linux/drivers/scsi/csiostor/csio_wr.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio FCoE driver for Linux.
   3 *
   4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#include <linux/kernel.h>
  36#include <linux/string.h>
  37#include <linux/compiler.h>
  38#include <linux/slab.h>
  39#include <asm/page.h>
  40#include <linux/cache.h>
  41
  42#include "t4_values.h"
  43#include "csio_hw.h"
  44#include "csio_wr.h"
  45#include "csio_mb.h"
  46#include "csio_defs.h"
  47
  48int csio_intr_coalesce_cnt;             /* value:SGE_INGRESS_RX_THRESHOLD[0] */
  49static int csio_sge_thresh_reg;         /* SGE_INGRESS_RX_THRESHOLD[0] */
  50
  51int csio_intr_coalesce_time = 10;       /* value:SGE_TIMER_VALUE_1 */
  52static int csio_sge_timer_reg = 1;
  53
  54#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)                            \
  55        csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
  56
  57static void
  58csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
  59{
  60        sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
  61                                                        reg * sizeof(uint32_t));
  62}
  63
  64/* Free list buffer size */
  65static inline uint32_t
  66csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
  67{
  68        return sge->sge_fl_buf_size[buf->paddr & 0xF];
  69}
  70
  71/* Size of the egress queue status page */
  72static inline uint32_t
  73csio_wr_qstat_pgsz(struct csio_hw *hw)
  74{
  75        return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
  76}
  77
  78/* Ring freelist doorbell */
  79static inline void
  80csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
  81{
  82        /*
  83         * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
  84         * number of bytes in the freelist queue. This translates to atleast
  85         * 8 freelist buffer pointers (since each pointer is 8 bytes).
  86         */
  87        if (flq->inc_idx >= 8) {
  88                csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
  89                                  PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
  90                                  MYPF_REG(SGE_PF_KDOORBELL_A));
  91                flq->inc_idx &= 7;
  92        }
  93}
  94
  95/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
  96static void
  97csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
  98{
  99        csio_wr_reg32(hw, CIDXINC_V(0)          |
 100                          INGRESSQID_V(iqid)    |
 101                          TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
 102                          MYPF_REG(SGE_PF_GTS_A));
 103}
 104
 105/*
 106 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
 107 * @hw: HW module.
 108 * @flq: Freelist queue.
 109 *
 110 * Fill up freelist buffer entries with buffers of size specified
 111 * in the size register.
 112 *
 113 */
 114static int
 115csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
 116{
 117        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 118        struct csio_sge *sge = &wrm->sge;
 119        __be64 *d = (__be64 *)(flq->vstart);
 120        struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
 121        uint64_t paddr;
 122        int sreg = flq->un.fl.sreg;
 123        int n = flq->credits;
 124
 125        while (n--) {
 126                buf->len = sge->sge_fl_buf_size[sreg];
 127                buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
 128                                                &buf->paddr, GFP_KERNEL);
 129                if (!buf->vaddr) {
 130                        csio_err(hw, "Could only fill %d buffers!\n", n + 1);
 131                        return -ENOMEM;
 132                }
 133
 134                paddr = buf->paddr | (sreg & 0xF);
 135
 136                *d++ = cpu_to_be64(paddr);
 137                buf++;
 138        }
 139
 140        return 0;
 141}
 142
 143/*
 144 * csio_wr_update_fl -
 145 * @hw: HW module.
 146 * @flq: Freelist queue.
 147 *
 148 *
 149 */
 150static inline void
 151csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
 152{
 153
 154        flq->inc_idx += n;
 155        flq->pidx += n;
 156        if (unlikely(flq->pidx >= flq->credits))
 157                flq->pidx -= (uint16_t)flq->credits;
 158
 159        CSIO_INC_STATS(flq, n_flq_refill);
 160}
 161
 162/*
 163 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
 164 * @hw: HW module
 165 * @qsize: Size of the queue in bytes
 166 * @wrsize: Since of WR in this queue, if fixed.
 167 * @type: Type of queue (Ingress/Egress/Freelist)
 168 * @owner: Module that owns this queue.
 169 * @nflb: Number of freelist buffers for FL.
 170 * @sreg: What is the FL buffer size register?
 171 * @iq_int_handler: Ingress queue handler in INTx mode.
 172 *
 173 * This function allocates and sets up a queue for the caller
 174 * of size qsize, aligned at the required boundary. This is subject to
 175 * be free entries being available in the queue array. If one is found,
 176 * it is initialized with the allocated queue, marked as being used (owner),
 177 * and a handle returned to the caller in form of the queue's index
 178 * into the q_arr array.
 179 * If user has indicated a freelist (by specifying nflb > 0), create
 180 * another queue (with its own index into q_arr) for the freelist. Allocate
 181 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
 182 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
 183 * with its owning ingress queue.
 184 */
 185int
 186csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
 187                uint16_t type, void *owner, uint32_t nflb, int sreg,
 188                iq_handler_t iq_intx_handler)
 189{
 190        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 191        struct csio_q   *q, *flq;
 192        int             free_idx = wrm->free_qidx;
 193        int             ret_idx = free_idx;
 194        uint32_t        qsz;
 195        int flq_idx;
 196
 197        if (free_idx >= wrm->num_q) {
 198                csio_err(hw, "No more free queues.\n");
 199                return -1;
 200        }
 201
 202        switch (type) {
 203        case CSIO_EGRESS:
 204                qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
 205                break;
 206        case CSIO_INGRESS:
 207                switch (wrsize) {
 208                case 16:
 209                case 32:
 210                case 64:
 211                case 128:
 212                        break;
 213                default:
 214                        csio_err(hw, "Invalid Ingress queue WR size:%d\n",
 215                                    wrsize);
 216                        return -1;
 217                }
 218
 219                /*
 220                 * Number of elements must be a multiple of 16
 221                 * So this includes status page size
 222                 */
 223                qsz = ALIGN(qsize/wrsize, 16) * wrsize;
 224
 225                break;
 226        case CSIO_FREELIST:
 227                qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
 228                break;
 229        default:
 230                csio_err(hw, "Invalid queue type: 0x%x\n", type);
 231                return -1;
 232        }
 233
 234        q = wrm->q_arr[free_idx];
 235
 236        q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
 237                                       GFP_KERNEL);
 238        if (!q->vstart) {
 239                csio_err(hw,
 240                         "Failed to allocate DMA memory for "
 241                         "queue at id: %d size: %d\n", free_idx, qsize);
 242                return -1;
 243        }
 244
 245        q->type         = type;
 246        q->owner        = owner;
 247        q->pidx         = q->cidx = q->inc_idx = 0;
 248        q->size         = qsz;
 249        q->wr_sz        = wrsize;       /* If using fixed size WRs */
 250
 251        wrm->free_qidx++;
 252
 253        if (type == CSIO_INGRESS) {
 254                /* Since queue area is set to zero */
 255                q->un.iq.genbit = 1;
 256
 257                /*
 258                 * Ingress queue status page size is always the size of
 259                 * the ingress queue entry.
