linux/drivers/rtc/rtc-sh.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH On-Chip RTC Support
   4 *
   5 * Copyright (C) 2006 - 2009  Paul Mundt
   6 * Copyright (C) 2006  Jamie Lenehan
   7 * Copyright (C) 2008  Angelo Castello
   8 *
   9 * Based on the old arch/sh/kernel/cpu/rtc.c by:
  10 *
  11 *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
  12 *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
  13 */
  14#include <linux/module.h>
  15#include <linux/mod_devicetable.h>
  16#include <linux/kernel.h>
  17#include <linux/bcd.h>
  18#include <linux/rtc.h>
  19#include <linux/init.h>
  20#include <linux/platform_device.h>
  21#include <linux/seq_file.h>
  22#include <linux/interrupt.h>
  23#include <linux/spinlock.h>
  24#include <linux/io.h>
  25#include <linux/log2.h>
  26#include <linux/clk.h>
  27#include <linux/slab.h>
  28#ifdef CONFIG_SUPERH
  29#include <asm/rtc.h>
  30#else
  31/* Default values for RZ/A RTC */
  32#define rtc_reg_size            sizeof(u16)
  33#define RTC_BIT_INVERTED        0       /* no chip bugs */
  34#define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
  35#define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
  36#endif
  37
  38#define DRV_NAME        "sh-rtc"
  39
  40#define RTC_REG(r)      ((r) * rtc_reg_size)
  41
  42#define R64CNT          RTC_REG(0)
  43
  44#define RSECCNT         RTC_REG(1)      /* RTC sec */
  45#define RMINCNT         RTC_REG(2)      /* RTC min */
  46#define RHRCNT          RTC_REG(3)      /* RTC hour */
  47#define RWKCNT          RTC_REG(4)      /* RTC week */
  48#define RDAYCNT         RTC_REG(5)      /* RTC day */
  49#define RMONCNT         RTC_REG(6)      /* RTC month */
  50#define RYRCNT          RTC_REG(7)      /* RTC year */
  51#define RSECAR          RTC_REG(8)      /* ALARM sec */
  52#define RMINAR          RTC_REG(9)      /* ALARM min */
  53#define RHRAR           RTC_REG(10)     /* ALARM hour */
  54#define RWKAR           RTC_REG(11)     /* ALARM week */
  55#define RDAYAR          RTC_REG(12)     /* ALARM day */
  56#define RMONAR          RTC_REG(13)     /* ALARM month */
  57#define RCR1            RTC_REG(14)     /* Control */
  58#define RCR2            RTC_REG(15)     /* Control */
  59
  60/*
  61 * Note on RYRAR and RCR3: Up until this point most of the register
  62 * definitions are consistent across all of the available parts. However,
  63 * the placement of the optional RYRAR and RCR3 (the RYRAR control
  64 * register used to control RYRCNT/RYRAR compare) varies considerably
  65 * across various parts, occasionally being mapped in to a completely
  66 * unrelated address space. For proper RYRAR support a separate resource
  67 * would have to be handed off, but as this is purely optional in
  68 * practice, we simply opt not to support it, thereby keeping the code
  69 * quite a bit more simplified.
  70 */
  71
  72/* ALARM Bits - or with BCD encoded value */
  73#define AR_ENB          0x80    /* Enable for alarm cmp   */
  74
  75/* Period Bits */
  76#define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
  77#define PF_COUNT        0x200   /* Half periodic counter */
  78#define PF_OXS          0x400   /* Periodic One x Second */
  79#define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
  80#define PF_MASK         0xf00
  81
  82/* RCR1 Bits */
  83#define RCR1_CF         0x80    /* Carry Flag             */
  84#define RCR1_CIE        0x10    /* Carry Interrupt Enable */
  85#define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
  86#define RCR1_AF         0x01    /* Alarm Flag             */
  87
  88/* RCR2 Bits */
  89#define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
  90#define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
  91#define RCR2_RTCEN      0x08    /* ENable RTC              */
  92#define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
  93#define RCR2_RESET      0x02    /* Reset bit               */
  94#define RCR2_START      0x01    /* Start bit               */
  95
  96struct sh_rtc {
  97        void __iomem            *regbase;
  98        unsigned long           regsize;
  99        struct resource         *res;
 100        int                     alarm_irq;
 101        int                     periodic_irq;
 102        int                     carry_irq;
 103        struct clk              *clk;
 104        struct rtc_device       *rtc_dev;
 105        spinlock_t              lock;
 106        unsigned long           capabilities;   /* See asm/rtc.h for cap bits */
 107        unsigned short          periodic_freq;
 108};
 109
 110static int __sh_rtc_interrupt(struct sh_rtc *rtc)
 111{
 112        unsigned int tmp, pending;
 113
 114        tmp = readb(rtc->regbase + RCR1);
 115        pending = tmp & RCR1_CF;
 116        tmp &= ~RCR1_CF;
 117        writeb(tmp, rtc->regbase + RCR1);
 118
