linux/drivers/scsi/sym53c8xx_2/sym_hipd.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
   4 * of PCI-SCSI IO processors.
   5 *
   6 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
   7 *
   8 * This driver is derived from the Linux sym53c8xx driver.
   9 * Copyright (C) 1998-2000  Gerard Roudier
  10 *
  11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
  12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
  13 *
  14 * The original ncr driver has been written for 386bsd and FreeBSD by
  15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
  16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
  17 * Copyright (C) 1994  Wolfgang Stanglmeier
  18 *
  19 * Other major contributions:
  20 *
  21 * NVRAM detection and reading.
  22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
  23 *
  24 *-----------------------------------------------------------------------------
  25 */
  26
  27#include <linux/gfp.h>
  28
  29#ifndef SYM_HIPD_H
  30#define SYM_HIPD_H
  31
  32/*
  33 *  Generic driver options.
  34 *
  35 *  They may be defined in platform specific headers, if they 
  36 *  are useful.
  37 *
  38 *    SYM_OPT_HANDLE_DEVICE_QUEUEING
  39 *        When this option is set, the driver will use a queue per 
  40 *        device and handle QUEUE FULL status requeuing internally.
  41 *
  42 *    SYM_OPT_LIMIT_COMMAND_REORDERING
  43 *        When this option is set, the driver tries to limit tagged 
  44 *        command reordering to some reasonable value.
  45 *        (set for Linux)
  46 */
  47#if 0
  48#define SYM_OPT_HANDLE_DEVICE_QUEUEING
  49#define SYM_OPT_LIMIT_COMMAND_REORDERING
  50#endif
  51
  52/*
  53 *  Active debugging tags and verbosity.
  54 *  Both DEBUG_FLAGS and sym_verbose can be redefined 
  55 *  by the platform specific code to something else.
  56 */
  57#define DEBUG_ALLOC     (0x0001)
  58#define DEBUG_PHASE     (0x0002)
  59#define DEBUG_POLL      (0x0004)
  60#define DEBUG_QUEUE     (0x0008)
  61#define DEBUG_RESULT    (0x0010)
  62#define DEBUG_SCATTER   (0x0020)
  63#define DEBUG_SCRIPT    (0x0040)
  64#define DEBUG_TINY      (0x0080)
  65#define DEBUG_TIMING    (0x0100)
  66#define DEBUG_NEGO      (0x0200)
  67#define DEBUG_TAGS      (0x0400)
  68#define DEBUG_POINTER   (0x0800)
  69
  70#ifndef DEBUG_FLAGS
  71#define DEBUG_FLAGS     (0x0000)
  72#endif
  73
  74#ifndef sym_verbose
  75#define sym_verbose     (np->verbose)
  76#endif
  77
  78/*
  79 *  These ones should have been already defined.
  80 */
  81#ifndef assert
  82#define assert(expression) { \
  83        if (!(expression)) { \
  84                (void)panic( \
  85                        "assertion \"%s\" failed: file \"%s\", line %d\n", \
  86                        #expression, \
  87                        __FILE__, __LINE__); \
  88        } \
  89}
  90#endif
  91
  92/*
  93 *  Number of tasks per device we want to handle.
  94 */
  95#if     SYM_CONF_MAX_TAG_ORDER > 8
  96#error  "more than 256 tags per logical unit not allowed."
  97#endif
  98#define SYM_CONF_MAX_TASK       (1<<SYM_CONF_MAX_TAG_ORDER)
  99
 100/*
 101 *  Donnot use more tasks that we can handle.
 102 */
 103#ifndef SYM_CONF_MAX_TAG
 104#define SYM_CONF_MAX_TAG        SYM_CONF_MAX_TASK
 105#endif
 106#if     SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
 107#undef  SYM_CONF_MAX_TAG
 108#define SYM_CONF_MAX_TAG        SYM_CONF_MAX_TASK
 109#endif
 110
 111/*
 112 *    This one means 'NO TAG for this job'
 113 */
 114#define NO_TAG  (256)
 115
 116/*
 117 *  Number of SCSI targets.
 118 */
 119#if     SYM_CONF_MAX_TARGET > 16
 120#error  "more than 16 targets not allowed."
 121#endif
 122
 123/*
 124 *  Number of logical units per target.
 125 */
 126#if     SYM_CONF_MAX_LUN > 64
 127#error  "more than 64 logical units per target not allowed."
 128#endif
 129
 130/*
 131 *    Asynchronous pre-scaler (ns). Shall be 40 for 
 132 *    the SCSI timings to be compliant.
 133 */
 134#define SYM_CONF_MIN_ASYNC (40)
 135
 136
 137/*
 138 * MEMORY ALLOCATOR.
 139 */
 140
 141#define SYM_MEM_WARN    1       /* Warn on failed operations */
 142
 143#define SYM_MEM_PAGE_ORDER 0    /* 1 PAGE  maximum */
 144#define SYM_MEM_CLUSTER_SHIFT   (PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
 145#define SYM_MEM_FREE_UNUSED     /* Free unused pages immediately */
 146/*
 147 *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
 148 *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
 149 *  (1 PAGE at a time is just fine).
 150 */
 151#define SYM_MEM_SHIFT   4
 152#define SYM_MEM_CLUSTER_SIZE    (1UL << SYM_MEM_CLUSTER_SHIFT)
 153#define SYM_MEM_CLUSTER_MASK    (SYM_MEM_CLUSTER_SIZE-1)
 154
 155/*
 156 *  Number of entries in the START and DONE queues.
 157 *
 158 *  We limit to 1 PAGE in order to succeed allocation of 
 159 *  these queues. Each entry is 8 bytes long (2 DWORDS).
