linux/drivers/scsi/esas2r/esas2r_ioctl.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
   3 *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
   4 *
   5 *  Copyright (c) 2001-2013 ATTO Technology, Inc.
   6 *  (mailto:linuxdrivers@attotech.com)
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version 2
  11 * of the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * NO WARRANTY
  19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
  20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
  21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
  22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
  23 * solely responsible for determining the appropriateness of using and
  24 * distributing the Program and assumes all risks associated with its
  25 * exercise of rights under this Agreement, including but not limited to
  26 * the risks and costs of program errors, damage to or loss of data,
  27 * programs or equipment, and unavailability or interruption of operations.
  28 *
  29 * DISCLAIMER OF LIABILITY
  30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
  31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
  33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
  36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
  37 *
  38 * You should have received a copy of the GNU General Public License
  39 * along with this program; if not, write to the Free Software
  40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  41 * USA.
  42 */
  43
  44#include "esas2r.h"
  45
  46/*
  47 * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
  48 * allocate a DMA-able memory area to communicate with the firmware.  In
  49 * order to prevent continually allocating and freeing consistent memory,
  50 * we will allocate a global buffer the first time we need it and re-use
  51 * it for subsequent ioctl calls that require it.
  52 */
  53
  54u8 *esas2r_buffered_ioctl;
  55dma_addr_t esas2r_buffered_ioctl_addr;
  56u32 esas2r_buffered_ioctl_size;
  57struct pci_dev *esas2r_buffered_ioctl_pcid;
  58
  59static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
  60typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
  61                                       struct esas2r_request *,
  62                                       struct esas2r_sg_context *,
  63                                       void *);
  64typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
  65                                             struct esas2r_request *, void *);
  66
  67struct esas2r_buffered_ioctl {
  68        struct esas2r_adapter *a;
  69        void *ioctl;
  70        u32 length;
  71        u32 control_code;
  72        u32 offset;
  73        BUFFERED_IOCTL_CALLBACK
  74                callback;
  75        void *context;
  76        BUFFERED_IOCTL_DONE_CALLBACK
  77                done_callback;
  78        void *done_context;
  79
  80};
  81
  82static void complete_fm_api_req(struct esas2r_adapter *a,
  83                                struct esas2r_request *rq)
  84{
  85        a->fm_api_command_done = 1;
  86        wake_up_interruptible(&a->fm_api_waiter);
  87}
  88
  89/* Callbacks for building scatter/gather lists for FM API requests */
  90static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
  91{
  92        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
  93        int offset = sgc->cur_offset - a->save_offset;
  94
  95        (*addr) = a->firmware.phys + offset;
  96        return a->firmware.orig_len - offset;
  97}
  98
  99static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
 100{
 101        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
 102        int offset = sgc->cur_offset - a->save_offset;
 103
 104        (*addr) = a->firmware.header_buff_phys + offset;
 105        return sizeof(struct esas2r_flash_img) - offset;
 106}
 107
 108/* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
 109static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
 110{
 111        struct esas2r_request *rq;
 112
 113        if (mutex_lock_interruptible(&a->fm_api_mutex)) {
 114                fi->status = FI_STAT_BUSY;
 115                return;
 116        }
 117
 118        rq = esas2r_alloc_request(a);
 119        if (rq == NULL) {
 120                fi->status = FI_STAT_BUSY;
 121                goto free_sem;
 122        }
 123
 124        if (fi == &a->firmware.header) {
 125                a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
 126                                                             (size_t)sizeof(
 127                                                                     struct
 128                                                                     esas2r_flash_img),
 129                                                             (dma_addr_t *)&a->
 130                                                             firmware.
 131                                                             header_buff_phys,
 132                                                             GFP_KERNEL);
 133
 134                if (a->firmware.header_buff == NULL) {
 135                        esas2r_debug("failed to allocate header buffer!");
 136                        fi->status = FI_STAT_BUSY;
 137                        goto free_req;
 138                }
 139
 140                memcpy(a->firmware.header_buff, fi,
 141                       sizeof(struct esas2r_flash_img));
 142                a->save_offset = a->firmware.header_buff;
 143                a->fm_api_sgc.get_phys_addr =
 144                        (PGETPHYSADDR)get_physaddr_fm_api_header;
 145        } else {
 146                a->save_offset = (u8 *)fi;
 147                a->fm_api_sgc.get_phys_addr =
 148                        (PGETPHYSADDR)get_physaddr_fm_api;
 149        }
 150
 151        rq->comp_cb = complete_fm_api_req;
 152        a->fm_api_command_done = 0;
 153        a->fm_api_sgc.cur_offset = a->save_offset;
 154
 155        if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
 156                           &a->fm_api_sgc))
 157                goto all_done;
 158
 159        /* Now wait around for it to complete. */
 160        while (!a->fm_api_command_done)
 161                wait_event_interruptible(a->fm_api_waiter,
 162                                         a->fm_api_command_done);
 163all_done:
 164        if (fi == &a->firmware.header) {
 165                memcpy(fi, a->firmware.header_buff,
 166                       sizeof(struct esas2r_flash_img));
 167
 168                dma_free_coherent(&a->pcid->dev,
 169                                  (size_t)sizeof(struct esas2r_flash_img),
 170                                  a->firmware.header_buff,
 171                                  (dma_addr_t)a->firmware.header_buff_phys);
 172        }
 173free_req:
 174        esas2r_free_request(a, (struct esas2r_request *)rq);
 175free_sem:
 176        mutex_unlock(&a->fm_api_mutex);
 177        return;
 178
 179}
 180
 181static void complete_nvr_req(struct esas2r_adapter *a,
 182                             struct esas2r_request *rq)
 183{
 184        a->nvram_command_done = 1;
 185        wake_up_interruptible(&a->nvram_waiter);
 186}
 187
 188/* Callback for building scatter/gather lists for buffered ioctls */
 189static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
 190                                       u64 *addr)
 191{
 192        int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
 193
 194        (*addr) = esas2r_buffered_ioctl_addr + offset;
 195        return esas2r_buffered_ioctl_size - offset;
 196}
 197
 198static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
 199                                        struct esas2r_request *rq)
 200{
 201        a->buffered_ioctl_done = 1;
 202        wake_up_interruptible(&a->buffered_ioctl_waiter);
 203}
 204
 205static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
 206{
 207        struct esas2r_adapter *a = bi->a;
 208        struct esas2r_request *rq;
 209        struct esas2r_sg_context sgc;
 210        u8 result = IOCTL_SUCCESS;
 211
 212        if (down_interruptible(&buffered_ioctl_semaphore))
 213                return IOCTL_OUT_OF_RESOURCES;
 214
 215        /* allocate a buffer or use the existing buffer. */
 216        if (esas2r_buffered_ioctl) {
 217                if (esas2r_buffered_ioctl_size < bi->length) {
 218                        /* free the too-small buffer and get a new one */
 219                        dma_free_coherent(&a->pcid->dev,
 220                                          (size_t)esas2r_buffered_ioctl_size,
 221                                          esas2r_buffered_ioctl,
 222                                          esas2r_buffered_ioctl_addr);
 223
 224                        goto allocate_buffer;
 225                }
 226        } else {
 227allocate_buffer:
 228                esas2r_buffered_ioctl_size = bi->length;
 229                esas2r_buffered_ioctl_pcid = a->pcid;
 230                esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
 231                                                           (size_t)
 232                                                           esas2r_buffered_ioctl_size,
 233                                                           &
 234                                                           esas2r_buffered_ioctl_addr,
 235                                                           GFP_KERNEL);
 236        }
 237
 238        if (!esas2r_buffered_ioctl) {
 239                esas2r_log(ESAS2R_LOG_CRIT,
 240                           "could not allocate %d bytes of consistent memory "
 241                           "for a buffered ioctl!",
 242                           bi->length);
 243
 244                esas2r_debug("buffered ioctl alloc failure");
 245                result = IOCTL_OUT_OF_RESOURCES;
 246                goto exit_cleanly;
 247        }
 248
 249        memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
 250
 251        rq = esas2r_alloc_request(a);
 252        if (rq == NULL) {
 253                esas2r_log(ESAS2R_LOG_CRIT,
 254                           "could not allocate an internal request");
 255
 256                result = IOCTL_OUT_OF_RESOURCES;
