linux/drivers/scsi/isci/host.c
<<
>>
Prefs
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55#include <linux/circ_buf.h>
  56#include <linux/device.h>
  57#include <scsi/sas.h>
  58#include "host.h"
  59#include "isci.h"
  60#include "port.h"
  61#include "probe_roms.h"
  62#include "remote_device.h"
  63#include "request.h"
  64#include "scu_completion_codes.h"
  65#include "scu_event_codes.h"
  66#include "registers.h"
  67#include "scu_remote_node_context.h"
  68#include "scu_task_context.h"
  69
  70#define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
  71
  72#define smu_max_ports(dcc_value) \
  73        (\
  74                (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  75                 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  76        )
  77
  78#define smu_max_task_contexts(dcc_value)        \
  79        (\
  80                (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  81                 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  82        )
  83
  84#define smu_max_rncs(dcc_value) \
  85        (\
  86                (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  87                 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  88        )
  89
  90#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
  91
  92/*
  93 * The number of milliseconds to wait while a given phy is consuming power
  94 * before allowing another set of phys to consume power. Ultimately, this will
  95 * be specified by OEM parameter.
  96 */
  97#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
  98
  99/*
 100 * NORMALIZE_PUT_POINTER() -
 101 *
 102 * This macro will normalize the completion queue put pointer so its value can
 103 * be used as an array inde
 104 */
 105#define NORMALIZE_PUT_POINTER(x) \
 106        ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
 107
 108
 109/*
 110 * NORMALIZE_EVENT_POINTER() -
 111 *
 112 * This macro will normalize the completion queue event entry so its value can
 113 * be used as an index.
 114 */
 115#define NORMALIZE_EVENT_POINTER(x) \
 116        (\
 117                ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
 118                >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
 119        )
 120
 121/*
 122 * NORMALIZE_GET_POINTER() -
 123 *
 124 * This macro will normalize the completion queue get pointer so its value can
 125 * be used as an index into an array
 126 */
 127#define NORMALIZE_GET_POINTER(x) \
 128        ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
 129
 130/*
 131 * NORMALIZE_GET_POINTER_CYCLE_BIT() -
 132 *
 133 * This macro will normalize the completion queue cycle pointer so it matches
 134 * the completion queue cycle bit
 135 */
 136#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
 137        ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
 138
 139/*
 140 * COMPLETION_QUEUE_CYCLE_BIT() -
 141 *
 142 * This macro will return the cycle bit of the completion queue entry
 143 */
 144#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
 145
 146/* Init the state machine and call the state entry function (if any) */
 147void sci_init_sm(struct sci_base_state_machine *sm,
 148                 const struct sci_base_state *state_table, u32 initial_state)
 149{
 150        sci_state_transition_t handler;
 151
 152        sm->initial_state_id    = initial_state;
 153        sm->previous_state_id   = initial_state;
 154        sm->current_state_id    = initial_state;
 155        sm->state_table         = state_table;
 156
 157        handler = sm->state_table[initial_state].enter_state;
 158        if (handler)
 159                handler(sm);
 160}
 161
 162/* Call the state exit fn, update the current state, call the state entry fn */
 163void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
 164{
 165        sci_state_transition_t handler;
 166
 167        handler = sm->state_table[sm->current_state_id].exit_state;
 168        if (handler)
 169                handler(sm);
 170
 171        sm->previous_state_id = sm->current_state_id;
 172        sm->current_state_id = next_state;
 173
 174        handler = sm->state_table[sm->current_state_id].enter_state;
 175        if (handler)
 176                handler(sm);
 177}
 178
 179static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
 180{
 181        u32 get_value = ihost->completion_queue_get;
 182        u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
 183
 184        if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
 185            COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
 186                return true;
 187
 188        return false;
 189}
 190
 191static bool sci_controller_isr(struct isci_host *ihost)
 192{
 193        if (sci_controller_completion_queue_has_entries(ihost))
 194                return true;
 195
 196        /* we have a spurious interrupt it could be that we have already
 197         * emptied the completion queue from a previous interrupt
 198         * FIXME: really!?
 199         */
 200        writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 201
 202        /* There is a race in the hardware that could cause us not to be
 203         * notified of an interrupt completion if we do not take this
 204         * step.  We will mask then unmask the interrupts so if there is
 205         * another interrupt pending the clearing of the interrupt
 206         * source we get the next interrupt message.
 207         */
 208        spin_lock(&ihost->scic_lock);
 209        if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
 210                writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
 211                writel(0, &ihost->smu_registers->interrupt_mask);
 212        }
 213        spin_unlock(&ihost->scic_lock);
 214
 215        return false;
 216}
 217
 218irqreturn_t isci_msix_isr(int vec, void *data)
 219{
 220        struct isci_host *ihost = data;
 221
 222        if (sci_controller_isr(ihost))
 223                tasklet_schedule(&ihost->completion_tasklet);
 224
 225        return IRQ_HANDLED;
 226}
 227
 228static bool sci_controller_error_isr(struct isci_host *ihost)
 229{
 230        u32 interrupt_status;
 231
 232        interrupt_status =
 233                readl(&ihost->smu_registers->interrupt_status);
 234        interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
 235
 236        if (interrupt_status != 0) {
 237                /*
 238                 * There is an error interrupt pending so let it through and handle
 239                 * in the callback */
 240                return true;
 241        }
 242
 243        /*
 244         * There is a race in the hardware that could cause us not to be notified
 245         * of an interrupt completion if we do not take this step.  We will mask
 246         * then unmask the error interrupts so if there was another interrupt
 247         * pending we will be notified.
 248         * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
 249        writel(0xff, &ihost->smu_registers->interrupt_mask);
 250        writel(0, &ihost->smu_registers->interrupt_mask);
 251
 252        return false;
 253}
 254
 255static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
 256{
 257        u32 index = SCU_GET_COMPLETION_INDEX(ent);
 258        struct isci_request *ireq = ihost->reqs[index];
 259
 260        /* Make sure that we really want to process this IO request */
 261        if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
 262            ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
 263            ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
 264                /* Yep this is a valid io request pass it along to the
 265                 * io request handler
 266                 */
 267                sci_io_request_tc_completion(ireq, ent);
 268}
 269
 270static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
 271{
 272        u32 index;
 273        struct isci_request *ireq;
 274        struct isci_remote_device *idev;
 275
 276        index = SCU_GET_COMPLETION_INDEX(ent);
 277
 278        switch (scu_get_command_request_type(ent)) {
 279        case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
 280        case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
 281                ireq = ihost->reqs[index];
 282                dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
 283                         __func__, ent, ireq);
 284                /* @todo For a post TC operation we need to fail the IO
 285                 * request
 286                 */
 287                break;
 288        case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
 289        case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
 290        case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
 291                idev = ihost->device_table[index];
 292                dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
 293                         __func__, ent, idev);
 294                /* @todo For a port RNC operation we need to fail the
 295                 * device
 296                 */
 297                break;
 298        default:
 299                dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
 300                         __func__, ent);
 301                break;
 302        }
 303}
 304
 305static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
 306{
 307        u32 index;
 308        u32 frame_index;
 309
 310        struct scu_unsolicited_frame_header *frame_header;
 311        struct isci_phy *iphy;
 312        struct isci_remote_device *idev;
 313
 314        enum sci_status result = SCI_FAILURE;
 315
 316        frame_index = SCU_GET_FRAME_INDEX(ent);
 317
 318        frame_header = ihost->uf_control.buffers.array[frame_index].header;
 319        ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
 320
 321        if (SCU_GET_FRAME_ERROR(ent)) {
 322                /*
 323                 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
 324                 * /       this cause a problem? We expect the phy initialization will
 325                 * /       fail if there is an error in the frame. */
 326                sci_controller_release_frame(ihost, frame_index);
 327                return;
 328        }
 329
 330        if (frame_header->is_address_frame) {
 331                index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 332                iphy = &ihost->phys[index];
 333                result = sci_phy_frame_handler(iphy, frame_index);
 334        } else {
 335
 336                index = SCU_GET_COMPLETION_INDEX(ent);
 337
 338                if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
 339                        /*
 340                         * This is a signature fis or a frame from a direct attached SATA
 341                         * device that has not yet been created.  In either case forwared
 342                         * the frame to the PE and let it take care of the frame data. */
 343                        index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 344                        iphy = &ihost->phys[index];
 345                        result = sci_phy_frame_handler(iphy, frame_index);
 346                } else {
 347                        if (index < ihost->remote_node_entries)
 348                                idev = ihost->device_table[index];
 349                        else
 350                                idev = NULL;
 351
 352                        if (idev != NULL)
 353                                result = sci_remote_device_frame_handler(idev, frame_index);
 354                        else
 355                                sci_controller_release_frame(ihost, frame_index);
 356                }
 357        }
 358
 359        if (result != SCI_SUCCESS) {
 360                /*
 361                 * / @todo Is there any reason to report some additional error message
 362                 * /       when we get this failure notifiction? */
 363        }
 364}
 365
 366static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
 367{
 368        struct isci_remote_device *idev;
 369        struct isci_request *ireq;
 370        struct isci_phy *iphy;
 371        u32 index;
 372
 373        index = SCU_GET_COMPLETION_INDEX(ent);
 374
 375        switch (scu_get_event_type(ent)) {
 376        case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
 377                /* / @todo The driver did something wrong and we need to fix the condtion. */
 378                dev_err(&ihost->pdev->dev,
 379                        "%s: SCIC Controller 0x%p received SMU command error "
 380                        "0x%x\n",
 381                        __func__,
 382                        ihost,
 383                        ent);
 384                break;
 385
 386        case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
 387        case SCU_EVENT_TYPE_SMU_ERROR:
 388        case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
 389                /*
 390                 * / @todo This is a hardware failure and its likely that we want to
 391                 * /       reset the controller. */
 392                dev_err(&ihost->pdev->dev,
 393                        "%s: SCIC Controller 0x%p received fatal controller "
 394                        "event  0x%x\n",
 395                        __func__,
 396                        ihost,
 397                        ent);
 398                break;
 399
 400        case SCU_EVENT_TYPE_TRANSPORT_ERROR:
 401                ireq = ihost->reqs[index];
 402                sci_io_request_event_handler(ireq, ent);
 403                break;
 404
 405        case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
