by_phandle(phandle phandle)
2176{
2177        struct rproc *rproc = NULL, *r;
2178        struct device_node *np;
2179
2180        np = of_find_node_by_phandle(phandle);
2181        if (!np)
2182                return NULL;
2183
2184        rcu_read_lock();
2185        list_for_each_entry_rcu(r, &rproc_list, node) {
2186                if (r->dev.parent && r->dev.parent->of_node == np) {
2187                        /* prevent underlying implementation from being removed */
2188                        if (!try_module_get(r->dev.parent->driver->owner)) {
2189                                dev_err(&r->dev, "can't get owner\n");
2190                                break;
2191                        }
2192
2193                        rproc = r;
2194                        get_device(&rproc->dev);
2195                        break;
2196                }
2197        }
2198        rcu_read_unlock();
2199
2200        of_node_put(np);
2201
2202        return rproc;
2203}
2204#else
2205struct rproc *rproc_get_by_phandle(phandle phandle)
2206{
2207        return NULL;
2208}
2209#endif
2210EXPORT_SYMBOL(rproc_get_by_phandle);
2211
2212/**
2213 * rproc_set_firmware() - assign a new firmware
2214 * @rproc: rproc handle to which the new firmware is being assigned
2215 * @fw_name: new firmware name to be assigned
2216 *
2217 * This function allows remoteproc drivers or clients to configure a custom
2218 * firmware name that is different from the default name used during remoteproc
2219 * registration. The function does not trigger a remote processor boot,
2220 * only sets the firmware name used for a subsequent boot. This function
2221 * should also be called only when the remote processor is offline.
2222 *
2223 * This allows either the userspace to configure a different name through
2224 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2225 * a specific firmware when it is controlling the boot and shutdown of the
2226 * remote processor.
2227 *
2228 * Return: 0 on success or a negative value upon failure
2229 */
2230int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2231{
2232        struct device *dev;
2233        int ret, len;
2234        char *p;
2235
2236        if (!rproc || !fw_name)
2237                return -EINVAL;
2238
2239        dev = rproc->dev.parent;
2240
2241        ret = mutex_lock_interruptible(&rproc->lock);
2242        if (ret) {
2243                dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2244                return -EINVAL;
2245        }
2246
2247        if (rproc->state != RPROC_OFFLINE) {
2248                dev_err(dev, "can't change firmware while running\n");
2249                ret = -EBUSY;
2250                goto out;
2251        }
2252
2253        len = strcspn(fw_name, "\n");
2254        if (!len) {
2255                dev_err(dev, "can't provide empty string for firmware name\n");
2256                ret = -EINVAL;
2257                goto out;
2258        }
2259
2260        p = kstrndup(fw_name, len, GFP_KERNEL);
2261        if (!p) {
2262                ret = -ENOMEM;
2263                goto out;
2264        }
2265
2266        kfree_const(rproc->firmware);
2267        rproc->firmware = p;
2268
2269out:
2270        mutex_unlock(&rproc->lock);
2271        return ret;
2272}
2273EXPORT_SYMBOL(rproc_set_firmware);
2274
2275static int rproc_validate(struct rproc *rproc)
2276{
2277        switch (rproc->state) {
2278        case RPROC_OFFLINE:
2279                /*
2280                 * An offline processor without a start()
2281                 * function makes no sense.
2282                 */
2283                if (!rproc->ops->start)
2284                        return -EINVAL;
2285                break;
2286        case RPROC_DETACHED:
2287                /*
2288                 * A remote processor in a detached state without an
2289                 * attach() function makes not sense.
2290                 */
2291                if (!rproc->ops->attach)
2292                        return -EINVAL;
2293                /*
2294                 * When attaching to a remote processor the device memory
2295                 * is already available and as such there is no need to have a
2296                 * cached table.
2297                 */
2298                if (rproc->cached_table)
2299                        return -EINVAL;
2300                break;
2301        default:
2302                /*
2303                 * When adding a remote processor, the state of the device
2304                 * can be offline or detached, nothing else.