 257                esas2r_debug("buffered ioctl - no requests");
 258                goto exit_cleanly;
 259        }
 260
 261        a->buffered_ioctl_done = 0;
 262        rq->comp_cb = complete_buffered_ioctl_req;
 263        sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
 264        sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
 265        sgc.length = esas2r_buffered_ioctl_size;
 266
 267        if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
 268                /* completed immediately, no need to wait */
 269                a->buffered_ioctl_done = 0;
 270                goto free_andexit_cleanly;
 271        }
 272
 273        /* now wait around for it to complete. */
 274        while (!a->buffered_ioctl_done)
 275                wait_event_interruptible(a->buffered_ioctl_waiter,
 276                                         a->buffered_ioctl_done);
 277
 278free_andexit_cleanly:
 279        if (result == IOCTL_SUCCESS && bi->done_callback)
 280                (*bi->done_callback)(a, rq, bi->done_context);
 281
 282        esas2r_free_request(a, rq);
 283
 284exit_cleanly:
 285        if (result == IOCTL_SUCCESS)
 286                memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
 287
 288        up(&buffered_ioctl_semaphore);
 289        return result;
 290}
 291
 292/* SMP ioctl support */
 293static int smp_ioctl_callback(struct esas2r_adapter *a,
 294                              struct esas2r_request *rq,
 295                              struct esas2r_sg_context *sgc, void *context)
 296{
 297        struct atto_ioctl_smp *si =
 298                (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
 299
 300        esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 301        esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
 302
 303        if (!esas2r_build_sg_list(a, rq, sgc)) {
 304                si->status = ATTO_STS_OUT_OF_RSRC;
 305                return false;
 306        }
 307
 308        esas2r_start_request(a, rq);
 309        return true;
 310}
 311
 312static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
 313{
 314        struct esas2r_buffered_ioctl bi;
 315
 316        memset(&bi, 0, sizeof(bi));
 317
 318        bi.a = a;
 319        bi.ioctl = si;
 320        bi.length = sizeof(struct atto_ioctl_smp)
 321                    + le32_to_cpu(si->req_length)
 322                    + le32_to_cpu(si->rsp_length);
 323        bi.offset = 0;
 324        bi.callback = smp_ioctl_callback;
 325        return handle_buffered_ioctl(&bi);
 326}
 327
 328
 329/* CSMI ioctl support */
 330static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
 331                                             struct esas2r_request *rq)
 332{
 333        rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
 334        rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
 335
 336        /* Now call the original completion callback. */
 337        (*rq->aux_req_cb)(a, rq);
 338}
 339
 340/* Tunnel a CSMI IOCTL to the back end driver for processing. */
 341static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
 342                              union atto_ioctl_csmi *ci,
 343                              struct esas2r_request *rq,
 344                              struct esas2r_sg_context *sgc,
 345                              u32 ctrl_code,
 346                              u16 target_id)
 347{
 348        struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
 349
 350        if (test_bit(AF_DEGRADED_MODE, &a->flags))
 351                return false;
 352
 353        esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 354        esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
 355        ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
 356        ioctl->csmi.target_id = cpu_to_le16(target_id);
 357        ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
 358
 359        /*
 360         * Always usurp the completion callback since the interrupt callback
 361         * mechanism may be used.
 362         */
 363        rq->aux_req_cx = ci;
 364        rq->aux_req_cb = rq->comp_cb;
 365        rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
 366
 367        if (!esas2r_build_sg_list(a, rq, sgc))
 368                return false;
 369
 370        esas2r_start_request(a, rq);
 371        return true;
 372}
 373
 374static bool check_lun(struct scsi_lun lun)
 375{
 376        bool result;
 377
 378        result = ((lun.scsi_lun[7] == 0) &&
 379                  (lun.scsi_lun[6] == 0) &&
 380                  (lun.scsi_lun[5] == 0) &&
 381                  (lun.scsi_lun[4] == 0) &&
 382                  (lun.scsi_lun[3] == 0) &&
 383                  (lun.scsi_lun[2] == 0) &&
 384/* Byte 1 is intentionally skipped */
 385                  (lun.scsi_lun[0] == 0));
 386
 387        return result;
 388}
 389
 390static int csmi_ioctl_callback(struct esas2r_adapter *a,
 391                               struct esas2r_request *rq,
 392                               struct esas2r_sg_context *sgc, void *context)
 393{
 394        struct atto_csmi *ci = (struct atto_csmi *)context;
 395        union atto_ioctl_csmi *ioctl_csmi =
 396                (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
 397        u8 path = 0;
 398        u8 tid = 0;
 399        u8 lun = 0;
 400        u32 sts = CSMI_STS_SUCCESS;
 401        struct esas2r_target *t;
 402        unsigned long flags;
 403
 404        if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
 405                struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
 406
 407                path = gda->path_id;
 408                tid = gda->target_id;
 409                lun = gda->lun;
 410        } else if (ci->control_code == CSMI_CC_TASK_MGT) {
 411                struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
 412
 413                path = tm->path_id;
 414                tid = tm->target_id;
 415                lun = tm->lun;
 416        }
 417
 418        if (path > 0) {
 419                rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
 420                        CSMI_STS_INV_PARAM);
 421                return false;
 422        }
 423
 424        rq->target_id = tid;
 425        rq->vrq->scsi.flags |= cpu_to_le32(lun);
 426
 427        switch (ci->control_code) {
 428        case CSMI_CC_GET_DRVR_INFO:
 429        {
 430                struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
 431
 432                strcpy(gdi->description, esas2r_get_model_name(a));
 433                gdi->csmi_major_rev = CSMI_MAJOR_REV;
 434                gdi->csmi_minor_rev = CSMI_MINOR_REV;
 435                break;
 436        }
 437
 438        case CSMI_CC_GET_CNTLR_CFG:
 439        {
 440                struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
 441
 442                gcc->base_io_addr = 0;
 443                pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
 444                                      &gcc->base_memaddr_lo);
 445                pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
 446                                      &gcc->base_memaddr_hi);
 447                gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
 448                                          a->pcid->subsystem_vendor);
 449                gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
 450                gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
 451                gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
 452                gcc->pci_addr.bus_num = a->pcid->bus->number;
 453                gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
 454                gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
 455
 456                memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
 457
 458                gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
 459                gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
 460                gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
 461                gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
 462                gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
 463                gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
 464                gcc->bios_build_rev = LOWORD(a->flash_ver);
 465
 466                if (test_bit(AF2_THUNDERLINK, &a->flags2))
 467                        gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
 468                                           | CSMI_CNTLRF_SATA_HBA;
 469                else
 470                        gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
 471                                           | CSMI_CNTLRF_SATA_RAID;
 472
 473                gcc->rrom_major_rev = 0;
 474                gcc->rrom_minor_rev = 0;
 475                gcc->rrom_build_rev = 0;
 476                gcc->rrom_release_rev = 0;
 477                gcc->rrom_biosmajor_rev = 0;
 478                gcc->rrom_biosminor_rev = 0;
 479                gcc->rrom_biosbuild_rev = 0;
 480                gcc->rrom_biosrelease_rev = 0;
 481                break;
 482        }
 483
 484        case CSMI_CC_GET_CNTLR_STS:
 485        {
 486                struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
 487
 488                if (test_bit(AF_DEGRADED_MODE, &a->flags))
 489                        gcs->status = CSMI_CNTLR_STS_FAILED;
 490                else
 491                        gcs->status = CSMI_CNTLR_STS_GOOD;
 492
 493                gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
 494                break;
 495        }
 496
 497        case CSMI_CC_FW_DOWNLOAD:
 498        case CSMI_CC_GET_RAID_INFO:
 499        case CSMI_CC_GET_RAID_CFG:
 500
 501                sts = CSMI_STS_BAD_CTRL_CODE;
 502                break;
 503
 504        case CSMI_CC_SMP_PASSTHRU:
 505        case CSMI_CC_SSP_PASSTHRU:
 506        case CSMI_CC_STP_PASSTHRU:
 507        case CSMI_CC_GET_PHY_INFO:
 508        case CSMI_CC_SET_PHY_INFO:
 509        case CSMI_CC_GET_LINK_ERRORS:
 510        case CSMI_CC_GET_SATA_SIG:
 511        case CSMI_CC_GET_CONN_INFO:
 512        case CSMI_CC_PHY_CTRL:
 513