 406                switch (scu_get_event_specifier(ent)) {
 407                case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
 408                case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
 409                        ireq = ihost->reqs[index];
 410                        if (ireq != NULL)
 411                                sci_io_request_event_handler(ireq, ent);
 412                        else
 413                                dev_warn(&ihost->pdev->dev,
 414                                         "%s: SCIC Controller 0x%p received "
 415                                         "event 0x%x for io request object "
 416                                         "that doesnt exist.\n",
 417                                         __func__,
 418                                         ihost,
 419                                         ent);
 420
 421                        break;
 422
 423                case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
 424                        idev = ihost->device_table[index];
 425                        if (idev != NULL)
 426                                sci_remote_device_event_handler(idev, ent);
 427                        else
 428                                dev_warn(&ihost->pdev->dev,
 429                                         "%s: SCIC Controller 0x%p received "
 430                                         "event 0x%x for remote device object "
 431                                         "that doesnt exist.\n",
 432                                         __func__,
 433                                         ihost,
 434                                         ent);
 435
 436                        break;
 437                }
 438                break;
 439
 440        case SCU_EVENT_TYPE_BROADCAST_CHANGE:
 441        /*
 442         * direct the broadcast change event to the phy first and then let
 443         * the phy redirect the broadcast change to the port object */
 444        case SCU_EVENT_TYPE_ERR_CNT_EVENT:
 445        /*
 446         * direct error counter event to the phy object since that is where
 447         * we get the event notification.  This is a type 4 event. */
 448        case SCU_EVENT_TYPE_OSSP_EVENT:
 449                index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
 450                iphy = &ihost->phys[index];
 451                sci_phy_event_handler(iphy, ent);
 452                break;
 453
 454        case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
 455        case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
 456        case SCU_EVENT_TYPE_RNC_OPS_MISC:
 457                if (index < ihost->remote_node_entries) {
 458                        idev = ihost->device_table[index];
 459
 460                        if (idev != NULL)
 461                                sci_remote_device_event_handler(idev, ent);
 462                } else
 463                        dev_err(&ihost->pdev->dev,
 464                                "%s: SCIC Controller 0x%p received event 0x%x "
 465                                "for remote device object 0x%0x that doesnt "
 466                                "exist.\n",
 467                                __func__,
 468                                ihost,
 469                                ent,
 470                                index);
 471
 472                break;
 473
 474        default:
 475                dev_warn(&ihost->pdev->dev,
 476                         "%s: SCIC Controller received unknown event code %x\n",
 477                         __func__,
 478                         ent);
 479                break;
 480        }
 481}
 482
 483static void sci_controller_process_completions(struct isci_host *ihost)
 484{
 485        u32 completion_count = 0;
 486        u32 ent;
 487        u32 get_index;
 488        u32 get_cycle;
 489        u32 event_get;
 490        u32 event_cycle;
 491
 492        dev_dbg(&ihost->pdev->dev,
 493                "%s: completion queue beginning get:0x%08x\n",
 494                __func__,
 495                ihost->completion_queue_get);
 496
 497        /* Get the component parts of the completion queue */
 498        get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
 499        get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
 500
 501        event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
 502        event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
 503
 504        while (
 505                NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
 506                == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
 507                ) {
 508                completion_count++;
 509
 510                ent = ihost->completion_queue[get_index];
 511
 512                /* increment the get pointer and check for rollover to toggle the cycle bit */
 513                get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
 514                             (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
 515                get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
 516
 517                dev_dbg(&ihost->pdev->dev,
 518                        "%s: completion queue entry:0x%08x\n",
 519                        __func__,
 520                        ent);
 521
 522                switch (SCU_GET_COMPLETION_TYPE(ent)) {
 523                case SCU_COMPLETION_TYPE_TASK:
 524                        sci_controller_task_completion(ihost, ent);
 525                        break;
 526
 527                case SCU_COMPLETION_TYPE_SDMA:
 528                        sci_controller_sdma_completion(ihost, ent);
 529                        break;
 530
 531                case SCU_COMPLETION_TYPE_UFI:
 532                        sci_controller_unsolicited_frame(ihost, ent);
 533                        break;
 534
 535                case SCU_COMPLETION_TYPE_EVENT:
 536                        sci_controller_event_completion(ihost, ent);
 537                        break;
 538
 539                case SCU_COMPLETION_TYPE_NOTIFY: {
 540                        event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
 541                                       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
 542                        event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
 543
 544                        sci_controller_event_completion(ihost, ent);
 545                        break;
 546                }
 547                default:
 548                        dev_warn(&ihost->pdev->dev,
 549                                 "%s: SCIC Controller received unknown "
 550                                 "completion type %x\n",
 551                                 __func__,
 552                                 ent);
 553                        break;
 554                }
 555        }
 556
 557        /* Update the get register if we completed one or more entries */
 558        if (completion_count > 0) {
 559                ihost->completion_queue_get =
 560                        SMU_CQGR_GEN_BIT(ENABLE) |
 561                        SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
 562                        event_cycle |
 563                        SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
 564                        get_cycle |
 565                        SMU_CQGR_GEN_VAL(POINTER, get_index);
 566
 567                writel(ihost->completion_queue_get,
 568                       &ihost->smu_registers->completion_queue_get);
 569
 570        }
 571
 572        dev_dbg(&ihost->pdev->dev,
 573                "%s: completion queue ending get:0x%08x\n",
 574                __func__,
 575                ihost->completion_queue_get);
 576
 577}
 578
 579static void sci_controller_error_handler(struct isci_host *ihost)
 580{
 581        u32 interrupt_status;
 582
 583        interrupt_status =
 584                readl(&ihost->smu_registers->interrupt_status);
 585
 586        if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
 587            sci_controller_completion_queue_has_entries(ihost)) {
 588
 589                sci_controller_process_completions(ihost);
 590                writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
 591        } else {
 592                dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
 593                        interrupt_status);
 594
 595                sci_change_state(&ihost->sm, SCIC_FAILED);
 596
 597                return;
 598        }
 599
 600        /* If we dont process any completions I am not sure that we want to do this.
 601         * We are in the middle of a hardware fault and should probably be reset.
 602         */
 603        writel(0, &ihost->smu_registers->interrupt_mask);
 604}
 605
 606irqreturn_t isci_intx_isr(int vec, void *data)
 607{
 608        irqreturn_t ret = IRQ_NONE;
 609        struct isci_host *ihost = data;
 610
 611        if (sci_controller_isr(ihost)) {
 612                writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
 613                tasklet_schedule(&ihost->completion_tasklet);
 614                ret = IRQ_HANDLED;
 615        } else if (sci_controller_error_isr(ihost)) {
 616                spin_lock(&ihost->scic_lock);
 617                sci_controller_error_handler(ihost);
 618                spin_unlock(&ihost->scic_lock);
 619                ret = IRQ_HANDLED;
 620        }
 621
 622        return ret;
 623}
 624
 625irqreturn_t isci_error_isr(int vec, void *data)
 626{
 627        struct isci_host *ihost = data;
 628
 629        if (sci_controller_error_isr(ihost))
 630                sci_controller_error_handler(ihost);
 631
 632        return IRQ_HANDLED;
 633}
 634
 635/**
 636 * isci_host_start_complete() - This function is called by the core library,
 637 *    through the ISCI Module, to indicate controller start status.
 638 * @ihost: This parameter specifies the ISCI host object
 639 * @completion_status: This parameter specifies the completion status from the
 640 *    core library.
 641 *
 642 */
 643static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
 644{
 645        if (completion_status != SCI_SUCCESS)
 646                dev_info(&ihost->pdev->dev,
 647                        "controller start timed out, continuing...\n");
 648        clear_bit(IHOST_START_PENDING, &ihost->flags);
 649        wake_up(&ihost->eventq);
 650}
 651
 652int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
 653{
 654        struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
 655        struct isci_host *ihost = ha->lldd_ha;
 656
 657        if (test_bit(IHOST_START_PENDING, &ihost->flags))
 658                return 0;
 659
 660        sas_drain_work(ha);
 661
 662        return 1;
 663}
 664
 665/**
 666 * sci_controller_get_suggested_start_timeout() - This method returns the
 667 *    suggested sci_controller_start() timeout amount.  The user is free to
 668 *    use any timeout value, but this method provides the suggested minimum
 669 *    start timeout value.  The returned value is based upon empirical
 670 *    information determined as a result of interoperability testing.
 671 * @ihost: the handle to the controller object for which to return the
 672 *    suggested start timeout.
 673 *
 674 * This method returns the number of milliseconds for the suggested start
 675 * operation timeout.
 676 */
 677static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
 678{
 679        /* Validate the user supplied parameters. */
 680        if (!ihost)
 681                return 0;
 682
 683        /*
 684         * The suggested minimum timeout value for a controller start operation:
 685         *
 686         *     Signature FIS Timeout
 687         *   + Phy Start Timeout
 688         *   + Number of Phy Spin Up Intervals
 689         *   ---------------------------------
 690         *   Number of milliseconds for the controller start operation.
 691         *
 692         * NOTE: The number of phy spin up intervals will be equivalent
 693         *       to the number of phys divided by the number phys allowed
 694         *       per interval - 1 (once OEM parameters are supported).
 695         *       Currently we assume only 1 phy per interval. */
 696
 697        return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
 698                + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
 699                + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
 700}
 701
 702static void sci_controller_enable_interrupts(struct isci_host *ihost)
 703{
 704        set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 705        writel(0, &ihost->smu_registers->interrupt_mask);
 706}
 707
 708void sci_controller_disable_interrupts(struct isci_host *ihost)
 709{
 710        clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
 711        writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
 712        readl(&ihost->smu_registers->interrupt_mask); /* flush */
 713}
 714
 715static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
 716{
 717        u32 port_task_scheduler_value;
 718
 719        port_task_scheduler_value =
 720                readl(&ihost->scu_registers->peg0.ptsg.control);
 721        port_task_scheduler_value |=
 722                (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
 723                 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
 724        writel(port_task_scheduler_value,
 725               &ihost->scu_registers->peg0.ptsg.control);
 726}
 727
 728static void sci_controller_assign_task_entries(struct isci_host *ihost)
 729{
 730        u32 task_assignment;
 731
 732        /*
 733         * Assign all the TCs to function 0
 734         * TODO: Do we actually need to read this register to write it back?