2305                 */
2306                return -EINVAL;
2307        }
2308
2309        return 0;
2310}
2311
2312/**
2313 * rproc_add() - register a remote processor
2314 * @rproc: the remote processor handle to register
2315 *
2316 * Registers @rproc with the remoteproc framework, after it has been
2317 * allocated with rproc_alloc().
2318 *
2319 * This is called by the platform-specific rproc implementation, whenever
2320 * a new remote processor device is probed.
2321 *
2322 * Note: this function initiates an asynchronous firmware loading
2323 * context, which will look for virtio devices supported by the rproc's
2324 * firmware.
2325 *
2326 * If found, those virtio devices will be created and added, so as a result
2327 * of registering this remote processor, additional virtio drivers might be
2328 * probed.
2329 *
2330 * Return: 0 on success and an appropriate error code otherwise
2331 */
2332int rproc_add(struct rproc *rproc)
2333{
2334        struct device *dev = &rproc->dev;
2335        int ret;
2336
2337        ret = rproc_validate(rproc);
2338        if (ret < 0)
2339                return ret;
2340
2341        /* add char device for this remoteproc */
2342        ret = rproc_char_device_add(rproc);
2343        if (ret < 0)
2344                return ret;
2345
2346        ret = device_add(dev);
2347        if (ret < 0) {
2348                put_device(dev);
2349                goto rproc_remove_cdev;
2350        }
2351
2352        dev_info(dev, "%s is available\n", rproc->name);
2353
2354        /* create debugfs entries */
2355        rproc_create_debug_dir(rproc);
2356
2357        /* if rproc is marked always-on, request it to boot */
2358        if (rproc->auto_boot) {
2359                ret = rproc_trigger_auto_boot(rproc);
2360                if (ret < 0)
2361                        goto rproc_remove_dev;
2362        }
2363
2364        /* expose to rproc_get_by_phandle users */
2365        mutex_lock(&rproc_list_mutex);
2366        list_add_rcu(&rproc->node, &rproc_list);
2367        mutex_unlock(&rproc_list_mutex);
2368
2369        return 0;
2370
2371rproc_remove_dev:
2372        rproc_delete_debug_dir(rproc);
2373        device_del(dev);
2374rproc_remove_cdev:
2375        rproc_char_device_remove(rproc);
2376        return ret;
2377}
2378EXPORT_SYMBOL(rproc_add);
2379
2380static void devm_rproc_remove(void *rproc)
2381{
2382        rproc_del(rproc);
2383}
2384
2385/**
2386 * devm_rproc_add() - resource managed rproc_add()
2387 * @dev: the underlying device
2388 * @rproc: the remote processor handle to register
2389 *
2390 * This function performs like rproc_add() but the registered rproc device will
2391 * automatically be removed on driver detach.
2392 *
2393 * Return: 0 on success, negative errno on failure
2394 */
2395int devm_rproc_add(struct device *dev, struct rproc *rproc)
2396{
2397        int err;
2398
2399        err = rproc_add(rproc);
2400        if (err)
2401                return err;
2402
2403        return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2404}
2405EXPORT_SYMBOL(devm_rproc_add);
2406
2407/**
2408 * rproc_type_release() - release a remote processor instance
2409 * @dev: the rproc's device
2410 *
2411 * This function should _never_ be called directly.
2412 *
2413 * It will be called by the driver core when no one holds a valid pointer
2414 * to @dev anymore.
2415 */
2416static void rproc_type_release(struct device *dev)
2417{
2418        struct rproc *rproc = container_of(dev, struct rproc, dev);
2419
2420        dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2421
2422        idr_destroy(&rproc->notifyids);
2423
2424        if (rproc->index >= 0)
2425                ida_simple_remove(&rproc_dev_index, rproc->index);
2426
2427        kfree_const(rproc->firmware);
2428        kfree_const(rproc->name);
2429        kfree(rproc->ops);
2430        kfree(rproc);
2431}
2432
2433static const struct device_type rproc_type = {
2434        .name           = "remoteproc",
2435        .release        = rproc_type_release,
2436};
2437
2438static int rproc_alloc_firmware(struct rproc *rproc,
2439                                const char *name, const char *firmware)
2440{
2441        const char *p;
2442
2443        /*
2444         * Allocate a firmware name if the caller gave us one to work
2445         * with.  Otherwise construct a new one using a default pattern.
