linux/drivers/scsi/libfc/fc_exch.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   5 * Copyright(c) 2008 Mike Christie
   6 *
   7 * Maintained at www.Open-FCoE.org
   8 */
   9
  10/*
  11 * Fibre Channel exchange and sequence handling.
  12 */
  13
  14#include <linux/timer.h>
  15#include <linux/slab.h>
  16#include <linux/err.h>
  17#include <linux/export.h>
  18#include <linux/log2.h>
  19
  20#include <scsi/fc/fc_fc2.h>
  21
  22#include <scsi/libfc.h>
  23
  24#include "fc_libfc.h"
  25
  26u16     fc_cpu_mask;            /* cpu mask for possible cpus */
  27EXPORT_SYMBOL(fc_cpu_mask);
  28static u16      fc_cpu_order;   /* 2's power to represent total possible cpus */
  29static struct kmem_cache *fc_em_cachep;        /* cache for exchanges */
  30static struct workqueue_struct *fc_exch_workqueue;
  31
  32/*
  33 * Structure and function definitions for managing Fibre Channel Exchanges
  34 * and Sequences.
  35 *
  36 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  37 *
  38 * fc_exch_mgr holds the exchange state for an N port
  39 *
  40 * fc_exch holds state for one exchange and links to its active sequence.
  41 *
  42 * fc_seq holds the state for an individual sequence.
  43 */
  44
  45/**
  46 * struct fc_exch_pool - Per cpu exchange pool
  47 * @next_index:   Next possible free exchange index
  48 * @total_exches: Total allocated exchanges
  49 * @lock:         Exch pool lock
  50 * @ex_list:      List of exchanges
  51 * @left:         Cache of free slot in exch array
  52 * @right:        Cache of free slot in exch array
  53 *
  54 * This structure manages per cpu exchanges in array of exchange pointers.
  55 * This array is allocated followed by struct fc_exch_pool memory for
  56 * assigned range of exchanges to per cpu pool.
  57 */
  58struct fc_exch_pool {
  59        spinlock_t       lock;
  60        struct list_head ex_list;
  61        u16              next_index;
  62        u16              total_exches;
  63
  64        u16              left;
  65        u16              right;
  66} ____cacheline_aligned_in_smp;
  67
  68/**
  69 * struct fc_exch_mgr - The Exchange Manager (EM).
  70 * @class:          Default class for new sequences
  71 * @kref:           Reference counter
  72 * @min_xid:        Minimum exchange ID
  73 * @max_xid:        Maximum exchange ID
  74 * @ep_pool:        Reserved exchange pointers
  75 * @pool_max_index: Max exch array index in exch pool
  76 * @pool:           Per cpu exch pool
  77 * @lport:          Local exchange port
  78 * @stats:          Statistics structure
  79 *
  80 * This structure is the center for creating exchanges and sequences.
  81 * It manages the allocation of exchange IDs.
  82 */
  83struct fc_exch_mgr {
  84        struct fc_exch_pool __percpu *pool;
  85        mempool_t       *ep_pool;
  86        struct fc_lport *lport;
  87        enum fc_class   class;
  88        struct kref     kref;
  89        u16             min_xid;
  90        u16             max_xid;
  91        u16             pool_max_index;
  92
  93        struct {
  94                atomic_t no_free_exch;
  95                atomic_t no_free_exch_xid;
  96                atomic_t xid_not_found;
  97                atomic_t xid_busy;
  98                atomic_t seq_not_found;
  99                atomic_t non_bls_resp;
 100        } stats;
 101};
 102
 103/**
 104 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 105 * @ema_list: Exchange Manager Anchor list
 106 * @mp:       Exchange Manager associated with this anchor
 107 * @match:    Routine to determine if this anchor's EM should be used
 108 *
 109 * When walking the list of anchors the match routine will be called
 110 * for each anchor to determine if that EM should be used. The last
 111 * anchor in the list will always match to handle any exchanges not
 112 * handled by other EMs. The non-default EMs would be added to the
 113 * anchor list by HW that provides offloads.
 114 */
 115struct fc_exch_mgr_anchor {
 116        struct list_head ema_list;
 117        struct fc_exch_mgr *mp;
 118        bool (*match)(struct fc_frame *);
 119};
 120
 121static void fc_exch_rrq(struct fc_exch *);
 122static void fc_seq_ls_acc(struct fc_frame *);
 123static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 124                          enum fc_els_rjt_explan);
 125static void fc_exch_els_rec(struct fc_frame *);
 126static void fc_exch_els_rrq(struct fc_frame *);
 127
 128/*
 129 * Internal implementation notes.
 130 *
 131 * The exchange manager is one by default in libfc but LLD may choose
 132 * to have one per CPU. The sequence manager is one per exchange manager
 133 * and currently never separated.
 134 *
 135 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 136 * assigned by the Sequence Initiator that shall be unique for a specific
 137 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 138 * qualified by exchange ID, which one might think it would be.
 139 * In practice this limits the number of open sequences and exchanges to 256
 140 * per session.  For most targets we could treat this limit as per exchange.
 141 *
 142 * The exchange and its sequence are freed when the last sequence is received.
 143 * It's possible for the remote port to leave an exchange open without
 144 * sending any sequences.
 145 *
 146 * Notes on reference counts:
 147 *
 148 * Exchanges are reference counted and exchange gets freed when the reference
 149 * count becomes zero.
 150 *
 151 * Timeouts:
 152 * Sequences are timed out for E_D_TOV and R_A_TOV.
 153 *
 154 * Sequence event handling:
 155 *
 156 * The following events may occur on initiator sequences:
 157 *
 158 *      Send.
 159 *          For now, the whole thing is sent.
 160 *      Receive ACK
 161 *          This applies only to class F.
 162 *          The sequence is marked complete.
 163 *      ULP completion.
 164 *          The upper layer calls fc_exch_done() when done
 165 *          with exchange and sequence tuple.
 166 *      RX-inferred completion.
 167 *          When we receive the next sequence on the same exchange, we can
 168 *          retire the previous sequence ID.  (XXX not implemented).
 169 *      Timeout.
 170 *          R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 171 *          E_D_TOV causes abort and calls upper layer response handler
 172 *          with FC_EX_TIMEOUT error.
 173 *      Receive RJT
 174 *          XXX defer.
 175 *      Send ABTS
 176 *          On timeout.
 177 *
 178 * The following events may occur on recipient sequences:
 179 *
 180 *      Receive
 181 *          Allocate sequence for first frame received.
 182 *          Hold during receive handler.
 183 *          Release when final frame received.
 184 *          Keep status of last N of these for the ELS RES command.  XXX TBD.
 185 *      Receive ABTS
 186 *          Deallocate sequence
 187 *      Send RJT
 188 *          Deallocate
 189 *
 190 * For now, we neglect conditions where only part of a sequence was
 191 * received or transmitted, or where out-of-order receipt is detected.
 192 */
 193
 194/*
 195 * Locking notes:
 196 *
 197 * The EM code run in a per-CPU worker thread.
 198 *
 199 * To protect against concurrency between a worker thread code and timers,
 200 * sequence allocation and deallocation must be locked.
 201 *  - exchange refcnt can be done atomicly without locks.
 202 *  - sequence allocation must be locked by exch lock.
 203 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 204 *    EM pool lock must be taken before the ex_lock.
 205 */
 206
 207/*
 208 * opcode names for debugging.
 209 */
 210static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 211
 212/**
 213 * fc_exch_name_lookup() - Lookup name by opcode
 214 * @op:        Opcode to be looked up
 215 * @table:     Opcode/name table
 216 * @max_index: Index not to be exceeded
 217 *
 218 * This routine is used to determine a human-readable string identifying
 219 * a R_CTL opcode.
 220 */
 221static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 222                                              unsigned int max_index)
 223{
 224        const char *name = NULL;
 225
 226        if (op < max_index)
 227                name = table[op];
 228        if (!name)
 229                name = "unknown";
 230        return name;
 231}
 232
 233/**
 234 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 235 * @op: The opcode to be looked up
 236 */
 237static const char *fc_exch_rctl_name(unsigned int op)
 238{
 239        return fc_exch_name_lookup(op, fc_exch_rctl_names,
 240                                   ARRAY_SIZE(fc_exch_rctl_names));
 241}
 242
 243/**
 244 * fc_exch_hold() - Increment an exchange's reference count
 245 * @ep: Echange to be held
 246 */
 247static inline void fc_exch_hold(struct fc_exch *ep)
 248{
 249        atomic_inc(&ep->ex_refcnt);
 250}
 251
 252/**
 253 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 254 *                       and determine SOF and EOF.
 255 * @ep:    The exchange to that will use the header
 256 * @fp:    The frame whose header is to be modified
 257 * @f_ctl: F_CTL bits that will be used for the frame header
 258 *
 259 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 260 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 261 */
 262static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 263                              u32 f_ctl)
 264{
 265        struct fc_frame_header *fh = fc_frame_header_get(fp);
 266        u16 fill;
 267
 268        fr_sof(fp) = ep->class;
 269        if (ep->seq.cnt)
 270                fr_sof(fp) = fc_sof_normal(ep->class);
 271
 272        if (f_ctl & FC_FC_END_SEQ) {
 273                fr_eof(fp) = FC_EOF_T;
 274                if (fc_sof_needs_ack((enum fc_sof)ep->class))
 275                        fr_eof(fp) = FC_EOF_N;
 276                /*
 277                 * From F_CTL.
 278                 * The number of fill bytes to make the length a 4-byte
 279                 * multiple is the low order 2-bits of the f_ctl.
 280                 * The fill itself will have been cleared by the frame
 281                 * allocation.
 282                 * After this, the length will be even, as expected by
 283                 * the transport.
 284                 */
 285                fill = fr_len(fp) & 3;
 286                if (fill) {
 287                        fill = 4 - fill;
 288                        /* TODO, this may be a problem with fragmented skb */
 289                        skb_put(fp_skb(fp), fill);
 290                        hton24(fh->fh_f_ctl, f_ctl | fill);
 291                }
 292        } else {
 293                WARN_ON(fr_len(fp) % 4 != 0);   /* no pad to non last frame */
 294                fr_eof(fp) = FC_EOF_N;
 295        }
 296
 297        /* Initialize remaining fh fields from fc_fill_fc_hdr */
 298        fh->fh_ox_id = htons(ep->oxid);
 299        fh->fh_rx_id = htons(ep->rxid);
 300        fh->fh_seq_id = ep->seq.id;
 301        fh->fh_seq_cnt = htons(ep->seq.cnt);
 302}
 303
 304/**
 305 * fc_exch_release() - Decrement an exchange's reference count
 306 * @ep: Exchange to be released
 307 *
 308 * If the reference count reaches zero and the exchange is complete,
 309 * it is freed.
 310 */
 311static void fc_exch_release(struct fc_exch *ep)
 312{
 313        struct fc_exch_mgr *mp;
 314
 315        if (atomic_dec_and_test(&ep->ex_refcnt)) {
 316                mp = ep->em;
 317                if (ep->destructor)
 318                        ep->destructor(&ep->seq, ep->arg);
 319                WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 320                mempool_free(ep, mp->ep_pool);
 321        }
 322}
 323
 324/**
 325 * fc_exch_timer_cancel() - cancel exch timer
 326 * @ep:         The exchange whose timer to be canceled
 327 */
 328static inline void fc_exch_timer_cancel(struct fc_exch *ep)
 329{
 330        if (cancel_delayed_work(&ep->timeout_work)) {
 331                FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 332                atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 333        }
 334}
 335
 336/**
 337 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 338 *                              the exchange lock held
 339 * @ep:         The exchange whose timer will start
 340 * @timer_msec: The timeout period
 341 *
 342 * Used for upper level protocols to time out the exchange.