 514                if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
 515                                       ci->control_code,
 516                                       ESAS2R_TARG_ID_INV)) {
 517                        sts = CSMI_STS_FAILED;
 518                        break;
 519                }
 520
 521                return true;
 522
 523        case CSMI_CC_GET_SCSI_ADDR:
 524        {
 525                struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
 526
 527                struct scsi_lun lun;
 528
 529                memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
 530
 531                if (!check_lun(lun)) {
 532                        sts = CSMI_STS_NO_SCSI_ADDR;
 533                        break;
 534                }
 535
 536                /* make sure the device is present */
 537                spin_lock_irqsave(&a->mem_lock, flags);
 538                t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
 539                spin_unlock_irqrestore(&a->mem_lock, flags);
 540
 541                if (t == NULL) {
 542                        sts = CSMI_STS_NO_SCSI_ADDR;
 543                        break;
 544                }
 545
 546                gsa->host_index = 0xFF;
 547                gsa->lun = gsa->sas_lun[1];
 548                rq->target_id = esas2r_targ_get_id(t, a);
 549                break;
 550        }
 551
 552        case CSMI_CC_GET_DEV_ADDR:
 553        {
 554                struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
 555
 556                /* make sure the target is present */
 557                t = a->targetdb + rq->target_id;
 558
 559                if (t >= a->targetdb_end
 560                    || t->target_state != TS_PRESENT
 561                    || t->sas_addr == 0) {
 562                        sts = CSMI_STS_NO_DEV_ADDR;
 563                        break;
 564                }
 565
 566                /* fill in the result */
 567                *(u64 *)gda->sas_addr = t->sas_addr;
 568                memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
 569                gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
 570                break;
 571        }
 572
 573        case CSMI_CC_TASK_MGT:
 574
 575                /* make sure the target is present */
 576                t = a->targetdb + rq->target_id;
 577
 578                if (t >= a->targetdb_end
 579                    || t->target_state != TS_PRESENT
 580                    || !(t->flags & TF_PASS_THRU)) {
 581                        sts = CSMI_STS_NO_DEV_ADDR;
 582                        break;
 583                }
 584
 585                if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
 586                                       ci->control_code,
 587                                       t->phys_targ_id)) {
 588                        sts = CSMI_STS_FAILED;
 589                        break;
 590                }
 591
 592                return true;
 593
 594        default:
 595
 596                sts = CSMI_STS_BAD_CTRL_CODE;
 597                break;
 598        }
 599
 600        rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
 601
 602        return false;
 603}
 604
 605
 606static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
 607                                     struct esas2r_request *rq, void *context)
 608{
 609        struct atto_csmi *ci = (struct atto_csmi *)context;
 610        union atto_ioctl_csmi *ioctl_csmi =
 611                (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
 612
 613        switch (ci->control_code) {
 614        case CSMI_CC_GET_DRVR_INFO:
 615        {
 616                struct atto_csmi_get_driver_info *gdi =
 617                        &ioctl_csmi->drvr_info;
 618
 619                strcpy(gdi->name, ESAS2R_VERSION_STR);
 620
 621                gdi->major_rev = ESAS2R_MAJOR_REV;
 622                gdi->minor_rev = ESAS2R_MINOR_REV;
 623                gdi->build_rev = 0;
 624                gdi->release_rev = 0;
 625                break;
 626        }
 627
 628        case CSMI_CC_GET_SCSI_ADDR:
 629        {
 630                struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
 631
 632                if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
 633                    CSMI_STS_SUCCESS) {
 634                        gsa->target_id = rq->target_id;
 635                        gsa->path_id = 0;
 636                }
 637
 638                break;
 639        }
 640        }
 641
 642        ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
 643}
 644
 645
 646static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
 647{
 648        struct esas2r_buffered_ioctl bi;
 649
 650        memset(&bi, 0, sizeof(bi));
 651
 652        bi.a = a;
 653        bi.ioctl = &ci->data;
 654        bi.length = sizeof(union atto_ioctl_csmi);
 655        bi.offset = 0;
 656        bi.callback = csmi_ioctl_callback;
 657        bi.context = ci;
 658        bi.done_callback = csmi_ioctl_done_callback;
 659        bi.done_context = ci;
 660
 661        return handle_buffered_ioctl(&bi);
 662}
 663
 664/* ATTO HBA ioctl support */
 665
 666/* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
 667static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
 668                             struct atto_ioctl *hi,
 669                             struct esas2r_request *rq,
 670                             struct esas2r_sg_context *sgc)
 671{
 672        esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
 673
 674        esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
 675
 676        if (!esas2r_build_sg_list(a, rq, sgc)) {
 677                hi->status = ATTO_STS_OUT_OF_RSRC;
 678
 679                return false;
 680        }
 681
 682        esas2r_start_request(a, rq);
 683
 684        return true;
 685}
 686
 687static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
 688                                  struct esas2r_request *rq)
 689{
 690        struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
 691        struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
 692        u8 sts = ATTO_SPT_RS_FAILED;
 693
 694        spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
 695        spt->sense_length = rq->sense_len;
 696        spt->residual_length =
 697                le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
 698
 699        switch (rq->req_stat) {
 700        case RS_SUCCESS:
 701        case RS_SCSI_ERROR:
 702                sts = ATTO_SPT_RS_SUCCESS;
 703                break;
 704        case RS_UNDERRUN:
 705                sts = ATTO_SPT_RS_UNDERRUN;
 706                break;
 707        case RS_OVERRUN:
 708                sts = ATTO_SPT_RS_OVERRUN;
 709                break;
 710        case RS_SEL:
 711        case RS_SEL2:
 712                sts = ATTO_SPT_RS_NO_DEVICE;
 713                break;
 714        case RS_NO_LUN:
 715                sts = ATTO_SPT_RS_NO_LUN;
 716                break;
 717        case RS_TIMEOUT:
 718                sts = ATTO_SPT_RS_TIMEOUT;
 719                break;
 720        case RS_DEGRADED:
 721                sts = ATTO_SPT_RS_DEGRADED;
 722                break;
 723        case RS_BUSY:
 724                sts = ATTO_SPT_RS_BUSY;
 725                break;
 726        case RS_ABORTED:
 727                sts = ATTO_SPT_RS_ABORTED;
 728                break;
 729        case RS_RESET:
 730                sts = ATTO_SPT_RS_BUS_RESET;
 731                break;
 732        }
 733
 734        spt->req_status = sts;
 735
 736        /* Update the target ID to the next one present. */
 737        spt->target_id =
 738                esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
 739
 740        /* Done, call the completion callback. */
 741        (*rq->aux_req_cb)(a, rq);
 742}
 743
 744static int hba_ioctl_callback(struct esas2r_adapter *a,
 745                              struct esas2r_request *rq,
 746                              struct esas2r_sg_context *sgc,
 747                              void *context)
 748{
 749        struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
 750
 751        hi->status = ATTO_STS_SUCCESS;
 752
 753        switch (hi->function) {
 754        case ATTO_FUNC_GET_ADAP_INFO:
 755        {
 756                u8 *class_code = (u8 *)&a->pcid->class;
 757
 758                struct atto_hba_get_adapter_info *gai =
 759                        &hi->data.get_adap_info;
 760
 761                if (hi->flags & HBAF_TUNNEL) {
 762                        hi->status = ATTO_STS_UNSUPPORTED;
 763                        break;
 764                }
 765
 766                if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
 767                        hi->status = ATTO_STS_INV_VERSION;
 768                        hi->version = ATTO_VER_GET_ADAP_INFO0;
 769                        break;
 770                }
 771
 772                memset(gai, 0, sizeof(*gai));
 773
 774                gai->pci.vendor_id = a->pcid->vendor;
 775                gai->pci.device_id = a->pcid->device;
 776                gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
 777                gai->pci.ss_device_id = a->pcid->subsystem_device;
 778                gai->pci.class_code[0] = class_code[0];
 779                gai->pci.class_code[1] = class_code[1];
 780                gai->pci.class_code[2] = class_code[2];
 781                gai->pci.rev_id = a->pcid->revision;
 782                gai->pci.bus_num = a->pcid->bus->number;
 783                gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
 784                gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
 785
 786                if (pci_is_pcie(a->pcid)) {
 787                        u16 stat;
 788                        u32 caps;
 789
 790                        pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
 791                                                  &stat);
 792                        pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
 793                                                   &caps);
 794
 795                        gai->pci.link_speed_curr =
 796                                (u8)(stat & PCI_EXP_LNKSTA_CLS);