 735         */
 736
 737        task_assignment =
 738                readl(&ihost->smu_registers->task_context_assignment[0]);
 739
 740        task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
 741                (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
 742                (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
 743
 744        writel(task_assignment,
 745                &ihost->smu_registers->task_context_assignment[0]);
 746
 747}
 748
 749static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
 750{
 751        u32 index;
 752        u32 completion_queue_control_value;
 753        u32 completion_queue_get_value;
 754        u32 completion_queue_put_value;
 755
 756        ihost->completion_queue_get = 0;
 757
 758        completion_queue_control_value =
 759                (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
 760                 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
 761
 762        writel(completion_queue_control_value,
 763               &ihost->smu_registers->completion_queue_control);
 764
 765
 766        /* Set the completion queue get pointer and enable the queue */
 767        completion_queue_get_value = (
 768                (SMU_CQGR_GEN_VAL(POINTER, 0))
 769                | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
 770                | (SMU_CQGR_GEN_BIT(ENABLE))
 771                | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
 772                );
 773
 774        writel(completion_queue_get_value,
 775               &ihost->smu_registers->completion_queue_get);
 776
 777        /* Set the completion queue put pointer */
 778        completion_queue_put_value = (
 779                (SMU_CQPR_GEN_VAL(POINTER, 0))
 780                | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
 781                );
 782
 783        writel(completion_queue_put_value,
 784               &ihost->smu_registers->completion_queue_put);
 785
 786        /* Initialize the cycle bit of the completion queue entries */
 787        for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
 788                /*
 789                 * If get.cycle_bit != completion_queue.cycle_bit
 790                 * its not a valid completion queue entry
 791                 * so at system start all entries are invalid */
 792                ihost->completion_queue[index] = 0x80000000;
 793        }
 794}
 795
 796static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
 797{
 798        u32 frame_queue_control_value;
 799        u32 frame_queue_get_value;
 800        u32 frame_queue_put_value;
 801
 802        /* Write the queue size */
 803        frame_queue_control_value =
 804                SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
 805
 806        writel(frame_queue_control_value,
 807               &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
 808
 809        /* Setup the get pointer for the unsolicited frame queue */
 810        frame_queue_get_value = (
 811                SCU_UFQGP_GEN_VAL(POINTER, 0)
 812                |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
 813                );
 814
 815        writel(frame_queue_get_value,
 816               &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
 817        /* Setup the put pointer for the unsolicited frame queue */
 818        frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
 819        writel(frame_queue_put_value,
 820               &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
 821}
 822
 823void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
 824{
 825        if (ihost->sm.current_state_id == SCIC_STARTING) {
 826                /*
 827                 * We move into the ready state, because some of the phys/ports
 828                 * may be up and operational.
 829                 */
 830                sci_change_state(&ihost->sm, SCIC_READY);
 831
 832                isci_host_start_complete(ihost, status);
 833        }
 834}
 835
 836static bool is_phy_starting(struct isci_phy *iphy)
 837{
 838        enum sci_phy_states state;
 839
 840        state = iphy->sm.current_state_id;
 841        switch (state) {
 842        case SCI_PHY_STARTING:
 843        case SCI_PHY_SUB_INITIAL:
 844        case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 845        case SCI_PHY_SUB_AWAIT_IAF_UF:
 846        case SCI_PHY_SUB_AWAIT_SAS_POWER:
 847        case SCI_PHY_SUB_AWAIT_SATA_POWER:
 848        case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 849        case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 850        case SCI_PHY_SUB_AWAIT_OSSP_EN:
 851        case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 852        case SCI_PHY_SUB_FINAL:
 853                return true;
 854        default:
 855                return false;
 856        }
 857}
 858
 859bool is_controller_start_complete(struct isci_host *ihost)
 860{
 861        int i;
 862
 863        for (i = 0; i < SCI_MAX_PHYS; i++) {
 864                struct isci_phy *iphy = &ihost->phys[i];
 865                u32 state = iphy->sm.current_state_id;
 866
 867                /* in apc mode we need to check every phy, in
 868                 * mpc mode we only need to check phys that have
 869                 * been configured into a port
 870                 */
 871                if (is_port_config_apc(ihost))
 872                        /* pass */;
 873                else if (!phy_get_non_dummy_port(iphy))
 874                        continue;
 875
 876                /* The controller start operation is complete iff:
 877                 * - all links have been given an opportunity to start
 878                 * - have no indication of a connected device
 879                 * - have an indication of a connected device and it has
 880                 *   finished the link training process.
 881                 */
 882                if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
 883                    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
 884                    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
 885                    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
 886                        return false;
 887        }
 888
 889        return true;
 890}
 891
 892/**
 893 * sci_controller_start_next_phy - start phy
 894 * @ihost: controller
 895 *
 896 * If all the phys have been started, then attempt to transition the
 897 * controller to the READY state and inform the user
 898 * (sci_cb_controller_start_complete()).
 899 */
 900static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
 901{
 902        struct sci_oem_params *oem = &ihost->oem_parameters;
 903        struct isci_phy *iphy;
 904        enum sci_status status;
 905
 906        status = SCI_SUCCESS;
 907
 908        if (ihost->phy_startup_timer_pending)
 909                return status;
 910
 911        if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
 912                if (is_controller_start_complete(ihost)) {
 913                        sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
 914                        sci_del_timer(&ihost->phy_timer);
 915                        ihost->phy_startup_timer_pending = false;
 916                }
 917        } else {
 918                iphy = &ihost->phys[ihost->next_phy_to_start];
 919
 920                if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
 921                        if (phy_get_non_dummy_port(iphy) == NULL) {
 922                                ihost->next_phy_to_start++;
 923
 924                                /* Caution recursion ahead be forwarned
 925                                 *
 926                                 * The PHY was never added to a PORT in MPC mode
 927                                 * so start the next phy in sequence This phy
 928                                 * will never go link up and will not draw power
 929                                 * the OEM parameters either configured the phy
 930                                 * incorrectly for the PORT or it was never
 931                                 * assigned to a PORT
 932                                 */
 933                                return sci_controller_start_next_phy(ihost);
 934                        }
 935                }
 936
 937                status = sci_phy_start(iphy);
 938
 939                if (status == SCI_SUCCESS) {
 940                        sci_mod_timer(&ihost->phy_timer,
 941                                      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
 942                        ihost->phy_startup_timer_pending = true;
 943                } else {
 944                        dev_warn(&ihost->pdev->dev,
 945                                 "%s: Controller stop operation failed "
 946                                 "to stop phy %d because of status "
 947                                 "%d.\n",
 948                                 __func__,
 949                                 ihost->phys[ihost->next_phy_to_start].phy_index,
 950                                 status);
 951                }
 952
 953                ihost->next_phy_to_start++;
 954        }
 955
 956        return status;
 957}
 958
 959static void phy_startup_timeout(struct timer_list *t)
 960{
 961        struct sci_timer *tmr = from_timer(tmr, t, timer);
 962        struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
 963        unsigned long flags;
 964        enum sci_status status;
 965
 966        spin_lock_irqsave(&ihost->scic_lock, flags);
 967
 968        if (tmr->cancel)
 969                goto done;
 970
 971        ihost->phy_startup_timer_pending = false;
 972
 973        do {
 974                status = sci_controller_start_next_phy(ihost);
 975        } while (status != SCI_SUCCESS);
 976
 977done:
 978        spin_unlock_irqrestore(&ihost->scic_lock, flags);
 979}
 980
 981static u16 isci_tci_active(struct isci_host *ihost)
 982{
 983        return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
 984}
 985
 986static enum sci_status sci_controller_start(struct isci_host *ihost,
 987                                             u32 timeout)
 988{
 989        enum sci_status result;
 990        u16 index;
 991
 992        if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
 993                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
 994                         __func__, ihost->sm.current_state_id);
 995                return SCI_FAILURE_INVALID_STATE;
 996        }
 997
 998        /* Build the TCi free pool */
 999        BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000        ihost->tci_head = 0;
1001        ihost->tci_tail = 0;
1002        for (index = 0; index < ihost->task_context_entries; index++)
1003                isci_tci_free(ihost, index);
1004
1005        /* Build the RNi free pool */
1006        sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007                                         ihost->remote_node_entries);
1008
1009        /*
1010         * Before anything else lets make sure we will not be
1011         * interrupted by the hardware.
1012         */
1013        sci_controller_disable_interrupts(ihost);
1014
1015        /* Enable the port task scheduler */
1016        sci_controller_enable_port_task_scheduler(ihost);
1017
1018        /* Assign all the task entries to ihost physical function */
1019        sci_controller_assign_task_entries(ihost);
1020
1021        /* Now initialize the completion queue */
1022        sci_controller_initialize_completion_queue(ihost);
1023
1024        /* Initialize the unsolicited frame queue for use */
1025        sci_controller_initialize_unsolicited_frame_queue(ihost);
1026
1027        /* Start all of the ports on this controller */
1028        for (index = 0; index < ihost->logical_port_entries; index++) {
1029                struct isci_port *iport = &ihost->ports[index];
1030
1031                result = sci_port_start(iport);
1032                if (result)
1033                        return result;
1034        }
1035
1036        sci_controller_start_next_phy(ihost);
1037
1038        sci_mod_timer(&ihost->timer, timeout);
1039
1040        sci_change_state(&ihost->sm, SCIC_STARTING);
1041
1042        return SCI_SUCCESS;
1043}
1044
1045void isci_host_start(struct Scsi_Host *shost)
1046{
1047        struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048        unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049
1050        set_bit(IHOST_START_PENDING, &ihost->flags);
1051
1052        spin_lock_irq(&ihost->scic_lock);
1053        sci_controller_start(ihost, tmo);
1054        sci_controller_enable_interrupts(ihost);
1055        spin_unlock_irq(&ihost->scic_lock);
1056}
1057
1058static void isci_host_stop_complete(struct isci_host *ihost)
1059{
1060        sci_controller_disable_interrupts(ihost);
1061        clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062        wake_up(&ihost->eventq);
1063}
1064
1065static void sci_controller_completion_handler(struct isci_host *ihost)
1066{
1067        /* Empty out the completion queue */
1068        if (sci_controller_completion_queue_has_entries(ihost))
1069                sci_controller_process_completions(ihost);
1070
1071        /* Clear the interrupt and enable all interrupts again */
1072        writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073        /* Could we write the value of SMU_ISR_COMPLETION? */
1074        writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075        writel(0, &ihost->smu_registers->interrupt_mask);
1076}
1077
1078void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079{
1080        if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081            !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082                if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083                        /* Normal notification (task_done) */
1084                        dev_dbg(&ihost->pdev->dev,
1085                                "%s: Normal - ireq/task = %p/%p\n",
1086                                __func__, ireq, task);
1087                        task->lldd_task = NULL;
1088                        task->task_done(task);
1089                } else {
1090                        dev_dbg(&ihost->pdev->dev,
1091                                "%s: Error - ireq/task = %p/%p\n",
1092                                __func__, ireq, task);
1093                        if (sas_protocol_ata(task->task_proto))
1094                                task->lldd_task = NULL;
1095                        sas_task_abort(task);
1096                }
1097        } else
1098                task->lldd_task = NULL;
1099
1100        if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101                wake_up_all(&ihost->eventq);
1102
1103        if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104                isci_free_tag(ihost, ireq->io_tag);
1105}
1106/**
1107 * isci_host_completion_routine() - This function is the delayed service
1108 *    routine that calls the sci core library's completion handler. It's
1109 *    scheduled as a tasklet from the interrupt service routine when interrupts
1110 *    in use, or set as the timeout function in polled mode.