 260                 */
 261                q->credits      = (qsz - q->wr_sz) / q->wr_sz;
 262                q->vwrap        = (void *)((uintptr_t)(q->vstart) + qsz
 263                                                        - q->wr_sz);
 264
 265                /* Allocate memory for FL if requested */
 266                if (nflb > 0) {
 267                        flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
 268                                                  sizeof(__be64), CSIO_FREELIST,
 269                                                  owner, 0, sreg, NULL);
 270                        if (flq_idx == -1) {
 271                                csio_err(hw,
 272                                         "Failed to allocate FL queue"
 273                                         " for IQ idx:%d\n", free_idx);
 274                                return -1;
 275                        }
 276
 277                        /* Associate the new FL with the Ingress quue */
 278                        q->un.iq.flq_idx = flq_idx;
 279
 280                        flq = wrm->q_arr[q->un.iq.flq_idx];
 281                        flq->un.fl.bufs = kcalloc(flq->credits,
 282                                                  sizeof(struct csio_dma_buf),
 283                                                  GFP_KERNEL);
 284                        if (!flq->un.fl.bufs) {
 285                                csio_err(hw,
 286                                         "Failed to allocate FL queue bufs"
 287                                         " for IQ idx:%d\n", free_idx);
 288                                return -1;
 289                        }
 290
 291                        flq->un.fl.packen = 0;
 292                        flq->un.fl.offset = 0;
 293                        flq->un.fl.sreg = sreg;
 294
 295                        /* Fill up the free list buffers */
 296                        if (csio_wr_fill_fl(hw, flq))
 297                                return -1;
 298
 299                        /*
 300                         * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
 301                         * remains unpopulated,otherwise HW thinks
 302                         * FLQ is empty.
 303                         */
 304                        flq->pidx = flq->inc_idx = flq->credits - 8;
 305                } else {
 306                        q->un.iq.flq_idx = -1;
 307                }
 308
 309                /* Associate the IQ INTx handler. */
 310                q->un.iq.iq_intx_handler = iq_intx_handler;
 311
 312                csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
 313
 314        } else if (type == CSIO_EGRESS) {
 315                q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
 316                q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
 317                                                - csio_wr_qstat_pgsz(hw));
 318                csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
 319        } else { /* Freelist */
 320                q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
 321                q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
 322                                                - csio_wr_qstat_pgsz(hw));
 323                csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
 324        }
 325
 326        return ret_idx;
 327}
 328
 329/*
 330 * csio_wr_iq_create_rsp - Response handler for IQ creation.
 331 * @hw: The HW module.
 332 * @mbp: Mailbox.
 333 * @iq_idx: Ingress queue that got created.
 334 *
 335 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
 336 */
 337static int
 338csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
 339{
 340        struct csio_iq_params iqp;
 341        enum fw_retval retval;
 342        uint32_t iq_id;
 343        int flq_idx;
 344
 345        memset(&iqp, 0, sizeof(struct csio_iq_params));
 346
 347        csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
 348
 349        if (retval != FW_SUCCESS) {
 350                csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
 351                mempool_free(mbp, hw->mb_mempool);
 352                return -EINVAL;
 353        }
 354
 355        csio_q_iqid(hw, iq_idx)         = iqp.iqid;
 356        csio_q_physiqid(hw, iq_idx)     = iqp.physiqid;
 357        csio_q_pidx(hw, iq_idx)         = csio_q_cidx(hw, iq_idx) = 0;
 358        csio_q_inc_idx(hw, iq_idx)      = 0;
 359
 360        /* Actual iq-id. */
 361        iq_id = iqp.iqid - hw->wrm.fw_iq_start;
 362
 363        /* Set the iq-id to iq map table. */
 364        if (iq_id >= CSIO_MAX_IQ) {
 365                csio_err(hw,
 366                         "Exceeding MAX_IQ(%d) supported!"
 367                         " iqid:%d rel_iqid:%d FW iq_start:%d\n",
 368                         CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
 369                mempool_free(mbp, hw->mb_mempool);
 370                return -EINVAL;
 371        }
 372        csio_q_set_intr_map(hw, iq_idx, iq_id);
 373
 374        /*
 375         * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
 376         * ingress context of this queue. This will block interrupts to
 377         * this queue until the next GTS write. Therefore, we do a
 378         * 0-cidx increment GTS write for this queue just to clear the
 379         * interrupt_sent bit. This will re-enable interrupts to this
 380         * queue.
 381         */
 382        csio_wr_sge_intr_enable(hw, iqp.physiqid);
 383
 384        flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
 385        if (flq_idx != -1) {
 386                struct csio_q *flq = hw->wrm.q_arr[flq_idx];
 387
 388                csio_q_flid(hw, flq_idx) = iqp.fl0id;
 389                csio_q_cidx(hw, flq_idx) = 0;
 390                csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
 391                csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
 392
 393                /* Now update SGE about the buffers allocated during init */
 394                csio_wr_ring_fldb(hw, flq);
 395        }
 396
 397        mempool_free(mbp, hw->mb_mempool);
 398
 399        return 0;
 400}
 401
 402/*
 403 * csio_wr_iq_create - Configure an Ingress queue with FW.
 404 * @hw: The HW module.
 405 * @priv: Private data object.
 406 * @iq_idx: Ingress queue index in the WR module.
 407 * @vec: MSIX vector.
 408 * @portid: PCIE Channel to be associated with this queue.
 409 * @async: Is this a FW asynchronous message handling queue?
 410 * @cbfn: Completion callback.
 411 *
 412 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
 413 * with alloc/write bits set.