 797                        gai->pci.link_speed_max =
 798                                (u8)(caps & PCI_EXP_LNKCAP_SLS);
 799                        gai->pci.link_width_curr =
 800                                (u8)((stat & PCI_EXP_LNKSTA_NLW)
 801                                     >> PCI_EXP_LNKSTA_NLW_SHIFT);
 802                        gai->pci.link_width_max =
 803                                (u8)((caps & PCI_EXP_LNKCAP_MLW)
 804                                     >> 4);
 805                }
 806
 807                gai->pci.msi_vector_cnt = 1;
 808
 809                if (a->pcid->msix_enabled)
 810                        gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
 811                else if (a->pcid->msi_enabled)
 812                        gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
 813                else
 814                        gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
 815
 816                gai->adap_type = ATTO_GAI_AT_ESASRAID2;
 817
 818                if (test_bit(AF2_THUNDERLINK, &a->flags2))
 819                        gai->adap_type = ATTO_GAI_AT_TLSASHBA;
 820
 821                if (test_bit(AF_DEGRADED_MODE, &a->flags))
 822                        gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
 823
 824                gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
 825                                   ATTO_GAI_AF_DEVADDR_SUPP;
 826
 827                if (a->pcid->subsystem_device == ATTO_ESAS_R60F
 828                    || a->pcid->subsystem_device == ATTO_ESAS_R608
 829                    || a->pcid->subsystem_device == ATTO_ESAS_R644
 830                    || a->pcid->subsystem_device == ATTO_TSSC_3808E)
 831                        gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
 832
 833                gai->num_ports = ESAS2R_NUM_PHYS;
 834                gai->num_phys = ESAS2R_NUM_PHYS;
 835
 836                strcpy(gai->firmware_rev, a->fw_rev);
 837                strcpy(gai->flash_rev, a->flash_rev);
 838                strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
 839                strcpy(gai->model_name, esas2r_get_model_name(a));
 840
 841                gai->num_targets = ESAS2R_MAX_TARGETS;
 842
 843                gai->num_busses = 1;
 844                gai->num_targsper_bus = gai->num_targets;
 845                gai->num_lunsper_targ = 256;
 846
 847                if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
 848                    || a->pcid->subsystem_device == ATTO_ESAS_R60F)
 849                        gai->num_connectors = 4;
 850                else
 851                        gai->num_connectors = 2;
 852
 853                gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
 854
 855                gai->num_targets_backend = a->num_targets_backend;
 856
 857                gai->tunnel_flags = a->ioctl_tunnel
 858                                    & (ATTO_GAI_TF_MEM_RW
 859                                       | ATTO_GAI_TF_TRACE
 860                                       | ATTO_GAI_TF_SCSI_PASS_THRU
 861                                       | ATTO_GAI_TF_GET_DEV_ADDR
 862                                       | ATTO_GAI_TF_PHY_CTRL
 863                                       | ATTO_GAI_TF_CONN_CTRL
 864                                       | ATTO_GAI_TF_GET_DEV_INFO);
 865                break;
 866        }
 867
 868        case ATTO_FUNC_GET_ADAP_ADDR:
 869        {
 870                struct atto_hba_get_adapter_address *gaa =
 871                        &hi->data.get_adap_addr;
 872
 873                if (hi->flags & HBAF_TUNNEL) {
 874                        hi->status = ATTO_STS_UNSUPPORTED;
 875                        break;
 876                }
 877
 878                if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
 879                        hi->status = ATTO_STS_INV_VERSION;
 880                        hi->version = ATTO_VER_GET_ADAP_ADDR0;
 881                } else if (gaa->addr_type == ATTO_GAA_AT_PORT
 882                           || gaa->addr_type == ATTO_GAA_AT_NODE) {
 883                        if (gaa->addr_type == ATTO_GAA_AT_PORT
 884                            && gaa->port_id >= ESAS2R_NUM_PHYS) {
 885                                hi->status = ATTO_STS_NOT_APPL;
 886                        } else {
 887                                memcpy((u64 *)gaa->address,
 888                                       &a->nvram->sas_addr[0], sizeof(u64));
 889                                gaa->addr_len = sizeof(u64);
 890                        }
 891                } else {
 892                        hi->status = ATTO_STS_INV_PARAM;
 893                }
 894
 895                break;
 896        }
 897
 898        case ATTO_FUNC_MEM_RW:
 899        {
 900                if (hi->flags & HBAF_TUNNEL) {
 901                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
 902                                return true;
 903
 904                        break;
 905                }
 906
 907                hi->status = ATTO_STS_UNSUPPORTED;
 908
 909                break;
 910        }
 911
 912        case ATTO_FUNC_TRACE:
 913        {
 914                struct atto_hba_trace *trc = &hi->data.trace;
 915
 916                if (hi->flags & HBAF_TUNNEL) {
 917                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
 918                                return true;
 919
 920                        break;
 921                }
 922
 923                if (hi->version > ATTO_VER_TRACE1) {
 924                        hi->status = ATTO_STS_INV_VERSION;
 925                        hi->version = ATTO_VER_TRACE1;
 926                        break;
 927                }
 928
 929                if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
 930                    && hi->version >= ATTO_VER_TRACE1) {
 931                        if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
 932                                u32 len = hi->data_length;
 933                                u32 offset = trc->current_offset;
 934                                u32 total_len = ESAS2R_FWCOREDUMP_SZ;
 935
 936                                /* Size is zero if a core dump isn't present */
 937                                if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
 938                                        total_len = 0;
 939
 940                                if (len > total_len)
 941                                        len = total_len;
 942
 943                                if (offset >= total_len
 944                                    || offset + len > total_len
 945                                    || len == 0) {
 946                                        hi->status = ATTO_STS_INV_PARAM;
 947                                        break;
 948                                }
 949
 950                                memcpy(trc + 1,
 951                                       a->fw_coredump_buff + offset,
 952                                       len);
 953
 954                                hi->data_length = len;
 955                        } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
 956                                memset(a->fw_coredump_buff, 0,
 957                                       ESAS2R_FWCOREDUMP_SZ);
 958
 959                                clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
 960                        } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
 961                                hi->status = ATTO_STS_UNSUPPORTED;
 962                                break;
 963                        }
 964
 965                        /* Always return all the info we can. */
 966                        trc->trace_mask = 0;
 967                        trc->current_offset = 0;
 968                        trc->total_length = ESAS2R_FWCOREDUMP_SZ;
 969
 970                        /* Return zero length buffer if core dump not present */
 971                        if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
 972                                trc->total_length = 0;
 973                } else {
 974                        hi->status = ATTO_STS_UNSUPPORTED;
 975                }
 976
 977                break;
 978        }
 979
 980        case ATTO_FUNC_SCSI_PASS_THRU:
 981        {
 982                struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
 983                struct scsi_lun lun;
 984
 985                memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
 986
 987                if (hi->flags & HBAF_TUNNEL) {
 988                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
 989                                return true;
 990
 991                        break;
 992                }
 993
 994                if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
 995                        hi->status = ATTO_STS_INV_VERSION;
 996                        hi->version = ATTO_VER_SCSI_PASS_THRU0;
 997                        break;
 998                }
 999
1000                if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1001                        hi->status = ATTO_STS_INV_PARAM;
1002                        break;
1003                }
1004
1005                esas2r_sgc_init(sgc, a, rq, NULL);
1006
1007                sgc->length = hi->data_length;
1008                sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1009                                   + sizeof(struct atto_hba_scsi_pass_thru);
1010
1011                /* Finish request initialization */
1012                rq->target_id = (u16)spt->target_id;
1013                rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1014                memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1015                rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1016                rq->sense_len = spt->sense_length;
1017                rq->sense_buf = (u8 *)spt->sense_data;
1018                /* NOTE: we ignore spt->timeout */
1019
1020                /*
1021                 * always usurp the completion callback since the interrupt
1022                 * callback mechanism may be used.