2446         */
2447        if (firmware)
2448                p = kstrdup_const(firmware, GFP_KERNEL);
2449        else
2450                p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2451
2452        if (!p)
2453                return -ENOMEM;
2454
2455        rproc->firmware = p;
2456
2457        return 0;
2458}
2459
2460static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2461{
2462        rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2463        if (!rproc->ops)
2464                return -ENOMEM;
2465
2466        /* Default to rproc_coredump if no coredump function is specified */
2467        if (!rproc->ops->coredump)
2468                rproc->ops->coredump = rproc_coredump;
2469
2470        if (rproc->ops->load)
2471                return 0;
2472
2473        /* Default to ELF loader if no load function is specified */
2474        rproc->ops->load = rproc_elf_load_segments;
2475        rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2476        rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2477        rproc->ops->sanity_check = rproc_elf_sanity_check;
2478        rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2479
2480        return 0;
2481}
2482
2483/**
2484 * rproc_alloc() - allocate a remote processor handle
2485 * @dev: the underlying device
2486 * @name: name of this remote processor
2487 * @ops: platform-specific handlers (mainly start/stop)
2488 * @firmware: name of firmware file to load, can be NULL
2489 * @len: length of private data needed by the rproc driver (in bytes)
2490 *
2491 * Allocates a new remote processor handle, but does not register
2492 * it yet. if @firmware is NULL, a default name is used.
2493 *
2494 * This function should be used by rproc implementations during initialization
2495 * of the remote processor.
2496 *
2497 * After creating an rproc handle using this function, and when ready,
2498 * implementations should then call rproc_add() to complete
2499 * the registration of the remote processor.
2500 *
2501 * Note: _never_ directly deallocate @rproc, even if it was not registered
2502 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2503 *
2504 * Return: new rproc pointer on success, and NULL on failure
2505 */
2506struct rproc *rproc_alloc(struct device *dev, const char *name,
2507                          const struct rproc_ops *ops,
2508                          const char *firmware, int len)
2509{
2510        struct rproc *rproc;
2511
2512        if (!dev || !name || !ops)
2513                return NULL;
2514
2515        rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2516        if (!rproc)
2517                return NULL;
2518
2519        rproc->priv = &rproc[1];
2520        rproc->auto_boot = true;
2521        rproc->elf_class = ELFCLASSNONE;
2522        rproc->elf_machine = EM_NONE;
2523
2524        device_initialize(&rproc->dev);
2525        rproc->dev.parent = dev;
2526        rproc->dev.type = &rproc_type;
2527        rproc->dev.class = &rproc_class;
2528        rproc->dev.driver_data = rproc;
2529        idr_init(&rproc->notifyids);
2530
2531        rproc->name = kstrdup_const(name, GFP_KERNEL);
2532        if (!rproc->name)
2533                goto put_device;
2534
2535        if (rproc_alloc_firmware(rproc, name, firmware))
2536                goto put_device;
2537
2538        if (rproc_alloc_ops(rproc, ops))
2539                goto put_device;
2540
2541        /* Assign a unique device index and name */
2542        rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2543        if (rproc->index < 0) {
2544                dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2545                goto put_device;
2546        }
2547
2548        dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2549
2550        atomic_set(&rproc->power, 0);
2551
2552        mutex_init(&rproc->lock);
2553
2554        INIT_LIST_HEAD(&rproc->carveouts);
2555        INIT_LIST_HEAD(&rproc->mappings);
2556        INIT_LIST_HEAD(&rproc->traces);
2557        INIT_LIST_HEAD(&rproc->rvdevs);
2558        INIT_LIST_HEAD(&rproc->subdevs);
2559        INIT_LIST_HEAD(&rproc->dump_segments);
2560
2561        INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2562
2563        rproc->state = RPROC_OFFLINE;
2564
2565        return rproc;
2566
2567put_device:
2568        put_device(&rproc->dev);
2569        return NULL;
2570}
2571EXPORT_SYMBOL(rproc_alloc);
2572
2573/**
2574 * rproc_free() - unroll rproc_alloc()
2575 * @rproc: the remote processor handle
2576 *
2577 * This function decrements the rproc dev refcount.