 414 */
 415int
 416csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
 417                  uint32_t vec, uint8_t portid, bool async,
 418                  void (*cbfn) (struct csio_hw *, struct csio_mb *))
 419{
 420        struct csio_mb  *mbp;
 421        struct csio_iq_params iqp;
 422        int flq_idx;
 423
 424        memset(&iqp, 0, sizeof(struct csio_iq_params));
 425        csio_q_portid(hw, iq_idx) = portid;
 426
 427        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 428        if (!mbp) {
 429                csio_err(hw, "IQ command out of memory!\n");
 430                return -ENOMEM;
 431        }
 432
 433        switch (hw->intr_mode) {
 434        case CSIO_IM_INTX:
 435        case CSIO_IM_MSI:
 436                /* For interrupt forwarding queue only */
 437                if (hw->intr_iq_idx == iq_idx)
 438                        iqp.iqandst     = X_INTERRUPTDESTINATION_PCIE;
 439                else
 440                        iqp.iqandst     = X_INTERRUPTDESTINATION_IQ;
 441                iqp.iqandstindex        =
 442                        csio_q_physiqid(hw, hw->intr_iq_idx);
 443                break;
 444        case CSIO_IM_MSIX:
 445                iqp.iqandst             = X_INTERRUPTDESTINATION_PCIE;
 446                iqp.iqandstindex        = (uint16_t)vec;
 447                break;
 448        case CSIO_IM_NONE:
 449                mempool_free(mbp, hw->mb_mempool);
 450                return -EINVAL;
 451        }
 452
 453        /* Pass in the ingress queue cmd parameters */
 454        iqp.pfn                 = hw->pfn;
 455        iqp.vfn                 = 0;
 456        iqp.iq_start            = 1;
 457        iqp.viid                = 0;
 458        iqp.type                = FW_IQ_TYPE_FL_INT_CAP;
 459        iqp.iqasynch            = async;
 460        if (csio_intr_coalesce_cnt)
 461                iqp.iqanus      = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
 462        else
 463                iqp.iqanus      = X_UPDATESCHEDULING_TIMER;
 464        iqp.iqanud              = X_UPDATEDELIVERY_INTERRUPT;
 465        iqp.iqpciech            = portid;
 466        iqp.iqintcntthresh      = (uint8_t)csio_sge_thresh_reg;
 467
 468        switch (csio_q_wr_sz(hw, iq_idx)) {
 469        case 16:
 470                iqp.iqesize = 0; break;
 471        case 32:
 472                iqp.iqesize = 1; break;
 473        case 64:
 474                iqp.iqesize = 2; break;
 475        case 128:
 476                iqp.iqesize = 3; break;
 477        }
 478
 479        iqp.iqsize              = csio_q_size(hw, iq_idx) /
 480                                                csio_q_wr_sz(hw, iq_idx);
 481        iqp.iqaddr              = csio_q_pstart(hw, iq_idx);
 482
 483        flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
 484        if (flq_idx != -1) {
 485                enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
 486                struct csio_q *flq = hw->wrm.q_arr[flq_idx];
 487
 488                iqp.fl0paden    = 1;
 489                iqp.fl0packen   = flq->un.fl.packen ? 1 : 0;
 490                iqp.fl0fbmin    = X_FETCHBURSTMIN_64B;
 491                iqp.fl0fbmax    = ((chip == CHELSIO_T5) ?
 492                                  X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
 493                iqp.fl0size     = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
 494                iqp.fl0addr     = csio_q_pstart(hw, flq_idx);
 495        }
 496
 497        csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
 498
 499        if (csio_mb_issue(hw, mbp)) {
 500                csio_err(hw, "Issue of IQ cmd failed!\n");
 501                mempool_free(mbp, hw->mb_mempool);
 502                return -EINVAL;
 503        }
 504
 505        if (cbfn != NULL)
 506                return 0;
 507
 508        return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
 509}
 510
 511/*
 512 * csio_wr_eq_create_rsp - Response handler for EQ creation.
 513 * @hw: The HW module.
 514 * @mbp: Mailbox.
 515 * @eq_idx: Egress queue that got created.
 516 *
 517 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
 518 */
 519static int
 520csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
 521{
 522        struct csio_eq_params eqp;
 523        enum fw_retval retval;
 524
 525        memset(&eqp, 0, sizeof(struct csio_eq_params));
 526
 527        csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
 528
 529        if (retval != FW_SUCCESS) {
 530                csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
 531                mempool_free(mbp, hw->mb_mempool);
 532                return -EINVAL;
 533        }
 534
 535        csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
 536        csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
 537        csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
 538        csio_q_inc_idx(hw, eq_idx) = 0;
 539
 540        mempool_free(mbp, hw->mb_mempool);
 541
 542        return 0;
 543}
 544
 545/*
 546 * csio_wr_eq_create - Configure an Egress queue with FW.
 547 * @hw: HW module.
 548 * @priv: Private data.
 549 * @eq_idx: Egress queue index in the WR module.
 550 * @iq_idx: Associated ingress queue index.
 551 * @cbfn: Completion callback.
 552 *
 553 * This API configures a offload egress queue with FW by issuing a
 554 * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
 555 */
 556int
 557csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
 558                  int iq_idx, uint8_t portid,
 559                  void (*cbfn) (struct csio_hw *, struct csio_mb *))
 560{
 561        struct csio_mb  *mbp;
 562        struct csio_eq_params eqp;
 563
 564        memset(&eqp, 0, sizeof(struct csio_eq_params));
 565
 566        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 567        if (!mbp) {
 568                csio_err(hw, "EQ command out of memory!\n");
 569                return -ENOMEM;
 570        }
 571
 572        eqp.pfn                 = hw->pfn;
 573        eqp.vfn                 = 0;
 574        eqp.eqstart             = 1;
 575        eqp.hostfcmode          = X_HOSTFCMODE_STATUS_PAGE;
 576        eqp.iqid                = csio_q_iqid(hw, iq_idx);
 577        eqp.fbmin               = X_FETCHBURSTMIN_64B;
 578        eqp.fbmax               = X_FETCHBURSTMAX_512B;
 579        eqp.cidxfthresh         = 0;
 580        eqp.pciechn             = portid;
 581        eqp.eqsize              = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
 582        eqp.eqaddr              = csio_q_pstart(hw, eq_idx);
 583
 584        csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
 585                                    &eqp, cbfn);
 586
 587        if (csio_mb_issue(hw, mbp)) {
 588                csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
 589                mempool_free(mbp, hw->mb_mempool);
 590                return -EINVAL;
 591        }
 592
 593        if (cbfn != NULL)
 594                return 0;
 595
 596        return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
 597}
 598
 599/*
 600 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
 601 * @hw: The HW module.
 602 * @mbp: Mailbox.
 603 * @iq_idx: Ingress queue that was freed.
 604 *
 605 * Handle FW_IQ_CMD (free) mailbox completion.
 606 */
 607static int
 608csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
 609{
 610        enum fw_retval retval = csio_mb_fw_retval(mbp);
 611        int rv = 0;
 612
 613        if (retval != FW_SUCCESS)
 614                rv = -EINVAL;
 615
 616        mempool_free(mbp, hw->mb_mempool);
 617
 618        return rv;
 619}
 620
 621/*
 622 * csio_wr_iq_destroy - Free an ingress queue.
 623 * @hw: The HW module.
 624 * @priv: Private data object.
 625 * @iq_idx: Ingress queue index to destroy
 626 * @cbfn: Completion callback.
 627 *
 628 * This API frees an ingress queue by issuing the FW_IQ_CMD
 629 * with the free bit set.