 160 */
 161#ifdef  SYM_CONF_MAX_START
 162#define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
 163#else
 164#define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
 165#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
 166#endif
 167
 168#if     SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
 169#undef  SYM_CONF_MAX_QUEUE
 170#define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
 171#undef  SYM_CONF_MAX_START
 172#define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
 173#endif
 174
 175/*
 176 *  For this one, we want a short name :-)
 177 */
 178#define MAX_QUEUE       SYM_CONF_MAX_QUEUE
 179
 180/*
 181 *  Common definitions for both bus space based and legacy IO methods.
 182 */
 183
 184#define INB_OFF(np, o)          ioread8(np->s.ioaddr + (o))
 185#define INW_OFF(np, o)          ioread16(np->s.ioaddr + (o))
 186#define INL_OFF(np, o)          ioread32(np->s.ioaddr + (o))
 187
 188#define OUTB_OFF(np, o, val)    iowrite8((val), np->s.ioaddr + (o))
 189#define OUTW_OFF(np, o, val)    iowrite16((val), np->s.ioaddr + (o))
 190#define OUTL_OFF(np, o, val)    iowrite32((val), np->s.ioaddr + (o))
 191
 192#define INB(np, r)              INB_OFF(np, offsetof(struct sym_reg, r))
 193#define INW(np, r)              INW_OFF(np, offsetof(struct sym_reg, r))
 194#define INL(np, r)              INL_OFF(np, offsetof(struct sym_reg, r))
 195
 196#define OUTB(np, r, v)          OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
 197#define OUTW(np, r, v)          OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
 198#define OUTL(np, r, v)          OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
 199
 200#define OUTONB(np, r, m)        OUTB(np, r, INB(np, r) | (m))
 201#define OUTOFFB(np, r, m)       OUTB(np, r, INB(np, r) & ~(m))
 202#define OUTONW(np, r, m)        OUTW(np, r, INW(np, r) | (m))
 203#define OUTOFFW(np, r, m)       OUTW(np, r, INW(np, r) & ~(m))
 204#define OUTONL(np, r, m)        OUTL(np, r, INL(np, r) | (m))
 205#define OUTOFFL(np, r, m)       OUTL(np, r, INL(np, r) & ~(m))
 206
 207/*
 208 *  We normally want the chip to have a consistent view
 209 *  of driver internal data structures when we restart it.
 210 *  Thus these macros.
 211 */
 212#define OUTL_DSP(np, v)                         \
 213        do {                                    \
 214                MEMORY_WRITE_BARRIER();         \
 215                OUTL(np, nc_dsp, (v));          \
 216        } while (0)
 217
 218#define OUTONB_STD()                            \
 219        do {                                    \
 220                MEMORY_WRITE_BARRIER();         \
 221                OUTONB(np, nc_dcntl, (STD|NOCOM));      \
 222        } while (0)
 223
 224/*
 225 *  Command control block states.
 226 */
 227#define HS_IDLE         (0)
 228#define HS_BUSY         (1)
 229#define HS_NEGOTIATE    (2)     /* sync/wide data transfer*/
 230#define HS_DISCONNECT   (3)     /* Disconnected by target */
 231#define HS_WAIT         (4)     /* waiting for resource   */
 232
 233#define HS_DONEMASK     (0x80)
 234#define HS_COMPLETE     (4|HS_DONEMASK)
 235#define HS_SEL_TIMEOUT  (5|HS_DONEMASK) /* Selection timeout      */
 236#define HS_UNEXPECTED   (6|HS_DONEMASK) /* Unexpected disconnect  */
 237#define HS_COMP_ERR     (7|HS_DONEMASK) /* Completed with error   */
 238
 239/*
 240 *  Software Interrupt Codes
 241 */
 242#define SIR_BAD_SCSI_STATUS     (1)
 243#define SIR_SEL_ATN_NO_MSG_OUT  (2)
 244#define SIR_MSG_RECEIVED        (3)
 245#define SIR_MSG_WEIRD           (4)
 246#define SIR_NEGO_FAILED         (5)
 247#define SIR_NEGO_PROTO          (6)
 248#define SIR_SCRIPT_STOPPED      (7)
 249#define SIR_REJECT_TO_SEND      (8)
 250#define SIR_SWIDE_OVERRUN       (9)
 251#define SIR_SODL_UNDERRUN       (10)
 252#define SIR_RESEL_NO_MSG_IN     (11)
 253#define SIR_RESEL_NO_IDENTIFY   (12)
 254#define SIR_RESEL_BAD_LUN       (13)
 255#define SIR_TARGET_SELECTED     (14)
 256#define SIR_RESEL_BAD_I_T_L     (15)
 257#define SIR_RESEL_BAD_I_T_L_Q   (16)
 258#define SIR_ABORT_SENT          (17)
 259#define SIR_RESEL_ABORTED       (18)
 260#define SIR_MSG_OUT_DONE        (19)
 261#define SIR_COMPLETE_ERROR      (20)
 262#define SIR_DATA_OVERRUN        (21)
 263#define SIR_BAD_PHASE           (22)
 264#if     SYM_CONF_DMA_ADDRESSING_MODE == 2
 265#define SIR_DMAP_DIRTY          (23)
 266#define SIR_MAX                 (23)
 267#else
 268#define SIR_MAX                 (22)
 269#endif
 270
 271/*
 272 *  Extended error bit codes.
 273 *  xerr_status field of struct sym_ccb.
 274 */
 275#define XE_EXTRA_DATA   (1)     /* unexpected data phase         */
 276#define XE_BAD_PHASE    (1<<1)  /* illegal phase (4/5)           */
 277#define XE_PARITY_ERR   (1<<2)  /* unrecovered SCSI parity error */
 278#define XE_SODL_UNRUN   (1<<3)  /* ODD transfer in DATA OUT phase */
 279#define XE_SWIDE_OVRUN  (1<<4)  /* ODD transfer in DATA IN phase */
 280
 281/*
 282 *  Negotiation status.