1111 * @data: This parameter specifies the ISCI host object
1112 *
1113 */
1114void isci_host_completion_routine(unsigned long data)
1115{
1116        struct isci_host *ihost = (struct isci_host *)data;
1117        u16 active;
1118
1119        spin_lock_irq(&ihost->scic_lock);
1120        sci_controller_completion_handler(ihost);
1121        spin_unlock_irq(&ihost->scic_lock);
1122
1123        /*
1124         * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125         * issued for hardware issue workaround
1126         */
1127        active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128
1129        /*
1130         * the coalesence timeout doubles at each encoding step, so
1131         * update it based on the ilog2 value of the outstanding requests
1132         */
1133        writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134               SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135               &ihost->smu_registers->interrupt_coalesce_control);
1136}
1137
1138/**
1139 * sci_controller_stop() - This method will stop an individual controller
1140 *    object.This method will invoke the associated user callback upon
1141 *    completion.  The completion callback is called when the following
1142 *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143 *    controller has been quiesced. This method will ensure that all IO
1144 *    requests are quiesced, phys are stopped, and all additional operation by
1145 *    the hardware is halted.
1146 * @ihost: the handle to the controller object to stop.
1147 * @timeout: This parameter specifies the number of milliseconds in which the
1148 *    stop operation should complete.
1149 *
1150 * The controller must be in the STARTED or STOPPED state. Indicate if the
1151 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154 * controller is not either in the STARTED or STOPPED states.
1155 */
1156static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157{
1158        if (ihost->sm.current_state_id != SCIC_READY) {
1159                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160                         __func__, ihost->sm.current_state_id);
1161                return SCI_FAILURE_INVALID_STATE;
1162        }
1163
1164        sci_mod_timer(&ihost->timer, timeout);
1165        sci_change_state(&ihost->sm, SCIC_STOPPING);
1166        return SCI_SUCCESS;
1167}
1168
1169/**
1170 * sci_controller_reset() - This method will reset the supplied core
1171 *    controller regardless of the state of said controller.  This operation is
1172 *    considered destructive.  In other words, all current operations are wiped
1173 *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174 *    requests are not aborted or completed at the actual remote device.
1175 * @ihost: the handle to the controller object to reset.
1176 *
1177 * Indicate if the controller reset method succeeded or failed in some way.
1178 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179 * the controller reset operation is unable to complete.
1180 */
1181static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182{
1183        switch (ihost->sm.current_state_id) {
1184        case SCIC_RESET:
1185        case SCIC_READY:
1186        case SCIC_STOPPING:
1187        case SCIC_FAILED:
1188                /*
1189                 * The reset operation is not a graceful cleanup, just
1190                 * perform the state transition.
1191                 */
1192                sci_change_state(&ihost->sm, SCIC_RESETTING);
1193                return SCI_SUCCESS;
1194        default:
1195                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196                         __func__, ihost->sm.current_state_id);
1197                return SCI_FAILURE_INVALID_STATE;
1198        }
1199}
1200
1201static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202{
1203        u32 index;
1204        enum sci_status status;
1205        enum sci_status phy_status;
1206
1207        status = SCI_SUCCESS;
1208
1209        for (index = 0; index < SCI_MAX_PHYS; index++) {
1210                phy_status = sci_phy_stop(&ihost->phys[index]);
1211
1212                if (phy_status != SCI_SUCCESS &&
1213                    phy_status != SCI_FAILURE_INVALID_STATE) {
1214                        status = SCI_FAILURE;
1215
1216                        dev_warn(&ihost->pdev->dev,
1217                                 "%s: Controller stop operation failed to stop "
1218                                 "phy %d because of status %d.\n",
1219                                 __func__,
1220                                 ihost->phys[index].phy_index, phy_status);
1221                }
1222        }
1223
1224        return status;
1225}
1226
1227
1228/**
1229 * isci_host_deinit - shutdown frame reception and dma
1230 * @ihost: host to take down
1231 *
1232 * This is called in either the driver shutdown or the suspend path.  In
1233 * the shutdown case libsas went through port teardown and normal device
1234 * removal (i.e. physical links stayed up to service scsi_device removal
1235 * commands).  In the suspend case we disable the hardware without
1236 * notifying libsas of the link down events since we want libsas to
1237 * remember the domain across the suspend/resume cycle
1238 */
1239void isci_host_deinit(struct isci_host *ihost)
1240{
1241        int i;
1242
1243        /* disable output data selects */
1244        for (i = 0; i < isci_gpio_count(ihost); i++)
1245                writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246
1247        set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248
1249        spin_lock_irq(&ihost->scic_lock);
1250        sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251        spin_unlock_irq(&ihost->scic_lock);
1252
1253        wait_for_stop(ihost);
1254
1255        /* phy stop is after controller stop to allow port and device to
1256         * go idle before shutting down the phys, but the expectation is
1257         * that i/o has been shut off well before we reach this
1258         * function.
1259         */
1260        sci_controller_stop_phys(ihost);
1261
1262        /* disable sgpio: where the above wait should give time for the
1263         * enclosure to sample the gpios going inactive
1264         */
1265        writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266
1267        spin_lock_irq(&ihost->scic_lock);
1268        sci_controller_reset(ihost);
1269        spin_unlock_irq(&ihost->scic_lock);
1270
1271        /* Cancel any/all outstanding port timers */
1272        for (i = 0; i < ihost->logical_port_entries; i++) {
1273                struct isci_port *iport = &ihost->ports[i];
1274                del_timer_sync(&iport->timer.timer);
1275        }
1276
1277        /* Cancel any/all outstanding phy timers */
1278        for (i = 0; i < SCI_MAX_PHYS; i++) {
1279                struct isci_phy *iphy = &ihost->phys[i];
1280                del_timer_sync(&iphy->sata_timer.timer);
1281        }
1282
1283        del_timer_sync(&ihost->port_agent.timer.timer);
1284
1285        del_timer_sync(&ihost->power_control.timer.timer);
1286
1287        del_timer_sync(&ihost->timer.timer);
1288
1289        del_timer_sync(&ihost->phy_timer.timer);
1290}
1291
1292static void __iomem *scu_base(struct isci_host *isci_host)
1293{
1294        struct pci_dev *pdev = isci_host->pdev;
1295        int id = isci_host->id;
1296
1297        return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298}
1299
1300static void __iomem *smu_base(struct isci_host *isci_host)
1301{
1302        struct pci_dev *pdev = isci_host->pdev;
1303        int id = isci_host->id;
1304
1305        return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306}
1307
1308static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309{
1310        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311
1312        sci_change_state(&ihost->sm, SCIC_RESET);
1313}
1314
1315static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316{
1317        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318
1319        sci_del_timer(&ihost->timer);
1320}
1321
1322#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324#define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325#define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328
1329/**
1330 * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331 *    configure the interrupt coalescence.
1332 * @ihost: This parameter represents the handle to the controller object
1333 *    for which its interrupt coalesce register is overridden.
1334 * @coalesce_number: Used to control the number of entries in the Completion
1335 *    Queue before an interrupt is generated. If the number of entries exceed
1336 *    this number, an interrupt will be generated. The valid range of the input
1337 *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338 * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339 *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340 *    interrupt coalescing timeout.
1341 *
1342 * Indicate if the user successfully set the interrupt coalesce parameters.