 630 */
 631static int
 632csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
 633                   void (*cbfn)(struct csio_hw *, struct csio_mb *))
 634{
 635        int rv = 0;
 636        struct csio_mb  *mbp;
 637        struct csio_iq_params iqp;
 638        int flq_idx;
 639
 640        memset(&iqp, 0, sizeof(struct csio_iq_params));
 641
 642        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 643        if (!mbp)
 644                return -ENOMEM;
 645
 646        iqp.pfn         = hw->pfn;
 647        iqp.vfn         = 0;
 648        iqp.iqid        = csio_q_iqid(hw, iq_idx);
 649        iqp.type        = FW_IQ_TYPE_FL_INT_CAP;
 650
 651        flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
 652        if (flq_idx != -1)
 653                iqp.fl0id = csio_q_flid(hw, flq_idx);
 654        else
 655                iqp.fl0id = 0xFFFF;
 656
 657        iqp.fl1id = 0xFFFF;
 658
 659        csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
 660
 661        rv = csio_mb_issue(hw, mbp);
 662        if (rv != 0) {
 663                mempool_free(mbp, hw->mb_mempool);
 664                return rv;
 665        }
 666
 667        if (cbfn != NULL)
 668                return 0;
 669
 670        return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
 671}
 672
 673/*
 674 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
 675 * @hw: The HW module.
 676 * @mbp: Mailbox.
 677 * @eq_idx: Egress queue that was freed.
 678 *
 679 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
 680 */
 681static int
 682csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
 683{
 684        enum fw_retval retval = csio_mb_fw_retval(mbp);
 685        int rv = 0;
 686
 687        if (retval != FW_SUCCESS)
 688                rv = -EINVAL;
 689
 690        mempool_free(mbp, hw->mb_mempool);
 691
 692        return rv;
 693}
 694
 695/*
 696 * csio_wr_eq_destroy - Free an Egress queue.
 697 * @hw: The HW module.
 698 * @priv: Private data object.
 699 * @eq_idx: Egress queue index to destroy
 700 * @cbfn: Completion callback.
 701 *
 702 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
 703 * with the free bit set.
 704 */
 705static int
 706csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
 707                   void (*cbfn) (struct csio_hw *, struct csio_mb *))
 708{
 709        int rv = 0;
 710        struct csio_mb  *mbp;
 711        struct csio_eq_params eqp;
 712
 713        memset(&eqp, 0, sizeof(struct csio_eq_params));
 714
 715        mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
 716        if (!mbp)
 717                return -ENOMEM;
 718
 719        eqp.pfn         = hw->pfn;
 720        eqp.vfn         = 0;
 721        eqp.eqid        = csio_q_eqid(hw, eq_idx);
 722
 723        csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
 724
 725        rv = csio_mb_issue(hw, mbp);
 726        if (rv != 0) {
 727                mempool_free(mbp, hw->mb_mempool);
 728                return rv;
 729        }
 730
 731        if (cbfn != NULL)
 732                return 0;
 733
 734        return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
 735}
 736
 737/*
 738 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
 739 * @hw: HW module
 740 * @qidx: Egress queue index
 741 *
 742 * Cleanup the Egress queue status page.
 743 */
 744static void
 745csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
 746{
 747        struct csio_q   *q = csio_hw_to_wrm(hw)->q_arr[qidx];
 748        struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
 749
 750        memset(stp, 0, sizeof(*stp));
 751}
 752
 753/*
 754 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
 755 * @hw: HW module
 756 * @qidx: Ingress queue index
 757 *
 758 * Cleanup the footer entries in the given ingress queue,
 759 * set to 1 the internal copy of genbit.
 760 */
 761static void
 762csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
 763{
 764        struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
 765        struct csio_q   *q      = wrm->q_arr[qidx];
 766        void *wr;
 767        struct csio_iqwr_footer *ftr;
 768        uint32_t i = 0;
 769
 770        /* set to 1 since we are just about zero out genbit */
 771        q->un.iq.genbit = 1;
 772
 773        for (i = 0; i < q->credits; i++) {
 774                /* Get the WR */
 775                wr = (void *)((uintptr_t)q->vstart +
 776                                           (i * q->wr_sz));
 777                /* Get the footer */
 778                ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
 779                                          (q->wr_sz - sizeof(*ftr)));
 780                /* Zero out footer */
 781                memset(ftr, 0, sizeof(*ftr));
 782        }
 783}
 784
 785int
 786csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
 787{
 788        int i, flq_idx;
 789        struct csio_q *q;
 790        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 791        int rv;
 792
 793        for (i = 0; i < wrm->free_qidx; i++) {
 794                q = wrm->q_arr[i];
 795
 796                switch (q->type) {
 797                case CSIO_EGRESS:
 798                        if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
 799                                csio_wr_cleanup_eq_stpg(hw, i);
 800                                if (!cmd) {
 801                                        csio_q_eqid(hw, i) = CSIO_MAX_QID;
 802                                        continue;
 803                                }
 804
 805                                rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
 806                                if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
 807                                        cmd = false;
 808
 809                                csio_q_eqid(hw, i) = CSIO_MAX_QID;
 810                        }
 811                        fallthrough;
 812                case CSIO_INGRESS:
 813                        if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
 814                                csio_wr_cleanup_iq_ftr(hw, i);
 815                                if (!cmd) {
 816                                        csio_q_iqid(hw, i) = CSIO_MAX_QID;
 817                                        flq_idx = csio_q_iq_flq_idx(hw, i);
 818                                        if (flq_idx != -1)
 819                                                csio_q_flid(hw, flq_idx) =
 820                                                                CSIO_MAX_QID;
 821                                        continue;
 822                                }
 823
 824                                rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
 825                                if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
 826                                        cmd = false;
 827
 828                                csio_q_iqid(hw, i) = CSIO_MAX_QID;
 829                                flq_idx = csio_q_iq_flq_idx(hw, i);
 830                                if (flq_idx != -1)
 831                                        csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
 832                        }
 833                        break;
 834                default:
 835                        break;
 836                }
 837        }
 838
 839        hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
 840
 841        return 0;
 842}
 843
 844/*
 845 * csio_wr_get - Get requested size of WR entry/entries from queue.
 846 * @hw: HW module.
 847 * @qidx: Index of queue.
 848 * @size: Cumulative size of Work request(s).
 849 * @wrp: Work request pair.
 850 *
 851 * If requested credits are available, return the start address of the
 852 * work request in the work request pair. Set pidx accordingly and
 853 * return.
 854 *
 855 * NOTE about WR pair:
 856 * ==================
 857 * A WR can start towards the end of a queue, and then continue at the
 858 * beginning, since the queue is considered to be circular. This will
 859 * require a pair of address/size to be passed back to the caller -
 860 * hence Work request pair format.