 283 *  nego_status field of struct sym_ccb.
 284 */
 285#define NS_SYNC         (1)
 286#define NS_WIDE         (2)
 287#define NS_PPR          (3)
 288
 289/*
 290 *  A CCB hashed table is used to retrieve CCB address 
 291 *  from DSA value.
 292 */
 293#define CCB_HASH_SHIFT          8
 294#define CCB_HASH_SIZE           (1UL << CCB_HASH_SHIFT)
 295#define CCB_HASH_MASK           (CCB_HASH_SIZE-1)
 296#if 1
 297#define CCB_HASH_CODE(dsa)      \
 298        (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
 299#else
 300#define CCB_HASH_CODE(dsa)      (((dsa) >> 9) & CCB_HASH_MASK)
 301#endif
 302
 303#if     SYM_CONF_DMA_ADDRESSING_MODE == 2
 304/*
 305 *  We may want to use segment registers for 64 bit DMA.
 306 *  16 segments registers -> up to 64 GB addressable.
 307 */
 308#define SYM_DMAP_SHIFT  (4)
 309#define SYM_DMAP_SIZE   (1u<<SYM_DMAP_SHIFT)
 310#define SYM_DMAP_MASK   (SYM_DMAP_SIZE-1)
 311#endif
 312
 313/*
 314 *  Device flags.
 315 */
 316#define SYM_DISC_ENABLED        (1)
 317#define SYM_TAGS_ENABLED        (1<<1)
 318#define SYM_SCAN_BOOT_DISABLED  (1<<2)
 319#define SYM_SCAN_LUNS_DISABLED  (1<<3)
 320
 321/*
 322 *  Host adapter miscellaneous flags.
 323 */
 324#define SYM_AVOID_BUS_RESET     (1)
 325
 326/*
 327 *  Misc.
 328 */
 329#define SYM_SNOOP_TIMEOUT (10000000)
 330#define BUS_8_BIT       0
 331#define BUS_16_BIT      1
 332
 333/*
 334 *  Gather negotiable parameters value
 335 */
 336struct sym_trans {
 337        u8 period;
 338        u8 offset;
 339        unsigned int width:1;
 340        unsigned int iu:1;
 341        unsigned int dt:1;
 342        unsigned int qas:1;
 343        unsigned int check_nego:1;
 344        unsigned int renego:2;
 345};
 346
 347/*
 348 *  Global TCB HEADER.
 349 *
 350 *  Due to lack of indirect addressing on earlier NCR chips,
 351 *  this substructure is copied from the TCB to a global 
 352 *  address after selection.
 353 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 354 *  not needed and thus not performed.
 355 */
 356struct sym_tcbh {
 357        /*
 358         *  Scripts bus addresses of LUN table accessed from scripts.
 359         *  LUN #0 is a special case, since multi-lun devices are rare, 
 360         *  and we we want to speed-up the general case and not waste 
 361         *  resources.
 362         */
 363        u32     luntbl_sa;      /* bus address of this table    */
 364        u32     lun0_sa;        /* bus address of LCB #0        */
 365        /*
 366         *  Actual SYNC/WIDE IO registers value for this target.
 367         *  'sval', 'wval' and 'uval' are read from SCRIPTS and 
 368         *  so have alignment constraints.
 369         */
 370/*0*/   u_char  uval;           /* -> SCNTL4 register           */
 371/*1*/   u_char  sval;           /* -> SXFER  io register        */
 372/*2*/   u_char  filler1;
 373/*3*/   u_char  wval;           /* -> SCNTL3 io register        */
 374};
 375
 376/*
 377 *  Target Control Block
 378 */
 379struct sym_tcb {
 380        /*
 381         *  TCB header.
 382         *  Assumed at offset 0.
 383         */
 384/*0*/   struct sym_tcbh head;
 385
 386        /*
 387         *  LUN table used by the SCRIPTS processor.
 388         *  An array of bus addresses is used on reselection.
 389         */
 390        u32     *luntbl;        /* LCBs bus address table       */
 391        int     nlcb;           /* Number of valid LCBs (including LUN #0) */
 392
 393        /*
 394         *  LUN table used by the C code.
 395         */
 396        struct sym_lcb *lun0p;          /* LCB of LUN #0 (usual case)   */
 397#if SYM_CONF_MAX_LUN > 1
 398        struct sym_lcb **lunmp;         /* Other LCBs [1..MAX_LUN]      */
 399#endif
 400
 401#ifdef  SYM_HAVE_STCB
 402        /*
 403         *  O/S specific data structure.
 404         */
 405        struct sym_stcb s;
 406#endif
 407
 408        /* Transfer goal */
 409        struct sym_trans tgoal;
 410
 411        /* Last printed transfer speed */
 412        struct sym_trans tprint;
 413
 414        /*
 415         * Keep track of the CCB used for the negotiation in order
 416         * to ensure that only 1 negotiation is queued at a time.
 417         */
 418        struct sym_ccb *  nego_cp;      /* CCB used for the nego                */
 419
 420        /*
 421         *  Set when we want to reset the device.
 422         */
 423        u_char  to_reset;
 424
 425        /*
 426         *  Other user settable limits and options.
 427         *  These limits are read from the NVRAM if present.
 428         */
 429        unsigned char   usrflags;
 430        unsigned char   usr_period;
 431        unsigned char   usr_width;
 432        unsigned short  usrtags;
 433        struct scsi_target *starget;
 434};
 435
 436/*
 437 *  Global LCB HEADER.
 438 *
 439 *  Due to lack of indirect addressing on earlier NCR chips,
 440 *  this substructure is copied from the LCB to a global 
 441 *  address after selection.