 119        /* Users have requested One x Second IRQ */
 120        if (pending && rtc->periodic_freq & PF_OXS)
 121                rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
 122
 123        return pending;
 124}
 125
 126static int __sh_rtc_alarm(struct sh_rtc *rtc)
 127{
 128        unsigned int tmp, pending;
 129
 130        tmp = readb(rtc->regbase + RCR1);
 131        pending = tmp & RCR1_AF;
 132        tmp &= ~(RCR1_AF | RCR1_AIE);
 133        writeb(tmp, rtc->regbase + RCR1);
 134
 135        if (pending)
 136                rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
 137
 138        return pending;
 139}
 140
 141static int __sh_rtc_periodic(struct sh_rtc *rtc)
 142{
 143        unsigned int tmp, pending;
 144
 145        tmp = readb(rtc->regbase + RCR2);
 146        pending = tmp & RCR2_PEF;
 147        tmp &= ~RCR2_PEF;
 148        writeb(tmp, rtc->regbase + RCR2);
 149
 150        if (!pending)
 151                return 0;
 152
 153        /* Half period enabled than one skipped and the next notified */
 154        if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
 155                rtc->periodic_freq &= ~PF_COUNT;
 156        else {
 157                if (rtc->periodic_freq & PF_HP)
 158                        rtc->periodic_freq |= PF_COUNT;
 159                rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
 160        }
 161
 162        return pending;
 163}
 164
 165static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
 166{
 167        struct sh_rtc *rtc = dev_id;
 168        int ret;
 169
 170        spin_lock(&rtc->lock);
 171        ret = __sh_rtc_interrupt(rtc);
 172        spin_unlock(&rtc->lock);
 173
 174        return IRQ_RETVAL(ret);
 175}
 176
 177static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
 178{
 179        struct sh_rtc *rtc = dev_id;
 180        int ret;
 181
 182        spin_lock(&rtc->lock);
 183        ret = __sh_rtc_alarm(rtc);
 184        spin_unlock(&rtc->lock);
 185
 186        return IRQ_RETVAL(ret);
 187}
 188
 189static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
 190{
 191        struct sh_rtc *rtc = dev_id;
 192        int ret;
 193
 194        spin_lock(&rtc->lock);
 195        ret = __sh_rtc_periodic(rtc);
 196        spin_unlock(&rtc->lock);
 197
 198        return IRQ_RETVAL(ret);
 199}
 200
 201static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
 202{
 203        struct sh_rtc *rtc = dev_id;
 204        int ret;
 205
 206        spin_lock(&rtc->lock);
 207        ret = __sh_rtc_interrupt(rtc);
 208        ret |= __sh_rtc_alarm(rtc);
 209        ret |= __sh_rtc_periodic(rtc);
 210        spin_unlock(&rtc->lock);
 211
 212        return IRQ_RETVAL(ret);
 213}
 214
 215static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
 216{
 217        struct sh_rtc *rtc = dev_get_drvdata(dev);
 218        unsigned int tmp;
 219
 220        spin_lock_irq(&rtc->lock);
 221
 222        tmp = readb(rtc->regbase + RCR1);
 223
 224        if (enable)
 225                tmp |= RCR1_AIE;
 226        else
 227                tmp &= ~RCR1_AIE;
 228
 229        writeb(tmp, rtc->regbase + RCR1);
 230
 231        spin_unlock_irq(&rtc->lock);
 232}
 233
 234static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
 235{
 236        struct sh_rtc *rtc = dev_get_drvdata(dev);
 237        unsigned int tmp;
 238
 239        tmp = readb(rtc->regbase + RCR1);
 240        seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
 241
 242        tmp = readb(rtc->regbase + RCR2);
 243        seq_printf(seq, "periodic_IRQ\t: %s\n",
 244                   (tmp & RCR2_PESMASK) ? "yes" : "no");
 245
 246        return 0;
 247}
 248
 249static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
 250{
 251        struct sh_rtc *rtc = dev_get_drvdata(dev);
 252        unsigned int tmp;
 253
 254        spin_lock_irq(&rtc->lock);
 255
 256        tmp = readb(rtc->regbase + RCR1);
 257
 258        if (!enable)
 259                tmp &= ~RCR1_CIE;
 260        else
 261                tmp |= RCR1_CIE;
 262
 263        writeb(tmp, rtc->regbase + RCR1);
 264
 265        spin_unlock_irq(&rtc->lock);
 266}
 267
 268static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 269{
 270        sh_rtc_setaie(dev, enabled);
 271        return 0;
 272}
 273
 274static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
 275{
 276        struct sh_rtc *rtc = dev_get_drvdata(dev);
 277        unsigned int sec128, sec2, yr, yr100, cf_bit;
 278
 279        if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN))
 280                return -EINVAL;
 281
 282        do {
 283                unsigned int tmp;
 284
 285                spin_lock_irq(&rtc->lock);
 286
 287                tmp = readb(rtc->regbase + RCR1);
 288                tmp &= ~RCR1_CF; /* Clear CF-bit */
 289                tmp |= RCR1_CIE;
 290                writeb(tmp, rtc->regbase + RCR1);