1343 * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345 */
1346static enum sci_status
1347sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348                                         u32 coalesce_number,
1349                                         u32 coalesce_timeout)
1350{
1351        u8 timeout_encode = 0;
1352        u32 min = 0;
1353        u32 max = 0;
1354
1355        /* Check if the input parameters fall in the range. */
1356        if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357                return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358
1359        /*
1360         *  Defined encoding for interrupt coalescing timeout:
1361         *              Value   Min      Max     Units
1362         *              -----   ---      ---     -----
1363         *              0       -        -       Disabled
1364         *              1       13.3     20.0    ns
1365         *              2       26.7     40.0
1366         *              3       53.3     80.0
1367         *              4       106.7    160.0
1368         *              5       213.3    320.0
1369         *              6       426.7    640.0
1370         *              7       853.3    1280.0
1371         *              8       1.7      2.6     us
1372         *              9       3.4      5.1
1373         *              10      6.8      10.2
1374         *              11      13.7     20.5
1375         *              12      27.3     41.0
1376         *              13      54.6     81.9
1377         *              14      109.2    163.8
1378         *              15      218.5    327.7
1379         *              16      436.9    655.4
1380         *              17      873.8    1310.7
1381         *              18      1.7      2.6     ms
1382         *              19      3.5      5.2
1383         *              20      7.0      10.5
1384         *              21      14.0     21.0
1385         *              22      28.0     41.9
1386         *              23      55.9     83.9
1387         *              24      111.8    167.8
1388         *              25      223.7    335.5
1389         *              26      447.4    671.1
1390         *              27      894.8    1342.2
1391         *              28      1.8      2.7     s
1392         *              Others Undefined */
1393
1394        /*
1395         * Use the table above to decide the encode of interrupt coalescing timeout
1396         * value for register writing. */
1397        if (coalesce_timeout == 0)
1398                timeout_encode = 0;
1399        else{
1400                /* make the timeout value in unit of (10 ns). */
1401                coalesce_timeout = coalesce_timeout * 100;
1402                min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403                max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404
1405                /* get the encode of timeout for register writing. */
1406                for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407                      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408                      timeout_encode++) {
1409                        if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410                                break;
1411                        else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412                                 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413                                if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414                                        break;
1415                                else{
1416                                        timeout_encode++;
1417                                        break;
1418                                }
1419                        } else {
1420                                max = max * 2;
1421                                min = min * 2;
1422                        }
1423                }
1424
1425                if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426                        /* the value is out of range. */
1427                        return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428        }
1429
1430        writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431               SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432               &ihost->smu_registers->interrupt_coalesce_control);
1433
1434
1435        ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436        ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437
1438        return SCI_SUCCESS;
1439}
1440
1441
1442static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443{
1444        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445        u32 val;
1446
1447        /* enable clock gating for power control of the scu unit */
1448        val = readl(&ihost->smu_registers->clock_gating_control);
1449        val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450                 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451                 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452        val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453        writel(val, &ihost->smu_registers->clock_gating_control);
1454
1455        /* set the default interrupt coalescence number and timeout value. */
1456        sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457}
1458
1459static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460{
1461        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462
1463        /* disable interrupt coalescence. */
1464        sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465}
1466
1467static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468{
1469        u32 index;
1470        enum sci_status port_status;
1471        enum sci_status status = SCI_SUCCESS;
1472
1473        for (index = 0; index < ihost->logical_port_entries; index++) {
1474                struct isci_port *iport = &ihost->ports[index];
1475
1476                port_status = sci_port_stop(iport);
1477
1478                if ((port_status != SCI_SUCCESS) &&
1479                    (port_status != SCI_FAILURE_INVALID_STATE)) {
1480                        status = SCI_FAILURE;
1481
1482                        dev_warn(&ihost->pdev->dev,
1483                                 "%s: Controller stop operation failed to "
1484                                 "stop port %d because of status %d.\n",
1485                                 __func__,
1486                                 iport->logical_port_index,
1487                                 port_status);
1488                }
1489        }
1490
1491        return status;
1492}
1493
1494static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495{
1496        u32 index;
1497        enum sci_status status;
1498        enum sci_status device_status;
1499
1500        status = SCI_SUCCESS;
1501
1502        for (index = 0; index < ihost->remote_node_entries; index++) {
1503                if (ihost->device_table[index] != NULL) {
1504                        /* / @todo What timeout value do we want to provide to this request? */
1505                        device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506
1507                        if ((device_status != SCI_SUCCESS) &&
1508                            (device_status != SCI_FAILURE_INVALID_STATE)) {
1509                                dev_warn(&ihost->pdev->dev,
1510                                         "%s: Controller stop operation failed "
1511                                         "to stop device 0x%p because of "
1512                                         "status %d.\n",
1513                                         __func__,
1514                                         ihost->device_table[index], device_status);
1515                        }
1516                }
1517        }
1518
1519        return status;
1520}
1521
1522static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523{
1524        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525
1526        sci_controller_stop_devices(ihost);
1527        sci_controller_stop_ports(ihost);
1528
1529        if (!sci_controller_has_remote_devices_stopping(ihost))
1530                isci_host_stop_complete(ihost);
1531}
1532
1533static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534{
1535        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536
1537        sci_del_timer(&ihost->timer);
1538}
1539
1540static void sci_controller_reset_hardware(struct isci_host *ihost)
1541{
1542        /* Disable interrupts so we dont take any spurious interrupts */
1543        sci_controller_disable_interrupts(ihost);
1544
1545        /* Reset the SCU */
1546        writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547
1548        /* Delay for 1ms to before clearing the CQP and UFQPR. */
1549        udelay(1000);
1550
1551        /* The write to the CQGR clears the CQP */
1552        writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553
1554        /* The write to the UFQGP clears the UFQPR */
1555        writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556
1557        /* clear all interrupts */
1558        writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559}
1560
1561static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562{
1563        struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564
1565        sci_controller_reset_hardware(ihost);
1566        sci_change_state(&ihost->sm, SCIC_RESET);
1567}
1568
1569static const struct sci_base_state sci_controller_state_table[] = {
1570        [SCIC_INITIAL] = {
1571                .enter_state = sci_controller_initial_state_enter,
1572        },
1573        [SCIC_RESET] = {},
1574        [SCIC_INITIALIZING] = {},
1575        [SCIC_INITIALIZED] = {},
1576        [SCIC_STARTING] = {
1577                .exit_state  = sci_controller_starting_state_exit,
1578        },
1579        [SCIC_READY] = {
1580                .enter_state = sci_controller_ready_state_enter,
1581                .exit_state  = sci_controller_ready_state_exit,
1582        },
1583        [SCIC_RESETTING] = {
1584                .enter_state = sci_controller_resetting_state_enter,
1585        },
1586        [SCIC_STOPPING] = {
1587                .enter_state = sci_controller_stopping_state_enter,
1588                .exit_state = sci_controller_stopping_state_exit,
1589        },
1590        [SCIC_FAILED] = {}
1591};
1592
1593static void controller_timeout(struct timer_list *t)
1594{
1595        struct sci_timer *tmr = from_timer(tmr, t, timer);
1596        struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597        struct sci_base_state_machine *sm = &ihost->sm;
1598        unsigned long flags;
1599
1600        spin_lock_irqsave(&ihost->scic_lock, flags);
1601
1602        if (tmr->cancel)
1603                goto done;
1604
1605        if (sm->current_state_id == SCIC_STARTING)
1606                sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607        else if (sm->current_state_id == SCIC_STOPPING) {
1608                sci_change_state(sm, SCIC_FAILED);
1609                isci_host_stop_complete(ihost);
1610        } else  /* / @todo Now what do we want to do in this case? */
1611                dev_err(&ihost->pdev->dev,
1612                        "%s: Controller timer fired when controller was not "
1613                        "in a state being timed.\n",
1614                        __func__);
1615
1616done:
1617        spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618}
1619
1620static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621                                                void __iomem *scu_base,
1622                                                void __iomem *smu_base)
1623{
1624        u8 i;
1625
1626        sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627
1628        ihost->scu_registers = scu_base;
1629        ihost->smu_registers = smu_base;
1630
1631        sci_port_configuration_agent_construct(&ihost->port_agent);
1632
1633        /* Construct the ports for this controller */
1634        for (i = 0; i < SCI_MAX_PORTS; i++)
1635                sci_port_construct(&ihost->ports[i], i, ihost);
1636        sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637
1638        /* Construct the phys for this controller */
1639        for (i = 0; i < SCI_MAX_PHYS; i++) {
1640                /* Add all the PHYs to the dummy port */
1641                sci_phy_construct(&ihost->phys[i],
1642                                  &ihost->ports[SCI_MAX_PORTS], i);
1643        }
1644
1645        ihost->invalid_phy_mask = 0;
1646
1647        sci_init_timer(&ihost->timer, controller_timeout);
1648
1649        return sci_controller_reset(ihost);
1650}
1651
1652int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653{
1654        int i;
1655
1656        for (i = 0; i < SCI_MAX_PORTS; i++)
1657                if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658                        return -EINVAL;
1659
1660        for (i = 0; i < SCI_MAX_PHYS; i++)
1661                if (oem->phys[i].sas_address.high == 0 &&
1662                    oem->phys[i].sas_address.low == 0)
1663                        return -EINVAL;
1664
1665        if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666                for (i = 0; i < SCI_MAX_PHYS; i++)
1667                        if (oem->ports[i].phy_mask != 0)
1668                                return -EINVAL;
1669        } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670                u8 phy_mask = 0;
1671
1672                for (i = 0; i < SCI_MAX_PHYS; i++)
1673                        phy_mask |= oem->ports[i].phy_mask;
1674
1675                if (phy_mask == 0)
1676                        return -EINVAL;
1677        } else
1678                return -EINVAL;
1679
1680        if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681            oem->controller.max_concurr_spin_up < 1)
1682                return -EINVAL;
1683
1684        if (oem->controller.do_enable_ssc) {
1685                if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686                        return -EINVAL;
1687
1688                if (version >= ISCI_ROM_VER_1_1) {
1689                        u8 test = oem->controller.ssc_sata_tx_spread_level;
1690
1691                        switch (test) {
1692                        case 0:
1693                        case 2:
1694                        case 3:
1695                        case 6:
1696                        case 7:
1697                                break;
1698                        default:
1699                                return -EINVAL;
1700                        }
1701
1702                        test = oem->controller.ssc_sas_tx_spread_level;
1703                        if (oem->controller.ssc_sas_tx_type == 0) {
1704                                switch (test) {
1705                                case 0:
1706                                case 2:
1707                                case 3:
1708                                        break;
1709                                default:
1710                                        return -EINVAL;
1711                                }
1712                        } else if (oem->controller.ssc_sas_tx_type == 1) {
1713                                switch (test) {
1714                                case 0:
1715                                case 3:
1716                                case 6:
1717                                        break;
1718                                default:
1719                                        return -EINVAL;
1720                                }
1721                        }
1722                }
1723        }
1724
1725        return 0;
1726}
1727
1728static u8 max_spin_up(struct isci_host *ihost)
1729{
1730        if (ihost->user_parameters.max_concurr_spinup)
1731                return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732                             MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733        else
1734                return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735                             MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736}
1737
1738static void power_control_timeout(struct timer_list *t)
1739{
1740        struct sci_timer *tmr = from_timer(tmr, t, timer);
1741        struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742        struct isci_phy *iphy;
1743        unsigned long flags;
1744        u8 i;
1745
1746        spin_lock_irqsave(&ihost->scic_lock, flags);
1747
1748        if (tmr->cancel)
1749                goto done;
1750
1751        ihost->power_control.phys_granted_power = 0;
1752
1753        if (ihost->power_control.phys_waiting == 0) {
1754                ihost->power_control.timer_started = false;
1755                goto done;
1756        }
1757
1758        for (i = 0; i < SCI_MAX_PHYS; i++) {
1759
1760                if (ihost->power_control.phys_waiting == 0)
1761                        break;
1762
1763                iphy = ihost->power_control.requesters[i];
1764                if (iphy == NULL)
1765                        continue;
1766
1767                if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768                        break;
1769
1770                ihost->power_control.requesters[i] = NULL;
1771                ihost->power_control.phys_waiting--;
1772                ihost->power_control.phys_granted_power++;
1773                sci_phy_consume_power_handler(iphy);
1774
1775                if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776                        u8 j;
1777
1778                        for (j = 0; j < SCI_MAX_PHYS; j++) {
1779                                struct isci_phy *requester = ihost->power_control.requesters[j];
1780
1781                                /*
1782                                 * Search the power_control queue to see if there are other phys
1783                                 * attached to the same remote device. If found, take all of
1784                                 * them out of await_sas_power state.
1785                                 */
1786                                if (requester != NULL && requester != iphy) {
1787                                        u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788                                                          iphy->frame_rcvd.iaf.sas_addr,
1789                                                          sizeof(requester->frame_rcvd.iaf.sas_addr));
1790
1791                                        if (other == 0) {
1792                                                ihost->power_control.requesters[j] = NULL;
1793                                                ihost->power_control.phys_waiting--;
1794                                                sci_phy_consume_power_handler(requester);
1795                                        }
1796                                }
1797                        }
1798                }
1799        }
1800
1801        /*
1802         * It doesn't matter if the power list is empty, we need to start the
1803         * timer in case another phy becomes ready.