 861 */
 862int
 863csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
 864            struct csio_wr_pair *wrp)
 865{
 866        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 867        struct csio_q *q = wrm->q_arr[qidx];
 868        void *cwr = (void *)((uintptr_t)(q->vstart) +
 869                                                (q->pidx * CSIO_QCREDIT_SZ));
 870        struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
 871        uint16_t cidx = q->cidx = ntohs(stp->cidx);
 872        uint16_t pidx = q->pidx;
 873        uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
 874        int req_credits = req_sz / CSIO_QCREDIT_SZ;
 875        int credits;
 876
 877        CSIO_DB_ASSERT(q->owner != NULL);
 878        CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
 879        CSIO_DB_ASSERT(cidx <= q->credits);
 880
 881        /* Calculate credits */
 882        if (pidx > cidx) {
 883                credits = q->credits - (pidx - cidx) - 1;
 884        } else if (cidx > pidx) {
 885                credits = cidx - pidx - 1;
 886        } else {
 887                /* cidx == pidx, empty queue */
 888                credits = q->credits;
 889                CSIO_INC_STATS(q, n_qempty);
 890        }
 891
 892        /*
 893         * Check if we have enough credits.
 894         * credits = 1 implies queue is full.
 895         */
 896        if (!credits || (req_credits > credits)) {
 897                CSIO_INC_STATS(q, n_qfull);
 898                return -EBUSY;
 899        }
 900
 901        /*
 902         * If we are here, we have enough credits to satisfy the
 903         * request. Check if we are near the end of q, and if WR spills over.
 904         * If it does, use the first addr/size to cover the queue until
 905         * the end. Fit the remainder portion of the request at the top
 906         * of queue and return it in the second addr/len. Set pidx
 907         * accordingly.
 908         */
 909        if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
 910                wrp->addr1 = cwr;
 911                wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
 912                wrp->addr2 = q->vstart;
 913                wrp->size2 = req_sz - wrp->size1;
 914                q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
 915                                                        CSIO_QCREDIT_SZ);
 916                CSIO_INC_STATS(q, n_qwrap);
 917                CSIO_INC_STATS(q, n_eq_wr_split);
 918        } else {
 919                wrp->addr1 = cwr;
 920                wrp->size1 = req_sz;
 921                wrp->addr2 = NULL;
 922                wrp->size2 = 0;
 923                q->pidx += (uint16_t)req_credits;
 924
 925                /* We are the end of queue, roll back pidx to top of queue */
 926                if (unlikely(q->pidx == q->credits)) {
 927                        q->pidx = 0;
 928                        CSIO_INC_STATS(q, n_qwrap);
 929                }
 930        }
 931
 932        q->inc_idx = (uint16_t)req_credits;
 933
 934        CSIO_INC_STATS(q, n_tot_reqs);
 935
 936        return 0;
 937}
 938
 939/*
 940 * csio_wr_copy_to_wrp - Copies given data into WR.
 941 * @data_buf - Data buffer
 942 * @wrp - Work request pair.
 943 * @wr_off - Work request offset.
 944 * @data_len - Data length.
 945 *
 946 * Copies the given data in Work Request. Work request pair(wrp) specifies
 947 * address information of Work request.
 948 * Returns: none
 949 */
 950void
 951csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
 952                   uint32_t wr_off, uint32_t data_len)
 953{
 954        uint32_t nbytes;
 955
 956        /* Number of space available in buffer addr1 of WRP */
 957        nbytes = ((wrp->size1 - wr_off) >= data_len) ?
 958                                        data_len : (wrp->size1 - wr_off);
 959
 960        memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
 961        data_len -= nbytes;
 962
 963        /* Write the remaining data from the begining of circular buffer */
 964        if (data_len) {
 965                CSIO_DB_ASSERT(data_len <= wrp->size2);
 966                CSIO_DB_ASSERT(wrp->addr2 != NULL);
 967                memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
 968        }
 969}
 970
 971/*
 972 * csio_wr_issue - Notify chip of Work request.
 973 * @hw: HW module.
 974 * @qidx: Index of queue.
 975 * @prio: 0: Low priority, 1: High priority
 976 *
 977 * Rings the SGE Doorbell by writing the current producer index of the passed
 978 * in queue into the register.
 979 *
 980 */
 981int
 982csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
 983{
 984        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
 985        struct csio_q *q = wrm->q_arr[qidx];
 986
 987        CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
 988
 989        wmb();
 990        /* Ring SGE Doorbell writing q->pidx into it */
 991        csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
 992                          PIDX_T5_V(q->inc_idx) | DBTYPE_F,
 993                          MYPF_REG(SGE_PF_KDOORBELL_A));
 994        q->inc_idx = 0;
 995
 996        return 0;
 997}
 998
 999static inline uint32_t
1000csio_wr_avail_qcredits(struct csio_q *q)
1001{
1002        if (q->pidx > q->cidx)
1003                return q->pidx - q->cidx;
1004        else if (q->cidx > q->pidx)
1005                return q->credits - (q->cidx - q->pidx);
1006        else
1007                return 0;       /* cidx == pidx, empty queue */
1008}
1009
1010/*
1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1012 * @hw: HW module.
1013 * @flq: The freelist queue.
1014 *
1015 * Invalidate the driver's version of a freelist buffer entry,
1016 * without freeing the associated the DMA memory. The entry
1017 * to be invalidated is picked up from the current Free list
1018 * queue cidx.
1019 *
1020 */
1021static inline void
1022csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
1023{
1024        flq->cidx++;
1025        if (flq->cidx == flq->credits) {
1026                flq->cidx = 0;
1027                CSIO_INC_STATS(flq, n_qwrap);
1028        }
1029}
1030
1031/*
1032 * csio_wr_process_fl - Process a freelist completion.
1033 * @hw: HW module.
1034 * @q: The ingress queue attached to the Freelist.
1035 * @wr: The freelist completion WR in the ingress queue.
1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1037 * @iq_handler: Caller's handler for this completion.
1038 * @priv: Private pointer of caller
1039 *
1040 */
1041static inline void
1042csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
1043                   void *wr, uint32_t len_to_qid,
1044                   void (*iq_handler)(struct csio_hw *, void *,
1045                                      uint32_t, struct csio_fl_dma_buf *,
1046                                      void *),
1047                   void *priv)
1048{
1049        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1050        struct csio_sge *sge = &wrm->sge;
1051        struct csio_fl_dma_buf flb;
1052        struct csio_dma_buf *buf, *fbuf;
1053        uint32_t bufsz, len, lastlen = 0;
1054        int n;
1055        struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
1056
1057        CSIO_DB_ASSERT(flq != NULL);
1058
1059        len = len_to_qid;
1060
1061        if (len & IQWRF_NEWBUF) {
1062                if (flq->un.fl.offset > 0) {
1063                        csio_wr_inval_flq_buf(hw, flq);
1064                        flq->un.fl.offset = 0;
1065                }
1066                len = IQWRF_LEN_GET(len);
1067        }
1068
1069        CSIO_DB_ASSERT(len != 0);
1070
1071        flb.totlen = len;
1072
1073        /* Consume all freelist buffers used for len bytes */
1074        for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
1075                buf = &flq->un.fl.bufs[flq->cidx];
1076                bufsz = csio_wr_fl_bufsz(sge, buf);
1077
1078                fbuf->paddr     = buf->paddr;
1079                fbuf->vaddr     = buf->vaddr;
1080
1081                flb.offset      = flq->un.fl.offset;
1082                lastlen         = min(bufsz, len);
1083                fbuf->len       = lastlen;
1084
1085                len -= lastlen;
1086                if (!len)
1087                        break;
1088                csio_wr_inval_flq_buf(hw, flq);
1089        }
1090
1091        flb.defer_free = flq->un.fl.packen ? 0 : 1;
1092
1093        iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
1094                   &flb, priv);
1095
1096        if (flq->un.fl.packen)
1097                flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
1098        else
1099                csio_wr_inval_flq_buf(hw, flq);
1100
1101}
1102
1103/*
1104 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1105 * @q: Ingress quueue.