2578 *
2579 * If no one holds any reference to rproc anymore, then its refcount would
2580 * now drop to zero, and it would be freed.
2581 */
2582void rproc_free(struct rproc *rproc)
2583{
2584        put_device(&rproc->dev);
2585}
2586EXPORT_SYMBOL(rproc_free);
2587
2588/**
2589 * rproc_put() - release rproc reference
2590 * @rproc: the remote processor handle
2591 *
2592 * This function decrements the rproc dev refcount.
2593 *
2594 * If no one holds any reference to rproc anymore, then its refcount would
2595 * now drop to zero, and it would be freed.
2596 */
2597void rproc_put(struct rproc *rproc)
2598{
2599        module_put(rproc->dev.parent->driver->owner);
2600        put_device(&rproc->dev);
2601}
2602EXPORT_SYMBOL(rproc_put);
2603
2604/**
2605 * rproc_del() - unregister a remote processor
2606 * @rproc: rproc handle to unregister
2607 *
2608 * This function should be called when the platform specific rproc
2609 * implementation decides to remove the rproc device. it should
2610 * _only_ be called if a previous invocation of rproc_add()
2611 * has completed successfully.
2612 *
2613 * After rproc_del() returns, @rproc isn't freed yet, because
2614 * of the outstanding reference created by rproc_alloc. To decrement that
2615 * one last refcount, one still needs to call rproc_free().
2616 *
2617 * Return: 0 on success and -EINVAL if @rproc isn't valid
2618 */
2619int rproc_del(struct rproc *rproc)
2620{
2621        if (!rproc)
2622                return -EINVAL;
2623
2624        /* TODO: make sure this works with rproc->power > 1 */
2625        rproc_shutdown(rproc);
2626
2627        mutex_lock(&rproc->lock);
2628        rproc->state = RPROC_DELETED;
2629        mutex_unlock(&rproc->lock);
2630
2631        rproc_delete_debug_dir(rproc);
2632
2633        /* the rproc is downref'ed as soon as it's removed from the klist */
2634        mutex_lock(&rproc_list_mutex);
2635        list_del_rcu(&rproc->node);
2636        mutex_unlock(&rproc_list_mutex);
2637
2638        /* Ensure that no readers of rproc_list are still active */
2639        synchronize_rcu();
2640
2641        device_del(&rproc->dev);
2642        rproc_char_device_remove(rproc);
2643
2644        return 0;
2645}
2646EXPORT_SYMBOL(rproc_del);
2647
2648static void devm_rproc_free(struct device *dev, void *res)
2649{
2650        rproc_free(*(struct rproc **)res);
2651}
2652
2653/**
2654 * devm_rproc_alloc() - resource managed rproc_alloc()
2655 * @dev: the underlying device
2656 * @name: name of this remote processor
2657 * @ops: platform-specific handlers (mainly start/stop)
2658 * @firmware: name of firmware file to load, can be NULL
2659 * @len: length of private data needed by the rproc driver (in bytes)
2660 *
2661 * This function performs like rproc_alloc() but the acquired rproc device will
2662 * automatically be released on driver detach.
2663 *
2664 * Return: new rproc instance, or NULL on failure
2665 */
2666struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2667                               const struct rproc_ops *ops,
2668                               const char *firmware, int len)
2669{
2670        struct rproc **ptr, *rproc;
2671
2672        ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2673        if (!ptr)
2674                return NULL;
2675
2676        rproc = rproc_alloc(dev, name, ops, firmware, len);
2677        if (rproc) {
2678                *ptr = rproc;
2679                devres_add(dev, ptr);
2680        } else {
2681                devres_free(ptr);
2682        }
2683
2684        return rproc;
2685}
2686EXPORT_SYMBOL(devm_rproc_alloc);
2687
2688/**
2689 * rproc_add_subdev() - add a subdevice to a remoteproc
2690 * @rproc: rproc handle to add the subdevice to
2691 * @subdev: subdev handle to register
2692 *
2693 * Caller is responsible for populating optional subdevice function pointers.