 291
 292                sec128 = readb(rtc->regbase + R64CNT);
 293
 294                tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
 295                tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
 296                tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
 297                tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
 298                tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
 299                tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
 300
 301                if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
 302                        yr  = readw(rtc->regbase + RYRCNT);
 303                        yr100 = bcd2bin(yr >> 8);
 304                        yr &= 0xff;
 305                } else {
 306                        yr  = readb(rtc->regbase + RYRCNT);
 307                        yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
 308                }
 309
 310                tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
 311
 312                sec2 = readb(rtc->regbase + R64CNT);
 313                cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
 314
 315                spin_unlock_irq(&rtc->lock);
 316        } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
 317
 318#if RTC_BIT_INVERTED != 0
 319        if ((sec128 & RTC_BIT_INVERTED))
 320                tm->tm_sec--;
 321#endif
 322
 323        /* only keep the carry interrupt enabled if UIE is on */
 324        if (!(rtc->periodic_freq & PF_OXS))
 325                sh_rtc_setcie(dev, 0);
 326
 327        dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
 328                "mday=%d, mon=%d, year=%d, wday=%d\n",
 329                __func__,
 330                tm->tm_sec, tm->tm_min, tm->tm_hour,
 331                tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
 332
 333        return 0;
 334}
 335
 336static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
 337{
 338        struct sh_rtc *rtc = dev_get_drvdata(dev);
 339        unsigned int tmp;
 340        int year;
 341
 342        spin_lock_irq(&rtc->lock);
 343
 344        /* Reset pre-scaler & stop RTC */
 345        tmp = readb(rtc->regbase + RCR2);
 346        tmp |= RCR2_RESET;
 347        tmp &= ~RCR2_START;
 348        writeb(tmp, rtc->regbase + RCR2);
 349
 350        writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
 351        writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
 352        writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
 353        writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
 354        writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
 355        writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
 356
 357        if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
 358                year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
 359                        bin2bcd(tm->tm_year % 100);
 360                writew(year, rtc->regbase + RYRCNT);
 361        } else {
 362                year = tm->tm_year % 100;
 363                writeb(bin2bcd(year), rtc->regbase + RYRCNT);
 364        }
 365
 366        /* Start RTC */
 367        tmp = readb(rtc->regbase + RCR2);
 368        tmp &= ~RCR2_RESET;
 369        tmp |= RCR2_RTCEN | RCR2_START;
 370        writeb(tmp, rtc->regbase + RCR2);
 371
 372        spin_unlock_irq(&rtc->lock);
 373
 374        return 0;
 375}
 376
 377static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
 378{
 379        unsigned int byte;
 380        int value = -1;                 /* return -1 for ignored values */
 381
 382        byte = readb(rtc->regbase + reg_off);
 383        if (byte & AR_ENB) {
 384                byte &= ~AR_ENB;        /* strip the enable bit */
 385                value = bcd2bin(byte);
 386        }
 387
 388        return value;
 389}
 390
 391static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
 392{
 393        struct sh_rtc *rtc = dev_get_drvdata(dev);
 394        struct rtc_time *tm = &wkalrm->time;
 395
 396        spin_lock_irq(&rtc->lock);
 397
 398        tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
 399        tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
 400        tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
 401        tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
 402        tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
 403        tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
 404        if (tm->tm_mon > 0)
 405                tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
 406
 407        wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
 408
 409        spin_unlock_irq(&rtc->lock);
 410
 411        return 0;
 412}
 413
 414static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