1106 * @ftr: Ingress queue WR SGE footer.
1107 *
1108 * The entry is new if our generation bit matches the corresponding
1109 * bit in the footer of the current WR.
1110 */
1111static inline bool
1112csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
1113{
1114        return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
1115}
1116
1117/*
1118 * csio_wr_process_iq - Process elements in Ingress queue.
1119 * @hw:  HW pointer
1120 * @qidx: Index of queue
1121 * @iq_handler: Handler for this queue
1122 * @priv: Caller's private pointer
1123 *
1124 * This routine walks through every entry of the ingress queue, calling
1125 * the provided iq_handler with the entry, until the generation bit
1126 * flips.
1127 */
1128int
1129csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
1130                   void (*iq_handler)(struct csio_hw *, void *,
1131                                      uint32_t, struct csio_fl_dma_buf *,
1132                                      void *),
1133                   void *priv)
1134{
1135        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1136        void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
1137        struct csio_iqwr_footer *ftr;
1138        uint32_t wr_type, fw_qid, qid;
1139        struct csio_q *q_completed;
1140        struct csio_q *flq = csio_iq_has_fl(q) ?
1141                                        wrm->q_arr[q->un.iq.flq_idx] : NULL;
1142        int rv = 0;
1143
1144        /* Get the footer */
1145        ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1146                                          (q->wr_sz - sizeof(*ftr)));
1147
1148        /*
1149         * When q wrapped around last time, driver should have inverted
1150         * ic.genbit as well.
1151         */
1152        while (csio_is_new_iqwr(q, ftr)) {
1153
1154                CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
1155                                                (uintptr_t)q->vwrap);
1156                rmb();
1157                wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
1158
1159                switch (wr_type) {
1160                case X_RSPD_TYPE_CPL:
1161                        /* Subtract footer from WR len */
1162                        iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
1163                        break;
1164                case X_RSPD_TYPE_FLBUF:
1165                        csio_wr_process_fl(hw, q, wr,
1166                                           ntohl(ftr->pldbuflen_qid),
1167                                           iq_handler, priv);
1168                        break;
1169                case X_RSPD_TYPE_INTR:
1170                        fw_qid = ntohl(ftr->pldbuflen_qid);
1171                        qid = fw_qid - wrm->fw_iq_start;
1172                        q_completed = hw->wrm.intr_map[qid];
1173
1174                        if (unlikely(qid ==
1175                                        csio_q_physiqid(hw, hw->intr_iq_idx))) {
1176                                /*
1177                                 * We are already in the Forward Interrupt
1178                                 * Interrupt Queue Service! Do-not service
1179                                 * again!
1180                                 *
1181                                 */
1182                        } else {
1183                                CSIO_DB_ASSERT(q_completed);
1184                                CSIO_DB_ASSERT(
1185                                        q_completed->un.iq.iq_intx_handler);
1186
1187                                /* Call the queue handler. */
1188                                q_completed->un.iq.iq_intx_handler(hw, NULL,
1189                                                0, NULL, (void *)q_completed);
1190                        }
1191                        break;
1192                default:
1193                        csio_warn(hw, "Unknown resp type 0x%x received\n",
1194                                 wr_type);
1195                        CSIO_INC_STATS(q, n_rsp_unknown);
1196                        break;
1197                }
1198
1199                /*
1200                 * Ingress *always* has fixed size WR entries. Therefore,
1201                 * there should always be complete WRs towards the end of
1202                 * queue.
1203                 */
1204                if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
1205
1206                        /* Roll over to start of queue */
1207                        q->cidx = 0;
1208                        wr      = q->vstart;
1209
1210                        /* Toggle genbit */
1211                        q->un.iq.genbit ^= 0x1;
1212
1213                        CSIO_INC_STATS(q, n_qwrap);
1214                } else {
1215                        q->cidx++;
1216                        wr      = (void *)((uintptr_t)(q->vstart) +
1217                                           (q->cidx * q->wr_sz));
1218                }
1219
1220                ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
1221                                                  (q->wr_sz - sizeof(*ftr)));
1222                q->inc_idx++;
1223
1224        } /* while (q->un.iq.genbit == hdr->genbit) */
1225
1226        /*
1227         * We need to re-arm SGE interrupts in case we got a stray interrupt,
1228         * especially in msix mode. With INTx, this may be a common occurence.
1229         */
1230        if (unlikely(!q->inc_idx)) {
1231                CSIO_INC_STATS(q, n_stray_comp);
1232                rv = -EINVAL;
1233                goto restart;
1234        }
1235
1236        /* Replenish free list buffers if pending falls below low water mark */
1237        if (flq) {
1238                uint32_t avail  = csio_wr_avail_qcredits(flq);
1239                if (avail <= 16) {
1240                        /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1241                         * remains unpopulated otherwise HW thinks
1242                         * FLQ is empty.