 343 * The timer is cancelled when it fires or when the exchange completes.
 344 */
 345static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 346                                            unsigned int timer_msec)
 347{
 348        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 349                return;
 350
 351        FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 352
 353        fc_exch_hold(ep);               /* hold for timer */
 354        if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 355                                msecs_to_jiffies(timer_msec))) {
 356                FC_EXCH_DBG(ep, "Exchange already queued\n");
 357                fc_exch_release(ep);
 358        }
 359}
 360
 361/**
 362 * fc_exch_timer_set() - Lock the exchange and set the timer
 363 * @ep:         The exchange whose timer will start
 364 * @timer_msec: The timeout period
 365 */
 366static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 367{
 368        spin_lock_bh(&ep->ex_lock);
 369        fc_exch_timer_set_locked(ep, timer_msec);
 370        spin_unlock_bh(&ep->ex_lock);
 371}
 372
 373/**
 374 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 375 * @ep: The exchange that is complete
 376 *
 377 * Note: May sleep if invoked from outside a response handler.
 378 */
 379static int fc_exch_done_locked(struct fc_exch *ep)
 380{
 381        int rc = 1;
 382
 383        /*
 384         * We must check for completion in case there are two threads
 385         * tyring to complete this. But the rrq code will reuse the
 386         * ep, and in that case we only clear the resp and set it as
 387         * complete, so it can be reused by the timer to send the rrq.
 388         */
 389        if (ep->state & FC_EX_DONE)
 390                return rc;
 391        ep->esb_stat |= ESB_ST_COMPLETE;
 392
 393        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 394                ep->state |= FC_EX_DONE;
 395                fc_exch_timer_cancel(ep);
 396                rc = 0;
 397        }
 398        return rc;
 399}
 400
 401static struct fc_exch fc_quarantine_exch;
 402
 403/**
 404 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 405 * @pool:  Exchange Pool to get an exchange from
 406 * @index: Index of the exchange within the pool
 407 *
 408 * Use the index to get an exchange from within an exchange pool. exches
 409 * will point to an array of exchange pointers. The index will select
 410 * the exchange within the array.
 411 */
 412static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 413                                              u16 index)
 414{
 415        struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 416        return exches[index];
 417}
 418
 419/**
 420 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 421 * @pool:  The pool to assign the exchange to
 422 * @index: The index in the pool where the exchange will be assigned
 423 * @ep:    The exchange to assign to the pool
 424 */
 425static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 426                                   struct fc_exch *ep)
 427{
 428        ((struct fc_exch **)(pool + 1))[index] = ep;
 429}
 430
 431/**
 432 * fc_exch_delete() - Delete an exchange
 433 * @ep: The exchange to be deleted
 434 */
 435static void fc_exch_delete(struct fc_exch *ep)
 436{
 437        struct fc_exch_pool *pool;
 438        u16 index;
 439
 440        pool = ep->pool;
 441        spin_lock_bh(&pool->lock);
 442        WARN_ON(pool->total_exches <= 0);
 443        pool->total_exches--;
 444
 445        /* update cache of free slot */
 446        index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 447        if (!(ep->state & FC_EX_QUARANTINE)) {
 448                if (pool->left == FC_XID_UNKNOWN)
 449                        pool->left = index;
 450                else if (pool->right == FC_XID_UNKNOWN)
 451                        pool->right = index;
 452                else
 453                        pool->next_index = index;
 454                fc_exch_ptr_set(pool, index, NULL);
 455        } else {
 456                fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
 457        }
 458        list_del(&ep->ex_list);
 459        spin_unlock_bh(&pool->lock);
 460        fc_exch_release(ep);    /* drop hold for exch in mp */
 461}
 462
 463static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 464                              struct fc_frame *fp)
 465{
 466        struct fc_exch *ep;
 467        struct fc_frame_header *fh = fc_frame_header_get(fp);
 468        int error = -ENXIO;
 469        u32 f_ctl;
 470        u8 fh_type = fh->fh_type;
 471
 472        ep = fc_seq_exch(sp);
 473
 474        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
 475                fc_frame_free(fp);
 476                goto out;
 477        }
 478
 479        WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 480
 481        f_ctl = ntoh24(fh->fh_f_ctl);
 482        fc_exch_setup_hdr(ep, fp, f_ctl);
 483        fr_encaps(fp) = ep->encaps;
 484
 485        /*
 486         * update sequence count if this frame is carrying
 487         * multiple FC frames when sequence offload is enabled
 488         * by LLD.
 489         */
 490        if (fr_max_payload(fp))
 491                sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 492                                        fr_max_payload(fp));
 493        else
 494                sp->cnt++;
 495
 496        /*
 497         * Send the frame.
 498         */
 499        error = lport->tt.frame_send(lport, fp);
 500
 501        if (fh_type == FC_TYPE_BLS)
 502                goto out;
 503
 504        /*
 505         * Update the exchange and sequence flags,
 506         * assuming all frames for the sequence have been sent.
 507         * We can only be called to send once for each sequence.
 508         */
 509        ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;   /* not first seq */
 510        if (f_ctl & FC_FC_SEQ_INIT)
 511                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 512out:
 513        return error;
 514}
 515
 516/**
 517 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 518 * @lport: The local port that the exchange will be sent on
 519 * @sp:    The sequence to be sent
 520 * @fp:    The frame to be sent on the exchange
 521 *
 522 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
 523 * or indirectly by calling libfc_function_template.frame_send().
 524 */
 525int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
 526{
 527        struct fc_exch *ep;
 528        int error;
 529        ep = fc_seq_exch(sp);
 530        spin_lock_bh(&ep->ex_lock);
 531        error = fc_seq_send_locked(lport, sp, fp);
 532        spin_unlock_bh(&ep->ex_lock);
 533        return error;
 534}
 535EXPORT_SYMBOL(fc_seq_send);
 536
 537/**
 538 * fc_seq_alloc() - Allocate a sequence for a given exchange
 539 * @ep:     The exchange to allocate a new sequence for
 540 * @seq_id: The sequence ID to be used
 541 *
 542 * We don't support multiple originated sequences on the same exchange.
 543 * By implication, any previously originated sequence on this exchange
 544 * is complete, and we reallocate the same sequence.
 545 */
 546static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 547{
 548        struct fc_seq *sp;
 549
 550        sp = &ep->seq;
 551        sp->ssb_stat = 0;
 552        sp->cnt = 0;
 553        sp->id = seq_id;
 554        return sp;
 555}
 556
 557/**
 558 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 559 *                              exchange as the supplied sequence
 560 * @sp: The sequence/exchange to get a new sequence for
 561 */
 562static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 563{
 564        struct fc_exch *ep = fc_seq_exch(sp);
 565
 566        sp = fc_seq_alloc(ep, ep->seq_id++);
 567        FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 568                    ep->f_ctl, sp->id);
 569        return sp;
 570}
 571
 572/**
 573 * fc_seq_start_next() - Lock the exchange and get a new sequence
 574 *                       for a given sequence/exchange pair
 575 * @sp: The sequence/exchange to get a new exchange for
 576 */
 577struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 578{
 579        struct fc_exch *ep = fc_seq_exch(sp);
 580
 581        spin_lock_bh(&ep->ex_lock);
 582        sp = fc_seq_start_next_locked(sp);
 583        spin_unlock_bh(&ep->ex_lock);
 584
 585        return sp;
 586}
 587EXPORT_SYMBOL(fc_seq_start_next);
 588
 589/*
 590 * Set the response handler for the exchange associated with a sequence.
 591 *
 592 * Note: May sleep if invoked from outside a response handler.
 593 */
 594void fc_seq_set_resp(struct fc_seq *sp,
 595                     void (*resp)(struct fc_seq *, struct fc_frame *, void *),
 596                     void *arg)
 597{
 598        struct fc_exch *ep = fc_seq_exch(sp);
 599        DEFINE_WAIT(wait);
 600
 601        spin_lock_bh(&ep->ex_lock);
 602        while (ep->resp_active && ep->resp_task != current) {
 603                prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
 604                spin_unlock_bh(&ep->ex_lock);
 605
 606                schedule();
 607
 608                spin_lock_bh(&ep->ex_lock);
 609        }
 610        finish_wait(&ep->resp_wq, &wait);
 611        ep->resp = resp;
 612        ep->arg = arg;
 613        spin_unlock_bh(&ep->ex_lock);
 614}
 615EXPORT_SYMBOL(fc_seq_set_resp);
 616
 617/**
 618 * fc_exch_abort_locked() - Abort an exchange
 619 * @ep: The exchange to be aborted
 620 * @timer_msec: The period of time to wait before aborting
 621 *
 622 * Abort an exchange and sequence. Generally called because of a
 623 * exchange timeout or an abort from the upper layer.
 624 *
 625 * A timer_msec can be specified for abort timeout, if non-zero
 626 * timer_msec value is specified then exchange resp handler
 627 * will be called with timeout error if no response to abort.
 628 *
 629 * Locking notes:  Called with exch lock held
 630 *
 631 * Return value: 0 on success else error code
 632 */
 633static int fc_exch_abort_locked(struct fc_exch *ep,
 634                                unsigned int timer_msec)
 635{
 636        struct fc_seq *sp;
 637        struct fc_frame *fp;
 638        int error;
 639
 640        FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
 641        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 642            ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
 643                FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
 644                            ep->esb_stat, ep->state);
 645                return -ENXIO;
 646        }
 647
 648        /*
 649         * Send the abort on a new sequence if possible.
 650         */
 651        sp = fc_seq_start_next_locked(&ep->seq);
 652        if (!sp)
 653                return -ENOMEM;
 654
 655        if (timer_msec)
 656                fc_exch_timer_set_locked(ep, timer_msec);
 657
 658        if (ep->sid) {
 659                /*
 660                 * Send an abort for the sequence that timed out.
 661                 */
 662                fp = fc_frame_alloc(ep->lp, 0);
 663                if (fp) {
 664                        ep->esb_stat |= ESB_ST_SEQ_INIT;
 665                        fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 666                                       FC_TYPE_BLS, FC_FC_END_SEQ |
 667                                       FC_FC_SEQ_INIT, 0);
 668                        error = fc_seq_send_locked(ep->lp, sp, fp);
 669                } else {
 670                        error = -ENOBUFS;
 671                }
 672        } else {
 673                /*
 674                 * If not logged into the fabric, don't send ABTS but leave
 675                 * sequence active until next timeout.
 676                 */
 677                error = 0;
 678        }
 679        ep->esb_stat |= ESB_ST_ABNORMAL;
 680        return error;
 681}
 682
 683/**
 684 * fc_seq_exch_abort() - Abort an exchange and sequence
 685 * @req_sp:     The sequence to be aborted
 686 * @timer_msec: The period of time to wait before aborting
 687 *
 688 * Generally called because of a timeout or an abort from the upper layer.