1023                 */
1024
1025                rq->aux_req_cx = hi;
1026                rq->aux_req_cb = rq->comp_cb;
1027                rq->comp_cb = scsi_passthru_comp_cb;
1028
1029                if (spt->flags & ATTO_SPTF_DATA_IN) {
1030                        rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1031                } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1032                        rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1033                } else {
1034                        if (sgc->length) {
1035                                hi->status = ATTO_STS_INV_PARAM;
1036                                break;
1037                        }
1038                }
1039
1040                if (spt->flags & ATTO_SPTF_ORDERED_Q)
1041                        rq->vrq->scsi.flags |=
1042                                cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1043                else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1044                        rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1045
1046
1047                if (!esas2r_build_sg_list(a, rq, sgc)) {
1048                        hi->status = ATTO_STS_OUT_OF_RSRC;
1049                        break;
1050                }
1051
1052                esas2r_start_request(a, rq);
1053
1054                return true;
1055        }
1056
1057        case ATTO_FUNC_GET_DEV_ADDR:
1058        {
1059                struct atto_hba_get_device_address *gda =
1060                        &hi->data.get_dev_addr;
1061                struct esas2r_target *t;
1062
1063                if (hi->flags & HBAF_TUNNEL) {
1064                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
1065                                return true;
1066
1067                        break;
1068                }
1069
1070                if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1071                        hi->status = ATTO_STS_INV_VERSION;
1072                        hi->version = ATTO_VER_GET_DEV_ADDR0;
1073                        break;
1074                }
1075
1076                if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1077                        hi->status = ATTO_STS_INV_PARAM;
1078                        break;
1079                }
1080
1081                t = a->targetdb + (u16)gda->target_id;
1082
1083                if (t->target_state != TS_PRESENT) {
1084                        hi->status = ATTO_STS_FAILED;
1085                } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1086                        if (t->sas_addr == 0) {
1087                                hi->status = ATTO_STS_UNSUPPORTED;
1088                        } else {
1089                                *(u64 *)gda->address = t->sas_addr;
1090
1091                                gda->addr_len = sizeof(u64);
1092                        }
1093                } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1094                        hi->status = ATTO_STS_NOT_APPL;
1095                } else {
1096                        hi->status = ATTO_STS_INV_PARAM;
1097                }
1098
1099                /* update the target ID to the next one present. */
1100
1101                gda->target_id =
1102                        esas2r_targ_db_find_next_present(a,
1103                                                         (u16)gda->target_id);
1104                break;
1105        }
1106
1107        case ATTO_FUNC_PHY_CTRL:
1108        case ATTO_FUNC_CONN_CTRL:
1109        {
1110                if (hba_ioctl_tunnel(a, hi, rq, sgc))
1111                        return true;
1112
1113                break;
1114        }
1115
1116        case ATTO_FUNC_ADAP_CTRL:
1117        {
1118                struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1119
1120                if (hi->flags & HBAF_TUNNEL) {
1121                        hi->status = ATTO_STS_UNSUPPORTED;
1122                        break;
1123                }
1124
1125                if (hi->version > ATTO_VER_ADAP_CTRL0) {
1126                        hi->status = ATTO_STS_INV_VERSION;
1127                        hi->version = ATTO_VER_ADAP_CTRL0;
1128                        break;
1129                }
1130
1131                if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1132                        esas2r_reset_adapter(a);
1133                } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1134                        hi->status = ATTO_STS_UNSUPPORTED;
1135                        break;
1136                }
1137
1138                if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1139                        ac->adap_state = ATTO_AC_AS_RST_SCHED;
1140                else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1141                        ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1142                else if (test_bit(AF_DISC_PENDING, &a->flags))
1143                        ac->adap_state = ATTO_AC_AS_RST_DISC;
1144                else if (test_bit(AF_DISABLED, &a->flags))
1145                        ac->adap_state = ATTO_AC_AS_DISABLED;
1146                else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1147                        ac->adap_state = ATTO_AC_AS_DEGRADED;
1148                else
1149                        ac->adap_state = ATTO_AC_AS_OK;
1150
1151                break;
1152        }
1153
1154        case ATTO_FUNC_GET_DEV_INFO:
1155        {
1156                struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1157                struct esas2r_target *t;
1158
1159                if (hi->flags & HBAF_TUNNEL) {
1160                        if (hba_ioctl_tunnel(a, hi, rq, sgc))
1161                                return true;
1162
1163                        break;
1164                }
1165
1166                if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1167                        hi->status = ATTO_STS_INV_VERSION;
1168                        hi->version = ATTO_VER_GET_DEV_INFO0;
1169                        break;
1170                }
1171
1172                if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1173                        hi->status = ATTO_STS_INV_PARAM;
1174                        break;
1175                }
1176
1177                t = a->targetdb + (u16)gdi->target_id;
1178
1179                /* update the target ID to the next one present. */
1180
1181                gdi->target_id =
1182                        esas2r_targ_db_find_next_present(a,
1183                                                         (u16)gdi->target_id);
1184
1185                if (t->target_state != TS_PRESENT) {
1186                        hi->status = ATTO_STS_FAILED;
1187                        break;
1188                }
1189
1190                hi->status = ATTO_STS_UNSUPPORTED;
1191                break;
1192        }
1193
1194        default:
1195
1196                hi->status = ATTO_STS_INV_FUNC;
1197                break;
1198        }
1199
1200        return false;
1201}
1202
1203static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1204                                    struct esas2r_request *rq, void *context)
1205{
1206        struct atto_ioctl *ioctl_hba =
1207                (struct atto_ioctl *)esas2r_buffered_ioctl;
1208
1209        esas2r_debug("hba_ioctl_done_callback %d", a->index);
1210
1211        if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1212                struct atto_hba_get_adapter_info *gai =
1213                        &ioctl_hba->data.get_adap_info;
1214
1215                esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1216
1217                gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1218                gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1219
1220                strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1221                strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1222
1223                gai->num_busses = 1;
1224                gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1225                gai->num_lunsper_targ = 1;
1226        }
1227}
1228
1229u8 handle_hba_ioctl(struct esas2r_adapter *a,
1230                    struct atto_ioctl *ioctl_hba)
1231{
1232        struct esas2r_buffered_ioctl bi;
1233
1234        memset(&bi, 0, sizeof(bi));
1235
1236        bi.a = a;
1237        bi.ioctl = ioctl_hba;
1238        bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1239        bi.callback = hba_ioctl_callback;
1240        bi.context = NULL;
1241        bi.done_callback = hba_ioctl_done_callback;
1242        bi.done_context = NULL;
1243        bi.offset = 0;
1244
1245        return handle_buffered_ioctl(&bi);
1246}
1247
1248
1249int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1250                        struct esas2r_sas_nvram *data)
1251{
1252        int result = 0;
1253
1254        a->nvram_command_done = 0;
1255        rq->comp_cb = complete_nvr_req;
1256
1257        if (esas2r_nvram_write(a, rq, data)) {
1258                /* now wait around for it to complete. */
1259                while (!a->nvram_command_done)
1260                        wait_event_interruptible(a->nvram_waiter,
1261                                                 a->nvram_command_done);
1262                ;
1263
1264                /* done, check the status. */
1265                if (rq->req_stat == RS_SUCCESS)
1266                        result = 1;
1267        }
1268        return result;
1269}
1270
1271
1272/* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1273int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1274{
1275        struct atto_express_ioctl *ioctl = NULL;
1276        struct esas2r_adapter *a;
1277        struct esas2r_request *rq;
1278        u16 code;
1279        int err;
1280
1281        esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1282
1283        if ((arg == NULL)
1284            || (cmd < EXPRESS_IOCTL_MIN)
1285            || (cmd > EXPRESS_IOCTL_MAX))
1286                return -ENOTSUPP;
1287
1288        ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1289        if (IS_ERR(ioctl)) {
1290                esas2r_log(ESAS2R_LOG_WARN,
1291                           "ioctl_handler access_ok failed for cmd %u, address %p",
1292                           cmd, arg);
1293                return PTR_ERR(ioctl);
1294        }
1295
1296        /* verify the signature */
1297
1298        if (memcmp(ioctl->header.signature,
1299                   EXPRESS_IOCTL_SIGNATURE,
1300                   EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1301                esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1302                kfree(ioctl);
1303
1304                return -ENOTSUPP;
1305        }
1306
1307        /* assume success */
1308
1309        ioctl->header.return_code = IOCTL_SUCCESS;