1243                         */
1244                        csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
1245                        csio_wr_ring_fldb(hw, flq);
1246                }
1247        }
1248
1249restart:
1250        /* Now inform SGE about our incremental index value */
1251        csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)         |
1252                          INGRESSQID_V(q->un.iq.physiqid)       |
1253                          TIMERREG_V(csio_sge_timer_reg),
1254                          MYPF_REG(SGE_PF_GTS_A));
1255        q->stats.n_tot_rsps += q->inc_idx;
1256
1257        q->inc_idx = 0;
1258
1259        return rv;
1260}
1261
1262int
1263csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
1264                   void (*iq_handler)(struct csio_hw *, void *,
1265                                      uint32_t, struct csio_fl_dma_buf *,
1266                                      void *),
1267                   void *priv)
1268{
1269        struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1270        struct csio_q   *iq     = wrm->q_arr[qidx];
1271
1272        return csio_wr_process_iq(hw, iq, iq_handler, priv);
1273}
1274
1275static int
1276csio_closest_timer(struct csio_sge *s, int time)
1277{
1278        int i, delta, match = 0, min_delta = INT_MAX;
1279
1280        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1281                delta = time - s->timer_val[i];
1282                if (delta < 0)
1283                        delta = -delta;
1284                if (delta < min_delta) {
1285                        min_delta = delta;
1286                        match = i;
1287                }
1288        }
1289        return match;
1290}
1291
1292static int
1293csio_closest_thresh(struct csio_sge *s, int cnt)
1294{
1295        int i, delta, match = 0, min_delta = INT_MAX;
1296
1297        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1298                delta = cnt - s->counter_val[i];
1299                if (delta < 0)
1300                        delta = -delta;
1301                if (delta < min_delta) {
1302                        min_delta = delta;
1303                        match = i;
1304                }
1305        }
1306        return match;
1307}
1308
1309static void
1310csio_wr_fixup_host_params(struct csio_hw *hw)
1311{
1312        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1313        struct csio_sge *sge = &wrm->sge;
1314        uint32_t clsz = L1_CACHE_BYTES;
1315        uint32_t s_hps = PAGE_SHIFT - 10;
1316        uint32_t stat_len = clsz > 64 ? 128 : 64;
1317        u32 fl_align = clsz < 32 ? 32 : clsz;
1318        u32 pack_align;
1319        u32 ingpad, ingpack;
1320
1321        csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
1322                      HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
1323                      HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
1324                      HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
1325                      SGE_HOST_PAGE_SIZE_A);
1326
1327        /* T5 introduced the separation of the Free List Padding and
1328         * Packing Boundaries.  Thus, we can select a smaller Padding
1329         * Boundary to avoid uselessly chewing up PCIe Link and Memory
1330         * Bandwidth, and use a Packing Boundary which is large enough
1331         * to avoid false sharing between CPUs, etc.
1332         *
1333         * For the PCI Link, the smaller the Padding Boundary the
1334         * better.  For the Memory Controller, a smaller Padding
1335         * Boundary is better until we cross under the Memory Line
1336         * Size (the minimum unit of transfer to/from Memory).  If we
1337         * have a Padding Boundary which is smaller than the Memory
1338         * Line Size, that'll involve a Read-Modify-Write cycle on the
1339         * Memory Controller which is never good.
1340         */
1341
1342        /* We want the Packing Boundary to be based on the Cache Line
1343         * Size in order to help avoid False Sharing performance
1344         * issues between CPUs, etc.  We also want the Packing
1345         * Boundary to incorporate the PCI-E Maximum Payload Size.  We
1346         * get best performance when the Packing Boundary is a
1347         * multiple of the Maximum Payload Size.
1348         */
1349        pack_align = fl_align;
1350        if (pci_is_pcie(hw->pdev)) {
1351                u32 mps, mps_log;
1352                u16 devctl;
1353
1354                /* The PCIe Device Control Maximum Payload Size field
1355                 * [bits 7:5] encodes sizes as powers of 2 starting at
1356                 * 128 bytes.
1357                 */
1358                pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
1359                mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
1360                mps = 1 << mps_log;
1361                if (mps > pack_align)
1362                        pack_align = mps;
1363        }
1364
1365        /* T5/T6 have a special interpretation of the "0"
1366         * value for the Packing Boundary.  This corresponds to 16
1367         * bytes instead of the expected 32 bytes.
1368         */
1369        if (pack_align <= 16) {
1370                ingpack = INGPACKBOUNDARY_16B_X;
1371                fl_align = 16;
1372        } else if (pack_align == 32) {
1373                ingpack = INGPACKBOUNDARY_64B_X;
1374                fl_align = 64;
1375        } else {
1376                u32 pack_align_log = fls(pack_align) - 1;
1377
1378                ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
1379                fl_align = pack_align;
1380        }
1381
1382        /* Use the smallest Ingress Padding which isn't smaller than
1383         * the Memory Controller Read/Write Size.  We'll take that as
1384         * being 8 bytes since we don't know of any system with a
1385         * wider Memory Controller Bus Width.
1386         */
1387        if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
1388                ingpad = INGPADBOUNDARY_32B_X;
1389        else
1390                ingpad = T6_INGPADBOUNDARY_8B_X;
1391
1392        csio_set_reg_field(hw, SGE_CONTROL_A,
1393                           INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
1394                           EGRSTATUSPAGESIZE_F,
1395                           INGPADBOUNDARY_V(ingpad) |
1396                           EGRSTATUSPAGESIZE_V(stat_len != 64));
1397        csio_set_reg_field(hw, SGE_CONTROL2_A,
1398                           INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
1399                           INGPACKBOUNDARY_V(ingpack));
1400
1401        /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1402        csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
1403
1404        /*
1405         * If using hard params, the following will get set correctly
1406         * in csio_wr_set_sge().
1407         */
1408        if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
1409                csio_wr_reg32(hw,
1410                        (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
1411                        fl_align - 1) & ~(fl_align - 1),
1412                        SGE_FL_BUFFER_SIZE2_A);
1413                csio_wr_reg32(hw,
1414                        (csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
1415                        fl_align - 1) & ~(fl_align - 1),
1416                        SGE_FL_BUFFER_SIZE3_A);
1417        }
1418
1419        sge->csio_fl_align = fl_align;
1420
1421        csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
1422
1423        /* default value of rx_dma_offset of the NIC driver */
1424        csio_set_reg_field(hw, SGE_CONTROL_A,
1425                           PKTSHIFT_V(PKTSHIFT_M),
1426                           PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
1427
1428        csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
1429                                    CSUM_HAS_PSEUDO_HDR_F, 0);
1430}
1431
1432static void
1433csio_init_intr_coalesce_parms(struct csio_hw *hw)
1434{
1435        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1436        struct csio_sge *sge = &wrm->sge;
1437
1438        csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
1439        if (csio_intr_coalesce_cnt) {
1440                csio_sge_thresh_reg = 0;
1441                csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
1442                return;
1443        }
1444
1445        csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
1446}
1447
1448/*
1449 * csio_wr_get_sge - Get SGE register values.
1450 * @hw: HW module.
1451 *
1452 * Used by non-master functions and by master-functions relying on config file.