 689 *
 690 * Return value: 0 on success else error code
 691 */
 692int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
 693{
 694        struct fc_exch *ep;
 695        int error;
 696
 697        ep = fc_seq_exch(req_sp);
 698        spin_lock_bh(&ep->ex_lock);
 699        error = fc_exch_abort_locked(ep, timer_msec);
 700        spin_unlock_bh(&ep->ex_lock);
 701        return error;
 702}
 703
 704/**
 705 * fc_invoke_resp() - invoke ep->resp()
 706 * @ep:    The exchange to be operated on
 707 * @fp:    The frame pointer to pass through to ->resp()
 708 * @sp:    The sequence pointer to pass through to ->resp()
 709 *
 710 * Notes:
 711 * It is assumed that after initialization finished (this means the
 712 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
 713 * modified only via fc_seq_set_resp(). This guarantees that none of these
 714 * two variables changes if ep->resp_active > 0.
 715 *
 716 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
 717 * this function is invoked, the first spin_lock_bh() call in this function
 718 * will wait until fc_seq_set_resp() has finished modifying these variables.
 719 *
 720 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
 721 * ep->resp() won't be invoked after fc_exch_done() has returned.
 722 *
 723 * The response handler itself may invoke fc_exch_done(), which will clear the
 724 * ep->resp pointer.
 725 *
 726 * Return value:
 727 * Returns true if and only if ep->resp has been invoked.
 728 */
 729static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
 730                           struct fc_frame *fp)
 731{
 732        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 733        void *arg;
 734        bool res = false;
 735
 736        spin_lock_bh(&ep->ex_lock);
 737        ep->resp_active++;
 738        if (ep->resp_task != current)
 739                ep->resp_task = !ep->resp_task ? current : NULL;
 740        resp = ep->resp;
 741        arg = ep->arg;
 742        spin_unlock_bh(&ep->ex_lock);
 743
 744        if (resp) {
 745                resp(sp, fp, arg);
 746                res = true;
 747        }
 748
 749        spin_lock_bh(&ep->ex_lock);
 750        if (--ep->resp_active == 0)
 751                ep->resp_task = NULL;
 752        spin_unlock_bh(&ep->ex_lock);
 753
 754        if (ep->resp_active == 0)
 755                wake_up(&ep->resp_wq);
 756
 757        return res;
 758}
 759
 760/**
 761 * fc_exch_timeout() - Handle exchange timer expiration
 762 * @work: The work_struct identifying the exchange that timed out
 763 */
 764static void fc_exch_timeout(struct work_struct *work)
 765{
 766        struct fc_exch *ep = container_of(work, struct fc_exch,
 767                                          timeout_work.work);
 768        struct fc_seq *sp = &ep->seq;
 769        u32 e_stat;
 770        int rc = 1;
 771
 772        FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
 773
 774        spin_lock_bh(&ep->ex_lock);
 775        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 776                goto unlock;
 777
 778        e_stat = ep->esb_stat;
 779        if (e_stat & ESB_ST_COMPLETE) {
 780                ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 781                spin_unlock_bh(&ep->ex_lock);
 782                if (e_stat & ESB_ST_REC_QUAL)
 783                        fc_exch_rrq(ep);
 784                goto done;
 785        } else {
 786                if (e_stat & ESB_ST_ABNORMAL)
 787                        rc = fc_exch_done_locked(ep);
 788                spin_unlock_bh(&ep->ex_lock);
 789                if (!rc)
 790                        fc_exch_delete(ep);
 791                fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
 792                fc_seq_set_resp(sp, NULL, ep->arg);
 793                fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 794                goto done;
 795        }
 796unlock:
 797        spin_unlock_bh(&ep->ex_lock);
 798done:
 799        /*
 800         * This release matches the hold taken when the timer was set.
 801         */
 802        fc_exch_release(ep);
 803}
 804
 805/**
 806 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 807 * @lport: The local port that the exchange is for
 808 * @mp:    The exchange manager that will allocate the exchange
 809 *
 810 * Returns pointer to allocated fc_exch with exch lock held.
 811 */
 812static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 813                                        struct fc_exch_mgr *mp)
 814{
 815        struct fc_exch *ep;
 816        unsigned int cpu;
 817        u16 index;
 818        struct fc_exch_pool *pool;
 819
 820        /* allocate memory for exchange */
 821        ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 822        if (!ep) {
 823                atomic_inc(&mp->stats.no_free_exch);
 824                goto out;
 825        }
 826        memset(ep, 0, sizeof(*ep));
 827
 828        cpu = get_cpu();
 829        pool = per_cpu_ptr(mp->pool, cpu);
 830        spin_lock_bh(&pool->lock);
 831        put_cpu();
 832
 833        /* peek cache of free slot */
 834        if (pool->left != FC_XID_UNKNOWN) {
 835                if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
 836                        index = pool->left;
 837                        pool->left = FC_XID_UNKNOWN;
 838                        goto hit;
 839                }
 840        }
 841        if (pool->right != FC_XID_UNKNOWN) {
 842                if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
 843                        index = pool->right;
 844                        pool->right = FC_XID_UNKNOWN;
 845                        goto hit;
 846                }
 847        }
 848
 849        index = pool->next_index;
 850        /* allocate new exch from pool */
 851        while (fc_exch_ptr_get(pool, index)) {
 852                index = index == mp->pool_max_index ? 0 : index + 1;
 853                if (index == pool->next_index)
 854                        goto err;
 855        }
 856        pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 857hit:
 858        fc_exch_hold(ep);       /* hold for exch in mp */
 859        spin_lock_init(&ep->ex_lock);
 860        /*
 861         * Hold exch lock for caller to prevent fc_exch_reset()
 862         * from releasing exch  while fc_exch_alloc() caller is
 863         * still working on exch.
 864         */
 865        spin_lock_bh(&ep->ex_lock);
 866
 867        fc_exch_ptr_set(pool, index, ep);
 868        list_add_tail(&ep->ex_list, &pool->ex_list);
 869        fc_seq_alloc(ep, ep->seq_id++);
 870        pool->total_exches++;
 871        spin_unlock_bh(&pool->lock);
 872
 873        /*
 874         *  update exchange
 875         */
 876        ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 877        ep->em = mp;
 878        ep->pool = pool;
 879        ep->lp = lport;
 880        ep->f_ctl = FC_FC_FIRST_SEQ;    /* next seq is first seq */
 881        ep->rxid = FC_XID_UNKNOWN;
 882        ep->class = mp->class;
 883        ep->resp_active = 0;
 884        init_waitqueue_head(&ep->resp_wq);
 885        INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 886out:
 887        return ep;
 888err:
 889        spin_unlock_bh(&pool->lock);
 890        atomic_inc(&mp->stats.no_free_exch_xid);
 891        mempool_free(ep, mp->ep_pool);
 892        return NULL;
 893}
 894
 895/**
 896 * fc_exch_alloc() - Allocate an exchange from an EM on a
 897 *                   local port's list of EMs.
 898 * @lport: The local port that will own the exchange
 899 * @fp:    The FC frame that the exchange will be for
 900 *
 901 * This function walks the list of exchange manager(EM)
 902 * anchors to select an EM for a new exchange allocation. The
 903 * EM is selected when a NULL match function pointer is encountered
 904 * or when a call to a match function returns true.
 905 */
 906static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 907                                     struct fc_frame *fp)
 908{
 909        struct fc_exch_mgr_anchor *ema;
 910        struct fc_exch *ep;
 911
 912        list_for_each_entry(ema, &lport->ema_list, ema_list) {
 913                if (!ema->match || ema->match(fp)) {
 914                        ep = fc_exch_em_alloc(lport, ema->mp);
 915                        if (ep)
 916                                return ep;
 917                }
 918        }
 919        return NULL;
 920}
 921
 922/**
 923 * fc_exch_find() - Lookup and hold an exchange
 924 * @mp:  The exchange manager to lookup the exchange from
 925 * @xid: The XID of the exchange to look up
 926 */
 927static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 928{
 929        struct fc_lport *lport = mp->lport;
 930        struct fc_exch_pool *pool;
 931        struct fc_exch *ep = NULL;
 932        u16 cpu = xid & fc_cpu_mask;
 933
 934        if (xid == FC_XID_UNKNOWN)
 935                return NULL;
 936
 937        if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 938                pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
 939                       lport->host->host_no, lport->port_id, xid, cpu);
 940                return NULL;
 941        }
 942
 943        if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 944                pool = per_cpu_ptr(mp->pool, cpu);
 945                spin_lock_bh(&pool->lock);
 946                ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 947                if (ep == &fc_quarantine_exch) {
 948                        FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
 949                        ep = NULL;
 950                }
 951                if (ep) {
 952                        WARN_ON(ep->xid != xid);
 953                        fc_exch_hold(ep);
 954                }
 955                spin_unlock_bh(&pool->lock);
 956        }
 957        return ep;
 958}
 959
 960
 961/**
 962 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 963 *                  the memory allocated for the related objects may be freed.
 964 * @sp: The sequence that has completed
 965 *
 966 * Note: May sleep if invoked from outside a response handler.
 967 */
 968void fc_exch_done(struct fc_seq *sp)
 969{
 970        struct fc_exch *ep = fc_seq_exch(sp);
 971        int rc;
 972
 973        spin_lock_bh(&ep->ex_lock);
 974        rc = fc_exch_done_locked(ep);
 975        spin_unlock_bh(&ep->ex_lock);
 976
 977        fc_seq_set_resp(sp, NULL, ep->arg);
 978        if (!rc)
 979                fc_exch_delete(ep);
 980}
 981EXPORT_SYMBOL(fc_exch_done);
 982
 983/**
 984 * fc_exch_resp() - Allocate a new exchange for a response frame
 985 * @lport: The local port that the exchange was for
 986 * @mp:    The exchange manager to allocate the exchange from
 987 * @fp:    The response frame
 988 *
 989 * Sets the responder ID in the frame header.
 990 */
 991static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 992                                    struct fc_exch_mgr *mp,
 993                                    struct fc_frame *fp)
 994{
 995        struct fc_exch *ep;
 996        struct fc_frame_header *fh;
 997
 998        ep = fc_exch_alloc(lport, fp);
 999        if (ep) {
1000                ep->class = fc_frame_class(fp);
1001
1002                /*
1003                 * Set EX_CTX indicating we're responding on this exchange.
1004                 */
1005                ep->f_ctl |= FC_FC_EX_CTX;      /* we're responding */
1006                ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not new */
1007                fh = fc_frame_header_get(fp);
1008                ep->sid = ntoh24(fh->fh_d_id);
1009                ep->did = ntoh24(fh->fh_s_id);
1010                ep->oid = ep->did;
1011
1012                /*
1013                 * Allocated exchange has placed the XID in the
1014                 * originator field. Move it to the responder field,
1015                 * and set the originator XID from the frame.
1016                 */
1017                ep->rxid = ep->xid;
1018                ep->oxid = ntohs(fh->fh_ox_id);
1019                ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1020                if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1021                        ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1022
1023                fc_exch_hold(ep);       /* hold for caller */
1024                spin_unlock_bh(&ep->ex_lock);   /* lock from fc_exch_alloc */
1025        }
1026        return ep;
1027}
1028
1029/**
1030 * fc_seq_lookup_recip() - Find a sequence where the other end
1031 *                         originated the sequence
1032 * @lport: The local port that the frame was sent to
1033 * @mp:    The Exchange Manager to lookup the exchange from
1034 * @fp:    The frame associated with the sequence we're looking for
1035 *
1036 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1037 * on the ep that should be released by the caller.