1804         */
1805        sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806        ihost->power_control.timer_started = true;
1807
1808done:
1809        spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810}
1811
1812void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813                                               struct isci_phy *iphy)
1814{
1815        BUG_ON(iphy == NULL);
1816
1817        if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818                ihost->power_control.phys_granted_power++;
1819                sci_phy_consume_power_handler(iphy);
1820
1821                /*
1822                 * stop and start the power_control timer. When the timer fires, the
1823                 * no_of_phys_granted_power will be set to 0
1824                 */
1825                if (ihost->power_control.timer_started)
1826                        sci_del_timer(&ihost->power_control.timer);
1827
1828                sci_mod_timer(&ihost->power_control.timer,
1829                                 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830                ihost->power_control.timer_started = true;
1831
1832        } else {
1833                /*
1834                 * There are phys, attached to the same sas address as this phy, are
1835                 * already in READY state, this phy don't need wait.
1836                 */
1837                u8 i;
1838                struct isci_phy *current_phy;
1839
1840                for (i = 0; i < SCI_MAX_PHYS; i++) {
1841                        u8 other;
1842                        current_phy = &ihost->phys[i];
1843
1844                        other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845                                       iphy->frame_rcvd.iaf.sas_addr,
1846                                       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847
1848                        if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849                            current_phy->protocol == SAS_PROTOCOL_SSP &&
1850                            other == 0) {
1851                                sci_phy_consume_power_handler(iphy);
1852                                break;
1853                        }
1854                }
1855
1856                if (i == SCI_MAX_PHYS) {
1857                        /* Add the phy in the waiting list */
1858                        ihost->power_control.requesters[iphy->phy_index] = iphy;
1859                        ihost->power_control.phys_waiting++;
1860                }
1861        }
1862}
1863
1864void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865                                               struct isci_phy *iphy)
1866{
1867        BUG_ON(iphy == NULL);
1868
1869        if (ihost->power_control.requesters[iphy->phy_index])
1870                ihost->power_control.phys_waiting--;
1871
1872        ihost->power_control.requesters[iphy->phy_index] = NULL;
1873}
1874
1875static int is_long_cable(int phy, unsigned char selection_byte)
1876{
1877        return !!(selection_byte & (1 << phy));
1878}
1879
1880static int is_medium_cable(int phy, unsigned char selection_byte)
1881{
1882        return !!(selection_byte & (1 << (phy + 4)));
1883}
1884
1885static enum cable_selections decode_selection_byte(
1886        int phy,
1887        unsigned char selection_byte)
1888{
1889        return ((selection_byte & (1 << phy)) ? 1 : 0)
1890                + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891}
1892
1893static unsigned char *to_cable_select(struct isci_host *ihost)
1894{
1895        if (is_cable_select_overridden())
1896                return ((unsigned char *)&cable_selection_override)
1897                        + ihost->id;
1898        else
1899                return &ihost->oem_parameters.controller.cable_selection_mask;
1900}
1901
1902enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903{
1904        return decode_selection_byte(phy, *to_cable_select(ihost));
1905}
1906
1907char *lookup_cable_names(enum cable_selections selection)
1908{
1909        static char *cable_names[] = {
1910                [short_cable]     = "short",
1911                [long_cable]      = "long",
1912                [medium_cable]    = "medium",
1913                [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914        };
1915        return (selection <= undefined_cable) ? cable_names[selection]
1916                                              : cable_names[undefined_cable];
1917}
1918
1919#define AFE_REGISTER_WRITE_DELAY 10
1920
1921static void sci_controller_afe_initialization(struct isci_host *ihost)
1922{
1923        struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924        const struct sci_oem_params *oem = &ihost->oem_parameters;
1925        struct pci_dev *pdev = ihost->pdev;
1926        u32 afe_status;
1927        u32 phy_id;
1928        unsigned char cable_selection_mask = *to_cable_select(ihost);
1929
1930        /* Clear DFX Status registers */
1931        writel(0x0081000f, &afe->afe_dfx_master_control0);
1932        udelay(AFE_REGISTER_WRITE_DELAY);
1933
1934        if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935                /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936                 * Timer, PM Stagger Timer
1937                 */
1938                writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939                udelay(AFE_REGISTER_WRITE_DELAY);
1940        }
1941
1942        /* Configure bias currents to normal */
1943        if (is_a2(pdev))
1944                writel(0x00005A00, &afe->afe_bias_control);
1945        else if (is_b0(pdev) || is_c0(pdev))
1946                writel(0x00005F00, &afe->afe_bias_control);
1947        else if (is_c1(pdev))
1948                writel(0x00005500, &afe->afe_bias_control);
1949
1950        udelay(AFE_REGISTER_WRITE_DELAY);
1951
1952        /* Enable PLL */
1953        if (is_a2(pdev))
1954                writel(0x80040908, &afe->afe_pll_control0);
1955        else if (is_b0(pdev) || is_c0(pdev))
1956                writel(0x80040A08, &afe->afe_pll_control0);
1957        else if (is_c1(pdev)) {
1958                writel(0x80000B08, &afe->afe_pll_control0);
1959                udelay(AFE_REGISTER_WRITE_DELAY);
1960                writel(0x00000B08, &afe->afe_pll_control0);
1961                udelay(AFE_REGISTER_WRITE_DELAY);
1962                writel(0x80000B08, &afe->afe_pll_control0);
1963        }
1964
1965        udelay(AFE_REGISTER_WRITE_DELAY);
1966
1967        /* Wait for the PLL to lock */
1968        do {
1969                afe_status = readl(&afe->afe_common_block_status);
1970                udelay(AFE_REGISTER_WRITE_DELAY);
1971        } while ((afe_status & 0x00001000) == 0);
1972
1973        if (is_a2(pdev)) {
1974                /* Shorten SAS SNW lock time (RxLock timer value from 76
1975                 * us to 50 us)
1976                 */
1977                writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978                udelay(AFE_REGISTER_WRITE_DELAY);
1979        }
1980
1981        for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982                struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983                const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984                int cable_length_long =
1985                        is_long_cable(phy_id, cable_selection_mask);
1986                int cable_length_medium =
1987                        is_medium_cable(phy_id, cable_selection_mask);
1988
1989                if (is_a2(pdev)) {
1990                        /* All defaults, except the Receive Word
1991                         * Alignament/Comma Detect Enable....(0xe800)
1992                         */
1993                        writel(0x00004512, &xcvr->afe_xcvr_control0);
1994                        udelay(AFE_REGISTER_WRITE_DELAY);
1995
1996                        writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997                        udelay(AFE_REGISTER_WRITE_DELAY);
1998                } else if (is_b0(pdev)) {
1999                        /* Configure transmitter SSC parameters */
2000                        writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001                        udelay(AFE_REGISTER_WRITE_DELAY);
2002                } else if (is_c0(pdev)) {
2003                        /* Configure transmitter SSC parameters */
2004                        writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005                        udelay(AFE_REGISTER_WRITE_DELAY);
2006
2007                        /* All defaults, except the Receive Word
2008                         * Alignament/Comma Detect Enable....(0xe800)
2009                         */
2010                        writel(0x00014500, &xcvr->afe_xcvr_control0);
2011                        udelay(AFE_REGISTER_WRITE_DELAY);
2012                } else if (is_c1(pdev)) {
2013                        /* Configure transmitter SSC parameters */
2014                        writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015                        udelay(AFE_REGISTER_WRITE_DELAY);
2016
2017                        /* All defaults, except the Receive Word
2018                         * Alignament/Comma Detect Enable....(0xe800)
2019                         */
2020                        writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021                        udelay(AFE_REGISTER_WRITE_DELAY);
2022                }
2023
2024                /* Power up TX and RX out from power down (PWRDNTX and
2025                 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026                 */
2027                if (is_a2(pdev))
2028                        writel(0x000003F0, &xcvr->afe_channel_control);
2029                else if (is_b0(pdev)) {
2030                        writel(0x000003D7, &xcvr->afe_channel_control);
2031                        udelay(AFE_REGISTER_WRITE_DELAY);
2032
2033                        writel(0x000003D4, &xcvr->afe_channel_control);
2034                } else if (is_c0(pdev)) {
2035                        writel(0x000001E7, &xcvr->afe_channel_control);
2036                        udelay(AFE_REGISTER_WRITE_DELAY);
2037
2038                        writel(0x000001E4, &xcvr->afe_channel_control);
2039                } else if (is_c1(pdev)) {
2040                        writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041                               &xcvr->afe_channel_control);
2042                        udelay(AFE_REGISTER_WRITE_DELAY);
2043
2044                        writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045                               &xcvr->afe_channel_control);
2046                }
2047                udelay(AFE_REGISTER_WRITE_DELAY);
2048
2049                if (is_a2(pdev)) {
2050                        /* Enable TX equalization (0xe824) */
2051                        writel(0x00040000, &xcvr->afe_tx_control);
2052                        udelay(AFE_REGISTER_WRITE_DELAY);
2053                }
2054
2055                if (is_a2(pdev) || is_b0(pdev))
2056                        /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057                         * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058                         * Enabled) ....(0xe800)
2059                         */
2060                        writel(0x00004100, &xcvr->afe_xcvr_control0);
2061                else if (is_c0(pdev))
2062                        writel(0x00014100, &xcvr->afe_xcvr_control0);
2063                else if (is_c1(pdev))
2064                        writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065                udelay(AFE_REGISTER_WRITE_DELAY);
2066
2067                /* Leave DFE/FFE on */
2068                if (is_a2(pdev))
2069                        writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070                else if (is_b0(pdev)) {
2071                        writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072                        udelay(AFE_REGISTER_WRITE_DELAY);
2073                        /* Enable TX equalization (0xe824) */
2074                        writel(0x00040000, &xcvr->afe_tx_control);
2075                } else if (is_c0(pdev)) {
2076                        writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077                        udelay(AFE_REGISTER_WRITE_DELAY);
2078
2079                        writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080                        udelay(AFE_REGISTER_WRITE_DELAY);
2081
2082                        /* Enable TX equalization (0xe824) */
2083                        writel(0x00040000, &xcvr->afe_tx_control);
2084                } else if (is_c1(pdev)) {
2085                        writel(cable_length_long ? 0x01500C0C :
2086                               cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087                               &xcvr->afe_xcvr_control1);
2088                        udelay(AFE_REGISTER_WRITE_DELAY);
2089
2090                        writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091                        udelay(AFE_REGISTER_WRITE_DELAY);
2092
2093                        writel(cable_length_long ? 0x33091C1F :
2094                               cable_length_medium ? 0x3315181F : 0x2B17161F,
2095                               &xcvr->afe_rx_ssc_control0);
2096                        udelay(AFE_REGISTER_WRITE_DELAY);
2097
2098                        /* Enable TX equalization (0xe824) */
2099                        writel(0x00040000, &xcvr->afe_tx_control);
2100                }
2101
2102                udelay(AFE_REGISTER_WRITE_DELAY);
2103
2104                writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105                udelay(AFE_REGISTER_WRITE_DELAY);
2106
2107                writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108                udelay(AFE_REGISTER_WRITE_DELAY);
2109
2110                writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111                udelay(AFE_REGISTER_WRITE_DELAY);
2112
2113                writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114                udelay(AFE_REGISTER_WRITE_DELAY);
2115        }
2116
2117        /* Transfer control to the PEs */
2118        writel(0x00010f00, &afe->afe_dfx_master_control0);
2119        udelay(AFE_REGISTER_WRITE_DELAY);
2120}
2121
2122static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123{
2124        sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125
2126        memset(ihost->power_control.requesters, 0,
2127               sizeof(ihost->power_control.requesters));
2128
2129        ihost->power_control.phys_waiting = 0;
2130        ihost->power_control.phys_granted_power = 0;
2131}
2132
2133static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134{
2135        struct sci_base_state_machine *sm = &ihost->sm;
2136        enum sci_status result = SCI_FAILURE;
2137        unsigned long i, state, val;
2138
2139        if (ihost->sm.current_state_id != SCIC_RESET) {
2140                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141                         __func__, ihost->sm.current_state_id);
2142                return SCI_FAILURE_INVALID_STATE;
2143        }
2144
2145        sci_change_state(sm, SCIC_INITIALIZING);
2146
2147        sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148
2149        ihost->next_phy_to_start = 0;
2150        ihost->phy_startup_timer_pending = false;
2151
2152        sci_controller_initialize_power_control(ihost);
2153
2154        /*
2155         * There is nothing to do here for B0 since we do not have to
2156         * program the AFE registers.