1310        err = 0;
1311
1312        /*
1313         * handle EXPRESS_IOCTL_GET_CHANNELS
1314         * without paying attention to channel
1315         */
1316
1317        if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1318                int i = 0, k = 0;
1319
1320                ioctl->data.chanlist.num_channels = 0;
1321
1322                while (i < MAX_ADAPTERS) {
1323                        if (esas2r_adapters[i]) {
1324                                ioctl->data.chanlist.num_channels++;
1325                                ioctl->data.chanlist.channel[k] = i;
1326                                k++;
1327                        }
1328                        i++;
1329                }
1330
1331                goto ioctl_done;
1332        }
1333
1334        /* get the channel */
1335
1336        if (ioctl->header.channel == 0xFF) {
1337                a = (struct esas2r_adapter *)hostdata;
1338        } else {
1339                if (ioctl->header.channel >= MAX_ADAPTERS ||
1340                        esas2r_adapters[ioctl->header.channel] == NULL) {
1341                        ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1342                        esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1343                        kfree(ioctl);
1344
1345                        return -ENOTSUPP;
1346                }
1347                a = esas2r_adapters[ioctl->header.channel];
1348        }
1349
1350        switch (cmd) {
1351        case EXPRESS_IOCTL_RW_FIRMWARE:
1352
1353                if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1354                        err = esas2r_write_fw(a,
1355                                              (char *)ioctl->data.fwrw.image,
1356                                              0,
1357                                              sizeof(struct
1358                                                     atto_express_ioctl));
1359
1360                        if (err >= 0) {
1361                                err = esas2r_read_fw(a,
1362                                                     (char *)ioctl->data.fwrw.
1363                                                     image,
1364                                                     0,
1365                                                     sizeof(struct
1366                                                            atto_express_ioctl));
1367                        }
1368                } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1369                        err = esas2r_write_fs(a,
1370                                              (char *)ioctl->data.fwrw.image,
1371                                              0,
1372                                              sizeof(struct
1373                                                     atto_express_ioctl));
1374
1375                        if (err >= 0) {
1376                                err = esas2r_read_fs(a,
1377                                                     (char *)ioctl->data.fwrw.
1378                                                     image,
1379                                                     0,
1380                                                     sizeof(struct
1381                                                            atto_express_ioctl));
1382                        }
1383                } else {
1384                        ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1385                }
1386
1387                break;
1388
1389        case EXPRESS_IOCTL_READ_PARAMS:
1390
1391                memcpy(ioctl->data.prw.data_buffer, a->nvram,
1392                       sizeof(struct esas2r_sas_nvram));
1393                ioctl->data.prw.code = 1;
1394                break;
1395
1396        case EXPRESS_IOCTL_WRITE_PARAMS:
1397
1398                rq = esas2r_alloc_request(a);
1399                if (rq == NULL) {
1400                        kfree(ioctl);
1401                        esas2r_log(ESAS2R_LOG_WARN,
1402                           "could not allocate an internal request");
1403                        return -ENOMEM;
1404                }
1405
1406                code = esas2r_write_params(a, rq,
1407                                           (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1408                ioctl->data.prw.code = code;
1409
1410                esas2r_free_request(a, rq);
1411
1412                break;
1413
1414        case EXPRESS_IOCTL_DEFAULT_PARAMS:
1415
1416                esas2r_nvram_get_defaults(a,
1417                                          (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1418                ioctl->data.prw.code = 1;
1419                break;
1420
1421        case EXPRESS_IOCTL_CHAN_INFO:
1422
1423                ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1424                ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1425                ioctl->data.chaninfo.IRQ = a->pcid->irq;
1426                ioctl->data.chaninfo.device_id = a->pcid->device;
1427                ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1428                ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1429                ioctl->data.chaninfo.revision_id = a->pcid->revision;
1430                ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1431                ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1432                ioctl->data.chaninfo.core_rev = 0;
1433                ioctl->data.chaninfo.host_no = a->host->host_no;
1434                ioctl->data.chaninfo.hbaapi_rev = 0;
1435                break;
1436
1437        case EXPRESS_IOCTL_SMP:
1438                ioctl->header.return_code = handle_smp_ioctl(a,
1439                                                             &ioctl->data.
1440                                                             ioctl_smp);
1441                break;
1442
1443        case EXPRESS_CSMI:
1444                ioctl->header.return_code =
1445                        handle_csmi_ioctl(a, &ioctl->data.csmi);
1446                break;
1447
1448        case EXPRESS_IOCTL_HBA:
1449                ioctl->header.return_code = handle_hba_ioctl(a,
1450                                                             &ioctl->data.
1451                                                             ioctl_hba);
1452                break;
1453
1454        case EXPRESS_IOCTL_VDA:
1455                err = esas2r_write_vda(a,
1456                                       (char *)&ioctl->data.ioctl_vda,
1457                                       0,
1458                                       sizeof(struct atto_ioctl_vda) +
1459                                       ioctl->data.ioctl_vda.data_length);
1460
1461                if (err >= 0) {
1462                        err = esas2r_read_vda(a,
1463                                              (char *)&ioctl->data.ioctl_vda,
1464                                              0,
1465                                              sizeof(struct atto_ioctl_vda) +
1466                                              ioctl->data.ioctl_vda.data_length);
1467                }
1468
1469
1470
1471
1472                break;
1473
1474        case EXPRESS_IOCTL_GET_MOD_INFO:
1475
1476                ioctl->data.modinfo.adapter = a;
1477                ioctl->data.modinfo.pci_dev = a->pcid;
1478                ioctl->data.modinfo.scsi_host = a->host;
1479                ioctl->data.modinfo.host_no = a->host->host_no;
1480
1481                break;
1482
1483        default:
1484                esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1485                ioctl->header.return_code = IOCTL_ERR_INVCMD;
1486        }
1487
1488ioctl_done:
1489
1490        if (err < 0) {
1491                esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1492                           cmd);
1493
1494                switch (err) {
1495                case -ENOMEM:
1496                case -EBUSY:
1497                        ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1498                        break;
1499
1500                case -ENOSYS:
1501                case -EINVAL:
1502                        ioctl->header.return_code = IOCTL_INVALID_PARAM;
1503                        break;
1504
1505                default:
1506                        ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1507                        break;
1508                }
1509
1510        }
1511
1512        /* Always copy the buffer back, if only to pick up the status */
1513        err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1514        if (err != 0) {
1515                esas2r_log(ESAS2R_LOG_WARN,
1516                           "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1517                           err, cmd);
1518                kfree(ioctl);
1519
1520                return -EFAULT;
1521        }
1522
1523        kfree(ioctl);
1524
1525        return 0;
1526}
1527
1528int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1529{
1530        return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1531}
1532
1533static void free_fw_buffers(struct esas2r_adapter *a)
1534{
1535        if (a->firmware.data) {
1536                dma_free_coherent(&a->pcid->dev,
1537                                  (size_t)a->firmware.orig_len,
1538                                  a->firmware.data,
1539                                  (dma_addr_t)a->firmware.phys);
1540
1541                a->firmware.data = NULL;
1542        }
1543}
1544
1545static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1546{
1547        free_fw_buffers(a);
1548
1549        a->firmware.orig_len = length;
1550
1551        a->firmware.data = dma_alloc_coherent(&a->pcid->dev,
1552                                              (size_t)length,
1553                                              (dma_addr_t *)&a->firmware.phys,
1554                                              GFP_KERNEL);
1555
1556        if (!a->firmware.data) {
1557                esas2r_debug("buffer alloc failed!");
1558                return 0;
1559        }
1560
1561        return 1;
1562}
1563
1564/* Handle a call to read firmware. */
1565int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1566{
1567        esas2r_trace_enter();
1568        /* if the cached header is a status, simply copy it over and return. */
1569        if (a->firmware.state == FW_STATUS_ST) {
1570                int size = min_t(int, count, sizeof(a->firmware.header));
1571                esas2r_trace_exit();
1572                memcpy(buf, &a->firmware.header, size);
1573                esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1574                return size;
1575        }
1576
1577        /*
1578         * if the cached header is a command, do it if at
1579         * offset 0, otherwise copy the pieces.