1038 */
1039static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1040                                                 struct fc_exch_mgr *mp,
1041                                                 struct fc_frame *fp)
1042{
1043        struct fc_frame_header *fh = fc_frame_header_get(fp);
1044        struct fc_exch *ep = NULL;
1045        struct fc_seq *sp = NULL;
1046        enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1047        u32 f_ctl;
1048        u16 xid;
1049
1050        f_ctl = ntoh24(fh->fh_f_ctl);
1051        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1052
1053        /*
1054         * Lookup or create the exchange if we will be creating the sequence.
1055         */
1056        if (f_ctl & FC_FC_EX_CTX) {
1057                xid = ntohs(fh->fh_ox_id);      /* we originated exch */
1058                ep = fc_exch_find(mp, xid);
1059                if (!ep) {
1060                        atomic_inc(&mp->stats.xid_not_found);
1061                        reject = FC_RJT_OX_ID;
1062                        goto out;
1063                }
1064                if (ep->rxid == FC_XID_UNKNOWN)
1065                        ep->rxid = ntohs(fh->fh_rx_id);
1066                else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1067                        reject = FC_RJT_OX_ID;
1068                        goto rel;
1069                }
1070        } else {
1071                xid = ntohs(fh->fh_rx_id);      /* we are the responder */
1072
1073                /*
1074                 * Special case for MDS issuing an ELS TEST with a
1075                 * bad rxid of 0.
1076                 * XXX take this out once we do the proper reject.
1077                 */
1078                if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1079                    fc_frame_payload_op(fp) == ELS_TEST) {
1080                        fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1081                        xid = FC_XID_UNKNOWN;
1082                }
1083
1084                /*
1085                 * new sequence - find the exchange
1086                 */
1087                ep = fc_exch_find(mp, xid);
1088                if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1089                        if (ep) {
1090                                atomic_inc(&mp->stats.xid_busy);
1091                                reject = FC_RJT_RX_ID;
1092                                goto rel;
1093                        }
1094                        ep = fc_exch_resp(lport, mp, fp);
1095                        if (!ep) {
1096                                reject = FC_RJT_EXCH_EST;       /* XXX */
1097                                goto out;
1098                        }
1099                        xid = ep->xid;  /* get our XID */
1100                } else if (!ep) {
1101                        atomic_inc(&mp->stats.xid_not_found);
1102                        reject = FC_RJT_RX_ID;  /* XID not found */
1103                        goto out;
1104                }
1105        }
1106
1107        spin_lock_bh(&ep->ex_lock);
1108        /*
1109         * At this point, we have the exchange held.
1110         * Find or create the sequence.
1111         */
1112        if (fc_sof_is_init(fr_sof(fp))) {
1113                sp = &ep->seq;
1114                sp->ssb_stat |= SSB_ST_RESP;
1115                sp->id = fh->fh_seq_id;
1116        } else {
1117                sp = &ep->seq;
1118                if (sp->id != fh->fh_seq_id) {
1119                        atomic_inc(&mp->stats.seq_not_found);
1120                        if (f_ctl & FC_FC_END_SEQ) {
1121                                /*
1122                                 * Update sequence_id based on incoming last
1123                                 * frame of sequence exchange. This is needed
1124                                 * for FC target where DDP has been used
1125                                 * on target where, stack is indicated only
1126                                 * about last frame's (payload _header) header.
1127                                 * Whereas "seq_id" which is part of
1128                                 * frame_header is allocated by initiator
1129                                 * which is totally different from "seq_id"
1130                                 * allocated when XFER_RDY was sent by target.
1131                                 * To avoid false -ve which results into not
1132                                 * sending RSP, hence write request on other
1133                                 * end never finishes.
1134                                 */
1135                                sp->ssb_stat |= SSB_ST_RESP;
1136                                sp->id = fh->fh_seq_id;
1137                        } else {
1138                                spin_unlock_bh(&ep->ex_lock);
1139
1140                                /* sequence/exch should exist */
1141                                reject = FC_RJT_SEQ_ID;
1142                                goto rel;
1143                        }
1144                }
1145        }
1146        WARN_ON(ep != fc_seq_exch(sp));
1147
1148        if (f_ctl & FC_FC_SEQ_INIT)
1149                ep->esb_stat |= ESB_ST_SEQ_INIT;
1150        spin_unlock_bh(&ep->ex_lock);
1151
1152        fr_seq(fp) = sp;
1153out:
1154        return reject;
1155rel:
1156        fc_exch_done(&ep->seq);
1157        fc_exch_release(ep);    /* hold from fc_exch_find/fc_exch_resp */
1158        return reject;
1159}
1160
1161/**
1162 * fc_seq_lookup_orig() - Find a sequence where this end
1163 *                        originated the sequence
1164 * @mp:    The Exchange Manager to lookup the exchange from
1165 * @fp:    The frame associated with the sequence we're looking for
1166 *
1167 * Does not hold the sequence for the caller.
1168 */
1169static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1170                                         struct fc_frame *fp)
1171{
1172        struct fc_frame_header *fh = fc_frame_header_get(fp);
1173        struct fc_exch *ep;
1174        struct fc_seq *sp = NULL;
1175        u32 f_ctl;
1176        u16 xid;
1177
1178        f_ctl = ntoh24(fh->fh_f_ctl);
1179        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1180        xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1181        ep = fc_exch_find(mp, xid);
1182        if (!ep)
1183                return NULL;
1184        if (ep->seq.id == fh->fh_seq_id) {
1185                /*
1186                 * Save the RX_ID if we didn't previously know it.
1187                 */
1188                sp = &ep->seq;
1189                if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1190                    ep->rxid == FC_XID_UNKNOWN) {
1191                        ep->rxid = ntohs(fh->fh_rx_id);
1192                }
1193        }
1194        fc_exch_release(ep);
1195        return sp;
1196}
1197
1198/**
1199 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1200 * @ep:      The exchange to set the addresses for
1201 * @orig_id: The originator's ID
1202 * @resp_id: The responder's ID
1203 *
1204 * Note this must be done before the first sequence of the exchange is sent.
1205 */
1206static void fc_exch_set_addr(struct fc_exch *ep,
1207                             u32 orig_id, u32 resp_id)
1208{
1209        ep->oid = orig_id;
1210        if (ep->esb_stat & ESB_ST_RESP) {
1211                ep->sid = resp_id;
1212                ep->did = orig_id;
1213        } else {
1214                ep->sid = orig_id;
1215                ep->did = resp_id;
1216        }
1217}
1218
1219/**
1220 * fc_seq_els_rsp_send() - Send an ELS response using information from
1221 *                         the existing sequence/exchange.
1222 * @fp:       The received frame
1223 * @els_cmd:  The ELS command to be sent
1224 * @els_data: The ELS data to be sent
1225 *
1226 * The received frame is not freed.
1227 */
1228void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1229                         struct fc_seq_els_data *els_data)
1230{
1231        switch (els_cmd) {
1232        case ELS_LS_RJT:
1233                fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1234                break;
1235        case ELS_LS_ACC:
1236                fc_seq_ls_acc(fp);
1237                break;
1238        case ELS_RRQ:
1239                fc_exch_els_rrq(fp);
1240                break;
1241        case ELS_REC:
1242                fc_exch_els_rec(fp);
1243                break;
1244        default:
1245                FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1246        }
1247}
1248EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1249
1250/**
1251 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1252 * @sp:      The sequence that is to be sent
1253 * @fp:      The frame that will be sent on the sequence
1254 * @rctl:    The R_CTL information to be sent
1255 * @fh_type: The frame header type
1256 */
1257static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1258                             enum fc_rctl rctl, enum fc_fh_type fh_type)
1259{
1260        u32 f_ctl;
1261        struct fc_exch *ep = fc_seq_exch(sp);
1262
1263        f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1264        f_ctl |= ep->f_ctl;
1265        fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1266        fc_seq_send_locked(ep->lp, sp, fp);
1267}
1268
1269/**
1270 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1271 * @sp:    The sequence to send the ACK on
1272 * @rx_fp: The received frame that is being acknoledged
1273 *
1274 * Send ACK_1 (or equiv.) indicating we received something.
1275 */
1276static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1277{
1278        struct fc_frame *fp;
1279        struct fc_frame_header *rx_fh;
1280        struct fc_frame_header *fh;
1281        struct fc_exch *ep = fc_seq_exch(sp);
1282        struct fc_lport *lport = ep->lp;
1283        unsigned int f_ctl;
1284
1285        /*
1286         * Don't send ACKs for class 3.
1287         */
1288        if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1289                fp = fc_frame_alloc(lport, 0);
1290                if (!fp) {
1291                        FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1292                        return;
1293                }
1294
1295                fh = fc_frame_header_get(fp);
1296                fh->fh_r_ctl = FC_RCTL_ACK_1;
1297                fh->fh_type = FC_TYPE_BLS;
1298
1299                /*
1300                 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1301                 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1302                 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1303                 * Last ACK uses bits 7-6 (continue sequence),
1304                 * bits 5-4 are meaningful (what kind of ACK to use).
1305                 */
1306                rx_fh = fc_frame_header_get(rx_fp);
1307                f_ctl = ntoh24(rx_fh->fh_f_ctl);
1308                f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1309                        FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1310                        FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1311                        FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1312                f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1313                hton24(fh->fh_f_ctl, f_ctl);
1314
1315                fc_exch_setup_hdr(ep, fp, f_ctl);
1316                fh->fh_seq_id = rx_fh->fh_seq_id;
1317                fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1318                fh->fh_parm_offset = htonl(1);  /* ack single frame */
1319
1320                fr_sof(fp) = fr_sof(rx_fp);
1321                if (f_ctl & FC_FC_END_SEQ)
1322                        fr_eof(fp) = FC_EOF_T;
1323                else
1324                        fr_eof(fp) = FC_EOF_N;
1325
1326                lport->tt.frame_send(lport, fp);
1327        }
1328}
1329
1330/**
1331 * fc_exch_send_ba_rjt() - Send BLS Reject
1332 * @rx_fp:  The frame being rejected
1333 * @reason: The reason the frame is being rejected
1334 * @explan: The explanation for the rejection
1335 *
1336 * This is for rejecting BA_ABTS only.
1337 */
1338static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1339                                enum fc_ba_rjt_reason reason,
1340                                enum fc_ba_rjt_explan explan)
1341{
1342        struct fc_frame *fp;
1343        struct fc_frame_header *rx_fh;
1344        struct fc_frame_header *fh;
1345        struct fc_ba_rjt *rp;
1346        struct fc_seq *sp;
1347        struct fc_lport *lport;
1348        unsigned int f_ctl;
1349
1350        lport = fr_dev(rx_fp);
1351        sp = fr_seq(rx_fp);
1352        fp = fc_frame_alloc(lport, sizeof(*rp));
1353        if (!fp) {
1354                FC_EXCH_DBG(fc_seq_exch(sp),
1355                             "Drop BA_RJT request, out of memory\n");
1356                return;
1357        }
1358        fh = fc_frame_header_get(fp);
1359        rx_fh = fc_frame_header_get(rx_fp);
1360
1361        memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1362
1363        rp = fc_frame_payload_get(fp, sizeof(*rp));
1364        rp->br_reason = reason;
1365        rp->br_explan = explan;
1366
1367        /*
1368         * seq_id, cs_ctl, df_ctl and param/offset are zero.