 415                                            int value, int reg_off)
 416{
 417        /* < 0 for a value that is ignored */
 418        if (value < 0)
 419                writeb(0, rtc->regbase + reg_off);
 420        else
 421                writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
 422}
 423
 424static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
 425{
 426        struct sh_rtc *rtc = dev_get_drvdata(dev);
 427        unsigned int rcr1;
 428        struct rtc_time *tm = &wkalrm->time;
 429        int mon;
 430
 431        spin_lock_irq(&rtc->lock);
 432
 433        /* disable alarm interrupt and clear the alarm flag */
 434        rcr1 = readb(rtc->regbase + RCR1);
 435        rcr1 &= ~(RCR1_AF | RCR1_AIE);
 436        writeb(rcr1, rtc->regbase + RCR1);
 437
 438        /* set alarm time */
 439        sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
 440        sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
 441        sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
 442        sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
 443        sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
 444        mon = tm->tm_mon;
 445        if (mon >= 0)
 446                mon += 1;
 447        sh_rtc_write_alarm_value(rtc, mon, RMONAR);
 448
 449        if (wkalrm->enabled) {
 450                rcr1 |= RCR1_AIE;
 451                writeb(rcr1, rtc->regbase + RCR1);
 452        }
 453
 454        spin_unlock_irq(&rtc->lock);
 455
 456        return 0;
 457}
 458
 459static const struct rtc_class_ops sh_rtc_ops = {
 460        .read_time      = sh_rtc_read_time,
 461        .set_time       = sh_rtc_set_time,
 462        .read_alarm     = sh_rtc_read_alarm,
 463        .set_alarm      = sh_rtc_set_alarm,
 464        .proc           = sh_rtc_proc,
 465        .alarm_irq_enable = sh_rtc_alarm_irq_enable,
 466};
 467
 468static int __init sh_rtc_probe(struct platform_device *pdev)
 469{
 470        struct sh_rtc *rtc;
 471        struct resource *res;
 472        char clk_name[6];
 473        int clk_id, ret;
 474
 475        rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
 476        if (unlikely(!rtc))
 477                return -ENOMEM;
 478
 479        spin_lock_init(&rtc->lock);
 480
 481        /* get periodic/carry/alarm irqs */
 482        ret = platform_get_irq(pdev, 0);
 483        if (unlikely(ret <= 0)) {
 484                dev_err(&pdev->dev, "No IRQ resource\n");
 485                return -ENOENT;
 486        }
 487
 488        rtc->periodic_irq = ret;
 489        rtc->carry_irq = platform_get_irq(pdev, 1);
 490        rtc->alarm_irq = platform_get_irq(pdev, 2);
 491
 492        res = platform_get_resource(pdev, IORESOURCE_IO, 0);
 493        if (!res)
 494                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 495        if (unlikely(res == NULL)) {
 496                dev_err(&pdev->dev, "No IO resource\n");
 497                return -ENOENT;
 498        }
 499
 500        rtc->regsize = resource_size(res);
 501
 502        rtc->res = devm_request_mem_region(&pdev->dev, res->start,
 503                                        rtc->regsize, pdev->name);
 504        if (unlikely(!rtc->res))
 505                return -EBUSY;
 506
 507        rtc->regbase = devm_ioremap(&pdev->dev, rtc->res->start, rtc->regsize);
 508        if (unlikely(!rtc->regbase))
 509                return -EINVAL;
 510
 511        if (!pdev->dev.of_node) {
 512                clk_id = pdev->id;
 513                /* With a single device, the clock id is still "rtc0" */
 514                if (clk_id < 0)
 515                        clk_id = 0;
 516
 517                snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
 518        } else
 519                snprintf(clk_name, sizeof(clk_name), "fck");
 520
 521        rtc->clk = devm_clk_get(&pdev->dev, clk_name);
 522        if (IS_ERR(rtc->clk)) {
 523                /*
 524                 * No error handling for rtc->clk intentionally, not all
 525                 * platforms will have a unique clock for the RTC, and
 526                 * the clk API can handle the struct clk pointer being
 527                 * NULL.
 528                 */
 529                rtc->clk = NULL;
 530        }
 531
 532        rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
 533        if (IS_ERR(rtc->rtc_dev))
 534                return PTR_ERR(rtc->rtc_dev);
 535
 536        clk_enable(rtc->clk);
 537
 538        rtc->capabilities = RTC_DEF_CAPABILITIES;
 539
 540#ifdef CONFIG_SUPERH
 541        if (dev_get_platdata(&pdev->dev)) {
 542                struct sh_rtc_platform_info *pinfo =
 543                        dev_get_platdata(&pdev->dev);
 544
 545                /*
 546                 * Some CPUs have special capabilities in addition to the
 547                 * default set. Add those in here.