 442 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 443 *  not needed and thus not performed.
 444 */
 445struct sym_lcbh {
 446        /*
 447         *  SCRIPTS address jumped by SCRIPTS on reselection.
 448         *  For not probed logical units, this address points to 
 449         *  SCRIPTS that deal with bad LU handling (must be at 
 450         *  offset zero of the LCB for that reason).
 451         */
 452/*0*/   u32     resel_sa;
 453
 454        /*
 455         *  Task (bus address of a CCB) read from SCRIPTS that points 
 456         *  to the unique ITL nexus allowed to be disconnected.
 457         */
 458        u32     itl_task_sa;
 459
 460        /*
 461         *  Task table bus address (read from SCRIPTS).
 462         */
 463        u32     itlq_tbl_sa;
 464};
 465
 466/*
 467 *  Logical Unit Control Block
 468 */
 469struct sym_lcb {
 470        /*
 471         *  TCB header.
 472         *  Assumed at offset 0.
 473         */
 474/*0*/   struct sym_lcbh head;
 475
 476        /*
 477         *  Task table read from SCRIPTS that contains pointers to 
 478         *  ITLQ nexuses. The bus address read from SCRIPTS is 
 479         *  inside the header.
 480         */
 481        u32     *itlq_tbl;      /* Kernel virtual address       */
 482
 483        /*
 484         *  Busy CCBs management.
 485         */
 486        u_short busy_itlq;      /* Number of busy tagged CCBs   */
 487        u_short busy_itl;       /* Number of busy untagged CCBs */
 488
 489        /*
 490         *  Circular tag allocation buffer.
 491         */
 492        u_short ia_tag;         /* Tag allocation index         */
 493        u_short if_tag;         /* Tag release index            */
 494        u_char  *cb_tags;       /* Circular tags buffer         */
 495
 496        /*
 497         *  O/S specific data structure.
 498         */
 499#ifdef  SYM_HAVE_SLCB
 500        struct sym_slcb s;
 501#endif
 502
 503#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
 504        /*
 505         *  Optionnaly the driver can handle device queueing, 
 506         *  and requeues internally command to redo.
 507         */
 508        SYM_QUEHEAD waiting_ccbq;
 509        SYM_QUEHEAD started_ccbq;
 510        int     num_sgood;
 511        u_short started_tags;
 512        u_short started_no_tag;
 513        u_short started_max;
 514        u_short started_limit;
 515#endif
 516
 517#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
 518        /*
 519         *  Optionally the driver can try to prevent SCSI 
 520         *  IOs from being reordered too much.
 521         */
 522        u_char          tags_si;        /* Current index to tags sum    */
 523        u_short         tags_sum[2];    /* Tags sum counters            */
 524        u_short         tags_since;     /* # of tags since last switch  */
 525#endif
 526
 527        /*
 528         *  Set when we want to clear all tasks.
 529         */
 530        u_char to_clear;
 531
 532        /*
 533         *  Capabilities.
 534         */
 535        u_char  user_flags;
 536        u_char  curr_flags;
 537};
 538
 539/*
 540 *  Action from SCRIPTS on a task.
 541 *  Is part of the CCB, but is also used separately to plug 
 542 *  error handling action to perform from SCRIPTS.
 543 */
 544struct sym_actscr {
 545        u32     start;          /* Jumped by SCRIPTS after selection    */
 546        u32     restart;        /* Jumped by SCRIPTS on relection       */
 547};
 548
 549/*
 550 *  Phase mismatch context.
 551 *
 552 *  It is part of the CCB and is used as parameters for the 
 553 *  DATA pointer. We need two contexts to handle correctly the 
 554 *  SAVED DATA POINTER.
 555 */
 556struct sym_pmc {
 557        struct  sym_tblmove sg; /* Updated interrupted SG block */
 558        u32     ret;            /* SCRIPT return address        */
 559};
 560
 561/*
 562 *  LUN control block lookup.
 563 *  We use a direct pointer for LUN #0, and a table of 
 564 *  pointers which is only allocated for devices that support 
 565 *  LUN(s) > 0.
 566 */
 567#if SYM_CONF_MAX_LUN <= 1
 568#define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
 569#else
 570#define sym_lp(tp, lun) \
 571        (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[((u8)lun)] : NULL
 572#endif
 573
 574/*
 575 *  Status are used by the host and the script processor.
 576 *
 577 *  The last four bytes (status[4]) are copied to the 
 578 *  scratchb register (declared as scr0..scr3) just after the 
 579 *  select/reselect, and copied back just after disconnecting.
 580 *  Inside the script the XX_REG are used.
 581 */
 582
 583/*
 584 *  Last four bytes (script)
 585 */
 586#define  HX_REG scr0
 587#define  HX_PRT nc_scr0
 588#define  HS_REG scr1
 589#define  HS_PRT nc_scr1
 590#define  SS_REG scr2
 591#define  SS_PRT nc_scr2
 592#define  HF_REG scr3
 593#define  HF_PRT nc_scr3
 594
 595/*
 596 *  Last four bytes (host)
 597 */
 598#define  host_xflags   phys.head.status[0]
 599#define  host_status   phys.head.status[1]
 600#define  ssss_status   phys.head.status[2]
 601#define  host_flags    phys.head.status[3]
 602
 603/*
 604 *  Host flags
 605 */
 606#define HF_IN_PM0       1u
 607#define HF_IN_PM1       (1u<<1)
 608#define HF_ACT_PM       (1u<<2)
 609#define HF_DP_SAVED     (1u<<3)
 610#define HF_SENSE        (1u<<4)
 611#define HF_EXT_ERR      (1u<<5)
 612#define HF_DATA_IN      (1u<<6)
 613#ifdef SYM_CONF_IARB_SUPPORT
 614#define HF_HINT_IARB    (1u<<7)
 615#endif
 616
 617/*
 618 *  More host flags
 619 */
 620#if     SYM_CONF_DMA_ADDRESSING_MODE == 2
 621#define HX_DMAP_DIRTY   (1u<<7)
 622#endif
 623
 624/*
 625 *  Global CCB HEADER.