1369         */
1370        memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1371        memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1372        fh->fh_ox_id = rx_fh->fh_ox_id;
1373        fh->fh_rx_id = rx_fh->fh_rx_id;
1374        fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1375        fh->fh_r_ctl = FC_RCTL_BA_RJT;
1376        fh->fh_type = FC_TYPE_BLS;
1377
1378        /*
1379         * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1380         * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1381         * Bits 9-8 are meaningful (retransmitted or unidirectional).
1382         * Last ACK uses bits 7-6 (continue sequence),
1383         * bits 5-4 are meaningful (what kind of ACK to use).
1384         * Always set LAST_SEQ, END_SEQ.
1385         */
1386        f_ctl = ntoh24(rx_fh->fh_f_ctl);
1387        f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1388                FC_FC_END_CONN | FC_FC_SEQ_INIT |
1389                FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1390        f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1391        f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1392        f_ctl &= ~FC_FC_FIRST_SEQ;
1393        hton24(fh->fh_f_ctl, f_ctl);
1394
1395        fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1396        fr_eof(fp) = FC_EOF_T;
1397        if (fc_sof_needs_ack(fr_sof(fp)))
1398                fr_eof(fp) = FC_EOF_N;
1399
1400        lport->tt.frame_send(lport, fp);
1401}
1402
1403/**
1404 * fc_exch_recv_abts() - Handle an incoming ABTS
1405 * @ep:    The exchange the abort was on
1406 * @rx_fp: The ABTS frame
1407 *
1408 * This would be for target mode usually, but could be due to lost
1409 * FCP transfer ready, confirm or RRQ. We always handle this as an
1410 * exchange abort, ignoring the parameter.
1411 */
1412static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1413{
1414        struct fc_frame *fp;
1415        struct fc_ba_acc *ap;
1416        struct fc_frame_header *fh;
1417        struct fc_seq *sp;
1418
1419        if (!ep)
1420                goto reject;
1421
1422        FC_EXCH_DBG(ep, "exch: ABTS received\n");
1423        fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1424        if (!fp) {
1425                FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1426                goto free;
1427        }
1428
1429        spin_lock_bh(&ep->ex_lock);
1430        if (ep->esb_stat & ESB_ST_COMPLETE) {
1431                spin_unlock_bh(&ep->ex_lock);
1432                FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1433                fc_frame_free(fp);
1434                goto reject;
1435        }
1436        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1437                ep->esb_stat |= ESB_ST_REC_QUAL;
1438                fc_exch_hold(ep);               /* hold for REC_QUAL */
1439        }
1440        fc_exch_timer_set_locked(ep, ep->r_a_tov);
1441        fh = fc_frame_header_get(fp);
1442        ap = fc_frame_payload_get(fp, sizeof(*ap));
1443        memset(ap, 0, sizeof(*ap));
1444        sp = &ep->seq;
1445        ap->ba_high_seq_cnt = htons(0xffff);
1446        if (sp->ssb_stat & SSB_ST_RESP) {
1447                ap->ba_seq_id = sp->id;
1448                ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1449                ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1450                ap->ba_low_seq_cnt = htons(sp->cnt);
1451        }
1452        sp = fc_seq_start_next_locked(sp);
1453        fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1454        ep->esb_stat |= ESB_ST_ABNORMAL;
1455        spin_unlock_bh(&ep->ex_lock);
1456
1457free:
1458        fc_frame_free(rx_fp);
1459        return;
1460
1461reject:
1462        fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1463        goto free;
1464}
1465
1466/**
1467 * fc_seq_assign() - Assign exchange and sequence for incoming request
1468 * @lport: The local port that received the request
1469 * @fp:    The request frame
1470 *
1471 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1472 * A reference will be held on the exchange/sequence for the caller, which
1473 * must call fc_seq_release().
1474 */
1475struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1476{
1477        struct fc_exch_mgr_anchor *ema;
1478
1479        WARN_ON(lport != fr_dev(fp));
1480        WARN_ON(fr_seq(fp));
1481        fr_seq(fp) = NULL;
1482
1483        list_for_each_entry(ema, &lport->ema_list, ema_list)
1484                if ((!ema->match || ema->match(fp)) &&
1485                    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1486                        break;
1487        return fr_seq(fp);
1488}
1489EXPORT_SYMBOL(fc_seq_assign);
1490
1491/**
1492 * fc_seq_release() - Release the hold
1493 * @sp:    The sequence.
1494 */
1495void fc_seq_release(struct fc_seq *sp)
1496{
1497        fc_exch_release(fc_seq_exch(sp));
1498}
1499EXPORT_SYMBOL(fc_seq_release);
1500
1501/**
1502 * fc_exch_recv_req() - Handler for an incoming request
1503 * @lport: The local port that received the request
1504 * @mp:    The EM that the exchange is on
1505 * @fp:    The request frame
1506 *
1507 * This is used when the other end is originating the exchange
1508 * and the sequence.
1509 */
1510static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1511                             struct fc_frame *fp)
1512{
1513        struct fc_frame_header *fh = fc_frame_header_get(fp);
1514        struct fc_seq *sp = NULL;
1515        struct fc_exch *ep = NULL;
1516        enum fc_pf_rjt_reason reject;
1517
1518        /* We can have the wrong fc_lport at this point with NPIV, which is a
1519         * problem now that we know a new exchange needs to be allocated
1520         */
1521        lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1522        if (!lport) {
1523                fc_frame_free(fp);
1524                return;
1525        }
1526        fr_dev(fp) = lport;
1527
1528        BUG_ON(fr_seq(fp));             /* XXX remove later */
1529
1530        /*
1531         * If the RX_ID is 0xffff, don't allocate an exchange.
1532         * The upper-level protocol may request one later, if needed.
1533         */
1534        if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1535                return fc_lport_recv(lport, fp);
1536
1537        reject = fc_seq_lookup_recip(lport, mp, fp);
1538        if (reject == FC_RJT_NONE) {
1539                sp = fr_seq(fp);        /* sequence will be held */
1540                ep = fc_seq_exch(sp);
1541                fc_seq_send_ack(sp, fp);
1542                ep->encaps = fr_encaps(fp);
1543
1544                /*
1545                 * Call the receive function.
1546                 *
1547                 * The receive function may allocate a new sequence
1548                 * over the old one, so we shouldn't change the
1549                 * sequence after this.
1550                 *
1551                 * The frame will be freed by the receive function.
1552                 * If new exch resp handler is valid then call that
1553                 * first.
1554                 */
1555                if (!fc_invoke_resp(ep, sp, fp))
1556                        fc_lport_recv(lport, fp);
1557                fc_exch_release(ep);    /* release from lookup */
1558        } else {
1559                FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1560                             reject);
1561                fc_frame_free(fp);
1562        }
1563}
1564
1565/**
1566 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1567 *                           end is the originator of the sequence that is a
1568 *                           response to our initial exchange
1569 * @mp: The EM that the exchange is on
1570 * @fp: The response frame
1571 */
1572static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1573{
1574        struct fc_frame_header *fh = fc_frame_header_get(fp);
1575        struct fc_seq *sp;
1576        struct fc_exch *ep;
1577        enum fc_sof sof;
1578        u32 f_ctl;
1579        int rc;
1580
1581        ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1582        if (!ep) {
1583                atomic_inc(&mp->stats.xid_not_found);
1584                goto out;
1585        }
1586        if (ep->esb_stat & ESB_ST_COMPLETE) {
1587                atomic_inc(&mp->stats.xid_not_found);
1588                goto rel;
1589        }
1590        if (ep->rxid == FC_XID_UNKNOWN)
1591                ep->rxid = ntohs(fh->fh_rx_id);
1592        if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1593                atomic_inc(&mp->stats.xid_not_found);
1594                goto rel;
1595        }
1596        if (ep->did != ntoh24(fh->fh_s_id) &&
1597            ep->did != FC_FID_FLOGI) {
1598                atomic_inc(&mp->stats.xid_not_found);
1599                goto rel;
1600        }
1601        sof = fr_sof(fp);
1602        sp = &ep->seq;
1603        if (fc_sof_is_init(sof)) {
1604                sp->ssb_stat |= SSB_ST_RESP;
1605                sp->id = fh->fh_seq_id;
1606        }
1607
1608        f_ctl = ntoh24(fh->fh_f_ctl);
1609        fr_seq(fp) = sp;
1610
1611        spin_lock_bh(&ep->ex_lock);
1612        if (f_ctl & FC_FC_SEQ_INIT)
1613                ep->esb_stat |= ESB_ST_SEQ_INIT;
1614        spin_unlock_bh(&ep->ex_lock);
1615
1616        if (fc_sof_needs_ack(sof))
1617                fc_seq_send_ack(sp, fp);
1618
1619        if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1620            (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1621            (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1622                spin_lock_bh(&ep->ex_lock);
1623                rc = fc_exch_done_locked(ep);
1624                WARN_ON(fc_seq_exch(sp) != ep);
1625                spin_unlock_bh(&ep->ex_lock);
1626                if (!rc) {
1627                        fc_exch_delete(ep);
1628                } else {
1629                        FC_EXCH_DBG(ep, "ep is completed already,"
1630                                        "hence skip calling the resp\n");
1631                        goto skip_resp;
1632                }
1633        }
1634
1635        /*
1636         * Call the receive function.
1637         * The sequence is held (has a refcnt) for us,
1638         * but not for the receive function.
1639         *
1640         * The receive function may allocate a new sequence
1641         * over the old one, so we shouldn't change the
1642         * sequence after this.
1643         *
1644         * The frame will be freed by the receive function.
1645         * If new exch resp handler is valid then call that
1646         * first.
1647         */
1648        if (!fc_invoke_resp(ep, sp, fp))
1649                fc_frame_free(fp);
1650
1651skip_resp:
1652        fc_exch_release(ep);
1653        return;
1654rel:
1655        fc_exch_release(ep);
1656out:
1657        fc_frame_free(fp);
1658}
1659
1660/**
1661 * fc_exch_recv_resp() - Handler for a sequence where other end is
1662 *                       responding to our sequence
1663 * @mp: The EM that the exchange is on
1664 * @fp: The response frame
1665 */
1666static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1667{
1668        struct fc_seq *sp;
1669
1670        sp = fc_seq_lookup_orig(mp, fp);        /* doesn't hold sequence */
1671
1672        if (!sp)
1673                atomic_inc(&mp->stats.xid_not_found);
1674        else
1675                atomic_inc(&mp->stats.non_bls_resp);
1676
1677        fc_frame_free(fp);
1678}
1679
1680/**
1681 * fc_exch_abts_resp() - Handler for a response to an ABT
1682 * @ep: The exchange that the frame is on
1683 * @fp: The response frame
1684 *
1685 * This response would be to an ABTS cancelling an exchange or sequence.