1580         */
1581
1582        if (a->firmware.state == FW_COMMAND_ST) {
1583                u32 length = a->firmware.header.length;
1584                esas2r_trace_exit();
1585
1586                esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1587                             length,
1588                             off);
1589
1590                if (off == 0) {
1591                        if (a->firmware.header.action == FI_ACT_UP) {
1592                                if (!allocate_fw_buffers(a, length))
1593                                        return -ENOMEM;
1594
1595
1596                                /* copy header over */
1597
1598                                memcpy(a->firmware.data,
1599                                       &a->firmware.header,
1600                                       sizeof(a->firmware.header));
1601
1602                                do_fm_api(a,
1603                                          (struct esas2r_flash_img *)a->firmware.data);
1604                        } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1605                                int size =
1606                                        min((int)count,
1607                                            (int)sizeof(a->firmware.header));
1608                                do_fm_api(a, &a->firmware.header);
1609                                memcpy(buf, &a->firmware.header, size);
1610                                esas2r_debug("FI_ACT_UPSZ size %d", size);
1611                                return size;
1612                        } else {
1613                                esas2r_debug("invalid action %d",
1614                                             a->firmware.header.action);
1615                                return -ENOSYS;
1616                        }
1617                }
1618
1619                if (count + off > length)
1620                        count = length - off;
1621
1622                if (count < 0)
1623                        return 0;
1624
1625                if (!a->firmware.data) {
1626                        esas2r_debug(
1627                                "read: nonzero offset but no buffer available!");
1628                        return -ENOMEM;
1629                }
1630
1631                esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1632                             count,
1633                             length);
1634
1635                memcpy(buf, &a->firmware.data[off], count);
1636
1637                /* when done, release the buffer */
1638
1639                if (length <= off + count) {
1640                        esas2r_debug("esas2r_read_fw: freeing buffer!");
1641
1642                        free_fw_buffers(a);
1643                }
1644
1645                return count;
1646        }
1647
1648        esas2r_trace_exit();
1649        esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1650                     a->firmware.state);
1651
1652        return -EINVAL;
1653}
1654
1655/* Handle a call to write firmware. */
1656int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1657                    int count)
1658{
1659        u32 length;
1660
1661        if (off == 0) {
1662                struct esas2r_flash_img *header =
1663                        (struct esas2r_flash_img *)buf;
1664
1665                /* assume version 0 flash image */
1666
1667                int min_size = sizeof(struct esas2r_flash_img_v0);
1668
1669                a->firmware.state = FW_INVALID_ST;
1670
1671                /* validate the version field first */
1672
1673                if (count < 4
1674                    ||  header->fi_version > FI_VERSION_1) {
1675                        esas2r_debug(
1676                                "esas2r_write_fw: short header or invalid version");
1677                        return -EINVAL;
1678                }
1679
1680                /* See if its a version 1 flash image */
1681
1682                if (header->fi_version == FI_VERSION_1)
1683                        min_size = sizeof(struct esas2r_flash_img);
1684
1685                /* If this is the start, the header must be full and valid. */
1686                if (count < min_size) {
1687                        esas2r_debug("esas2r_write_fw: short header, aborting");
1688                        return -EINVAL;
1689                }
1690
1691                /* Make sure the size is reasonable. */
1692                length = header->length;
1693
1694                if (length > 1024 * 1024) {
1695                        esas2r_debug(
1696                                "esas2r_write_fw: hosed, length %d  fi_version %d",
1697                                length, header->fi_version);
1698                        return -EINVAL;
1699                }
1700
1701                /*
1702                 * If this is a write command, allocate memory because
1703                 * we have to cache everything. otherwise, just cache
1704                 * the header, because the read op will do the command.
1705                 */
1706
1707                if (header->action == FI_ACT_DOWN) {
1708                        if (!allocate_fw_buffers(a, length))
1709                                return -ENOMEM;
1710
1711                        /*
1712                         * Store the command, so there is context on subsequent
1713                         * calls.
1714                         */
1715                        memcpy(&a->firmware.header,
1716                               buf,
1717                               sizeof(*header));
1718                } else if (header->action == FI_ACT_UP
1719                           ||  header->action == FI_ACT_UPSZ) {
1720                        /* Save the command, result will be picked up on read */
1721                        memcpy(&a->firmware.header,
1722                               buf,
1723                               sizeof(*header));
1724
1725                        a->firmware.state = FW_COMMAND_ST;
1726
1727                        esas2r_debug(
1728                                "esas2r_write_fw: COMMAND, count %d, action %d ",
1729                                count, header->action);
1730
1731                        /*
1732                         * Pretend we took the whole buffer,
1733                         * so we don't get bothered again.
1734                         */
1735
1736                        return count;
1737                } else {
1738                        esas2r_debug("esas2r_write_fw: invalid action %d ",
1739                                     a->firmware.header.action);
1740                        return -ENOSYS;
1741                }
1742        } else {
1743                length = a->firmware.header.length;
1744        }
1745
1746        /*
1747         * We only get here on a download command, regardless of offset.
1748         * the chunks written by the system need to be cached, and when
1749         * the final one arrives, issue the fmapi command.
1750         */
1751
1752        if (off + count > length)
1753                count = length - off;
1754
1755        if (count > 0) {
1756                esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1757                             count,
1758                             length);
1759
1760                /*
1761                 * On a full upload, the system tries sending the whole buffer.
1762                 * there's nothing to do with it, so just drop it here, before
1763                 * trying to copy over into unallocated memory!
1764                 */
1765                if (a->firmware.header.action == FI_ACT_UP)
1766                        return count;
1767
1768                if (!a->firmware.data) {
1769                        esas2r_debug(
1770                                "write: nonzero offset but no buffer available!");
1771                        return -ENOMEM;
1772                }
1773
1774                memcpy(&a->firmware.data[off], buf, count);
1775
1776                if (length == off + count) {
1777                        do_fm_api(a,
1778                                  (struct esas2r_flash_img *)a->firmware.data);
1779
1780                        /*
1781                         * Now copy the header result to be picked up by the
1782                         * next read
1783                         */
1784                        memcpy(&a->firmware.header,
1785                               a->firmware.data,
1786                               sizeof(a->firmware.header));
1787
1788                        a->firmware.state = FW_STATUS_ST;
1789
1790                        esas2r_debug("write completed");
1791
1792                        /*
1793                         * Since the system has the data buffered, the only way
1794                         * this can leak is if a root user writes a program
1795                         * that writes a shorter buffer than it claims, and the
1796                         * copyin fails.
1797                         */
1798                        free_fw_buffers(a);
1799                }
1800        }
1801
1802        return count;
1803}
1804
1805/* Callback for the completion of a VDA request. */
1806static void vda_complete_req(struct esas2r_adapter *a,
1807                             struct esas2r_request *rq)
1808{
1809        a->vda_command_done = 1;
1810        wake_up_interruptible(&a->vda_waiter);
1811}
1812
1813/* Scatter/gather callback for VDA requests */
1814static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1815{
1816        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1817        int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1818
1819        (*addr) = a->ppvda_buffer + offset;
1820        return VDA_MAX_BUFFER_SIZE - offset;
1821}
1822
1823/* Handle a call to read a VDA command. */
1824int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1825{
1826        if (!a->vda_buffer)
1827                return -ENOMEM;
1828
1829        if (off == 0) {
1830                struct esas2r_request *rq;
1831                struct atto_ioctl_vda *vi =
1832                        (struct atto_ioctl_vda *)a->vda_buffer;
1833                struct esas2r_sg_context sgc;
1834                bool wait_for_completion;
1835
1836                /*
1837                 * Presumeably, someone has already written to the vda_buffer,
1838                 * and now they are reading the node the response, so now we
1839                 * will actually issue the request to the chip and reply.