 626 *
 627 *  Due to lack of indirect addressing on earlier NCR chips,
 628 *  this substructure is copied from the ccb to a global 
 629 *  address after selection (or reselection) and copied back 
 630 *  before disconnect.
 631 *  For SYMBIOS chips that support LOAD/STORE this copy is 
 632 *  not needed and thus not performed.
 633 */
 634
 635struct sym_ccbh {
 636        /*
 637         *  Start and restart SCRIPTS addresses (must be at 0).
 638         */
 639/*0*/   struct sym_actscr go;
 640
 641        /*
 642         *  SCRIPTS jump address that deal with data pointers.
 643         *  'savep' points to the position in the script responsible 
 644         *  for the actual transfer of data.
 645         *  It's written on reception of a SAVE_DATA_POINTER message.
 646         */
 647        u32     savep;          /* Jump address to saved data pointer   */
 648        u32     lastp;          /* SCRIPTS address at end of data       */
 649
 650        /*
 651         *  Status fields.
 652         */
 653        u8      status[4];
 654};
 655
 656/*
 657 *  GET/SET the value of the data pointer used by SCRIPTS.
 658 *
 659 *  We must distinguish between the LOAD/STORE-based SCRIPTS 
 660 *  that use directly the header in the CCB, and the NCR-GENERIC 
 661 *  SCRIPTS that use the copy of the header in the HCB.
 662 */
 663#if     SYM_CONF_GENERIC_SUPPORT
 664#define sym_set_script_dp(np, cp, dp)                           \
 665        do {                                                    \
 666                if (np->features & FE_LDSTR)                    \
 667                        cp->phys.head.lastp = cpu_to_scr(dp);   \
 668                else                                            \
 669                        np->ccb_head.lastp = cpu_to_scr(dp);    \
 670        } while (0)
 671#define sym_get_script_dp(np, cp)                               \
 672        scr_to_cpu((np->features & FE_LDSTR) ?                  \
 673                cp->phys.head.lastp : np->ccb_head.lastp)
 674#else
 675#define sym_set_script_dp(np, cp, dp)                           \
 676        do {                                                    \
 677                cp->phys.head.lastp = cpu_to_scr(dp);           \
 678        } while (0)
 679
 680#define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
 681#endif
 682
 683/*
 684 *  Data Structure Block
 685 *
 686 *  During execution of a ccb by the script processor, the 
 687 *  DSA (data structure address) register points to this 
 688 *  substructure of the ccb.
 689 */
 690struct sym_dsb {
 691        /*
 692         *  CCB header.
 693         *  Also assumed at offset 0 of the sym_ccb structure.
 694         */
 695/*0*/   struct sym_ccbh head;
 696
 697        /*
 698         *  Phase mismatch contexts.
 699         *  We need two to handle correctly the SAVED DATA POINTER.
 700         *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 
 701         *  for address calculation from SCRIPTS.
 702         */
 703        struct sym_pmc pm0;
 704        struct sym_pmc pm1;
 705
 706        /*
 707         *  Table data for Script
 708         */
 709        struct sym_tblsel  select;
 710        struct sym_tblmove smsg;
 711        struct sym_tblmove smsg_ext;
 712        struct sym_tblmove cmd;
 713        struct sym_tblmove sense;
 714        struct sym_tblmove wresid;
 715        struct sym_tblmove data [SYM_CONF_MAX_SG];
 716};
 717
 718/*
 719 *  Our Command Control Block
 720 */
 721struct sym_ccb {
 722        /*
 723         *  This is the data structure which is pointed by the DSA 
 724         *  register when it is executed by the script processor.
 725         *  It must be the first entry.
 726         */
 727        struct sym_dsb phys;
 728
 729        /*
 730         *  Pointer to CAM ccb and related stuff.
 731         */
 732        struct scsi_cmnd *cmd;  /* CAM scsiio ccb               */
 733        u8      cdb_buf[16];    /* Copy of CDB                  */
 734#define SYM_SNS_BBUF_LEN 32
 735        u8      sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
 736        int     data_len;       /* Total data length            */
 737        int     segments;       /* Number of SG segments        */
 738
 739        u8      order;          /* Tag type (if tagged command) */
 740        unsigned char odd_byte_adjustment;      /* odd-sized req on wide bus */
 741
 742        u_char  nego_status;    /* Negotiation status           */
 743        u_char  xerr_status;    /* Extended error flags         */
 744        u32     extra_bytes;    /* Extraneous bytes transferred */
 745
 746        /*
 747         *  Message areas.
 748         *  We prepare a message to be sent after selection.
 749         *  We may use a second one if the command is rescheduled 
 750         *  due to CHECK_CONDITION or COMMAND TERMINATED.
 751         *  Contents are IDENTIFY and SIMPLE_TAG.
 752         *  While negotiating sync or wide transfer,
 753         *  a SDTR or WDTR message is appended.
 754         */
 755        u_char  scsi_smsg [12];
 756        u_char  scsi_smsg2[12];
 757
 758        /*
 759         *  Auto request sense related fields.
 760         */
 761        u_char  sensecmd[6];    /* Request Sense command        */
 762        u_char  sv_scsi_status; /* Saved SCSI status            */
 763        u_char  sv_xerr_status; /* Saved extended status        */
 764        int     sv_resid;       /* Saved residual               */
 765
 766        /*
 767         *  Other fields.