 548                 */
 549                rtc->capabilities |= pinfo->capabilities;
 550        }
 551#endif
 552
 553        if (rtc->carry_irq <= 0) {
 554                /* register shared periodic/carry/alarm irq */
 555                ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
 556                                sh_rtc_shared, 0, "sh-rtc", rtc);
 557                if (unlikely(ret)) {
 558                        dev_err(&pdev->dev,
 559                                "request IRQ failed with %d, IRQ %d\n", ret,
 560                                rtc->periodic_irq);
 561                        goto err_unmap;
 562                }
 563        } else {
 564                /* register periodic/carry/alarm irqs */
 565                ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
 566                                sh_rtc_periodic, 0, "sh-rtc period", rtc);
 567                if (unlikely(ret)) {
 568                        dev_err(&pdev->dev,
 569                                "request period IRQ failed with %d, IRQ %d\n",
 570                                ret, rtc->periodic_irq);
 571                        goto err_unmap;
 572                }
 573
 574                ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
 575                                sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
 576                if (unlikely(ret)) {
 577                        dev_err(&pdev->dev,
 578                                "request carry IRQ failed with %d, IRQ %d\n",
 579                                ret, rtc->carry_irq);
 580                        goto err_unmap;
 581                }
 582
 583                ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
 584                                sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
 585                if (unlikely(ret)) {
 586                        dev_err(&pdev->dev,
 587                                "request alarm IRQ failed with %d, IRQ %d\n",
 588                                ret, rtc->alarm_irq);
 589                        goto err_unmap;
 590                }
 591        }
 592
 593        platform_set_drvdata(pdev, rtc);
 594
 595        /* everything disabled by default */
 596        sh_rtc_setaie(&pdev->dev, 0);
 597        sh_rtc_setcie(&pdev->dev, 0);
 598
 599        rtc->rtc_dev->ops = &sh_rtc_ops;
 600        rtc->rtc_dev->max_user_freq = 256;
 601
 602        if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
 603                rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
 604                rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
 605        } else {
 606                rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0);
 607                rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59);
 608        }
 609
 610        ret = devm_rtc_register_device(rtc->rtc_dev);
 611        if (ret)
 612                goto err_unmap;
 613
 614        device_init_wakeup(&pdev->dev, 1);
 615        return 0;
 616
 617err_unmap:
 618        clk_disable(rtc->clk);
 619
 620        return ret;
 621}
 622
 623static int __exit sh_rtc_remove(struct platform_device *pdev)
 624{
 625        struct sh_rtc *rtc = platform_get_drvdata(pdev);
 626
 627        sh_rtc_setaie(&pdev->dev, 0);
 628        sh_rtc_setcie(&pdev->dev, 0);
 629
 630        clk_disable(rtc->clk);
 631
 632        return 0;
 633}
 634
 635static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
 636{
 637        struct sh_rtc *rtc = dev_get_drvdata(dev);
 638
 639        irq_set_irq_wake(rtc->periodic_irq, enabled);
 640
 641        if (rtc->carry_irq > 0) {
 642                irq_set_irq_wake(rtc->carry_irq, enabled);
 643                irq_set_irq_wake(rtc->alarm_irq, enabled);
 644        }
 645}
 646
 647static int __maybe_unused sh_rtc_suspend(struct device *dev)
 648{
 649        if (device_may_wakeup(dev))
 650                sh_rtc_set_irq_wake(dev, 1);
 651
 652        return 0;
 653}
 654
 655static int __maybe_unused sh_rtc_resume(struct device *dev)
 656{
 657        if (device_may_wakeup(dev))
 658                sh_rtc_set_irq_wake(dev, 0);
 659
 660        return 0;
 661}
 662
 663static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
 664
 665static const struct of_device_id sh_rtc_of_match[] = {
 666        { .compatible = "renesas,sh-rtc", },
 667        { /* sentinel */ }
 668};
 669MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
 670
 671static struct platform_driver sh_rtc_platform_driver = {
 672        .driver         = {
 673                .name   = DRV_NAME,
 674                .pm     = &sh_rtc_pm_ops,
 675                .of_match_table = sh_rtc_of_match,
 676        },
 677        .remove         = __exit_p(sh_rtc_remove),
 678};
 679
 680module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
 681
 682MODULE_DESCRIPTION("SuperH on-chip RTC driver");
 683MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
 684              "Jamie Lenehan <lenehan@twibble.org>, "
 685              "Angelo Castello <angelo.castello@st.com>");
 686MODULE_LICENSE("GPL v2");
 687MODULE_ALIAS("platform:" DRV_NAME);
 688