1686 * The response can be either BA_ACC or BA_RJT
1687 */
1688static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1689{
1690        struct fc_frame_header *fh;
1691        struct fc_ba_acc *ap;
1692        struct fc_seq *sp;
1693        u16 low;
1694        u16 high;
1695        int rc = 1, has_rec = 0;
1696
1697        fh = fc_frame_header_get(fp);
1698        FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1699                    fc_exch_rctl_name(fh->fh_r_ctl));
1700
1701        if (cancel_delayed_work_sync(&ep->timeout_work)) {
1702                FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1703                fc_exch_release(ep);    /* release from pending timer hold */
1704        }
1705
1706        spin_lock_bh(&ep->ex_lock);
1707        switch (fh->fh_r_ctl) {
1708        case FC_RCTL_BA_ACC:
1709                ap = fc_frame_payload_get(fp, sizeof(*ap));
1710                if (!ap)
1711                        break;
1712
1713                /*
1714                 * Decide whether to establish a Recovery Qualifier.
1715                 * We do this if there is a non-empty SEQ_CNT range and
1716                 * SEQ_ID is the same as the one we aborted.
1717                 */
1718                low = ntohs(ap->ba_low_seq_cnt);
1719                high = ntohs(ap->ba_high_seq_cnt);
1720                if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1721                    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1722                     ap->ba_seq_id == ep->seq_id) && low != high) {
1723                        ep->esb_stat |= ESB_ST_REC_QUAL;
1724                        fc_exch_hold(ep);  /* hold for recovery qualifier */
1725                        has_rec = 1;
1726                }
1727                break;
1728        case FC_RCTL_BA_RJT:
1729                break;
1730        default:
1731                break;
1732        }
1733
1734        /* do we need to do some other checks here. Can we reuse more of
1735         * fc_exch_recv_seq_resp
1736         */
1737        sp = &ep->seq;
1738        /*
1739         * do we want to check END_SEQ as well as LAST_SEQ here?
1740         */
1741        if (ep->fh_type != FC_TYPE_FCP &&
1742            ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1743                rc = fc_exch_done_locked(ep);
1744        spin_unlock_bh(&ep->ex_lock);
1745
1746        fc_exch_hold(ep);
1747        if (!rc)
1748                fc_exch_delete(ep);
1749        if (!fc_invoke_resp(ep, sp, fp))
1750                fc_frame_free(fp);
1751        if (has_rec)
1752                fc_exch_timer_set(ep, ep->r_a_tov);
1753        fc_exch_release(ep);
1754}
1755
1756/**
1757 * fc_exch_recv_bls() - Handler for a BLS sequence
1758 * @mp: The EM that the exchange is on
1759 * @fp: The request frame
1760 *
1761 * The BLS frame is always a sequence initiated by the remote side.
1762 * We may be either the originator or recipient of the exchange.
1763 */
1764static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1765{
1766        struct fc_frame_header *fh;
1767        struct fc_exch *ep;
1768        u32 f_ctl;
1769
1770        fh = fc_frame_header_get(fp);
1771        f_ctl = ntoh24(fh->fh_f_ctl);
1772        fr_seq(fp) = NULL;
1773
1774        ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1775                          ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1776        if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1777                spin_lock_bh(&ep->ex_lock);
1778                ep->esb_stat |= ESB_ST_SEQ_INIT;
1779                spin_unlock_bh(&ep->ex_lock);
1780        }
1781        if (f_ctl & FC_FC_SEQ_CTX) {
1782                /*
1783                 * A response to a sequence we initiated.
1784                 * This should only be ACKs for class 2 or F.
1785                 */
1786                switch (fh->fh_r_ctl) {
1787                case FC_RCTL_ACK_1:
1788                case FC_RCTL_ACK_0:
1789                        break;
1790                default:
1791                        if (ep)
1792                                FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1793                                            fh->fh_r_ctl,
1794                                            fc_exch_rctl_name(fh->fh_r_ctl));
1795                        break;
1796                }
1797                fc_frame_free(fp);
1798        } else {
1799                switch (fh->fh_r_ctl) {
1800                case FC_RCTL_BA_RJT:
1801                case FC_RCTL_BA_ACC:
1802                        if (ep)
1803                                fc_exch_abts_resp(ep, fp);
1804                        else
1805                                fc_frame_free(fp);
1806                        break;
1807                case FC_RCTL_BA_ABTS:
1808                        if (ep)
1809                                fc_exch_recv_abts(ep, fp);
1810                        else
1811                                fc_frame_free(fp);
1812                        break;
1813                default:                        /* ignore junk */
1814                        fc_frame_free(fp);
1815                        break;
1816                }
1817        }
1818        if (ep)
1819                fc_exch_release(ep);    /* release hold taken by fc_exch_find */
1820}
1821
1822/**
1823 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1824 * @rx_fp: The received frame, not freed here.
1825 *
1826 * If this fails due to allocation or transmit congestion, assume the
1827 * originator will repeat the sequence.
1828 */
1829static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1830{
1831        struct fc_lport *lport;
1832        struct fc_els_ls_acc *acc;
1833        struct fc_frame *fp;
1834        struct fc_seq *sp;
1835
1836        lport = fr_dev(rx_fp);
1837        sp = fr_seq(rx_fp);
1838        fp = fc_frame_alloc(lport, sizeof(*acc));
1839        if (!fp) {
1840                FC_EXCH_DBG(fc_seq_exch(sp),
1841                            "exch: drop LS_ACC, out of memory\n");
1842                return;
1843        }
1844        acc = fc_frame_payload_get(fp, sizeof(*acc));
1845        memset(acc, 0, sizeof(*acc));
1846        acc->la_cmd = ELS_LS_ACC;
1847        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1848        lport->tt.frame_send(lport, fp);
1849}
1850
1851/**
1852 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1853 * @rx_fp: The received frame, not freed here.
1854 * @reason: The reason the sequence is being rejected
1855 * @explan: The explanation for the rejection
1856 *
1857 * If this fails due to allocation or transmit congestion, assume the
1858 * originator will repeat the sequence.
1859 */
1860static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1861                          enum fc_els_rjt_explan explan)
1862{
1863        struct fc_lport *lport;
1864        struct fc_els_ls_rjt *rjt;
1865        struct fc_frame *fp;
1866        struct fc_seq *sp;
1867
1868        lport = fr_dev(rx_fp);
1869        sp = fr_seq(rx_fp);
1870        fp = fc_frame_alloc(lport, sizeof(*rjt));
1871        if (!fp) {
1872                FC_EXCH_DBG(fc_seq_exch(sp),
1873                            "exch: drop LS_ACC, out of memory\n");
1874                return;
1875        }
1876        rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1877        memset(rjt, 0, sizeof(*rjt));
1878        rjt->er_cmd = ELS_LS_RJT;
1879        rjt->er_reason = reason;
1880        rjt->er_explan = explan;
1881        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1882        lport->tt.frame_send(lport, fp);
1883}
1884
1885/**
1886 * fc_exch_reset() - Reset an exchange
1887 * @ep: The exchange to be reset
1888 *
1889 * Note: May sleep if invoked from outside a response handler.
1890 */
1891static void fc_exch_reset(struct fc_exch *ep)
1892{
1893        struct fc_seq *sp;
1894        int rc = 1;
1895
1896        spin_lock_bh(&ep->ex_lock);
1897        ep->state |= FC_EX_RST_CLEANUP;
1898        fc_exch_timer_cancel(ep);
1899        if (ep->esb_stat & ESB_ST_REC_QUAL)
1900                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec_qual */
1901        ep->esb_stat &= ~ESB_ST_REC_QUAL;
1902        sp = &ep->seq;
1903        rc = fc_exch_done_locked(ep);
1904        spin_unlock_bh(&ep->ex_lock);
1905
1906        fc_exch_hold(ep);
1907
1908        if (!rc) {
1909                fc_exch_delete(ep);
1910        } else {
1911                FC_EXCH_DBG(ep, "ep is completed already,"
1912                                "hence skip calling the resp\n");
1913                goto skip_resp;
1914        }
1915
1916        fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1917skip_resp:
1918        fc_seq_set_resp(sp, NULL, ep->arg);
1919        fc_exch_release(ep);
1920}
1921
1922/**
1923 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1924 * @lport: The local port that the exchange pool is on
1925 * @pool:  The exchange pool to be reset
1926 * @sid:   The source ID
1927 * @did:   The destination ID
1928 *
1929 * Resets a per cpu exches pool, releasing all of its sequences
1930 * and exchanges. If sid is non-zero then reset only exchanges
1931 * we sourced from the local port's FID. If did is non-zero then
1932 * only reset exchanges destined for the local port's FID.
1933 */
1934static void fc_exch_pool_reset(struct fc_lport *lport,
1935                               struct fc_exch_pool *pool,
1936                               u32 sid, u32 did)
1937{
1938        struct fc_exch *ep;
1939        struct fc_exch *next;
1940
1941        spin_lock_bh(&pool->lock);
1942restart:
1943        list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1944                if ((lport == ep->lp) &&
1945                    (sid == 0 || sid == ep->sid) &&
1946                    (did == 0 || did == ep->did)) {
1947                        fc_exch_hold(ep);
1948                        spin_unlock_bh(&pool->lock);
1949
1950                        fc_exch_reset(ep);
1951
1952                        fc_exch_release(ep);
1953                        spin_lock_bh(&pool->lock);
1954
1955                        /*
1956                         * must restart loop incase while lock
1957                         * was down multiple eps were released.
1958                         */
1959                        goto restart;
1960                }
1961        }
1962        pool->next_index = 0;
1963        pool->left = FC_XID_UNKNOWN;
1964        pool->right = FC_XID_UNKNOWN;
1965        spin_unlock_bh(&pool->lock);
1966}
1967
1968/**
1969 * fc_exch_mgr_reset() - Reset all EMs of a local port
1970 * @lport: The local port whose EMs are to be reset
1971 * @sid:   The source ID
1972 * @did:   The destination ID
1973 *
1974 * Reset all EMs associated with a given local port. Release all
1975 * sequences and exchanges. If sid is non-zero then reset only the
1976 * exchanges sent from the local port's FID. If did is non-zero then
1977 * reset only exchanges destined for the local port's FID.
1978 */
1979void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1980{
1981        struct fc_exch_mgr_anchor *ema;
1982        unsigned int cpu;
1983
1984        list_for_each_entry(ema, &lport->ema_list, ema_list) {
1985                for_each_possible_cpu(cpu)
1986                        fc_exch_pool_reset(lport,
1987                                           per_cpu_ptr(ema->mp->pool, cpu),
1988                                           sid, did);
1989        }
1990}
1991EXPORT_SYMBOL(fc_exch_mgr_reset);
1992
1993/**
1994 * fc_exch_lookup() - find an exchange
1995 * @lport: The local port
1996 * @xid: The exchange ID
1997 *
1998 * Returns exchange pointer with hold for caller, or NULL if not found.
1999 */
2000static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
2001{
2002        struct fc_exch_mgr_anchor *ema;
2003
2004        list_for_each_entry(ema, &lport->ema_list, ema_list)
2005                if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2006                        return fc_exch_find(ema->mp, xid);
2007        return NULL;
2008}
2009
2010/**
2011 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2012 * @rfp: The REC frame, not freed here.
2013 *
2014 * Note that the requesting port may be different than the S_ID in the request.