2694 */
2695void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2696{
2697        list_add_tail(&subdev->node, &rproc->subdevs);
2698}
2699EXPORT_SYMBOL(rproc_add_subdev);
2700
2701/**
2702 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2703 * @rproc: rproc handle to remove the subdevice from
2704 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2705 */
2706void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2707{
2708        list_del(&subdev->node);
2709}
2710EXPORT_SYMBOL(rproc_remove_subdev);
2711
2712/**
2713 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2714 * @dev:        child device to find ancestor of
2715 *
2716 * Return: the ancestor rproc instance, or NULL if not found
2717 */
2718struct rproc *rproc_get_by_child(struct device *dev)
2719{
2720        for (dev = dev->parent; dev; dev = dev->parent) {
2721                if (dev->type == &rproc_type)
2722                        return dev->driver_data;
2723        }
2724
2725        return NULL;
2726}
2727EXPORT_SYMBOL(rproc_get_by_child);
2728
2729/**
2730 * rproc_report_crash() - rproc crash reporter function
2731 * @rproc: remote processor
2732 * @type: crash type
2733 *
2734 * This function must be called every time a crash is detected by the low-level
2735 * drivers implementing a specific remoteproc. This should not be called from a
2736 * non-remoteproc driver.
2737 *
2738 * This function can be called from atomic/interrupt context.
2739 */
2740void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2741{
2742        if (!rproc) {
2743                pr_err("NULL rproc pointer\n");
2744                return;
2745        }
2746
2747        /* Prevent suspend while the remoteproc is being recovered */
2748        pm_stay_awake(rproc->dev.parent);
2749
2750        dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2751                rproc->name, rproc_crash_to_string(type));
2752
2753        /* Have a worker handle the error; ensure system is not suspended */
2754        queue_work(system_freezable_wq, &rproc->crash_handler);
2755}
2756EXPORT_SYMBOL(rproc_report_crash);
2757
2758static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2759                               void *ptr)
2760{
2761        unsigned int longest = 0;
2762        struct rproc *rproc;
2763        unsigned int d;
2764
2765        rcu_read_lock();
2766        list_for_each_entry_rcu(rproc, &rproc_list, node) {
2767                if (!rproc->ops->panic)
2768                        continue;
2769
2770                if (rproc->state != RPROC_RUNNING &&
2771                    rproc->state != RPROC_ATTACHED)
2772                        continue;
2773
2774                d = rproc->ops->panic(rproc);
2775                longest = max(longest, d);
2776        }
2777        rcu_read_unlock();
2778
2779        /*
2780         * Delay for the longest requested duration before returning. This can
2781         * be used by the remoteproc drivers to give the remote processor time
2782         * to perform any requested operations (such as flush caches), when
2783         * it's not possible to signal the Linux side due to the panic.
2784         */
2785        mdelay(longest);
2786
2787        return NOTIFY_DONE;
2788}
2789
2790static void __init rproc_init_panic(void)
2791{
2792        rproc_panic_nb.notifier_call = rproc_panic_handler;
2793        atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2794}
2795
2796static void __exit rproc_exit_panic(void)
2797{
2798        atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2799}
2800
2801static int __init remoteproc_init(void)
2802{
2803        rproc_init_sysfs();
2804        rproc_init_debugfs();
2805        rproc_init_cdev();
2806        rproc_init_panic();
2807
2808        return 0;
2809}
2810subsys_initcall(remoteproc_init);
2811
2812static void __exit remoteproc_exit(void)
2813{
2814        ida_destroy(&rproc_dev_index);
2815
2816        rproc_exit_panic();
2817        rproc_exit_debugfs();
2818        rproc_exit_sysfs();
2819}
2820module_exit(remoteproc_exit);
2821
2822MODULE_LICENSE("GPL v2");
2823MODULE_DESCRIPTION("Generic Remote Processor Framework");
2824