 768         */
 769        u32     ccb_ba;         /* BUS address of this CCB      */
 770        u_short tag;            /* Tag for this transfer        */
 771                                /*  NO_TAG means no tag         */
 772        u_char  target;
 773        u_char  lun;
 774        struct sym_ccb *link_ccbh;      /* Host adapter CCB hash chain  */
 775        SYM_QUEHEAD link_ccbq;  /* Link to free/busy CCB queue  */
 776        u32     startp;         /* Initial data pointer         */
 777        u32     goalp;          /* Expected last data pointer   */
 778        int     ext_sg;         /* Extreme data pointer, used   */
 779        int     ext_ofs;        /*  to calculate the residual.  */
 780#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
 781        SYM_QUEHEAD link2_ccbq; /* Link for device queueing     */
 782        u_char  started;        /* CCB queued to the squeue     */
 783#endif
 784        u_char  to_abort;       /* Want this IO to be aborted   */
 785#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
 786        u_char  tags_si;        /* Lun tags sum index (0,1)     */
 787#endif
 788};
 789
 790#define CCB_BA(cp,lbl)  cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
 791
 792typedef struct device *m_pool_ident_t;
 793
 794/*
 795 *  Host Control Block
 796 */
 797struct sym_hcb {
 798        /*
 799         *  Global headers.
 800         *  Due to poorness of addressing capabilities, earlier 
 801         *  chips (810, 815, 825) copy part of the data structures 
 802         *  (CCB, TCB and LCB) in fixed areas.
 803         */
 804#if     SYM_CONF_GENERIC_SUPPORT
 805        struct sym_ccbh ccb_head;
 806        struct sym_tcbh tcb_head;
 807        struct sym_lcbh lcb_head;
 808#endif
 809        /*
 810         *  Idle task and invalid task actions and 
 811         *  their bus addresses.
 812         */
 813        struct sym_actscr idletask, notask, bad_itl, bad_itlq;
 814        u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
 815
 816        /*
 817         *  Dummy lun table to protect us against target 
 818         *  returning bad lun number on reselection.
 819         */
 820        u32     *badluntbl;     /* Table physical address       */
 821        u32     badlun_sa;      /* SCRIPT handler BUS address   */
 822
 823        /*
 824         *  Bus address of this host control block.
 825         */
 826        u32     hcb_ba;
 827
 828        /*
 829         *  Bit 32-63 of the on-chip RAM bus address in LE format.
 830         *  The START_RAM64 script loads the MMRS and MMWS from this 
 831         *  field.
 832         */
 833        u32     scr_ram_seg;
 834
 835        /*
 836         *  Initial value of some IO register bits.
 837         *  These values are assumed to have been set by BIOS, and may 
 838         *  be used to probe adapter implementation differences.
 839         */
 840        u_char  sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
 841                sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
 842                sv_stest1;
 843
 844        /*
 845         *  Actual initial value of IO register bits used by the 
 846         *  driver. They are loaded at initialisation according to  
 847         *  features that are to be enabled/disabled.
 848         */
 849        u_char  rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 
 850                rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
 851
 852        /*
 853         *  Target data.
 854         */
 855        struct sym_tcb  target[SYM_CONF_MAX_TARGET];
 856
 857        /*
 858         *  Target control block bus address array used by the SCRIPT 
 859         *  on reselection.
 860         */
 861        u32             *targtbl;
 862        u32             targtbl_ba;
 863
 864        /*
 865         *  DMA pool handle for this HBA.
 866         */
 867        m_pool_ident_t  bus_dmat;
 868
 869        /*
 870         *  O/S specific data structure
 871         */
 872        struct sym_shcb s;
 873
 874        /*
 875         *  Physical bus addresses of the chip.
 876         */
 877        u32             mmio_ba;        /* MMIO 32 bit BUS address      */
 878        u32             ram_ba;         /* RAM 32 bit BUS address       */
 879
 880        /*
 881         *  SCRIPTS virtual and physical bus addresses.
 882         *  'script'  is loaded in the on-chip RAM if present.
 883         *  'scripth' stays in main memory for all chips except the 
 884         *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
 885         */
 886        u_char          *scripta0;      /* Copy of scripts A, B, Z      */
 887        u_char          *scriptb0;
 888        u_char          *scriptz0;
 889        u32             scripta_ba;     /* Actual scripts A, B, Z       */
 890        u32             scriptb_ba;     /* 32 bit bus addresses.        */
 891        u32             scriptz_ba;
 892        u_short         scripta_sz;     /* Actual size of script A, B, Z*/
 893        u_short         scriptb_sz;
 894        u_short         scriptz_sz;
 895
 896        /*
 897         *  Bus addresses, setup and patch methods for 
 898         *  the selected firmware.
 899         */
 900        struct sym_fwa_ba fwa_bas;      /* Useful SCRIPTA bus addresses */
 901        struct sym_fwb_ba fwb_bas;      /* Useful SCRIPTB bus addresses */
 902        struct sym_fwz_ba fwz_bas;      /* Useful SCRIPTZ bus addresses */
 903        void            (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
 904        void            (*fw_patch)(struct Scsi_Host *);
 905        char            *fw_name;
 906
 907        /*
 908         *  General controller parameters and configuration.