2157         * / @todo The AFE settings are supposed to be correct for the B0 but
2158         * /       presently they seem to be wrong. */
2159        sci_controller_afe_initialization(ihost);
2160
2161
2162        /* Take the hardware out of reset */
2163        writel(0, &ihost->smu_registers->soft_reset_control);
2164
2165        /*
2166         * / @todo Provide meaningfull error code for hardware failure
2167         * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168        for (i = 100; i >= 1; i--) {
2169                u32 status;
2170
2171                /* Loop until the hardware reports success */
2172                udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173                status = readl(&ihost->smu_registers->control_status);
2174
2175                if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176                        break;
2177        }
2178        if (i == 0)
2179                goto out;
2180
2181        /*
2182         * Determine what are the actaul device capacities that the
2183         * hardware will support */
2184        val = readl(&ihost->smu_registers->device_context_capacity);
2185
2186        /* Record the smaller of the two capacity values */
2187        ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188        ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189        ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190
2191        /*
2192         * Make all PEs that are unassigned match up with the
2193         * logical ports
2194         */
2195        for (i = 0; i < ihost->logical_port_entries; i++) {
2196                struct scu_port_task_scheduler_group_registers __iomem
2197                        *ptsg = &ihost->scu_registers->peg0.ptsg;
2198
2199                writel(i, &ptsg->protocol_engine[i]);
2200        }
2201
2202        /* Initialize hardware PCI Relaxed ordering in DMA engines */
2203        val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204        val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205        writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206
2207        val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208        val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209        writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210
2211        /*
2212         * Initialize the PHYs before the PORTs because the PHY registers
2213         * are accessed during the port initialization.
2214         */
2215        for (i = 0; i < SCI_MAX_PHYS; i++) {
2216                result = sci_phy_initialize(&ihost->phys[i],
2217                                            &ihost->scu_registers->peg0.pe[i].tl,
2218                                            &ihost->scu_registers->peg0.pe[i].ll);
2219                if (result != SCI_SUCCESS)
2220                        goto out;
2221        }
2222
2223        for (i = 0; i < ihost->logical_port_entries; i++) {
2224                struct isci_port *iport = &ihost->ports[i];
2225
2226                iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227                iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228                iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229        }
2230
2231        result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232
2233 out:
2234        /* Advance the controller state machine */
2235        if (result == SCI_SUCCESS)
2236                state = SCIC_INITIALIZED;
2237        else
2238                state = SCIC_FAILED;
2239        sci_change_state(sm, state);
2240
2241        return result;
2242}
2243
2244static int sci_controller_dma_alloc(struct isci_host *ihost)
2245{
2246        struct device *dev = &ihost->pdev->dev;
2247        size_t size;
2248        int i;
2249
2250        /* detect re-initialization */
2251        if (ihost->completion_queue)
2252                return 0;
2253
2254        size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255        ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256                                                      GFP_KERNEL);
2257        if (!ihost->completion_queue)
2258                return -ENOMEM;
2259
2260        size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261        ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262                                                               GFP_KERNEL);
2263
2264        if (!ihost->remote_node_context_table)
2265                return -ENOMEM;
2266
2267        size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268        ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269                                                        GFP_KERNEL);
2270        if (!ihost->task_context_table)
2271                return -ENOMEM;
2272
2273        size = SCI_UFI_TOTAL_SIZE;
2274        ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275        if (!ihost->ufi_buf)
2276                return -ENOMEM;
2277
2278        for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279                struct isci_request *ireq;
2280                dma_addr_t dma;
2281
2282                ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283                if (!ireq)
2284                        return -ENOMEM;
2285
2286                ireq->tc = &ihost->task_context_table[i];
2287                ireq->owning_controller = ihost;
2288                ireq->request_daddr = dma;
2289                ireq->isci_host = ihost;
2290                ihost->reqs[i] = ireq;
2291        }
2292
2293        return 0;
2294}
2295
2296static int sci_controller_mem_init(struct isci_host *ihost)
2297{
2298        int err = sci_controller_dma_alloc(ihost);
2299
2300        if (err)
2301                return err;
2302
2303        writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304        writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305
2306        writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307        writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308
2309        writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310        writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311
2312        sci_unsolicited_frame_control_construct(ihost);
2313
2314        /*
2315         * Inform the silicon as to the location of the UF headers and
2316         * address table.
2317         */
2318        writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319                &ihost->scu_registers->sdma.uf_header_base_address_lower);
2320        writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321                &ihost->scu_registers->sdma.uf_header_base_address_upper);
2322
2323        writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324                &ihost->scu_registers->sdma.uf_address_table_lower);
2325        writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326                &ihost->scu_registers->sdma.uf_address_table_upper);
2327
2328        return 0;
2329}
2330
2331/**
2332 * isci_host_init - (re-)initialize hardware and internal (private) state
2333 * @ihost: host to init
2334 *
2335 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336 * one-time initialization objects like locks and waitqueues, are
2337 * not touched (they are initialized in isci_host_alloc)
2338 */
2339int isci_host_init(struct isci_host *ihost)
2340{
2341        int i, err;
2342        enum sci_status status;
2343
2344        spin_lock_irq(&ihost->scic_lock);
2345        status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346        spin_unlock_irq(&ihost->scic_lock);
2347        if (status != SCI_SUCCESS) {
2348                dev_err(&ihost->pdev->dev,
2349                        "%s: sci_controller_construct failed - status = %x\n",
2350                        __func__,
2351                        status);
2352                return -ENODEV;
2353        }
2354
2355        spin_lock_irq(&ihost->scic_lock);
2356        status = sci_controller_initialize(ihost);
2357        spin_unlock_irq(&ihost->scic_lock);
2358        if (status != SCI_SUCCESS) {
2359                dev_warn(&ihost->pdev->dev,
2360                         "%s: sci_controller_initialize failed -"
2361                         " status = 0x%x\n",
2362                         __func__, status);
2363                return -ENODEV;
2364        }
2365
2366        err = sci_controller_mem_init(ihost);
2367        if (err)
2368                return err;
2369
2370        /* enable sgpio */
2371        writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372        for (i = 0; i < isci_gpio_count(ihost); i++)
2373                writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374        writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375
2376        return 0;
2377}
2378
2379void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380                            struct isci_phy *iphy)
2381{
2382        switch (ihost->sm.current_state_id) {
2383        case SCIC_STARTING:
2384                sci_del_timer(&ihost->phy_timer);
2385                ihost->phy_startup_timer_pending = false;
2386                ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387                                                  iport, iphy);
2388                sci_controller_start_next_phy(ihost);
2389                break;
2390        case SCIC_READY:
2391                ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392                                                  iport, iphy);
2393                break;
2394        default:
2395                dev_dbg(&ihost->pdev->dev,
2396                        "%s: SCIC Controller linkup event from phy %d in "
2397                        "unexpected state %d\n", __func__, iphy->phy_index,
2398                        ihost->sm.current_state_id);
2399        }
2400}
2401
2402void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403                              struct isci_phy *iphy)
2404{
2405        switch (ihost->sm.current_state_id) {
2406        case SCIC_STARTING:
2407        case SCIC_READY:
2408                ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409                                                   iport, iphy);
2410                break;
2411        default:
2412                dev_dbg(&ihost->pdev->dev,
2413                        "%s: SCIC Controller linkdown event from phy %d in "
2414                        "unexpected state %d\n",
2415                        __func__,
2416                        iphy->phy_index,
2417                        ihost->sm.current_state_id);
2418        }
2419}
2420
2421bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422{
2423        u32 index;
2424
2425        for (index = 0; index < ihost->remote_node_entries; index++) {
2426                if ((ihost->device_table[index] != NULL) &&
2427                   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428                        return true;
2429        }
2430
2431        return false;
2432}
2433
2434void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435                                          struct isci_remote_device *idev)
2436{
2437        if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438                dev_dbg(&ihost->pdev->dev,
2439                        "SCIC Controller 0x%p remote device stopped event "
2440                        "from device 0x%p in unexpected state %d\n",
2441                        ihost, idev,
2442                        ihost->sm.current_state_id);
2443                return;
2444        }
2445
2446        if (!sci_controller_has_remote_devices_stopping(ihost))
2447                isci_host_stop_complete(ihost);
2448}
2449
2450void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451{
2452        dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453                __func__, ihost->id, request);
2454
2455        writel(request, &ihost->smu_registers->post_context_port);
2456}
2457
2458struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459{
2460        u16 task_index;
2461        u16 task_sequence;
2462
2463        task_index = ISCI_TAG_TCI(io_tag);
2464
2465        if (task_index < ihost->task_context_entries) {
2466                struct isci_request *ireq = ihost->reqs[task_index];
2467
2468                if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469                        task_sequence = ISCI_TAG_SEQ(io_tag);
2470
2471                        if (task_sequence == ihost->io_request_sequence[task_index])
2472                                return ireq;
2473                }
2474        }
2475
2476        return NULL;
2477}
2478
2479/**
2480 * sci_controller_allocate_remote_node_context()
2481 * This method allocates remote node index and the reserves the remote node
2482 *    context space for use. This method can fail if there are no more remote
2483 *    node index available.