2015 */
2016static void fc_exch_els_rec(struct fc_frame *rfp)
2017{
2018        struct fc_lport *lport;
2019        struct fc_frame *fp;
2020        struct fc_exch *ep;
2021        struct fc_els_rec *rp;
2022        struct fc_els_rec_acc *acc;
2023        enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2024        enum fc_els_rjt_explan explan;
2025        u32 sid;
2026        u16 xid, rxid, oxid;
2027
2028        lport = fr_dev(rfp);
2029        rp = fc_frame_payload_get(rfp, sizeof(*rp));
2030        explan = ELS_EXPL_INV_LEN;
2031        if (!rp)
2032                goto reject;
2033        sid = ntoh24(rp->rec_s_id);
2034        rxid = ntohs(rp->rec_rx_id);
2035        oxid = ntohs(rp->rec_ox_id);
2036
2037        explan = ELS_EXPL_OXID_RXID;
2038        if (sid == fc_host_port_id(lport->host))
2039                xid = oxid;
2040        else
2041                xid = rxid;
2042        if (xid == FC_XID_UNKNOWN) {
2043                FC_LPORT_DBG(lport,
2044                             "REC request from %x: invalid rxid %x oxid %x\n",
2045                             sid, rxid, oxid);
2046                goto reject;
2047        }
2048        ep = fc_exch_lookup(lport, xid);
2049        if (!ep) {
2050                FC_LPORT_DBG(lport,
2051                             "REC request from %x: rxid %x oxid %x not found\n",
2052                             sid, rxid, oxid);
2053                goto reject;
2054        }
2055        FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2056                    sid, rxid, oxid);
2057        if (ep->oid != sid || oxid != ep->oxid)
2058                goto rel;
2059        if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2060                goto rel;
2061        fp = fc_frame_alloc(lport, sizeof(*acc));
2062        if (!fp) {
2063                FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2064                goto out;
2065        }
2066
2067        acc = fc_frame_payload_get(fp, sizeof(*acc));
2068        memset(acc, 0, sizeof(*acc));
2069        acc->reca_cmd = ELS_LS_ACC;
2070        acc->reca_ox_id = rp->rec_ox_id;
2071        memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2072        acc->reca_rx_id = htons(ep->rxid);
2073        if (ep->sid == ep->oid)
2074                hton24(acc->reca_rfid, ep->did);
2075        else
2076                hton24(acc->reca_rfid, ep->sid);
2077        acc->reca_fc4value = htonl(ep->seq.rec_data);
2078        acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2079                                                 ESB_ST_SEQ_INIT |
2080                                                 ESB_ST_COMPLETE));
2081        fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2082        lport->tt.frame_send(lport, fp);
2083out:
2084        fc_exch_release(ep);
2085        return;
2086
2087rel:
2088        fc_exch_release(ep);
2089reject:
2090        fc_seq_ls_rjt(rfp, reason, explan);
2091}
2092
2093/**
2094 * fc_exch_rrq_resp() - Handler for RRQ responses
2095 * @sp:  The sequence that the RRQ is on
2096 * @fp:  The RRQ frame
2097 * @arg: The exchange that the RRQ is on
2098 *
2099 * TODO: fix error handler.
2100 */
2101static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2102{
2103        struct fc_exch *aborted_ep = arg;
2104        unsigned int op;
2105
2106        if (IS_ERR(fp)) {
2107                int err = PTR_ERR(fp);
2108
2109                if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2110                        goto cleanup;
2111                FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2112                            "frame error %d\n", err);
2113                return;
2114        }
2115
2116        op = fc_frame_payload_op(fp);
2117        fc_frame_free(fp);
2118
2119        switch (op) {
2120        case ELS_LS_RJT:
2121                FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2122                fallthrough;
2123        case ELS_LS_ACC:
2124                goto cleanup;
2125        default:
2126                FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2127                            op);
2128                return;
2129        }
2130
2131cleanup:
2132        fc_exch_done(&aborted_ep->seq);
2133        /* drop hold for rec qual */
2134        fc_exch_release(aborted_ep);
2135}
2136
2137
2138/**
2139 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2140 * @lport:      The local port to send the frame on
2141 * @fp:         The frame to be sent
2142 * @resp:       The response handler for this request
2143 * @destructor: The destructor for the exchange
2144 * @arg:        The argument to be passed to the response handler
2145 * @timer_msec: The timeout period for the exchange
2146 *
2147 * The exchange response handler is set in this routine to resp()
2148 * function pointer. It can be called in two scenarios: if a timeout
2149 * occurs or if a response frame is received for the exchange. The
2150 * fc_frame pointer in response handler will also indicate timeout
2151 * as error using IS_ERR related macros.
2152 *
2153 * The exchange destructor handler is also set in this routine.
2154 * The destructor handler is invoked by EM layer when exchange
2155 * is about to free, this can be used by caller to free its
2156 * resources along with exchange free.
2157 *
2158 * The arg is passed back to resp and destructor handler.
2159 *
2160 * The timeout value (in msec) for an exchange is set if non zero
2161 * timer_msec argument is specified. The timer is canceled when
2162 * it fires or when the exchange is done. The exchange timeout handler
2163 * is registered by EM layer.
2164 *
2165 * The frame pointer with some of the header's fields must be
2166 * filled before calling this routine, those fields are:
2167 *
2168 * - routing control
2169 * - FC port did
2170 * - FC port sid
2171 * - FC header type
2172 * - frame control
2173 * - parameter or relative offset
2174 */
2175struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2176                                struct fc_frame *fp,
2177                                void (*resp)(struct fc_seq *,
2178                                             struct fc_frame *fp,
2179                                             void *arg),
2180                                void (*destructor)(struct fc_seq *, void *),
2181                                void *arg, u32 timer_msec)
2182{
2183        struct fc_exch *ep;
2184        struct fc_seq *sp = NULL;
2185        struct fc_frame_header *fh;
2186        struct fc_fcp_pkt *fsp = NULL;
2187        int rc = 1;
2188
2189        ep = fc_exch_alloc(lport, fp);
2190        if (!ep) {
2191                fc_frame_free(fp);
2192                return NULL;
2193        }
2194        ep->esb_stat |= ESB_ST_SEQ_INIT;
2195        fh = fc_frame_header_get(fp);
2196        fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2197        ep->resp = resp;
2198        ep->destructor = destructor;
2199        ep->arg = arg;
2200        ep->r_a_tov = lport->r_a_tov;
2201        ep->lp = lport;
2202        sp = &ep->seq;
2203
2204        ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2205        ep->f_ctl = ntoh24(fh->fh_f_ctl);
2206        fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2207        sp->cnt++;
2208
2209        if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2210                fsp = fr_fsp(fp);
2211                fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2212        }
2213
2214        if (unlikely(lport->tt.frame_send(lport, fp)))
2215                goto err;
2216
2217        if (timer_msec)
2218                fc_exch_timer_set_locked(ep, timer_msec);
2219        ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not first seq */
2220
2221        if (ep->f_ctl & FC_FC_SEQ_INIT)
2222                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2223        spin_unlock_bh(&ep->ex_lock);
2224        return sp;
2225err:
2226        if (fsp)
2227                fc_fcp_ddp_done(fsp);
2228        rc = fc_exch_done_locked(ep);
2229        spin_unlock_bh(&ep->ex_lock);
2230        if (!rc)
2231                fc_exch_delete(ep);
2232        return NULL;
2233}
2234EXPORT_SYMBOL(fc_exch_seq_send);
2235
2236/**
2237 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2238 * @ep: The exchange to send the RRQ on
2239 *
2240 * This tells the remote port to stop blocking the use of
2241 * the exchange and the seq_cnt range.
2242 */
2243static void fc_exch_rrq(struct fc_exch *ep)
2244{
2245        struct fc_lport *lport;
2246        struct fc_els_rrq *rrq;
2247        struct fc_frame *fp;
2248        u32 did;
2249
2250        lport = ep->lp;
2251
2252        fp = fc_frame_alloc(lport, sizeof(*rrq));
2253        if (!fp)
2254                goto retry;
2255
2256        rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2257        memset(rrq, 0, sizeof(*rrq));
2258        rrq->rrq_cmd = ELS_RRQ;
2259        hton24(rrq->rrq_s_id, ep->sid);
2260        rrq->rrq_ox_id = htons(ep->oxid);
2261        rrq->rrq_rx_id = htons(ep->rxid);
2262
2263        did = ep->did;
2264        if (ep->esb_stat & ESB_ST_RESP)
2265                did = ep->sid;
2266
2267        fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2268                       lport->port_id, FC_TYPE_ELS,
2269                       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2270
2271        if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2272                             lport->e_d_tov))
2273                return;
2274
2275retry:
2276        FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2277        spin_lock_bh(&ep->ex_lock);
2278        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2279                spin_unlock_bh(&ep->ex_lock);
2280                /* drop hold for rec qual */
2281                fc_exch_release(ep);
2282                return;
2283        }
2284        ep->esb_stat |= ESB_ST_REC_QUAL;
2285        fc_exch_timer_set_locked(ep, ep->r_a_tov);
2286        spin_unlock_bh(&ep->ex_lock);
2287}
2288
2289/**
2290 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2291 * @fp: The RRQ frame, not freed here.
2292 */
2293static void fc_exch_els_rrq(struct fc_frame *fp)
2294{
2295        struct fc_lport *lport;
2296        struct fc_exch *ep = NULL;      /* request or subject exchange */
2297        struct fc_els_rrq *rp;
2298        u32 sid;
2299        u16 xid;
2300        enum fc_els_rjt_explan explan;
2301
2302        lport = fr_dev(fp);
2303        rp = fc_frame_payload_get(fp, sizeof(*rp));
2304        explan = ELS_EXPL_INV_LEN;
2305        if (!rp)
2306                goto reject;
2307
2308        /*
2309         * lookup subject exchange.
2310         */
2311        sid = ntoh24(rp->rrq_s_id);             /* subject source */
2312        xid = fc_host_port_id(lport->host) == sid ?
2313                        ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2314        ep = fc_exch_lookup(lport, xid);
2315        explan = ELS_EXPL_OXID_RXID;
2316        if (!ep)
2317                goto reject;
2318        spin_lock_bh(&ep->ex_lock);
2319        FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2320                    sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2321        if (ep->oxid != ntohs(rp->rrq_ox_id))
2322                goto unlock_reject;
2323        if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2324            ep->rxid != FC_XID_UNKNOWN)
2325                goto unlock_reject;
2326        explan = ELS_EXPL_SID;
2327        if (ep->sid != sid)
2328                goto unlock_reject;
2329
2330        /*
2331         * Clear Recovery Qualifier state, and cancel timer if complete.
2332         */
2333        if (ep->esb_stat & ESB_ST_REC_QUAL) {
2334                ep->esb_stat &= ~ESB_ST_REC_QUAL;
2335                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec qual */
2336        }
2337        if (ep->esb_stat & ESB_ST_COMPLETE)
2338                fc_exch_timer_cancel(ep);
2339
2340        spin_unlock_bh(&ep->ex_lock);
2341
2342        /*
2343         * Send LS_ACC.