1840                 */
1841
1842                /* allocate a request */
1843                rq = esas2r_alloc_request(a);
1844                if (rq == NULL) {
1845                        esas2r_debug("esas2r_read_vda: out of requests");
1846                        return -EBUSY;
1847                }
1848
1849                rq->comp_cb = vda_complete_req;
1850
1851                sgc.first_req = rq;
1852                sgc.adapter = a;
1853                sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1854                sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1855
1856                a->vda_command_done = 0;
1857
1858                wait_for_completion =
1859                        esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1860
1861                if (wait_for_completion) {
1862                        /* now wait around for it to complete. */
1863
1864                        while (!a->vda_command_done)
1865                                wait_event_interruptible(a->vda_waiter,
1866                                                         a->vda_command_done);
1867                }
1868
1869                esas2r_free_request(a, (struct esas2r_request *)rq);
1870        }
1871
1872        if (off > VDA_MAX_BUFFER_SIZE)
1873                return 0;
1874
1875        if (count + off > VDA_MAX_BUFFER_SIZE)
1876                count = VDA_MAX_BUFFER_SIZE - off;
1877
1878        if (count < 0)
1879                return 0;
1880
1881        memcpy(buf, a->vda_buffer + off, count);
1882
1883        return count;
1884}
1885
1886/* Handle a call to write a VDA command. */
1887int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1888                     int count)
1889{
1890        /*
1891         * allocate memory for it, if not already done.  once allocated,
1892         * we will keep it around until the driver is unloaded.
1893         */
1894
1895        if (!a->vda_buffer) {
1896                dma_addr_t dma_addr;
1897                a->vda_buffer = dma_alloc_coherent(&a->pcid->dev,
1898                                                   (size_t)
1899                                                   VDA_MAX_BUFFER_SIZE,
1900                                                   &dma_addr,
1901                                                   GFP_KERNEL);
1902
1903                a->ppvda_buffer = dma_addr;
1904        }
1905
1906        if (!a->vda_buffer)
1907                return -ENOMEM;
1908
1909        if (off > VDA_MAX_BUFFER_SIZE)
1910                return 0;
1911
1912        if (count + off > VDA_MAX_BUFFER_SIZE)
1913                count = VDA_MAX_BUFFER_SIZE - off;
1914
1915        if (count < 1)
1916                return 0;
1917
1918        memcpy(a->vda_buffer + off, buf, count);
1919
1920        return count;
1921}
1922
1923/* Callback for the completion of an FS_API request.*/
1924static void fs_api_complete_req(struct esas2r_adapter *a,
1925                                struct esas2r_request *rq)
1926{
1927        a->fs_api_command_done = 1;
1928
1929        wake_up_interruptible(&a->fs_api_waiter);
1930}
1931
1932/* Scatter/gather callback for VDA requests */
1933static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1934{
1935        struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1936        struct esas2r_ioctl_fs *fs =
1937                (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1938        u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1939
1940        (*addr) = a->ppfs_api_buffer + offset;
1941
1942        return a->fs_api_buffer_size - offset;
1943}
1944
1945/* Handle a call to read firmware via FS_API. */
1946int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1947{
1948        if (!a->fs_api_buffer)
1949                return -ENOMEM;
1950
1951        if (off == 0) {
1952                struct esas2r_request *rq;
1953                struct esas2r_sg_context sgc;
1954                struct esas2r_ioctl_fs *fs =
1955                        (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1956
1957                /* If another flash request is already in progress, return. */
1958                if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1959busy:
1960                        fs->status = ATTO_STS_OUT_OF_RSRC;
1961                        return -EBUSY;
1962                }
1963
1964                /*
1965                 * Presumeably, someone has already written to the
1966                 * fs_api_buffer, and now they are reading the node the
1967                 * response, so now we will actually issue the request to the
1968                 * chip and reply. Allocate a request
1969                 */
1970
1971                rq = esas2r_alloc_request(a);
1972                if (rq == NULL) {
1973                        esas2r_debug("esas2r_read_fs: out of requests");
1974                        mutex_unlock(&a->fs_api_mutex);
1975                        goto busy;
1976                }
1977
1978                rq->comp_cb = fs_api_complete_req;
1979
1980                /* Set up the SGCONTEXT for to build the s/g table */
1981
1982                sgc.cur_offset = fs->data;
1983                sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1984
1985                a->fs_api_command_done = 0;
1986
1987                if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1988                        if (fs->status == ATTO_STS_OUT_OF_RSRC)
1989                                count = -EBUSY;
1990
1991                        goto dont_wait;
1992                }
1993
1994                /* Now wait around for it to complete. */
1995
1996                while (!a->fs_api_command_done)
1997                        wait_event_interruptible(a->fs_api_waiter,
1998                                                 a->fs_api_command_done);
1999                ;
2000dont_wait:
2001                /* Free the request and keep going */
2002                mutex_unlock(&a->fs_api_mutex);
2003                esas2r_free_request(a, (struct esas2r_request *)rq);
2004
2005                /* Pick up possible error code from above */
2006                if (count < 0)
2007                        return count;
2008        }
2009
2010        if (off > a->fs_api_buffer_size)
2011                return 0;
2012
2013        if (count + off > a->fs_api_buffer_size)
2014                count = a->fs_api_buffer_size - off;
2015
2016        if (count < 0)
2017                return 0;
2018
2019        memcpy(buf, a->fs_api_buffer + off, count);
2020
2021        return count;
2022}
2023
2024/* Handle a call to write firmware via FS_API. */
2025int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2026                    int count)
2027{
2028        if (off == 0) {
2029                struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2030                u32 length = fs->command.length + offsetof(
2031                        struct esas2r_ioctl_fs,
2032                        data);
2033
2034                /*
2035                 * Special case, for BEGIN commands, the length field
2036                 * is lying to us, so just get enough for the header.
2037                 */
2038
2039                if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2040                        length = offsetof(struct esas2r_ioctl_fs, data);
2041
2042                /*
2043                 * Beginning a command.  We assume we'll get at least
2044                 * enough in the first write so we can look at the
2045                 * header and see how much we need to alloc.
2046                 */
2047
2048                if (count < offsetof(struct esas2r_ioctl_fs, data))
2049                        return -EINVAL;
2050
2051                /* Allocate a buffer or use the existing buffer. */
2052                if (a->fs_api_buffer) {
2053                        if (a->fs_api_buffer_size < length) {
2054                                /* Free too-small buffer and get a new one */
2055                                dma_free_coherent(&a->pcid->dev,
2056                                                  (size_t)a->fs_api_buffer_size,
2057                                                  a->fs_api_buffer,
2058                                                  (dma_addr_t)a->ppfs_api_buffer);
2059
2060                                goto re_allocate_buffer;
2061                        }
2062                } else {
2063re_allocate_buffer:
2064                        a->fs_api_buffer_size = length;
2065
2066                        a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev,
2067                                                              (size_t)a->fs_api_buffer_size,
2068                                                              (dma_addr_t *)&a->ppfs_api_buffer,
2069                                                              GFP_KERNEL);
2070                }
2071        }
2072
2073        if (!a->fs_api_buffer)
2074                return -ENOMEM;
2075
2076        if (off > a->fs_api_buffer_size)
2077                return 0;
2078
2079        if (count + off > a->fs_api_buffer_size)
2080                count = a->fs_api_buffer_size - off;
2081
2082        if (count < 1)
2083                return 0;
2084
2085        memcpy(a->fs_api_buffer + off, buf, count);
2086
2087        return count;
2088}
2089