1453 */
1454static void
1455csio_wr_get_sge(struct csio_hw *hw)
1456{
1457        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1458        struct csio_sge *sge = &wrm->sge;
1459        uint32_t ingpad;
1460        int i;
1461        u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
1462        u32 ingress_rx_threshold;
1463
1464        sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1465
1466        ingpad = INGPADBOUNDARY_G(sge->sge_control);
1467
1468        switch (ingpad) {
1469        case X_INGPCIEBOUNDARY_32B:
1470                sge->csio_fl_align = 32; break;
1471        case X_INGPCIEBOUNDARY_64B:
1472                sge->csio_fl_align = 64; break;
1473        case X_INGPCIEBOUNDARY_128B:
1474                sge->csio_fl_align = 128; break;
1475        case X_INGPCIEBOUNDARY_256B:
1476                sge->csio_fl_align = 256; break;
1477        case X_INGPCIEBOUNDARY_512B:
1478                sge->csio_fl_align = 512; break;
1479        case X_INGPCIEBOUNDARY_1024B:
1480                sge->csio_fl_align = 1024; break;
1481        case X_INGPCIEBOUNDARY_2048B:
1482                sge->csio_fl_align = 2048; break;
1483        case X_INGPCIEBOUNDARY_4096B:
1484                sge->csio_fl_align = 4096; break;
1485        }
1486
1487        for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1488                csio_get_flbuf_size(hw, sge, i);
1489
1490        timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
1491        timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
1492        timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
1493
1494        sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
1495                                        TIMERVALUE0_G(timer_value_0_and_1));
1496        sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
1497                                        TIMERVALUE1_G(timer_value_0_and_1));
1498        sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
1499                                        TIMERVALUE2_G(timer_value_2_and_3));
1500        sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
1501                                        TIMERVALUE3_G(timer_value_2_and_3));
1502        sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
1503                                        TIMERVALUE4_G(timer_value_4_and_5));
1504        sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
1505                                        TIMERVALUE5_G(timer_value_4_and_5));
1506
1507        ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
1508        sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
1509        sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
1510        sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
1511        sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
1512
1513        csio_init_intr_coalesce_parms(hw);
1514}
1515
1516/*
1517 * csio_wr_set_sge - Initialize SGE registers
1518 * @hw: HW module.
1519 *
1520 * Used by Master function to initialize SGE registers in the absence
1521 * of a config file.
1522 */
1523static void
1524csio_wr_set_sge(struct csio_hw *hw)
1525{
1526        struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1527        struct csio_sge *sge = &wrm->sge;
1528        int i;
1529
1530        /*
1531         * Set up our basic SGE mode to deliver CPL messages to our Ingress
1532         * Queue and Packet Date to the Free List.
1533         */
1534        csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
1535
1536        sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
1537
1538        /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1539
1540        /*
1541         * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1542         * and generate an interrupt when this occurs so we can recover.
1543         */
1544        csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
1545                           LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1546                           LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1547        csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
1548                           HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
1549                           HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
1550
1551        csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
1552                           ENABLE_DROP_F);
1553
1554        /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1555
1556        CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
1557        csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
1558                      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
1559        csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
1560                      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
1561        CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
1562        CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
1563        CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
1564        CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
1565        CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
1566
1567        for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
1568                csio_get_flbuf_size(hw, sge, i);
1569
1570        /* Initialize interrupt coalescing attributes */
1571        sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
1572        sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
1573        sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
1574        sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
1575        sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
1576        sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
1577
1578        sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
1579        sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
1580        sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
1581        sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
1582
1583        csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
1584                      THRESHOLD_1_V(sge->counter_val[1]) |
1585                      THRESHOLD_2_V(sge->counter_val[2]) |
1586                      THRESHOLD_3_V(sge->counter_val[3]),
1587                      SGE_INGRESS_RX_THRESHOLD_A);
1588
1589        csio_wr_reg32(hw,
1590                   TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
1591                   TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
1592                   SGE_TIMER_VALUE_0_AND_1_A);
1593
1594        csio_wr_reg32(hw,
1595                   TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
1596                   TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
1597                   SGE_TIMER_VALUE_2_AND_3_A);
1598
1599        csio_wr_reg32(hw,
1600                   TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
1601                   TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
1602                   SGE_TIMER_VALUE_4_AND_5_A);
1603
1604        csio_init_intr_coalesce_parms(hw);
1605}
1606
1607void
1608csio_wr_sge_init(struct csio_hw *hw)
1609{
1610        /*
1611         * If we are master and chip is not initialized:
1612         *    - If we plan to use the config file, we need to fixup some
1613         *      host specific registers, and read the rest of the SGE
1614         *      configuration.
1615         *    - If we dont plan to use the config file, we need to initialize
1616         *      SGE entirely, including fixing the host specific registers.
1617         * If we are master and chip is initialized, just read and work off of
1618         *      the already initialized SGE values.
1619         * If we arent the master, we are only allowed to read and work off of
1620         *      the already initialized SGE values.
1621         *
1622         * Therefore, before calling this function, we assume that the master-
1623         * ship of the card, state and whether to use config file or not, have
1624         * already been decided.
1625         */
1626        if (csio_is_hw_master(hw)) {
1627                if (hw->fw_state != CSIO_DEV_STATE_INIT)
1628                        csio_wr_fixup_host_params(hw);
1629
1630                if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
1631                        csio_wr_get_sge(hw);
1632                else
1633                        csio_wr_set_sge(hw);
1634        } else
1635                csio_wr_get_sge(hw);
1636}
1637
1638/*
1639 * csio_wrm_init - Initialize Work request module.
1640 * @wrm: WR module
1641 * @hw: HW pointer
1642 *
1643 * Allocates memory for an array of queue pointers starting at q_arr.
1644 */
1645int
1646csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
1647{
1648        int i;
1649
1650        if (!wrm->num_q) {
1651                csio_err(hw, "Num queues is not set\n");
1652                return -EINVAL;
1653        }
1654
1655        wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
1656        if (!wrm->q_arr)
1657                goto err;
1658
1659        for (i = 0; i < wrm->num_q; i++) {
1660                wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
1661                if (!wrm->q_arr[i]) {
1662                        while (--i >= 0)
1663                                kfree(wrm->q_arr[i]);
1664                        goto err_free_arr;
1665                }
1666        }
1667        wrm->free_qidx  = 0;
1668
1669        return 0;
1670
1671err_free_arr:
1672        kfree(wrm->q_arr);
1673err:
1674        return -ENOMEM;
1675}
1676
1677/*
1678 * csio_wrm_exit - Initialize Work request module.
1679 * @wrm: WR module
1680 * @hw: HW module
1681 *
1682 * Uninitialize WR module. Free q_arr and pointers in it.
1683 * We have the additional job of freeing the DMA memory associated
1684 * with the queues.
1685 */
1686void
1687csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
1688{
1689        int i;
1690        uint32_t j;
1691        struct csio_q *q;
1692        struct csio_dma_buf *buf;
1693
1694        for (i = 0; i < wrm->num_q; i++) {
1695                q = wrm->q_arr[i];
1696
1697                if (wrm->free_qidx && (i < wrm->free_qidx)) {
1698                        if (q->type == CSIO_FREELIST) {
1699                                if (!q->un.fl.bufs)
1700                                        continue;
1701                                for (j = 0; j < q->credits; j++) {
1702                                        buf = &q->un.fl.bufs[j];
1703                                        if (!buf->vaddr)
1704                                                continue;
1705                                        dma_free_coherent(&hw->pdev->dev,
1706                                                        buf->len, buf->vaddr,
1707                                                        buf->paddr);
1708                                }
1709                                kfree(q->un.fl.bufs);
1710                        }
1711                        dma_free_coherent(&hw->pdev->dev, q->size,
1712                                        q->vstart, q->pstart);
1713                }
1714                kfree(q);
1715        }
1716
1717        hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
1718
1719        kfree(wrm->q_arr);
1720}
1721