 909         */
 910        u_int   features;       /* Chip features map            */
 911        u_char  myaddr;         /* SCSI id of the adapter       */
 912        u_char  maxburst;       /* log base 2 of dwords burst   */
 913        u_char  maxwide;        /* Maximum transfer width       */
 914        u_char  minsync;        /* Min sync period factor (ST)  */
 915        u_char  maxsync;        /* Max sync period factor (ST)  */
 916        u_char  maxoffs;        /* Max scsi offset        (ST)  */
 917        u_char  minsync_dt;     /* Min sync period factor (DT)  */
 918        u_char  maxsync_dt;     /* Max sync period factor (DT)  */
 919        u_char  maxoffs_dt;     /* Max scsi offset        (DT)  */
 920        u_char  multiplier;     /* Clock multiplier (1,2,4)     */
 921        u_char  clock_divn;     /* Number of clock divisors     */
 922        u32     clock_khz;      /* SCSI clock frequency in KHz  */
 923        u32     pciclk_khz;     /* Estimated PCI clock  in KHz  */
 924        /*
 925         *  Start queue management.
 926         *  It is filled up by the host processor and accessed by the 
 927         *  SCRIPTS processor in order to start SCSI commands.
 928         */
 929        volatile                /* Prevent code optimizations   */
 930        u32     *squeue;        /* Start queue virtual address  */
 931        u32     squeue_ba;      /* Start queue BUS address      */
 932        u_short squeueput;      /* Next free slot of the queue  */
 933        u_short actccbs;        /* Number of allocated CCBs     */
 934
 935        /*
 936         *  Command completion queue.
 937         *  It is the same size as the start queue to avoid overflow.
 938         */
 939        u_short dqueueget;      /* Next position to scan        */
 940        volatile                /* Prevent code optimizations   */
 941        u32     *dqueue;        /* Completion (done) queue      */
 942        u32     dqueue_ba;      /* Done queue BUS address       */
 943
 944        /*
 945         *  Miscellaneous buffers accessed by the scripts-processor.
 946         *  They shall be DWORD aligned, because they may be read or 
 947         *  written with a script command.
 948         */
 949        u_char          msgout[8];      /* Buffer for MESSAGE OUT       */
 950        u_char          msgin [8];      /* Buffer for MESSAGE IN        */
 951        u32             lastmsg;        /* Last SCSI message sent       */
 952        u32             scratch;        /* Scratch for SCSI receive     */
 953                                        /* Also used for cache test     */
 954        /*
 955         *  Miscellaneous configuration and status parameters.
 956         */
 957        u_char          usrflags;       /* Miscellaneous user flags     */
 958        u_char          scsi_mode;      /* Current SCSI BUS mode        */
 959        u_char          verbose;        /* Verbosity for this controller*/
 960
 961        /*
 962         *  CCB lists and queue.
 963         */
 964        struct sym_ccb **ccbh;                  /* CCBs hashed by DSA value     */
 965                                        /* CCB_HASH_SIZE lists of CCBs  */
 966        SYM_QUEHEAD     free_ccbq;      /* Queue of available CCBs      */
 967        SYM_QUEHEAD     busy_ccbq;      /* Queue of busy CCBs           */
 968
 969        /*
 970         *  During error handling and/or recovery,
 971         *  active CCBs that are to be completed with 
 972         *  error or requeued are moved from the busy_ccbq
 973         *  to the comp_ccbq prior to completion.
 974         */
 975        SYM_QUEHEAD     comp_ccbq;
 976
 977#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
 978        SYM_QUEHEAD     dummy_ccbq;
 979#endif
 980
 981        /*
 982         *  IMMEDIATE ARBITRATION (IARB) control.
 983         *
 984         *  We keep track in 'last_cp' of the last CCB that has been 
 985         *  queued to the SCRIPTS processor and clear 'last_cp' when 
 986         *  this CCB completes. If last_cp is not zero at the moment 
 987         *  we queue a new CCB, we set a flag in 'last_cp' that is 
 988         *  used by the SCRIPTS as a hint for setting IARB.
 989         *  We donnot set more than 'iarb_max' consecutive hints for 
 990         *  IARB in order to leave devices a chance to reselect.
 991         *  By the way, any non zero value of 'iarb_max' is unfair. :)
 992         */
 993#ifdef SYM_CONF_IARB_SUPPORT
 994        u_short         iarb_max;       /* Max. # consecutive IARB hints*/
 995        u_short         iarb_count;     /* Actual # of these hints      */
 996        struct sym_ccb *        last_cp;
 997#endif
 998
 999        /*
1000         *  Command abort handling.
1001         *  We need to synchronize tightly with the SCRIPTS 
1002         *  processor in order to handle things correctly.
1003         */
1004        u_char          abrt_msg[4];    /* Message to send buffer       */
1005        struct sym_tblmove abrt_tbl;    /* Table for the MOV of it      */
1006        struct sym_tblsel  abrt_sel;    /* Sync params for selection    */
1007        u_char          istat_sem;      /* Tells the chip to stop (SEM) */
1008
1009        /*
1010         *  64 bit DMA handling.
1011         */
1012#if     SYM_CONF_DMA_ADDRESSING_MODE != 0
1013        u_char  use_dac;                /* Use PCI DAC cycles           */
1014#if     SYM_CONF_DMA_ADDRESSING_MODE == 2
1015        u_char  dmap_dirty;             /* Dma segments registers dirty */
1016        u32     dmap_bah[SYM_DMAP_SIZE];/* Segment registers map        */
1017#endif
1018#endif
1019};
1020
1021#if SYM_CONF_DMA_ADDRESSING_MODE == 0
1022#define use_dac(np)     0
1023#define set_dac(np)     do { } while (0)
1024#else
1025#define use_dac(np)     (np)->use_dac
1026#define set_dac(np)     (np)->use_dac = 1
1027#endif
1028
1029#define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl))
1030
1031
1032/*
1033 *  FIRMWARES (sym_fw.c)
1034 */
1035struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1036void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1037
1038/*
1039 *  Driver methods called from O/S specific code.