2484 * @ihost: This is the controller object which contains the set of
2485 *    free remote node ids
2486 * @idev: This is the device object which is requesting the a remote node
2487 *    id
2488 * @node_id: This is the remote node id that is assinged to the device if one
2489 *    is available
2490 *
2491 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492 * node index available.
2493 */
2494enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495                                                            struct isci_remote_device *idev,
2496                                                            u16 *node_id)
2497{
2498        u16 node_index;
2499        u32 remote_node_count = sci_remote_device_node_count(idev);
2500
2501        node_index = sci_remote_node_table_allocate_remote_node(
2502                &ihost->available_remote_nodes, remote_node_count
2503                );
2504
2505        if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506                ihost->device_table[node_index] = idev;
2507
2508                *node_id = node_index;
2509
2510                return SCI_SUCCESS;
2511        }
2512
2513        return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514}
2515
2516void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517                                             struct isci_remote_device *idev,
2518                                             u16 node_id)
2519{
2520        u32 remote_node_count = sci_remote_device_node_count(idev);
2521
2522        if (ihost->device_table[node_id] == idev) {
2523                ihost->device_table[node_id] = NULL;
2524
2525                sci_remote_node_table_release_remote_node_index(
2526                        &ihost->available_remote_nodes, remote_node_count, node_id
2527                        );
2528        }
2529}
2530
2531void sci_controller_copy_sata_response(void *response_buffer,
2532                                       void *frame_header,
2533                                       void *frame_buffer)
2534{
2535        /* XXX type safety? */
2536        memcpy(response_buffer, frame_header, sizeof(u32));
2537
2538        memcpy(response_buffer + sizeof(u32),
2539               frame_buffer,
2540               sizeof(struct dev_to_host_fis) - sizeof(u32));
2541}
2542
2543void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544{
2545        if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546                writel(ihost->uf_control.get,
2547                        &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548}
2549
2550void isci_tci_free(struct isci_host *ihost, u16 tci)
2551{
2552        u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553
2554        ihost->tci_pool[tail] = tci;
2555        ihost->tci_tail = tail + 1;
2556}
2557
2558static u16 isci_tci_alloc(struct isci_host *ihost)
2559{
2560        u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561        u16 tci = ihost->tci_pool[head];
2562
2563        ihost->tci_head = head + 1;
2564        return tci;
2565}
2566
2567static u16 isci_tci_space(struct isci_host *ihost)
2568{
2569        return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570}
2571
2572u16 isci_alloc_tag(struct isci_host *ihost)
2573{
2574        if (isci_tci_space(ihost)) {
2575                u16 tci = isci_tci_alloc(ihost);
2576                u8 seq = ihost->io_request_sequence[tci];
2577
2578                return ISCI_TAG(seq, tci);
2579        }
2580
2581        return SCI_CONTROLLER_INVALID_IO_TAG;
2582}
2583
2584enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585{
2586        u16 tci = ISCI_TAG_TCI(io_tag);
2587        u16 seq = ISCI_TAG_SEQ(io_tag);
2588
2589        /* prevent tail from passing head */
2590        if (isci_tci_active(ihost) == 0)
2591                return SCI_FAILURE_INVALID_IO_TAG;
2592
2593        if (seq == ihost->io_request_sequence[tci]) {
2594                ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595
2596                isci_tci_free(ihost, tci);
2597
2598                return SCI_SUCCESS;
2599        }
2600        return SCI_FAILURE_INVALID_IO_TAG;
2601}
2602
2603enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604                                        struct isci_remote_device *idev,
2605                                        struct isci_request *ireq)
2606{
2607        enum sci_status status;
2608
2609        if (ihost->sm.current_state_id != SCIC_READY) {
2610                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611                         __func__, ihost->sm.current_state_id);
2612                return SCI_FAILURE_INVALID_STATE;
2613        }
2614
2615        status = sci_remote_device_start_io(ihost, idev, ireq);
2616        if (status != SCI_SUCCESS)
2617                return status;
2618
2619        set_bit(IREQ_ACTIVE, &ireq->flags);
2620        sci_controller_post_request(ihost, ireq->post_context);
2621        return SCI_SUCCESS;
2622}
2623
2624enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625                                                 struct isci_remote_device *idev,
2626                                                 struct isci_request *ireq)
2627{
2628        /* terminate an ongoing (i.e. started) core IO request.  This does not
2629         * abort the IO request at the target, but rather removes the IO
2630         * request from the host controller.
2631         */
2632        enum sci_status status;
2633
2634        if (ihost->sm.current_state_id != SCIC_READY) {
2635                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636                         __func__, ihost->sm.current_state_id);
2637                return SCI_FAILURE_INVALID_STATE;
2638        }
2639        status = sci_io_request_terminate(ireq);
2640
2641        dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642                __func__, status, ireq, ireq->flags);
2643
2644        if ((status == SCI_SUCCESS) &&
2645            !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646            !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647                /* Utilize the original post context command and or in the
2648                 * POST_TC_ABORT request sub-type.
2649                 */
2650                sci_controller_post_request(
2651                        ihost, ireq->post_context |
2652                                SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653        }
2654        return status;
2655}
2656
2657/**
2658 * sci_controller_complete_io() - This method will perform core specific
2659 *    completion operations for an IO request.  After this method is invoked,
2660 *    the user should consider the IO request as invalid until it is properly
2661 *    reused (i.e. re-constructed).
2662 * @ihost: The handle to the controller object for which to complete the
2663 *    IO request.
2664 * @idev: The handle to the remote device object for which to complete
2665 *    the IO request.
2666 * @ireq: the handle to the io request object to complete.
2667 */
2668enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669                                           struct isci_remote_device *idev,
2670                                           struct isci_request *ireq)
2671{
2672        enum sci_status status;
2673
2674        switch (ihost->sm.current_state_id) {
2675        case SCIC_STOPPING:
2676                /* XXX: Implement this function */
2677                return SCI_FAILURE;
2678        case SCIC_READY:
2679                status = sci_remote_device_complete_io(ihost, idev, ireq);
2680                if (status != SCI_SUCCESS)
2681                        return status;
2682
2683                clear_bit(IREQ_ACTIVE, &ireq->flags);
2684                return SCI_SUCCESS;
2685        default:
2686                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687                         __func__, ihost->sm.current_state_id);
2688                return SCI_FAILURE_INVALID_STATE;
2689        }
2690
2691}
2692
2693enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694{
2695        struct isci_host *ihost = ireq->owning_controller;
2696
2697        if (ihost->sm.current_state_id != SCIC_READY) {
2698                dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699                         __func__, ihost->sm.current_state_id);
2700                return SCI_FAILURE_INVALID_STATE;
2701        }
2702
2703        set_bit(IREQ_ACTIVE, &ireq->flags);
2704        sci_controller_post_request(ihost, ireq->post_context);
2705        return SCI_SUCCESS;
2706}
2707
2708/**
2709 * sci_controller_start_task() - This method is called by the SCIC user to
2710 *    send/start a framework task management request.
2711 * @ihost: the handle to the controller object for which to start the task
2712 *    management request.
2713 * @idev: the handle to the remote device object for which to start
2714 *    the task management request.
2715 * @ireq: the handle to the task request object to start.
2716 */
2717enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718                                          struct isci_remote_device *idev,
2719                                          struct isci_request *ireq)
2720{
2721        enum sci_status status;
2722
2723        if (ihost->sm.current_state_id != SCIC_READY) {
2724                dev_warn(&ihost->pdev->dev,
2725                         "%s: SCIC Controller starting task from invalid "
2726                         "state\n",
2727                         __func__);
2728                return SCI_FAILURE_INVALID_STATE;
2729        }
2730
2731        status = sci_remote_device_start_task(ihost, idev, ireq);
2732        switch (status) {
2733        case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734                set_bit(IREQ_ACTIVE, &ireq->flags);
2735
2736                /*
2737                 * We will let framework know this task request started successfully,
2738                 * although core is still woring on starting the request (to post tc when
2739                 * RNC is resumed.)
2740                 */
2741                return SCI_SUCCESS;
2742        case SCI_SUCCESS:
2743                set_bit(IREQ_ACTIVE, &ireq->flags);
2744                sci_controller_post_request(ihost, ireq->post_context);
2745                break;
2746        default:
2747                break;
2748        }
2749
2750        return status;
2751}
2752
2753static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754{
2755        int d;
2756
2757        /* no support for TX_GP_CFG */
2758        if (reg_index == 0)
2759                return -EINVAL;
2760
2761        for (d = 0; d < isci_gpio_count(ihost); d++) {
2762                u32 val = 0x444; /* all ODx.n clear */
2763                int i;
2764
2765                for (i = 0; i < 3; i++) {
2766                        int bit;
2767
2768                        bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769                                                       write_data, reg_index,
2770                                                       reg_count);
2771                        if (bit < 0)
2772                                break;
2773
2774                        /* if od is set, clear the 'invert' bit */
2775                        val &= ~(bit << ((i << 2) + 2));
2776                }
2777
2778                if (i < 3)
2779                        break;
2780                writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781        }
2782
2783        /* unless reg_index is > 1, we should always be able to write at
2784         * least one register
2785         */
2786        return d > 0;
2787}
2788
2789int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790                    u8 reg_count, u8 *write_data)
2791{
2792        struct isci_host *ihost = sas_ha->lldd_ha;
2793        int written;
2794
2795        switch (reg_type) {
2796        case SAS_GPIO_REG_TX_GP:
2797                written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798                break;
2799        default:
2800                written = -EINVAL;
2801        }
2802
2803        return written;
2804}
2805