2344         */
2345        fc_seq_ls_acc(fp);
2346        goto out;
2347
2348unlock_reject:
2349        spin_unlock_bh(&ep->ex_lock);
2350reject:
2351        fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2352out:
2353        if (ep)
2354                fc_exch_release(ep);    /* drop hold from fc_exch_find */
2355}
2356
2357/**
2358 * fc_exch_update_stats() - update exches stats to lport
2359 * @lport: The local port to update exchange manager stats
2360 */
2361void fc_exch_update_stats(struct fc_lport *lport)
2362{
2363        struct fc_host_statistics *st;
2364        struct fc_exch_mgr_anchor *ema;
2365        struct fc_exch_mgr *mp;
2366
2367        st = &lport->host_stats;
2368
2369        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2370                mp = ema->mp;
2371                st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2372                st->fc_no_free_exch_xid +=
2373                                atomic_read(&mp->stats.no_free_exch_xid);
2374                st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2375                st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2376                st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2377                st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2378        }
2379}
2380EXPORT_SYMBOL(fc_exch_update_stats);
2381
2382/**
2383 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2384 * @lport: The local port to add the exchange manager to
2385 * @mp:    The exchange manager to be added to the local port
2386 * @match: The match routine that indicates when this EM should be used
2387 */
2388struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2389                                           struct fc_exch_mgr *mp,
2390                                           bool (*match)(struct fc_frame *))
2391{
2392        struct fc_exch_mgr_anchor *ema;
2393
2394        ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2395        if (!ema)
2396                return ema;
2397
2398        ema->mp = mp;
2399        ema->match = match;
2400        /* add EM anchor to EM anchors list */
2401        list_add_tail(&ema->ema_list, &lport->ema_list);
2402        kref_get(&mp->kref);
2403        return ema;
2404}
2405EXPORT_SYMBOL(fc_exch_mgr_add);
2406
2407/**
2408 * fc_exch_mgr_destroy() - Destroy an exchange manager
2409 * @kref: The reference to the EM to be destroyed
2410 */
2411static void fc_exch_mgr_destroy(struct kref *kref)
2412{
2413        struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2414
2415        mempool_destroy(mp->ep_pool);
2416        free_percpu(mp->pool);
2417        kfree(mp);
2418}
2419
2420/**
2421 * fc_exch_mgr_del() - Delete an EM from a local port's list
2422 * @ema: The exchange manager anchor identifying the EM to be deleted
2423 */
2424void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2425{
2426        /* remove EM anchor from EM anchors list */
2427        list_del(&ema->ema_list);
2428        kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2429        kfree(ema);
2430}
2431EXPORT_SYMBOL(fc_exch_mgr_del);
2432
2433/**
2434 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2435 * @src: Source lport to clone exchange managers from
2436 * @dst: New lport that takes references to all the exchange managers
2437 */
2438int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2439{
2440        struct fc_exch_mgr_anchor *ema, *tmp;
2441
2442        list_for_each_entry(ema, &src->ema_list, ema_list) {
2443                if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2444                        goto err;
2445        }
2446        return 0;
2447err:
2448        list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2449                fc_exch_mgr_del(ema);
2450        return -ENOMEM;
2451}
2452EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2453
2454/**
2455 * fc_exch_mgr_alloc() - Allocate an exchange manager
2456 * @lport:   The local port that the new EM will be associated with
2457 * @class:   The default FC class for new exchanges
2458 * @min_xid: The minimum XID for exchanges from the new EM
2459 * @max_xid: The maximum XID for exchanges from the new EM
2460 * @match:   The match routine for the new EM
2461 */
2462struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2463                                      enum fc_class class,
2464                                      u16 min_xid, u16 max_xid,
2465                                      bool (*match)(struct fc_frame *))
2466{
2467        struct fc_exch_mgr *mp;
2468        u16 pool_exch_range;
2469        size_t pool_size;
2470        unsigned int cpu;
2471        struct fc_exch_pool *pool;
2472
2473        if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2474            (min_xid & fc_cpu_mask) != 0) {
2475                FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2476                             min_xid, max_xid);
2477                return NULL;
2478        }
2479
2480        /*
2481         * allocate memory for EM
2482         */
2483        mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2484        if (!mp)
2485                return NULL;
2486
2487        mp->class = class;
2488        mp->lport = lport;
2489        /* adjust em exch xid range for offload */
2490        mp->min_xid = min_xid;
2491
2492       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2493        pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2494                sizeof(struct fc_exch *);
2495        if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2496                mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2497                        min_xid - 1;
2498        } else {
2499                mp->max_xid = max_xid;
2500                pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2501                        (fc_cpu_mask + 1);
2502        }
2503
2504        mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2505        if (!mp->ep_pool)
2506                goto free_mp;
2507
2508        /*
2509         * Setup per cpu exch pool with entire exchange id range equally
2510         * divided across all cpus. The exch pointers array memory is
2511         * allocated for exch range per pool.
2512         */
2513        mp->pool_max_index = pool_exch_range - 1;
2514
2515        /*
2516         * Allocate and initialize per cpu exch pool
2517         */
2518        pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2519        mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2520        if (!mp->pool)
2521                goto free_mempool;
2522        for_each_possible_cpu(cpu) {
2523                pool = per_cpu_ptr(mp->pool, cpu);
2524                pool->next_index = 0;
2525                pool->left = FC_XID_UNKNOWN;
2526                pool->right = FC_XID_UNKNOWN;
2527                spin_lock_init(&pool->lock);
2528                INIT_LIST_HEAD(&pool->ex_list);
2529        }
2530
2531        kref_init(&mp->kref);
2532        if (!fc_exch_mgr_add(lport, mp, match)) {
2533                free_percpu(mp->pool);
2534                goto free_mempool;
2535        }
2536
2537        /*
2538         * Above kref_init() sets mp->kref to 1 and then
2539         * call to fc_exch_mgr_add incremented mp->kref again,
2540         * so adjust that extra increment.
2541         */
2542        kref_put(&mp->kref, fc_exch_mgr_destroy);
2543        return mp;
2544
2545free_mempool:
2546        mempool_destroy(mp->ep_pool);
2547free_mp:
2548        kfree(mp);
2549        return NULL;
2550}
2551EXPORT_SYMBOL(fc_exch_mgr_alloc);
2552
2553/**
2554 * fc_exch_mgr_free() - Free all exchange managers on a local port
2555 * @lport: The local port whose EMs are to be freed
2556 */
2557void fc_exch_mgr_free(struct fc_lport *lport)
2558{
2559        struct fc_exch_mgr_anchor *ema, *next;
2560
2561        flush_workqueue(fc_exch_workqueue);
2562        list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2563                fc_exch_mgr_del(ema);
2564}
2565EXPORT_SYMBOL(fc_exch_mgr_free);
2566
2567/**
2568 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2569 * upon 'xid'.
2570 * @f_ctl: f_ctl
2571 * @lport: The local port the frame was received on
2572 * @fh: The received frame header
2573 */
2574static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2575                                              struct fc_lport *lport,
2576                                              struct fc_frame_header *fh)
2577{
2578        struct fc_exch_mgr_anchor *ema;
2579        u16 xid;
2580
2581        if (f_ctl & FC_FC_EX_CTX)
2582                xid = ntohs(fh->fh_ox_id);
2583        else {
2584                xid = ntohs(fh->fh_rx_id);
2585                if (xid == FC_XID_UNKNOWN)
2586                        return list_entry(lport->ema_list.prev,
2587                                          typeof(*ema), ema_list);
2588        }
2589
2590        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2591                if ((xid >= ema->mp->min_xid) &&
2592                    (xid <= ema->mp->max_xid))
2593                        return ema;
2594        }
2595        return NULL;
2596}
2597/**
2598 * fc_exch_recv() - Handler for received frames
2599 * @lport: The local port the frame was received on
2600 * @fp: The received frame
2601 */
2602void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2603{
2604        struct fc_frame_header *fh = fc_frame_header_get(fp);
2605        struct fc_exch_mgr_anchor *ema;
2606        u32 f_ctl;
2607
2608        /* lport lock ? */
2609        if (!lport || lport->state == LPORT_ST_DISABLED) {
2610                FC_LIBFC_DBG("Receiving frames for an lport that "
2611                             "has not been initialized correctly\n");
2612                fc_frame_free(fp);
2613                return;
2614        }
2615
2616        f_ctl = ntoh24(fh->fh_f_ctl);
2617        ema = fc_find_ema(f_ctl, lport, fh);
2618        if (!ema) {
2619                FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2620                                    "fc_ctl <0x%x>, xid <0x%x>\n",
2621                                     f_ctl,
2622                                     (f_ctl & FC_FC_EX_CTX) ?
2623                                     ntohs(fh->fh_ox_id) :
2624                                     ntohs(fh->fh_rx_id));
2625                fc_frame_free(fp);
2626                return;
2627        }
2628
2629        /*
2630         * If frame is marked invalid, just drop it.
2631         */
2632        switch (fr_eof(fp)) {
2633        case FC_EOF_T:
2634                if (f_ctl & FC_FC_END_SEQ)
2635                        skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2636                fallthrough;
2637        case FC_EOF_N:
2638                if (fh->fh_type == FC_TYPE_BLS)
2639                        fc_exch_recv_bls(ema->mp, fp);
2640                else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2641                         FC_FC_EX_CTX)
2642                        fc_exch_recv_seq_resp(ema->mp, fp);
2643                else if (f_ctl & FC_FC_SEQ_CTX)
2644                        fc_exch_recv_resp(ema->mp, fp);
2645                else    /* no EX_CTX and no SEQ_CTX */
2646                        fc_exch_recv_req(lport, ema->mp, fp);
2647                break;
2648        default:
2649                FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2650                             fr_eof(fp));
2651                fc_frame_free(fp);
2652        }
2653}
2654EXPORT_SYMBOL(fc_exch_recv);
2655
2656/**
2657 * fc_exch_init() - Initialize the exchange layer for a local port
2658 * @lport: The local port to initialize the exchange layer for
2659 */
2660int fc_exch_init(struct fc_lport *lport)
2661{
2662        if (!lport->tt.exch_mgr_reset)
2663                lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2664
2665        return 0;
2666}
2667EXPORT_SYMBOL(fc_exch_init);
2668
2669/**
2670 * fc_setup_exch_mgr() - Setup an exchange manager
2671 */
2672int fc_setup_exch_mgr(void)
2673{
2674        fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2675                                         0, SLAB_HWCACHE_ALIGN, NULL);
2676        if (!fc_em_cachep)
2677                return -ENOMEM;
2678
2679        /*
2680         * Initialize fc_cpu_mask and fc_cpu_order. The
2681         * fc_cpu_mask is set for nr_cpu_ids rounded up
2682         * to order of 2's * power and order is stored
2683         * in fc_cpu_order as this is later required in
2684         * mapping between an exch id and exch array index
2685         * in per cpu exch pool.
2686         *
2687         * This round up is required to align fc_cpu_mask
2688         * to exchange id's lower bits such that all incoming
2689         * frames of an exchange gets delivered to the same
2690         * cpu on which exchange originated by simple bitwise
2691         * AND operation between fc_cpu_mask and exchange id.
2692         */
2693        fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2694        fc_cpu_mask = (1 << fc_cpu_order) - 1;
2695
2696        fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2697        if (!fc_exch_workqueue)
2698                goto err;
2699        return 0;
2700err:
2701        kmem_cache_destroy(fc_em_cachep);
2702        return -ENOMEM;
2703}
2704
2705/**
2706 * fc_destroy_exch_mgr() - Destroy an exchange manager
2707 */
2708void fc_destroy_exch_mgr(void)
2709{
2710        destroy_workqueue(fc_exch_workqueue);
2711        kmem_cache_destroy(fc_em_cachep);
2712}
2713