1040 */
1041char *sym_driver_name(void);
1042void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1043int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1044struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1045#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1046void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1047#else
1048void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1049#endif
1050void sym_start_up(struct Scsi_Host *, int reason);
1051irqreturn_t sym_interrupt(struct Scsi_Host *);
1052int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1053struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1054void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1055struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1056int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1057int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1058int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1059int sym_reset_scsi_target(struct sym_hcb *np, int target);
1060void sym_hcb_free(struct sym_hcb *np);
1061int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1062
1063/*
1064 *  Build a scatter/gather entry.
1065 *
1066 *  For 64 bit systems, we use the 8 upper bits of the size field 
1067 *  to provide bus address bits 32-39 to the SCRIPTS processor.
1068 *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1069 */
1070
1071#if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1072#define DMA_DAC_MASK    DMA_BIT_MASK(32)
1073#define sym_build_sge(np, data, badd, len)      \
1074do {                                            \
1075        (data)->addr = cpu_to_scr(badd);        \
1076        (data)->size = cpu_to_scr(len);         \
1077} while (0)
1078#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1079#define DMA_DAC_MASK    DMA_BIT_MASK(40)
1080#define sym_build_sge(np, data, badd, len)                              \
1081do {                                                                    \
1082        (data)->addr = cpu_to_scr(badd);                                \
1083        (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);  \
1084} while (0)
1085#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1086#define DMA_DAC_MASK    DMA_BIT_MASK(64)
1087int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1088static inline void
1089sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1090{
1091        u32 h = (badd>>32);
1092        int s = (h&SYM_DMAP_MASK);
1093
1094        if (h != np->dmap_bah[s])
1095                goto bad;
1096good:
1097        (data)->addr = cpu_to_scr(badd);
1098        (data)->size = cpu_to_scr((s<<24) + len);
1099        return;
1100bad:
1101        s = sym_lookup_dmap(np, h, s);
1102        goto good;
1103}
1104#else
1105#error "Unsupported DMA addressing mode"
1106#endif
1107
1108/*
1109 *  MEMORY ALLOCATOR.
1110 */
1111
1112#define sym_get_mem_cluster()   \
1113        (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1114#define sym_free_mem_cluster(p) \
1115        free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1116
1117/*
1118 *  Link between free memory chunks of a given size.
1119 */
1120typedef struct sym_m_link {
1121        struct sym_m_link *next;
1122} *m_link_p;
1123
1124/*
1125 *  Virtual to bus physical translation for a given cluster.
1126 *  Such a structure is only useful with DMA abstraction.
1127 */
1128typedef struct sym_m_vtob {     /* Virtual to Bus address translation */
1129        struct sym_m_vtob *next;
1130        void *vaddr;            /* Virtual address */
1131        dma_addr_t baddr;       /* Bus physical address */
1132} *m_vtob_p;
1133
1134/* Hash this stuff a bit to speed up translations */
1135#define VTOB_HASH_SHIFT         5
1136#define VTOB_HASH_SIZE          (1UL << VTOB_HASH_SHIFT)
1137#define VTOB_HASH_MASK          (VTOB_HASH_SIZE-1)
1138#define VTOB_HASH_CODE(m)       \
1139        ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1140
1141/*
1142 *  Memory pool of a given kind.
1143 *  Ideally, we want to use:
1144 *  1) 1 pool for memory we donnot need to involve in DMA.
1145 *  2) The same pool for controllers that require same DMA 
1146 *     constraints and features.
1147 *     The OS specific m_pool_id_t thing and the sym_m_pool_match() 
1148 *     method are expected to tell the driver about.
1149 */
1150typedef struct sym_m_pool {
1151        m_pool_ident_t  dev_dmat;       /* Identifies the pool (see above) */
1152        void * (*get_mem_cluster)(struct sym_m_pool *);
1153#ifdef  SYM_MEM_FREE_UNUSED
1154        void (*free_mem_cluster)(struct sym_m_pool *, void *);
1155#endif
1156#define M_GET_MEM_CLUSTER()             mp->get_mem_cluster(mp)
1157#define M_FREE_MEM_CLUSTER(p)           mp->free_mem_cluster(mp, p)
1158        int nump;
1159        m_vtob_p vtob[VTOB_HASH_SIZE];
1160        struct sym_m_pool *next;
1161        struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1162} *m_pool_p;
1163
1164/*
1165 *  Alloc, free and translate addresses to bus physical 
1166 *  for DMAable memory.
1167 */
1168void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1169void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1170dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1171
1172/*
1173 * Verbs used by the driver code for DMAable memory handling.
1174 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 
1175 * being discarded.
1176 */
1177#define _uvptv_(p) ((void *)((u_long)(p)))
1178
1179#define _sym_calloc_dma(np, l, n)       __sym_calloc_dma(np->bus_dmat, l, n)
1180#define _sym_mfree_dma(np, p, l, n)     \
1181                        __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1182#define sym_calloc_dma(l, n)            _sym_calloc_dma(np, l, n)
1183#define sym_mfree_dma(p, l, n)          _sym_mfree_dma(np, p, l, n)
1184#define vtobus(p)                       __vtobus(np->bus_dmat, _uvptv_(p))
1185
1186/*
1187 *  We have to provide the driver memory allocator with methods for 
1188 *  it to maintain virtual to bus physical address translations.
1189 */
1190
1191#define sym_m_pool_match(mp_id1, mp_id2)        (mp_id1 == mp_id2)
1192
1193static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1194{
1195        void *vaddr = NULL;
1196        dma_addr_t baddr = 0;
1197
1198        vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1199                        GFP_ATOMIC);
1200        if (vaddr) {
1201                vbp->vaddr = vaddr;
1202                vbp->baddr = baddr;
1203        }
1204        return vaddr;
1205}
1206
1207static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1208{
1209        dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1210                        vbp->baddr);
1211}
1212
1213#endif /* SYM_HIPD_H */
1214